

School of Computing Science

Effects of Sound Type on Recreating The Trajectory of a Moving Source

Graham Wilson¹, Stephen Brewster¹ Hector Caltenco², Charlotte Magnusson², Sara Finocchietti³, Gabriel Baud-Bovy³, Monica Gori³

¹School of Computing Science, University of Glasgow, UK – {first.last}@glasgow.ac.uk ²Department of Design Sciences, Lund University, Lund, Sweden – {first.last}@certect.lth.se ³Robotics Brain & Cognitive Science, Instituto Italiano di Tecnologia, Genova, Italy – {first.last}@iit.it

ABBI: Audio Bracelet for **Blind Interaction**

ABBI Device on the wrist, and

internal components

- It produces sound based on movement
- Used as rehabilitative tool for blind children
- The sound can replace vision to improve motor control and spatial cognition
- Parents or friends can wear ABBI to encourage play/rehabilitation through mimicry of movements
- Blind children can hear the movement of others through the environment, to know where they are and how they got there

Motivation

A) A blind child can hear a parent/friend wearing ABBI moving through space and B) make their way to them

- ABBI sounds need to be personalisable to be useful
- We ran a workshop to ask blind children what sounds they like
- ABBI design depends on sound designs that are not only enjoyable but provide necessary information for rehabilitation, but:
- ? How accurately can different sounds be tracked and followed through horizontal space?
- ? What sounds facilitate the most accurate movement?

Sounds

- Took 4 liked sounds from workshop and 2 others from HCI (Earcon) and perceptual science (Speech):
- ➤ Birds = birdsong
- ➤ Waves = waves crashing
- > Pulse = fuzzy, 2-sec C3 note with quick attack and slow decay
- > Dropping = C3 pitched synthetic rhythm/echo (digital drumming)
- Earcon = 6-note C4 pitched melody
- \triangleright Speech = male voice, 1st sentence of "Alice in Wonderland"

Type	Natural		Abstract		Musical	Voice
Sound	Birds	Waves	Pulse	Dropping	Earcon	Speech

Experiment

- Walking routes were 3m straight trajectories at -30°, 0° and 30° from starting point
- Participant stood at start point behind experimenter
- Experimenter walked trajectory while holding sound source; participant remained at start point
- Experimenter stopped sound at end point and participant tasked with walking trajectory
- 6 blindfolded sighted participants were used
- Measured: end point distance, deviation from trajectory and total distance travelled

Results

- Little difference in measures between sounds
- = Personalisation is possible sound End Point Trajectory Distance
- X Birds poorly tracked
- ✓ Speech and Waves accurately tracked
- Future research will test more sounds and more complex movements with blind and visually-impaired

	Souria	Distance	Deviation	Difference	
	Birds	69.60cm	33.09cm	39.27cm	
	Dropping	62.36cm	33.42cm	30.15cm	
	Earcon	68.72cm	36.36cm	36.16cm	
	Pulse	60.26cm	31.75cm	39.95cm	
	Speech	59.48cm	31.11cm	30.88cm	
	Waves	57.50cm	30.42cm	37.06cm	
•					

