
Symbolic Computation of Minimal Probabilistic

Reachability∗

Marta Kwiatkowska1, Gethin Norman1 and Jeremy Sproston2

1 School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom

2 Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy

January 13, 2003

Abstract

This paper continues our study of the verification problem for infinite-
state systems featuring both nondeterministic and probabilistic choice. In
an earlier paper we defined symbolic probabilistic systems, an extension of
the framework of symbolic transition systems due to Henzinger et. al., and
considered the problem of deciding the maximal probability of reaching a
set of target states. A symbolic probabilistic system is an infinite-state
system equipped with an algebra of symbolic operators on its state space,
additionally extended with a symbolic encoding of probabilistic transitions
to obtain a model for infinite-state probabilistic systems. In this paper we
generalise the notion of symbolic probabilistic systems and consider the
minimal reachability problem, that is, the problem of computing the min-
imal probability of reaching a given set of target states. An exact answer
to this problem is obtained algorithmically via iteration of a refined ver-
sion of the classical predecessor operation, combined with intersection and
set difference operations. As in the previous work on symbolic transi-
tion systems, our state space exploration algorithm is semi-decidable for
infinite-state systems. Together with the earlier work concerning the maxi-
mal reachability problem, the results presented here yield a semi-decidable
algorithm for model checking symbolic systems against the probabilistic
temporal logic PCTL. We illustrate our approach with the help of prob-
abilistic timed automata, for which previous verification techniques suf-
fered from an unnecessarily fine subdivisions of the state space, or which
returned only estimates of the actual probabilities.

1 Introduction

Many systems, such as control, real-time, and embedded systems, give rise to
infinite-state models. For instance, embedded systems can be modelled in for-
malisms characterised by a finite number of control states (representing a digital

∗Supported in part by the EPSRC grant GR/N22960.

Technical Report CSR-03-1, School of Computer Science, University of Birmingham, January 2003.

controller) interacting with a finite set of real-valued variables (representing an
analogue environment). The standard approach is to express system behaviour
purely in terms of nondeterminism. However, in many cases, particularly in the
context of fault-tolerant systems, it may be desirable, or behaviourally more
faithful, to express the relative likelihood of the system exhibiting certain be-
haviour. Nondeterminism and probabilistic behaviour is inherent real-world
protocols such as the IEEE 1394 FireWire root contention and IEEE 802.11
MAC. It also enables the modelling of asynchronous systems and the under-
specification of system behaviour.

This paper continues our study of the verification problem for infinite-
state systems featuring both nondeterminism and probabilistic behaviour. In
[KNS01] we considered the maximal reachability probability problem for this
class of system. Here we focus on the minimal reachability probability prob-
lem, namely the computation of the minimal probability with which a given
set of target states is reachable. In the same way that reachability underlies
the verification of temporal modalities in the non-probabilistic context, prob-
abilistic reachability is fundamental for probabilistic model checking [BdA95].
The results presented here complete those of [KNS01], and together provide
the foundations for model checking infinite-state probabilistic-nondeterministic
systems against probabilistic temporal logics.

Symbolic probabilistic systems are infinite-state systems with a probabilistic
transition relation and an algebra of operations on implicit, symbolic represen-
tations of possibly infinite state sets, and are inspired by the (non-probabilistic)
symbolic transition systems of [HMR01]. The operations required on the sym-
bolic representations of state sets, both in the non-probabilistic and probabilis-
tic setting, include boolean and predecessor operations, which together enable
model checking of reachability properties by backwards exploration of the state
space. Observe that, in the context of quantitative reachability properties, it is
not enough to know whether a state makes a transition to another, as encoded
by the traditional predecessor operation: the probability of taking the transition
must also be known. Therefore, symbolic probabilistic systems also encode the
transitions of a probabilistic system into a number of transition types (giving a
family of typed predecessor operations), and the probabilistic branching of the
system into a set of distributions over transition types called distribution tem-
plates. The resulting model consists of symbolic encodings of both states and
probabilistic transitions, together with an algebra of operations including the
typed predecessor operations.

Our key contribution concerns the computation of the minimum reachabil-
ity probability for certain classes of symbolic probabilistic systems by reduction
to a finite-state problem. This is achieved through an algorithm which succes-
sively iterates typed predecessor, intersection and difference operations, starting
from the target set. The main difficulty is that during backwards search the
transitions that do not lead to the target states will never be encountered,
but, in contrast to computing maximal reachability probabilities [KNS01], such
transitions are important for the computation of minimal reachability probabil-
ities. To include such transitions in our analysis we perform a pre-computation
algorithm which finds those states that have positive minimum probability of

2

reaching the target. This necessitates the inclusion of the difference operation
in addition to those required in [KNS01].

Related work. Approaches to infinite-state systems with discrete probabil-
ity distributions include model checking methods for probabilistic lossy channel
systems [BS02]. In the case of probabilistic timed automata, methods for com-
puting exact reachability probabilities are presented in [KNSS02] and [KNS02]
based on the region graph [AD94] and digital clocks [HMP92] respectively. How-
ever, both suffer from the state explosion problem (in particular, the size of
the verification problem is sensitive to the magnitudes of the model’s timing
constraints, which is not true of our technique). An alternative in [KNSS02]
uses forwards reachability, however it is only able to compute upper bounds
on the maximal reachability probabilities. We also mention [DJJL01] which
uses abstraction and refinement methods to calculate bounds on the minimal
and maximal reachability probabilities for probabilistic systems. Verification
methodologies for infinite-state systems with continuous distributions are given
in [BHHK00, DGJP00, KNSS00].

2 Symbolic probabilistic systems

2.1 Preliminaries

A discrete probability (sub)distribution over a finite set Q is a function µ : Q →
[0, 1] such that

∑
q∈Q µ(q) ≤ 1. For a possibly uncountable set Q′, let Dist(Q′)

be the set of distributions over finite subsets of Q′.
Recall that a transition system is a pair (S, δ) comprising a set S of states

and a transition function δ : S → 2S . A state transition s → t is deter-
mined by a nondeterministic choice of target state t ∈ δ(s). In contrast, a
(nondeterministic-) probabilistic system S = (S,Steps) includes a probabilistic
transition function Steps : S → 2Dist(S). A probabilistic transition s

µ→ t is made
from a state s ∈ S by first nondeterministically selecting a distribution µ from
the set Steps(s), and second by making a probabilistic choice of target state t
according to µ. A path of a probabilistic system is a finite or infinite sequence
of probabilistic transitions of the form ω = s0

µ0→ s1
µ1→ · · · . For a path ω and

i ∈ N, we denote by ω(i) the (i + 1)th state of ω, and if ω is finite, last(ω) the
last state of ω.

We now introduce adversaries which resolve the nondeterminism of a prob-
abilistic system [Var85]. Formally, an adversary of S is a function A mapping
every finite path ω to a distribution µ ∈ Steps(last(ω)). Let AdvS be the set of
adversaries of S. For any A ∈ AdvS, let PathA

ful denote the set of infinite paths
associated with A. Then, in the standard way, we define the measure ProbA

over PathA
ful [KSK76].

The minimal reachability probability is the minimal probability with which
a given set of states of a probabilistic system can be reached from a particular
state. Formally, for the probabilistic system S = (S,Steps), state s ∈ S, and set
U ⊆ S of target states, the minimal reachability probability MinReach(s, U) of

3

reaching U from s is defined as

inf
A∈AdvS

ProbA{ω ∈ PathA
ful | ω(0) = s ∧ ∃i ∈ N . ω(i) ∈ U}.

The minimal reachability probability can be obtained as the solution to a linear
programming problem in the case of finite systems [BdA95], and is useful to
verify properties of the form “with probability at least 0.99, a data packet is
delivered”. In addition, for real-time systems, it can be used to verify time-
bounded reachability properties, also known as soft deadlines, such as “with
probability 0.975 or greater, a leader is elected within 100 time units”.

2.2 Symbolic probabilistic systems: definition

Symbolic transition systems were introduced in [HMR01] as (possibly infinite-
state) transition systems equipped with region algebras, comprising a set of
regions (each element of which denotes a possibly infinite set of states), boolean,
predecessor, emptiness and membership operations on regions. In [HMR01],
classes of infinite-state systems for which a finitary structure can be identified
by iteration of certain operations of the region algebra are defined, consequently
highlighting the decidability of certain verification problems.

To represent probabilistic behaviour as well as nondeterminism in such a
symbolic framework and to allow for quantitative reasoning we augment the
framework of symbolic transition systems with a symbolic encoding of proba-
bilistic transitions. The symbolic representation, first presented in [KNS01], is
derived in two steps. First we encode the state transitions induced by the prob-
abilistic transitions of the system within a set of transition types. Note that, by
introducing such transition types we must also replace the single predecessor
operation present in the framework of symbolic (non-probabilistic) transition
systems with a family of predecessor operations index by the set of transition
types. The second step is to encode the probabilistic branching structure of
the system, which is not represented in the set of transition types, by a set of
distribution templates, which are distributions over the set of transition types.

We now give the definition of symbolic probabilistic systems which gen-
eralise the symbolic transition systems of [HMR01], and extends the symbolic
probabilistic transition systems of [KNS01] to allow for the computation of mini-
mal reachability probabilities in addition to maximal reachability probabilities.
The definition of regions R, extension function p·q, and symbolic operators
And,Diff,Empty and Member agree with those given for symbolic transition
systems, the difference being the typed predecessor operations.

Definition 1 (Symbolic Probabilistic Systems) A symbolic probabilistic
system P = (S,Steps, R, p·q, Tra,D) comprises: a probabilistic system (S,Steps);
a set of regions R; an extension function p·q : R → 2S; a set of transition types
Tra, and, associated with each a ∈ Tra, a transition function δa : S → 2S; and
a set of distribution templates D ⊆ Dist(Tra), such that the following conditions
are satisfied.

1. For all s, t ∈ S:

4

(a) if a ∈ Tra and t ∈ δa(s), then there exists µ ∈ Steps(s) such that
µ(t) > 0;

(b) if µ ∈ Steps(s), then there exists ν ∈ D with s ∈ enabled(ν) and a
vector of states 〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s) such that:∑

a∈Tra(s)∧t=ta

ν(a) = µ(t);

(c) if ν ∈ D, s ∈ enabled(ν) and 〈ta〉a∈Tra(s) is a vector of states in∏
a∈Tra(s) δa(s), then there exists µ ∈ Steps(s) such that:

µ(t) =
∑

a∈Tra(s)∧t=ta

ν(a);

where Tra(s) = {a | a ∈ Tra(s) ∧ δa(s) 6= ∅} and s ∈ enabled(ν) if and
only if δa(s) 6= ∅ for all a ∈ Tra such that ν(a) > 0.

2. There exists a family of computable functions {prea}a∈Tra of the form prea :
R → R, such that, for all a ∈ Tra and σ ∈ R:

pprea(σ)q = {s ∈ S | ∃t ∈ δa(s) . t ∈ pσq} .

3. There is a computable function And : R×R → R such that pAnd(σ, τ)q =
pσq ∩ pτq for all σ, τ ∈ R.

4. There is a computable function Diff : R×R → R such that pDiff(σ, τ)q =
pσq \ pτq for all σ, τ ∈ R.

5. There is a computable function Empty : R → B such that Empty(σ) if and
only if pσq = ∅ for all σ ∈ R.

6. There is a computable function Member : S×R → B such that Member(s, σ)
if and only if s ∈ pσq for all s ∈ S and σ ∈ R.

Note that, using And and Diff operations, we can define a computable function
Or : R×R → R such that pOr(σ, τ)q = pσq ∪ pτq for all σ, τ ∈ R.

The difference between the framework presented here and that of [KNS01]
lies in the need to introduce enabledness (conditions 1(b) and 1(c) of Defini-
tion 1). For completeness we first recall the intuition for transition types and
distribution templates before moving on to describing the amendments to 1(b)
and 1(c).

Transition types. Transition types encode a set of state transitions of a
symbolic probabilistic system. With each transition type a ∈ Tra we associate
a transition relation δa : S → 2S encoding all state transitions of type a. This
grouping is not necessarily a partition of the state transitions and a given state
transition may correspond to more than one type. The lemma below states
that every state transition is represented by a transition encoded with some
transition type, and vice versa.

Lemma 2 Let P = (S,Steps, R, p·q, Tra,D) be a symbolic probabilistic system.
For any s, t ∈ S: µ(t) > 0 for some µ ∈ Steps(s) if and only if t ∈ δa(s) for
some a ∈ Tra.

5

Distribution templates. Distribution templates are used to encode the ac-
tual probabilities featured in the system. The condition 1(b) represents the
fact that the probabilistic branching structure of the system is modelled by the
distribution templates. Dually, condition 1(c) expresses the fact that, in all
states, any transition encoded by an enabled distribution template corresponds
to a transition of the system.

Example 1. Consider a system in which the state space takes the form of
valuations of a single real-valued variable x, where in any s ∈ (0, 4), the variable
x can be reset nondeterministically in (1,3) and (2,4), each with probability 0.5.
Consider representing the system as a symbolic probabilistic system, where the
set of regions is the set of integer-bounded intervals of R. The above behaviour
can then be encoded by transition types a and b such that δa(s) = (1, 3) and
δb(s) = (2, 4) for s ∈ (0, 4) and δa(s) = δb(s) = ∅ for s 6∈ (0, 4), and the
distribution template ν ∈ Dist({a, b}) given by ν(a) = ν(b) = 0.5. Now, for
any s′ ∈ (2, 3) there exists µs′ ∈ Steps(s) which corresponds to moving from s
and resetting x to s′ with probability 1. For any such µs′ , the corresponding
vector 〈ta, tb〉, described in point 1(b), is given by ta = tb = s′. Note that, the
distribution template ν is only enabled in the region (0, 4).

Comparison with [KNS01]. Recall that the framework of [KNS01] was
defined specifically for maximal reachability, whereas here we additionally allow
for the computation of minimal reachability. In [KNS01] condition 1(c) is of
the form:

(c) if ν ∈ D and 〈ta〉a∈Tra(s) ∈
∏

a∈Tra(s) δa(s), then there exists µ ∈ Steps(s)
such that:

µ(t) ≥
∑

a∈Tra(s)∧t=ta

ν(a).

This expresses the fact that, in all states, for any transition encoded by a
distribution template, there exists a system transition which assigns an greater
or equal probability to all target states. This implies that in certain states there
may be distribution templates which do not correspond to actual transitions of
the system, but is nevertheless sufficient for the computation of the maximal
reachability probability. Clearly, this does not suffice for minimum reachability.

We resolve the problem by restricting attention to enabled distribution tem-
plates. To calculate quantitative probabilistic properties there must exist a cor-
respondence between the transitions encoded by a distribution template and
system transitions. However, requiring that for any state and distribution tem-
plate there is a corresponding system transition would be too restrictive. We
therefore restrict attention to enabled distribution template. Where a template
is enabled if and only if all the corresponding transitions types of the template
are enabled, that is, each transition type which can occur with a non-zero prob-
ability has a corresponding system transition. Note that alternative approaches
to defining enabledness are possible, but we will see below the advantage of this
approach.

6

Enabled distribution templates. Recall that, for any ν ∈ D, enabled(ν)
represents the states from which ν has a corresponding system transition. Now,
since by definition

enabled(ν) = ∩{pprea(R)q | a ∈ Tra ∧ ν(a) > 0}

it follows that we can we can define a computable function Enabled from distri-
bution templates to regions, as opposed to sets of states, using pre and And.

The only condition we impose on this function is that for any σ ∈ R, ν ∈ D
and a ∈ Tra such that ν(a) > 0 we have

pprea(σ)q ⊆ pEnabled(ν)q . (1)

Note that, even in the cases where this condition does not hold, it can be
enforced by straightforward renaming of the transition types. In particular, we
can define the new transition types to be pairs of the form (a, ν), where a ∈ Tra
and ν ∈ D such that ν(a) > 0, and then the new predecessor operator for such
a transition type can be given by:

pre(a,ν)(σ) def= And(prea(σ),Enabled(ν)) .

If initially the set of distribution templates and transition types are finite, then
the resulting set of transition types are finite (the distribution templates do not
change).

We should add that if (1) holds then all the results presented in [KNS01]
carry over to this new framework.

Finiteness of transition types and templates. Observe that the sets of
transition types and distribution templates may be infinite. However, as in
[KNS01], we restrict the analysis to systems with finite sets of distribution
templates and transition types. This implies that our method is appropriate
for classes of system exhibiting finite regularity in probabilistic transitions. For
example, probabilistic lossy channels [BS02] cannot be modelled by a finite set
of distribution templates, because the probability of message loss varies with
the quantity of data in the unbounded buffers.

2.3 Example: Probabilistic Timed Automata

The fact that probabilistic timed automata [KNSS02] can be represented as
symbolic probabilistic systems follows from a similar result given in [KNS01].
We assume familiarity with the classical, non-probabilistic timed automaton
model [AD94, HNSY94] and for an in-depth introduction to probabilistic timed
automata, refer to [KNSS02]. As explained in [KNS01], the translation method
can be adapted to classes of probabilistic hybrid automata [Spr00, Spr01], which
are hybrid automata [ACH+95] augmented with a probabilistic edge relation.
similar to that featured in the definition of probabilistic timed automata, given
an appropriate set of regions and algebra of operations.

Let X be a set of real-valued variables called clocks. Let Zones(X) be the
set of zones over X , which are conjunctions of atomic constraints of the form

7

1

II
true

DI
x≤2

true
SR SI

x≤3

true

{x, y := 0} {x, y := 0}1

true

0.9

0.95

x≥2

0.05
{x := 0}

{x := 0}
0.1x≥1

Figure 1: A probabilistic timed automaton modelling a probabilistic protocol.

x ∼ c and x − y ∼ c, for x, y ∈ X , ∼∈ {<,≤,≥, >}, and c ∈ N. A point
v ∈ R|X | is referred to as a clock valuation. The clock valuation v satisfies the
zone ζ, written v |= ζ, if and only if ζ resolves to true after substituting each
x ∈ X with the corresponding value vx from v. A zone ζ over X defines a
convex polyhedral subset of R|X | corresponding to the set of clock valuations
which satisfy it.

Definition 3 (Probabilistic Timed Automata) A probabilistic timed au-
tomaton is a tuple PTA = (L,X , inv , prob, 〈gl〉l∈L), where: L is a finite set of
locations; the function inv : L → Zones(X) is the invariant condition; the func-
tion prob : L → 2Dist(L×2X) is the probabilistic edge relation such that prob(l)
is finite for all l ∈ L; and, for each l ∈ L, the function gl : prob(l) → Zones(X)
is the enabling condition for l.

A state of PTA is a pair (l, v) where l ∈ L and v ∈ R|X |. If the current state is
(l, v), there is a nondeterministic choice of either letting time pass while satis-
fying the invariant condition inv(l), or making a discrete transition according
to any distribution in prob(l) whose enabling condition gl(p) is satisfied. If the
distribution p ∈ prob(l) is chosen, then the probability of moving to l′ and
resetting all of the clocks in X to 0 is given by p(l′, X).

Example 2. Consider the PTA modelling a simple probabilistic communication
protocol given in Figure 1. The nodes represent the locations: II (sender,
receiver both idle); DI (sender has data, receiver idle); SI (sender sent data,
receiver idle); and SR (sender sent data, receiver received). As soon as data
has been received by the sender, the protocol moves to the location DI with
probability 1. In DI, after between 1 and 2 time units, the protocol makes
a transition either to SR with probability 0.9 (data received), or to SI with
probability 0.1 (data lost). In SI, the protocol will attempt to resend the data
after 2 to 3 time units, which again can be lost, this time with probability 0.05.

Before we represent a PTA as a symbolic probabilistic system, we introduce the

8

following definitions. For v ∈ R|X | and η ∈ R≥0, the clock valuation v + η is
obtained from v by adding η to the value of each clock; and, for any X ⊆ X ,
the clock valuation v[X := 0] is obtained from v by resetting all clocks in X to
0. Now, for zone ζ and η ≥ 0, let ζ + η, be the expression in which each x ∈ X
is replaced syntactically by x + η in ζ, and let [X := 0]ζ be the expression in
which each x ∈ X is replaced syntactically by 0 in ζ. The edges of PTA, denoted
by EPTA ⊆ L2 × 2X × Zones(X), is defined such that (l, l′, X, ζ) ∈ EPTA if and
only if there exists p ∈ prob(l) such that gl(p) = ζ and p(l′, X) > 0.

A PTA defines a symbolic probabilistic system P = (S,Steps, R, p·q, Tra,D),
where:

• (S,Steps) is the infinite-state probabilistic system obtained as a semanti-
cal model of PTA [KNSS02].

• The set of regions R is given by L × Zones(X). The extension function
p·q is given by p(l, ζ)q = {(l, v) ∈ S | v |= ζ} for any region (l, ζ) ∈ R.

• The set of transition types Tra is the set EPTA of edges of PTA plus a
special type time such that for any state (l, v) ∈ S and edge (l′, l′′, X, ζ) ∈
EPTA:

δ(l′,l′′,X,ζ)(l, v) =
{
{(l′′, v[X := 0])} if l = l′ and v |= ζ

0 otherwise

and

δtime(l, v) = {(l, v+η) | η≥0∧∀ 0≤η′≤η . v+η′|=inv(l)}.

• The set D is such that ν ∈ D if and only if one of the following conditions
hold:

1. there exists l ∈ L and p ∈ prob(l) such that, for all a ∈ Tra:

ν(a) =
{

p(l′, X) if a = (l, l′, X, gl(p)) for some l′ ∈ L and X ⊆ X
0 otherwise;

2. ν(time) = 1.

Given a state (l, v) ∈ S of the PTA, the set δ(l′,l′′,X,ζ)(l, v) represents the unique
state reached after crossing the edge (l′, l′′, X, ζ), provided that it is available,
and the empty set otherwise, whereas the set δtime(l, v) represents the states to
which a time passage transition can be made. As time passage transitions are
always made with probability 1, there exists νtime ∈ D, such that νtime(time) =
1; the remaining distribution templates are derived from the distributions of
PTA.

For any region (l, ζ) ∈ R and edge (l′, l′′, X, ζ ′) ∈ EPTA, the typed predeces-
sor operations are defined by:

pre(l′,l′′,X,ζ′)(l, ζ) =
{

(l′, (ζ ′∧inv(l′)∧[X : =0](ζ∧inv(l)))) if l=l′′

(l, false) otherwise

pretime(l, ζ) = (l, (∃η≥0 . ζ+η ∧ ∀ 0≤η′≤η . inv(l)+η′)) .

9

Observe that these operations are defined in terms of pairs of locations and
constraints on clocks. By classical timed automata theory [HNSY94], for each
a ∈ Tra the function prea is well defined and computable. Boolean operations,
membership and emptiness are also well defined and computable. Both of the
sets Tra and D are finite, which follows from the finiteness of L and prob(l) for
each l ∈ L.

Points 1(b) and 1(c) of the definition of symbolic probabilistic systems apply
to probabilistic timed automata for the following reasons. As explained above,
the distribution template νtime encodes time passage transitions of the prob-
abilistic system (S,Steps) and conditions 1(b) and 1(c) follow trivially. The
other transitions of PTA consist of choices of enabled distributions. Recall that
edges of the probabilistic timed automaton are transition types. First consider
condition 1(b): for any l ∈ L and p ∈ prob(l), there exists a distribution tem-
plate ν ∈ D assigning the same probability to the edges induced by p. Then,
a probabilistic transition of (S,Steps) corresponding to p will be encoded by
this ν. For condition 1(c), recall that each ν ∈ D \ {νtime} is derived from
a particular p ∈ prob(l) for some l ∈ L. Then, for the state (l′, v) ∈ S, ν is
enabled if and only if l′ = l and v |= gl(p) and condition 1(c) follows as in the
case of 1(b).

3 Minimal Reachability Algorithm

We now present a semi-decidable algorithm (semi-algorithm), solving the mini-
mal reachability probability problem for symbolic probabilistic systems by back-
wards exploration through the state space. As mentioned above, we restrict
attention to symbolic probabilistic systems with finite sets of transition types
and distribution templates. Note that, even for systems within this class, the
algorithm is not guaranteed to terminate.

Let P = (S,Steps, R, p·q, Tra,D) be a symbolic probabilistic system such
that the sets Tra and D are finite, and let F ∈ R be the target region for which
the minimal reachability probability is to be computed.

The approach is to generate a finite graph (T,E), where T ⊆ R and
E ⊆ T × Tra × T . The nodes of the graph (T,E) will subsequently form the
states of a finite-state probabilistic system, and the edges will be used to de-
fine the required probabilistic transitions. However, since the semi-algorithm is
based on performing a backwards search starting from F the transitions that do
not lead to the target set will never be encountered. In the maximal reachability
case [KNS01] this was not problematic since in this case we need only concern
ourselves with ways of reaching the target set. However, to solve the mini-
mal reachability problem such transitions are important – if there are system
transitions which do not lead to the target set then the minimum probability of
reaching this set will be zero. We proceed by performing a precomputation semi-
algorithm which computes the set of states for which the minimum probability
of reaching the target set is greater than zero. For such states all transitions
eventually lead to the target set with non-zero probability, and hence perform-
ing a backwards exploration on this set will suffice for calculating the minimal

10

reachability probability.

3.1 Precomputation Algorithm

In this section we present an algorithm for calculating the set of states which
have a positive minimum probability of reaching the target set of states. In the
finite-state case [BdA95] the algorithm is given by:

input: target set F ⊆ S
T := ∅;
T ′ := F ;
while T 6= T ′

T := T ′

T ′ := {s | ∀µ ∈ Steps(s).(∃s′ ∈ T.µ(s′) > 0)} ∪ T
end while

In order to extend this to our symbolic framework we must express the region
corresponding to:

{s | ∀µ ∈ Steps(s).(∃s′ ∈ T.µ(s′) > 0)} ,

that is, the set of states from which under any transition one always reach
T with positive probability, in terms of the symbolic operations. For a fixed
distribution template ν, we first compute the set of states from which, if one
chooses to make a transition according to ν, then the probability of reaching T
is always positive. A first attempt at defining such a region might be:

Or{prea(T) | a ∈ Tra ∧ ν(a) > 0} .

However, the above does not take into account all the possible transitions cor-
responding to ν. since in any state performing a transition type can lead to
a set of possible successor states. The correct formulation is to consider the
region preν(T) given by:

Or{Diff(prea(T), prea(R \ T)) | a ∈ Tra ∧ ν(a) > 0}.

The region Diff(prea(T), prea(Diff(R, T))) yields all states from which perform-
ing a transition of type a always leads to T . Formally, we have the following
lemma.

Lemma 4 For any ν ∈ Tra and s ∈ pEnabled(ν)q: s ∈ ppreν(T)q if and only if
for all µ ∈ Steps(s) which can be generated by the distribution template ν there
exists t ∈ pTq such that µ(t) > 0.

Proof. The “if” direction: suppose that for all µ ∈ Steps(s) which can be
generated by the distribution template ν there exists t ∈ pTq such that µ(t) > 0.
Now for any distribution µ ∈ Steps(s) constructed from ν, by definition there
exists a a vector of states 〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s) such that:∑

a∈Tra(s)∧t=ta

ν(a) = µ(t).

11

Now suppose that s 6∈ preν(T), that is, there does not exist a ∈ Tra(s) with
ν(a) > 0 such that s ∈ pprea(T) \ prea(R \ pTq)q. By definition, if follows
that for all a ∈ Tra(s) with ν(a) > 0 there exists t′a ∈ δa(s) \ T . Therefore, if
the distribution µ′ is constructed from the vector 〈t′a〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s)

(where t′a is arbitrary if ν(a) = 0), then µ′(t) = 0 for all t ∈ pTq. This
contradicts the fact that for all µ ∈ Steps(s) which can be generated by the
distribution template ν there exists t ∈ pTq such that µ(t) > 0.

The “only if” direction: suppose s ∈ ppreν(T)q, then s ∈ prea(T)\prea(R\T)
for some a ∈ Tra(s) such that ν(a) > 0. It follows that δa(s) ⊆ pTq for
some a ∈ Tra such that ν(a) > 0, and hence for all µ ∈ Steps(s) which can
be generated by the distribution template ν there exists t ∈ pTq such that
µ(t) > 0. ut

We can now extend this to all transitions via distribution templates. Since
the system transitions in a state are related to only the distribution templates
enabled in the state, we must therefore consider the states where different sets
of distribution templates are enabled separately. For any set of distribution
templates D ⊆ D, the region

Diff(And{preν(T) | ν ∈ D},Or{Enabled(ν) | ν ∈ D \D})

yields all states for which the set of distribution templates enabled equals D
and under any system transition the probability of reaching T is greater than
zero. More formally, we have the following lemma.

Lemma 5 Let Ds = {ν | ν ∈ D∧ s ∈ pEnabled(s)q}, for any s ∈ S and D ⊆ D:

s 6∈ pDiff(And{preν(T) | ν ∈ D},Or{Enabled(ν) | ν ∈ D \D})q

and if D = Ds:

s ∈ pDiff(And{preν(T) | ν ∈ D},Or{Enabled(ν) | ν ∈ D \D})q

if and only if for all µ ∈ Steps(s) there exists t ∈ T such that µ(t) > 0.

Proof of Lemma 5. The first part follows from the fact that if D ⊂ Ds,
then s ∈ pEnabled(ν)q for some ν ∈ Ds \ D and if D 6⊆ Ds, then there exists
ν ∈ D\Ds such that s 6∈ preν(T) (since we require the pprea(T)q ⊆ pEnabled(ν)q
for all a ∈ Tra such that ν(a) > 0 to hold).

For the second part suppose that D = Ds. Now, by definition of Ds we
have s 6∈ pOr{Enabled(ν) | ν ∈ D \D}q, and hence the proof reduces to showing
that: s ∈ pAnd{preν(T) | ν ∈ D}q if and only if for all µ ∈ Steps(s) there exists
t ∈ T such that µ(t) > 0. The result then follows from Lemma 14 and since all
the distributions in Steps(s) are generated by some ν ∈ D. ut

Using the above results, the symbolic version of the precomputation algorithm
is given in Figure 2. Note that the termination test pT ′q ⊆ pTq denotes the test
{pσq | σ ∈ T ′} ⊆ {pσq | σ ∈ T}, and is computable [HMR01]. From Lemma 5,
under the assumption that the algorithm terminates, it follows that s ∈ pTminq
if and only if the minimum probability of reaching T is positive. Formally, we
have the following proposition.

12

Symbolic semi-algorithm PreMinReach
input: (R, Tra, {prea}a∈Tra ,And,Diff,Empty,Member)

target set F ∈ R
T := ∅;
T ′ := F ;
while pT ′q ⊆ pTq

T := T ′

for all D ⊆ D do
T ′ := Diff(And{preν(T) | ν ∈ D},Or{Enabled(ν) | ν ∈ D \D}) ∪ T

end for all
end while
return Tmin := T

Figure 2: Precomputation algorithm

Proposition 6 If with input given by the symbolic probabilistic system P =
(S,Steps, R, p·q, Tra,D) and target set F ∈ R the algorithm PreMinReach gen-
erates the region Tmin, then for any s ∈ S: s ∈ pTminq if and only if the
minimum probability of reaching F is greater than zero.

Proof of Proposition 6. The proof follows from Lemma 5 similarly to the
finite state case [BdA95]. ut

3.2 Main Algorithm

In this section we present our main algorithm for calculating the minimum
probability of reaching a target set of states. The algorithm relies on first
invoking the precomputation algorithm, given in Figure 2, for finding the set
of states for which the minimum probability of reaching the target set of states
is positive. In particular, we intersect all the predecessor operations with the
region generated by the precomputation algorithm. More formally, supposing
Tmin is the set of regions generated by the precomputation algorithm, for any
σ ∈ R and a ∈ Tra we let prea(σ, Tmin) = And(prea(σ), Tmin).

The algorithm MinReach proceeds by successive iteration of predecessor, in-
tersection and set difference operations. For each i ∈ N and for all currently
generated regions in the set Ti, the algorithm constructs the set Ti+1 of regions
by adding to Ti the typed predecessors of the regions in Ti, taking the intersec-
tion and difference of these predecessors with regions in Ti. The algorithm is
given in Figure 3.

The vital component in the above algorithm is that the set of regions Ti is
kept pairwise disjoint at each iteration. More formally, for each new region we
first add the part which we have not encountered yet (disjoint from Ti+1),

Diff(prea(σ, Tmin),Or{τ | τ ∈ Ti+1}) ,

13

Symbolic semi-algorithm MinReach
input: (R, Tra, {prea}a∈Tra ,And,Diff,Empty,Member)
target set F ⊆ R
T0 := F ;
E := ∅;
for i = 0, 1, 2, . . . do

Ti+1 := Ti

for all a ∈ Tra ∧ σ ∈ Ti do
tmp := {Diff(prea(σ, Tmin),Or{τ | τ ∈ Ti+1})}
E := {(prea(σ, Tmin), a, σ)} ∪ E
for all τ ∈ Ti+1 do

tmp := {And(prea(σ, Tmin), τ)} ∪ {Diff(τ, prea(σ, Tmin))} ∪ tmp
end for all
Ti+1 := tmp

end for all
until pTi+1q = pTiq
(T,E) := ExtendEdges(Ti, E)
return (T,E)

Procedure ExtendEdges
input: graph (T,E)
E′ := ∅
for all σ ∈ T ∧ τ ∈ T ∧ (σ′, a, τ) ∈ E do

if pσq ⊆ pσ′q then E′ := {(σ, a, τ)} ∪ E′ end if
end for all
return (T,E′)

Figure 3: The main algorithm

and then split everything else we have found so far (τ ∈ Ti+1) into two regions:

And(prea(σ, Tmin), τ) and Diff(τ, prea(σ, Tmin)) .

In the maximal reachability case [KNS01], we did not need to keep the sets dis-
joint, and hence the only required operations were predecessor and intersection.
This is because, in the maximal case, we only need to know when transitions
are enabled, not if they are the only transitions enabled. However, this is not
the case for calculating minimal probabilities as will be illustrated in Example 3
below, after we explain the role of the ExtendEdges procedure.

At each step the edge relation E is expanded to relate the existing regions
to their newly generated typed predecessors. Then, if the outer for loop of
the symbolic semi-algorithm MinReach terminates, then we call the procedure
ExtendEdges on the graph (T,E). Intuitively, for a particular edge (σ, a, τ) ∈ E
where τ ∈ T , the procedure constructs edges with the transition type a and
target region τ for all subset regions of σ in T .

14

σ

τ

σ1σ2

σ

τ

σ1σ2

b
(i) (ii)

c c

a

ab

c

a

c

σ

τ

σ1

σ

τ

σ1Diff(σ2, σ1)Diff(σ2, σ1)

(iii) (iv)
a b a b

a

cc

Figure 4: Example demonstrating the need for disjoint regions.

Example 3. Suppose during a backwards search regions are not kept disjoint
and the resulting graph is given by graph (i) of Figure 4. If pσ1q ⊆ pσ2q and
all other regions are disjoint, then the procedure ExtendEdges will insert an
extra edge (σ1, a, τ) shown in graph (ii) of Figure 4. However, suppose that
Diff(σ1, σ2) is unreachable, and hence pprea(Diff(σ′, σ))q = ∅ for all a ∈ Tra. If
we perform a backwards search keeping sets disjoint, the resulting graph is given
by (iii) of Figure 4 (and graph (iv) of Figure 4 after performing the procedure
ExtendEdges).

Therefore, if regions are not kept disjoint, it is possible to reach τ from σ by
first performing an c transition type in such a way that in the resulting state
the only transition type which reaches τ is a (choosing the left branch of graph
(ii) of Figure 4). On the other hand, by our algorithm, to reach τ from σ, after
performing a transition of type c, both the transition types a and b reach τ .
Now, suppose all distribution templates enabled in the region σ1 choose both a
and b with positive probability, then incorrect results are obtained from (ii).

Note that in the ExtendEdges procedure all edges whose destination regions
do not appear in T are ignored. For example, we ignore the edge (σ, c, σ2),
that is, we do not add an edge of the form (σ, c,Diff(σ2, σ1)) to graph (iv) of
Figure 4 even though pDiff(σ2, σ1)q ⊆ pσ2q.

3.2.1 Termination of PreMinReach and MinReach.

Termination of PreMinReach is reliant on the termination of the outer (while)
loop. Termination of MinReach is dependent on the termination of its outer
for loop, since, when this terminates, both T and E are finite, and hence the
procedure ExtendEdges will also terminate. Observe that the inner for loop of
PreMinReach will not terminate if the set D is not finite, and the inner for loop

15

of MinReach will not terminate if the set Tra is not finite.
Now let � be a binary relation on the state space S of P such that s � t

implies, for all a ∈ Tra and s′ ∈ δa(s), there exists t′ ∈ δa(t) such that s′ � t′.
We call such a relation a typed simulation. We say that two states s, t ∈ S are
typed-bisimilar, denoted s ∼= t if there exists a symmetric typed simulation on
S such that s � t. We call the equivalence relation ∼= a typed bisimilarity, and
say ∼= has finite index if there are finitely many equivalence classes of ∼=.

The arguments of [HMR01] are adapted to show that both PreMinReach
and MinReach will terminate for any symbolic probabilistic system for which
the typed bisimilarity relation ∼= has finite index, given that the target set F is
a set of equivalence classes of ∼=. That is, we show that for all σ ∈ T , the set
pσq is a union of equivalence classes of ∼=. Probabilistic timed automata and
probabilistic singular automata exhibit such a relation.

3.2.2 Encoding the Probabilistic Behaviour

As we have seen the algorithm uses only the transition types and not the dis-
tribution templates to construct the graph (T,E). In this section we use the
distribution templates to construct a finite-state probabilistic system, the states
of which are the regions generated by the algorithm MinReach, and the tran-
sitions of which are induced by the set of edges E and the set of distribution
templates D. That is, we lift the identification of state transitions encoded in E
to probabilistic transitions. We achieve this by grouping edges which have the
same source region and which correspond to different transition types. Then
a probabilistic transition of Q is derived from a distribution template by using
the association between target regions and the transition types of the edges in
the identified group. Formally, we define a probabilistic system Q = (T,StepsQ),
where StepsQ : T → 2Dist(T) is the probabilistic transition relation StepsQ con-
structed as follows. For any region σ ∈ T , let π ∈ StepsQ(σ) if and only if there
exists a subset of edges Eπ ⊆ E and a distribution template ν ∈ D such that:

1. if (σ′, a, τ ′) ∈ Eπ, then σ′ = σ;

2. if (σ, a, τ), (σ, a′, τ ′) ∈ Eπ are distinct, then a 6= a′;

3. the set Eπ is maximal with respect to set inclusion;

4. for all regions τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eπ

ν(a).

For any σ ∈ T , any π ∈ StepsQ(σ) may be a sub-distribution, as it is not
necessarily the case that all of the transition types assigned positive probability
by the distribution template associated with π are featured in the edges in
Eπ: some transition types may lead to states which cannot reach the target F .

16

Symbolic semi-algorithm PTAPreMinReach
input: (R, Tra ∪ {time}, {prea}a∈Tra∪{time},And,Diff,Empty,Member)

target set F ∈ R
T := ∅;
T ′ := Diff(Diff(pretime(F), F),Or{pretime(Enabled(ν)) | ν ∈ D}) ∪ {F};
while pT ′q ⊆ pTq

T := T ′

for all D ⊆ D do
T ′ := Diff(And{prePTA

ν (T) | ν ∈ D},Or{pretime(Enabled(ν)) | ν ∈ D \D}) ∪ T
end for all

end while
return Tmin := T

where prePTA
ν (T) def= Diff(pretime(preν(T)), pretime(Diff(Enabled(ν), preν(T))))

Figure 5: Precomputation algorithm for probabilistic timed automata

Note that the finiteness of the set D of distribution templates is required for
the construction of the sub-probabilistic system Q to be feasible.

3.2.3 Correctness

We now state the formal correctness of our algorithm.

Theorem 7 If Q = (T,StepsQ) is the probabilistic system constructed through
the algorithm MinReach with input given by the symbolic probabilistic system
P = (S,StepsP, R, p·q) and target set F ∈ R, then for any state s ∈ S with
MinReach(s, symbF) > 0:

MinReach(s, pFq) = MinReach(σ, F)

where σ ∈ T is such that s ∈ pσq.

Proof. See appendix. ut

Recall from Section 2.1 that the minimal reachability probability for finite prob-
abilistic systems can be computed using established methods [BdA95].

3.2.4 Probabilistic Timed Automata.

In the case of probabilistic timed automata an additional requirement is nec-
essary to compute the minimal reachability probability due to time divergence.
We admit only time divergent adversaries, which necessitates modifications to
the algorithm and consequent restrictions on the probabilistic timed automata.
First, we assume that probabilistic timed automata satisfy the condition: for
any adversary which makes discrete transitions infinitely often there exists an
equivalent divergent adversary (i.e. making the same discrete choices).

17

To restrict attention to divergent adversaries, we remove the locations where
time can diverge (i.e. have unbounded invariants). Then, the behaviour, for any
remaining location and divergent adversary, corresponds to letting time elapse
(possibly 0 time units) and then performing a discrete transition.

Furthermore, since time transitions (transitions of type time) must be treated
as a special case, we modify the precomputation algorithm to that given in Fig-
ure 5. First, add to F its time predecessors, which must reach F before a discrete
transition can be performed. Second, in our backwards search we use the func-
tion pprePTA

ν (·)q, which, for any region T , returns the set of states where, if time
elapses (possibly 0 time units) and a state transition which can be generated
by ν is performed, then a state in T is reached with positive probability. Also,
note that the region Diff(And{prePTA

ν (T) | ν ∈ D},Or{pretime(Enabled(ν)) | ν ∈
D \D}) corresponds to the set of states which, by letting time elapse one can
only perform transitions represented by a distribution template in D, and, for
any such a transition T is reached with positive probability.

The prove the correctness of PTAPreMinReach, that is, the fact that the
algorithm returns exactly those states for which, under the set of time-divergent
adversaries, the minimum probability of reaching the target set of states is
greater then zero, w first require the following two lemmas.

Lemma 8 For any ν ∈ Tra and s ∈ S: s ∈ pprePTA
ν (T)q if and only if from s

it is possible to let time elapse (possibly 0 time units) and reach a state where
a discrete transition which can be generated from the distribution template ν
can be performed and, for any such state, all discrete transitions from this state
which can be generated by the distribution template ν lead to T with positive
probability.

Proof. The “if” direction: suppose from s it is possible to let time elapse
and reach a state where a discrete transition which can be generated from the
distribution template ν can be performed and, for any such state, all discrete
transitions from this state which can be generated by the distribution tem-
plate ν lead to T with positive probability. Using Lemma 14 it follows that
the set of states which can be reached from s by letting time elapse and can
perform a transition generated from the distribution template ν is a subset of
ppreν(T)q, and hence from s by letting time elapse, one cannot reach a state in
pDiff(Enabled(ν), preν(T))q. Moreover, since s can by letting time elapse reach
a state where such a transition is possible we have:

s ∈ pDiff(pretime(preν(T)), pretime(Diff(Enabled(ν), preν(T))))q

as required.
The “only if” direction: suppose s ∈ pprePTA

ν (T)q, then s ∈ ppretime(preν(T))q,
and hence s can reach a state in prev(T) by letting time advance. Moreover,
s 6∈ ppretime(Diff(Enabled(ν), preν(T)))q, and thus the only states where a tran-
sition which can be generated by ν can be performed that s can reach by letting
time advance are in preν(T). The result then follows from Lemma 14. ut

18

Lemma 9 Letting DPTA
s = {ν | ν ∈ D ∧ t ∈ pEnabled(s)q for some t ∈ δtime},

for any s ∈ S and D ⊆ D: if D 6= DPTA
s , then

s 6∈ pDiff(And{prePTA
ν (T) | ν ∈ D},Or{pretime(Enabled(ν)) | ν ∈ D \D})q

and if D = DPTA
s :

s ∈ pDiff(And{prePTA
ν (T) | ν ∈ D},Or{pretime(Enabled(ν)) | ν ∈ D \D})q

if and only if from s all discrete transitions, which can be performed after letting
time elapse (possibly 0 time units), reach T with positive probability.

Proof. The first part is a direct result of the following two observations.

1. If D ⊂ DPTA
s , then there exists ν ∈ DPTA

s \ D and state t ∈ S such that
t ∈ Enabled(ν) and t ∈ δtime(s), and hence s ∈ pretime(Enabled(ν)).

2. If D 6⊆ DPTA
s , then there exists ν ∈ D \DPTA

s such that s 6∈ prePTA
ν (T).

Now for the second part assume that D = DPTA
s . The result then follows using

Lemma 8 and noting from s, after letting time elapse, a transition which can
be generated by the distribution template ν can be performed if and only if
ν ∈ DPTA

s . ut

Proposition 10 If for the target region F the algorithm PTAPreMinReach gen-
erates the set of region Tmin , then s ∈ pTminq if and only if the minimum
probability of reaching F , under the set of divergent adversaries, is greater than
zero.

Proof. First, by Lemma 9 and the fact that we have removed the locations in
which time can diverge, it follows that: s ∈ pTminq if and only if under the set of
adversaries which in any location where time cannot diverge eventually makes a
discrete transition the minimum probability of reaching F is positive. Now since
we assume that the probabilistic timed automata that for any adversary which
makes discrete transitions infinitely often there exists an equivalent divergent
adversary, if follows that this probability is equal to the minimum under the
set of divergent adversaries. ut

For the main algorithm (given in Figure 3), the only modification is that we
remove from E any edge of the form (σ, time, σ), since removing loops only
affects the probability when they are taken infinitely often and such behaviour is
time convergent. Therefore, using Theorem 7 and Proposition 10, it follows that
the minimum probability of reaching F for the probabilistic system constructed
through the algorithm MinReach equals, in the probabilistic timed automata,
the minimum probability of reaching pFq under the set of adversaries which in
any location where time cannot diverge eventually make a discrete transition.
Then, similarly to the proof of Proposition 10, it follows that it also equals the
minimum probability under the set of divergent adversaries.

19

3.2.5 Example

If we now return to Example 2 of the PTA given in Figure 1 to find the minimal
probability of reaching location SR (correct receipt of a message) within 4 time
units of the data arriving at the sender (F equals 〈SR, y<4)〉).

Applying the precomputation algorithm, given in Figure 5, yields the regions
〈DI, x≤2∧y<x+2〉, 〈SI, x≤3∧y<x+1〉, 〈SR, y<4〉 (the node II does not appear
since the protocol can remain in this location indefinitely). The application
of MinReach returns the probabilistic system given in Figure 6. By classical
probabilistic reachability analysis on this system, the minimum probability of
reaching SR within 4 time units of the data arriving at the sender, that is,
the minimum probability of reaching 〈SR, y<4〉 from the region containing the
state 〈DI, x=0 ∧ y=0〉 (which is given by 〈DI, x≤1 ∧ x≤y<x+2〉), is 0.9.

The symbolic states and edges

(〈DI, x< 1 ∧ y<x〉, time, 〈DI, 1≤x≤2 ∧ x−1≤y<1〉)

and

(〈SI, x< 2 ∧ y<x−1〉, time, 〈SI, 2≤x≤3 ∧ x−2≤y<1〉)

are generated by the main loop of the algorithm ProbReach, while the remaining
edges are added by the procedure ExtendEdges. For example, from the main
algorithm there is an edge

(〈SI, x≤3 ∧ x−2≤y<x+1〉, time, 〈SI, 2≤x≤3 ∧ 1≤y<x+1〉)

and since

p〈SI, x<2 ∧ x−1≤y<x+1〉q ⊂ p〈SI, x≤3 ∧ x−2≤y<x+1〉q

we add the edge

(〈SI, x<2 ∧ x−1≤y<x+1〉, time, 〈SI, 2≤x≤3 ∧ 1≤y<x+1〉) .

On inspection of Figure 1, and by the definition of the translation method for
probabilistic timed automata to symbolic probabilistic systems, there exists
a distribution template which assigns probability 0.9 and 0.1 to the transition
types of the edges from 〈DI, 1≤x≤2∧x−1≤y<1〉 to 〈SR, y<4〉, and to 〈SI, x<2∧
x−1≤y<x+1〉, respectively. Therefore, the distribution associated with the
symbolic state 〈DI, 1≤x≤2 ∧ x−1≤y<1〉 shown in Figure 6 is constructed.

4 Conclusions

The state space exploration algorithm presented in Section 3 for calculating
the minimal reachability probability iterates predecessor, intersection and set
difference operations. This differs from the algorithm presented in [KNS01]
for calculating maximal reachability probabilities where only predecessor and
intersection operations are required. Note that the algorithm could be applied

20

time

time

time〈DI, 1≤x≤2 ∧ 1≤y≤x+2〉

〈DI, x<1 ∧ x≤y<x+2〉

〈SR, y<4〉

〈SI, x<2 ∧ x−1≤y<x+1〉

time

0.95

〈DI, x<1 ∧ y<x〉

〈DI, 1≤x≤2 ∧ x−1≤y<1〉

time
tim

e

〈DI, 1≤x≤2 ∧ y<x−1〉

0.9
0.1

0.9

〈SI, 2≤x≤3 ∧ y<x−2〉

0.9

0.10.95

0.05

0.95

〈SI, 2≤x≤3 ∧ 1≤y<x+1〉

tim
e

0.05

time

〈SI, 2≤x≤3 ∧ x−2≤y<1〉

〈SI, x<2 ∧ y<x−1〉

Figure 6: The system generated by MinReach for the PTA in Figure 1.

only to the reachable portion of the state space, thereby avoiding analysis of
unreachable states. Furthermore, the practical implementation of our approach
can be tailored to the model in question.

Together with [KNS01] our method extends to enable the verification of sym-
bolic probabilistic systems against probabilistic temporal logics such as PCTL
[BdA95, BK98].

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. Thiagarajan, editor, Proc. 15th
Conference on Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of LNCS, pages 499–513. Springer,
1995.

[BHHK00] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model
checking continuous-time Markov chains by transient analysis. In
E. Emerson and A. Sistla, editors, Proc. 12th International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of
LNCS, pages 358–372. Springer, 2000.

[BK98] C. Baier and M. Z. Kwiatkowska. Model checking for a proba-
bilistic branching time logic with fairness. Distributed Computing,
11(3):125–155, 1998.

21

[BS02] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels
systems is probably decidable. Research Report LSV-02-16, Lab.
Specification and Verification, ENS de Cachan, November 2002.

[DGJP00] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Ap-
proximating labeled Markov processes. In Proc. 15th Annual IEEE
Symposium on Logic in Computer Science, pages 95–106. IEEE
Computer Society Press, 2000.

[DJJL01] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachabil-
ity analysis of probabilistic systems by successive refinements. In
L. de Alfaro and S. Gilmore, editors, Proc. 1st Joint International
Workshop on Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV’01), volume
2165 of LNCS, pages 39–56. Springer, 2001.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and
probability. Formal Aspects of Computing, 6(5):512–535, 1994.

[HMP92] T. Henzinger, Z. Manna, and A. Puneli. What good are digital
clocks? In W. Kuich, editor, Proc. 19th International Colloquium,
Automata, Languages and Programming (ICALP’92), volume 623
of LNCS, pages 545–558. Springer, 1992.

[HMR01] T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification
of symbolic transition systems, 2001. Preliminary version appeared
in Proc. STACS 2000, volume 1770 of LNCS, pages 13–34, Springer,
2000.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computa-
tion, 111(2):193–244, 1994.

[KNS01] M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic com-
putation of maximal probabilistic reachability. In K. Larsen and
M. Nielsen, editors, Proc. 13th International Conference on Concur-
rency Theory (CONCUR’01), volume 2154 of LNCS, pages 169–183.
Springer, 2001.

[KNS02] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model
checking of deadline properties in the IEEE 1394 FireWire root con-
tention protocol. Special Issue of Formal Aspects of Computing,
2002. To appear.

[KNSS00] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying
quantitative properties of continuous probabilistic timed automata.
In C. Palamidessi, editor, Proc. CONCUR 2000 - Concurrency The-
ory, volume 1877 of Lecture Notes in Computer Science, pages 123–
137. Springer, 2000.

22

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distribu-
tions. Theoretical Computer Science, 282:101–150, 2002.

[KSK76] J. G. Kemeny, J. L. Snell, and A. W Knapp. Denumerable Markov
Chains. Graduate Texts in Mathematics. Springer, 2nd edition,
1976.

[Spr00] J. Sproston. Decidable model checking of probabilistic hybrid au-
tomata. In M. Joseph, editor, Proc. Int. Symp. on Formal Tech-
niques in Real-Time and Fault Tolerant Systems (FTRTFT’00), vol-
ume 1926 of LNCS, pages 31–45. Springer, 2000.

[Spr01] J. Sproston. Model Checking of Probabilistic Timed and Hybrid Sys-
tems. PhD thesis, University of Birmingham, 2001.

[Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. 26th Annual Symposium on Founda-
tions of Computer Science (FOCS’85), pages 327–338. IEEE Com-
puter Society Press, 1985.

23

Appendix: Proof of Theorem 7.

In this section we fix a symbolic probabilistic system P and target region F and
show that the minimal reachability probabilities for the symbolic probabilistic
system P and the finite sub-probabilistic system Q agree. First we require the
following definitions and lemmas.

Definition 11 For any adversary A ∈ Adv, F ∈ R and finite path ω let:

PA
0 (ω, F) =

{
1 if last(ω) ∈ pFq
0 otherwise

and for any n ≥ 0, if A(π) = p:

PA
n+1(ω, F) =

 1 if last(ω) ∈ pFq∑
s′∈S

p(s′) ·PA
n (ω

p→ s′, F) otherwise.

Note, in the case when S corresponds to Q we replace last(ω) ∈ pFq with
last(ω) ⊆ F .

Lemma 12 For any s ∈ S:

MinReach(s, F) = inf
A∈Adv

lim
n→∞

PA
n (s, F).

Proof. The lemma is proved by showing for any s ∈ S and C ∈ AdvS:

Prob{ω |ω ∈ PathfulC(s) and ω(i) ∈ U for some i ≥ 0} = lim
n→∞

PC
n (s, U)

which follows from the fact that we can associate with C a Markov chain whose
states are finite paths of S and the iterative method for PCTL until formulas
for Markov chains [HJ94]. ut

Lemma 13 For all σ ∈ T \ F , B ∈ AdvQ, if B(σ) = π and, Eπ and ν ∈ D
are the set of edges and distribution template used to construct π, then for all
n ∈ N:

PB
n+1(σ, F) =

∑
(σ,a,τ)∈Eµ

ν(a) ·PB
n (σ π→ τ, F).

Proof. Consider any σ ∈ T and B ∈ AdvQ, if B(σ) = π and π is constructed
from is the set of edges Eπ and distribution template ν, then by definition for
any τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eπ

ν(a). (2)

24

Now by Definition 11 we have:

PB
n+1(σ, F) =

∑
τ∈T

π(τ) ·PB
n (σ π→ τ, F)

=
∑
τ∈T

 ∑
a∈Tra∧(σ,a,τ)∈Eπ

ν(a)

 ·PB
n (σ π→ τ, F) by (2)

=
∑
τ∈T

 ∑
a∈Tra∧(σ,a,τ)∈Eπ

ν(a) ·PB
n (σ π→ τ, F)

 rearranging

=
∑

(σ,a,τ)∈Eπ

ν(a) ·PB
n (σ π→ τ, F)

as required.

Lemma 14 For any transition type a ∈ Tra, if (σ, a, τ) ∈ E, then pσq ⊆
pprea(τ)q.

Proof. The proof follows from the construction of the edges E in the algorithm
MinReach. ut

Lemma 15 For any s ∈ S, the minimum probability of reaching pFq is greater
than zero if and only if there exists a unique σ ∈ T such that s ∈ pσq.

Proof. For the “if” direction: suppose there exists σ ∈ T such that s ∈ pσq
(by construction σ is unique). The proof follows by induction on the length of
the shortest path from s to reach pFq which only passes through states whose
minimum probability of reaching pFq is greater than zero.

For the “only if” direction: by Proposition 6 it follows that for any σ ∈ T :
if s ∈ pσq, then the minimum probability of reaching pFq is greater than zero.
The fact that σ is unique follows from the construction. ut

Lemma 16 If s, t ∈ S and a ∈ Tra such that t ∈ δa(s), and s ∈ pσq and
t ∈ pτq for some σ, τ ∈ T , then (σ, a, τ) ∈ E.

Proof. Consider any s, t ∈ S and a ∈ Tra such that t ∈ δa(s), and s ∈ pσq
and t ∈ pτq for some σ, τ ∈ T . First by Lemma 15 the minimum probability
of reaching pFq from s is greater than zero, and hence, s ∈ pTminq. Therefore,
since t ∈ δa(s) we have s ∈ pprea(τ) ∩ Tminq = pprea(τ, Tmin)q, and it follows
that (σ, a, τ) ∈ E as required. ut

Proof of Theorem 7. The main step in the proof involves showing a corre-
spondence between the probability values of PA

n for adversaries A of the infinite
state probabilistic system P and PB

n for adversaries B of the constructed prob-
abilistic system Q. After which the result follows from Lemma 12.

Formally, we will show the following correspondence: For all n ∈ N, s ∈ S
such that MinReach(s, pFq) > 0:

(a) if B ∈ AdvQ, σ ∈ T and s ∈ pσq, then there exists A ∈ AdvP such that
PA

n (s, pFq) ≤ PB
n (σ, F)

25

(b) if A ∈ AdvP, then there exists σ ∈ T and B ∈ AdvQ such that s ∈ pσq
and PB

n (σ, F) ≤ PA
n (s, pFq).

We now prove (a) and (b) by induction on n ∈ N. In the case for n = 0 for
both (a) and (b) follow from Definition 11.

Next, suppose (a) and (b) hold for some n ∈ N and consider any s ∈ S
such that MinReach(s, pFq) > 0. If s ∈ pFq, then the properties (a) and (b)
follow from Definition 11. Therefore we are left with the case when s 6∈ pFq.

(a) Consider any B ∈ AdvQ and σ ∈ T such that s ∈ pσq. Now B(σ) = π for
some π ∈ StepsQ(σ) and by construction of Q there exists ν ∈ D and Eπ ⊆ E
such that

• if (σ′, a, τ ′) ∈ Eπ, then σ′ = σ

• if (σ, a, τ), (σ, a′, τ ′) ∈ Eπ are distinct, then a 6= a′

• if (σ, a, τ) ∈ E, then (σ, a, τ ′) ∈ Eπ for some τ ′ ∈ T

• for all τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eπ

ν(a) .

Let Tra(Eπ) = {a | (σ, a, τ) ∈ Eπ for some τ ∈ T}. We will now construct a
vector of states 〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s). Considering any a ∈ Tra(s), we

have the following two cases to consider.

• a ∈ Tra(Eπ), then by definition (σ, a, τ) ∈ Eπ for some τ ∈ T , and hence
σ ⊆ prea(τ) by Lemma 14. Now, since s ∈ pσq, it follows by definition
of prea that pτq ⊆ δa(s). Letting ta be any t ∈ pτq, by induction (since
τ ∈ T) there exists an adversary Aa such that:

PAa
n (ta, pFq) ≤ PB′

n (τ, F) = PB
n (σ π→ τ, F) (3)

where B′ ∈ AdvQ is such that B′(ω) = B(σ
µ→ ω) for any path ω.

• a 6∈ Tra(Eπ), in this case we will prove that MinReach(t, pFq) = 0 for
all t ∈ δa(s). Therefore, suppose, for a contradiction, that there exists
t ∈ δa(s) such that MinReach(t, pFq) > 0, by Lemma 15 there exists
τ ∈ T such that t ∈ pτq, and hence applying Lemma 16 there exists an
edge (σ, a, τ) ∈ E which contradicts the fact that (σ, a, τ ′) 6∈ Eπ for any
τ ′ ∈ T . Therefore MinReach(t, pFq) = 0 for all t ∈ δa(s), and letting
ta ∈ δa(s) be arbitrary, we have for any adversary Aa:

PAa
n (ta, pFq) = 0 . (4)

Note that, for any a, b ∈ Tra such that a ∈ Tra(Eπ) and b 6∈ Tra(Eπ) we have
ta 6= tb. Now, since ta ∈ δa(s) for all a ∈ Tra(s), by definition of the distribution
templates, there exists µ ∈ StepsP(s) such that for all t ∈ S:

µ(t) =
∑

a∈Tra(s)∧t=ta

ν(a). (5)

26

Now suppose A ∈ AdvP is the adversary that chooses µ in state s and then
behaves1 like Aa once it reaches the state ta, by Definition 11 we have:

PA
n+1(s, pFq) =

∑
s′∈S

µ(s′) ·PA
n (s

µ→ s′, pFq)

=
∑

t∈{ta | a∈Tra(s)}

 ∑
a∈Tra(Eπ)
∧ta=t

ν(a)

 ·PA
n (s

µ→ t, pFq) by (5)

=
∑

t∈{ta | a∈Tra(Eπ)}

 ∑
a∈Tra(Eπ)
∧ta=t

ν(a)

 ·PA
n (s

µ→ t, pFq) by (4)

=
∑

t∈{ta | a∈Tra(Eπ)}

 ∑
a∈Tra(Eπ)
∧ta=t

ν(a) ·PA
n (s

µ→ t, pFq)

 rearranging

=
∑

(σ,a,τ)∈Eπ

ν(a) ·PA
n (s

µ→ ta, pFq) by definition of Tra(Eπ)

≤
∑

(σ,a,τ)∈Eπ

ν(a) ·PB
n (σ π→ τ, F) by (3)

= PB
n+1(σ, F) by Lemma 13

and since B ∈ AdvQ and σ ∈ T are arbitrary, (a) holds by induction.

(b) Consider any adversary A ∈ AdvP, then A(s) = µ for some µ ∈ StepsP(s).
By definition there exists a distribution template ν ∈ D and vector of states
〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s) such that for all s′ ∈ S:∑

a∈Tra(s)∧s′=ta

ν(a) = µ(s′). (6)

Now, for any t ∈ S such that µ(t) > 0 we have the following cases to consider.

• MinReach(t, F) > 0 (and hence PA
n (a

µ→ t, pFq) > 0) then by induction,
there exists τt ∈ T and an adversary Bt ∈ AdvQ such that t ∈ pτtq and

PBt
n (τt, F) ≤ PA′

n (t, pFq) = PA
n (s

µ→ t, pFq) (7)

where A′ ∈ AdvP is the adversary such that A′(ω) = A(s
µ→ ω). Next,

let Trat(s) ⊆ Tra(s) be the set of transition types such that a ∈ Trat(s)
if and only if ν(a) > 0 and ta = t. Note that, for any distinct t, t′ ∈ S:
Trat(s) ∩ Trat′(s) = ∅.

Now for each a ∈ Trat(s) by definition t ∈ δa(s), and hence by Lemma 16
we have (σ, a, τt) ∈ E.

1If ta = tb for a 6= b, then let A behave like Aa if PAa
n (ta, pFq) ≤ P

Ab
n (tb, pFq) and Ab

otherwise.

27

• MinReach(t, pFq) = 0 in this case we show that there does not exist
an edge (σ, a, τ) for any a ∈ Tra or τ ∈ T such that t ∈ pτq. This
follows by Lemma 15, since if there exists τ ∈ T such that t ∈ pτq then
MinReach(t, pFq) > 0.

Now suppose that Eµ = {(σ, a, τt) | t ∈ S, µ(s) > 0 and a ∈ Trat(s)}. From
above it follows that:

• if (σ′, τ ′) ∈ Eµ, then σ′ = σ;

• if (σ, a, τ), (σ, a′, τ ′) ∈ Eµ are distinct, then a 6= a′;

• for any a ∈ Tra if (σ, a, τ) 6∈ Eµ for any τ ′, then (σ, a, τ) 6∈ E for any τ ′.

It then follows from the construction of Q that there exists π ∈ StepsQ(σ) such
that for all τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eµ

ν(a).

Now suppose that B is the adversary which chooses π in σ and for all t ∈ S
such that µ(t) > 0 and PA

n (a
µ→ t, pFq) > 0 behaves2 like Bt when it reaches

the state τt, then by Lemma 13 and construction of π:

PB
n+1(σ, F) =

∑
(σ,a,τ)∈Eµ

ν(a) ·PB
n (σ π→ τ, F)

=
∑

t∈S∧µ(t)>0∧
MinReach(t,pFq)>0

 ∑
a∈Trat(s)

ν(a) ·PB
n (σ π→ τt, F)

 by construction of Eµ

≤
∑

t∈S∧µ(t)>0∧
MinReach(t,pFq)>0

 ∑
a∈Trat(s)

ν(a) ·PA
n (s

µ→ t, pFq)

 by (7)

≤
∑

t∈S∧µ(t)>0

 ∑
a∈Trat(s)

ν(a)

 ·PA
n (s

µ→ t, pFq) rearranging

=
∑

t∈S∧µ(t)>0∧

 ∑
a∈Tra(s)∧t=ta

∧ν(a)>0

ν(a)

 ·PA
n (s

µ→ t, pFq) by construction of Trat(s)

=
∑

t∈S∧µ(t)>0

µ(t) ·PA
n (s

µ→ t, pFq) by (6)

= PA
n+1(s, pFq) by Definition 11

as required. ut

2If τt = τt′ for t 6= t′, then let A behave like At if PBt
n (τt, F) ≥ P

Bt′
n (τt′ , F) and Bt′

otherwise.

28

	Introduction
	Symbolic probabilistic systems
	Preliminaries
	Symbolic probabilistic systems: definition
	Example: Probabilistic Timed Automata

	Minimal Reachability Algorithm
	Precomputation Algorithm
	Main Algorithm
	Termination of PreMinReach and MinReach.
	Encoding the Probabilistic Behaviour
	Correctness
	Probabilistic Timed Automata.
	Example

	Conclusions

