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Fig 1. Reaction time to a visual stimulus for 18 subjects that have been restricted to 3 hours 
of sleep for 10 days. Data provided by [4]. 
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Probabilistic Model

Example
The following figure presents a vivid example of these concepts. A hierarchical regression probabilistic 
Bayesian model is applied to the reaction time of 18 subjects who were restricted to few hours of sleep. 
We will use the data provided by [4]. The end-user is able to interact with the posterior distributions of 
the model's parameters and explore the effect of the model's parameters' uncertainty on the estimated 
fitted lines to the data of each subject. In this way, end-users are able to explore different aspects of 
the model's uncertainty and view its effect.
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p(data)

Bayes' Theorem

Prior beliefs
      p(θ)

Posterior beliefs
     p(θ|data)

Evidence
p(data|θ)

θ

Fig 2. A hierarchical regression probabilistic Bayesian model was applied. The 
figure presents the Kruschke diagram of the model. First line: hyperpriors. 
Second line: priors. Third line: likelihood. Forth line: observations.

Fig 3. This figure presents the joint and marginal distributions of the α and β parameters for 
3 different values of the μ_β parameter for each subject. The user can interact with the 
posteriors and explore the model by selecting specific values of the parameters. 

Fig 4. The end-user interacts with the posterior distributions and 
explores it by building a clearer picture of the high-dimensional 
posterior space.  
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The Problem
The representation and communication of uncertainty in 
probabilistic modelling are of particular importance for end-users 
to explore, comprehend and make judgements. 

Interactive and animated representations seem to represent 
uncertainty more effectively than static displays [1], [2] by 
exploiting active perception via closed-loop control of displays. 
This could be achieved by the application of the concepts of 
pseudo-haptics [3].

Research Focus
The research focus will be to explore the open research question 
of whether animated and interactive representations of 
uncertainty in probabilistic modelling help end-users acquire a 
better understanding of the uncertainty in comparison to static 
displays. 

Uncertainty lies behind any prediction or any explanation of the 
generative processes of data that probabilistic modelling aspire to 
provide. A better comprehesion of uncertainty is crucial for the 
realization and consideration of its implications in our decisions.  

Probabilistic Modelling
The problem will be viewed in the prism of probabilistic Bayesian 
modelling. Bayes' theorem is used to update our prior beliefs of a 
hypothesis as more data becomes available. We will exploit advances in:
- Probabilistic programming and efficient MCMC 
- Web programming for building an interaction framework through the 
web browser. 
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