
PCTL model checking of symbolic probabilistic

systems∗

Marta Kwiatkowska1, Gethin Norman1 and Jeremy Sproston2

1 School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom

2 Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy

April 4, 2003

Abstract

Probabilistic model checking is a method for automatically verifying
that a probabilistic system satisfies a property with a given likelihood, with
the probabilistic temporal logic Pctl being a common choice for the prop-
erty specification language. In this paper, we explore methods for model
checking Pctl properties of infinite-state systems in which probabilistic
and nondeterministic behaviour coexist. Building on previous work on
computing the maximum probability with which a state set is reached in
such systems, we utilize symbolic operations on the state sets to generate a
finite-state version of the system on which the Pctl model checking prob-
lem can be answered. As in the non-probabilistic case, our model checking
algorithm is semi-decidable for infinite-state systems. We illustrate our
technique using the formalism of probabilistic timed automata, for which
previous Pctl model checking techniques were based on an unnecessarily
fine subdivisions of the state space.

1 Introduction

Many systems, such as control, real-time, and embedded systems, give rise to
infinite-state models. For instance, embedded systems can be modelled in for-
malisms characterised by a finite number of control states (representing a digital
controller) interacting with a finite set of real-valued variables (representing an
analogue environment). The standard approach is to express system behaviour
purely in terms of nondeterminism. However, in many cases, particularly in
the context of fault-tolerant systems, it may be desirable, or more faithful, to
express the relative likelihood of the system exhibiting certain behaviour. Non-
deterministic choice is nevertheless useful for the modelling of asynchronous sys-
tems and the underspecification of system behaviour, and therefore formalisms
in which nondeterministic and probabilistic choice coexist are subject of much
attention (see, for example, [Var85, dA97, BK98, KNSS02]). Nondeterminism

∗Supported in part by the EPSRC grant GR/N22960.

Technical Report CSR-03-2, School of Computer Science, University of Birmingham, April 2003.

and probabilistic behaviour are inherent real-world protocols such as the IEEE
1394 FireWire root contention and IEEE 802.11 MAC.

This paper continues our study of the verification problem for infinite-
state systems featuring both nondeterminism and probabilistic behaviour. In
[KNS01] we considered the maximal reachability probability problem for this
class of system. We consolidate the results of that paper by studying model
checking of the probabilistic temporal logic Pctl (Probabilistic Computation
Tree Logic) [HJ94, BdA95]. In particular, this requires the study of properties
which refer to the minimal probability with which certain state sets are reached.
A contribution of this paper is to show how such properties can be reduced to
properties referring to the maximal probability of either reaching a certain state
set, or of staying within a certain set of states forever.

We apply our Pctl model checking algorithms to a class of symbolic prob-
abilistic systems. Such systems can be infinite-state, feature both nondeter-
ministic and probabilistic choice, and are subject to two assumptions to make
our model checking algorithm feasible. The first assumption is the existence
of a symbolic theory for a non-probabilistic version of the system. Symbolic
theories were introduced in [HMR03] to enable the unified study of notions
of state equivalence, state-space exploration algorithms and the decidability of
temporal logic model checking of infinite-state systems. Such theories equip
the infinite-state system with an abstract data type of regions, the elements of
which represent state sets, and a set of symbolic operations on regions, which
correspond to operations such as conjunction and disjunction of state sets, or
the classical predecessor operation. As in [KNS01], we use such symbolic the-
ories to analyse symbolic probabilistic systems, by converting the system to a
non-probabilistic system, and then running state-space exploration algorithms
to obtain a finite-state system which faithfully represents the behaviour of its
infinite-state counterpart. The method is reliant on the encoding of sufficient
information on the probabilistic behaviour of the system into the labels of the
transitions of the non-probabilistic system in order to reconstruct the proba-
bilistic behaviour at the finite-state level.

The second assumption that we make on symbolic probabilistic systems
guarantees the presence of such an appropriate non-probabilistic representa-
tion of the system. We thoroughly overhaul the notation of [KNS01], and
identify a class of infinite-state nondeterministic-probabilistic systems in which
such a convenient representation can always be found. More precisely, this
class of system is one in which transitions can be made according to a three-
phase choice: the first phase comprises a nondeterministic choice over a finite
set of alternatives, which then determines the probability distribution which
is used in the second phase of choice, which in turn determines the possibly
infinite set of target states that are available for nondeterministic choice in the
third phase. We note that this class subsumes the class of infinite-state sys-
tems which make a transition by two-phase choice, either consisting of a finite
nondeterministic choice followed by a finite probabilistic choice, or consisting
of a finite probabilistic choice followed by a possibly infinite nondeterminis-
tic choice. It transpires that our class of system is adapted to the analysis of
probabilistic timed and hybrid automata [KNSS02]. For example, in a location

2

of a probabilistic hybrid automaton, we first make a choice of either whether
to let time advance or to leave the location using one of the enabled exiting
probability distributions (finite choice); then, say a decision is made to leave
the location, a probabilistic choice is made according to the chosen distribution
(finite choice over edges between locations); and then, suppose an edge which
resets nondeterministically the real-valued variable x in the interval (1, 2] was
chosen probabilistically in the second step, there is a nondeterministic choice
of the new value of x (infinite choice).

An advantage of our approach of verifying Pctl properties of symbolic
probabilistic systems over an iterative method, in which a “quantitative” prede-
cessor operation which refers directly to probabilities is used (see, for example,
[dAM01]), is that we clearly separate issues of convergence of probabilities from
issues of non-convergence that may arise because the system is infinite-state.
For some classes of system, such as probabilistic timed automata, guarantees
of termination of our approach are immediate.

In Section 2, we revisit the definitions of nondeterministic-probabilistic sys-
tems, Pctl and probabilistic timed automata. We describe symbolic proba-
bilistic systems in Section 3, detailing the three-phase systems discussed above,
and also the non-probabilistic representations of such systems. In Section 4, we
present the Pctl model checking, in addition to the two key sub-algorithms
which generate finite-state representations of the symbolic probabilistic system
used for resolving probabilistic properties. In Section 5, we conclude the paper.
Proofs of the key results can be found in the appendix.

Related work. Approaches to infinite-state systems with discrete probabil-
ity distributions include model checking methods for probabilistic lossy channel
systems [AR03, BS03]. In the case of probabilistic timed automata, methods
for computing exact reachability probabilities are presented in [KNSS02] and
[KNS02] based on the region graph [AD94] and digital clocks [HMP92] respec-
tively. However, both suffer from the state explosion problem (in particular, the
size of the verification problem is sensitive to the magnitudes of the model’s tim-
ing constraints, which is not true of our technique). An alternative in [KNSS02]
uses forwards reachability, however it is only able to compute upper bounds on
the maximal reachability probabilities. We also mention [DJJL01] which uses
abstraction and refinement methods to calculate bounds on the minimal and
maximal reachability probabilities for finite state probabilistic systems. Veri-
fication methodologies for infinite-state systems with continuous distributions
are given in [BHHK00, DGJP00, KNSS00].

2 Preliminaries

A (discrete probability) distribution over a finite set Q is a function µ : Q →
[0, 1] such that

∑
q∈Q µ(q) = 1. Let support(µ) be the subset of Q such that

q ∈ support(µ) if and only if µ(q) > 0. For a possibly uncountable set Q′, let
Dist(Q′) be the set of distributions over finite subsets of Q′.

3

2.1 Nondeterministic-probabilistic systems

A nondeterministic-probabilistic system NP = (S,Steps, P, 〈〈·〉〉) comprises a set
S of states, a nondeterministic-probabilistic transition function Steps : S →
2Dist(S), a set P of observations, and an observation function 〈〈·〉〉 : P → 2S

which maps every observable to the set of states in which it is observed. A
nondeterministic-probabilistic transition s

µ→ t consists of a two-phase choice:

1. the first phase comprises a nondeterministic selection of a distribution µ
from the (possibly infinite) set Steps(s);

2. the second phase comprises a probabilistic choice of target state t accord-
ing to µ (hence, we must have µ(t) > 0).

The definition of nondeterministic-probabilistic systems follows the classical,
Markov decision process-based definitions previously introduced for finite-state
systems [BdA95, BK98]. We highlight the fact that infinite choice is made
over the nondeterministic alternatives only; instead, every probabilistic choice
is made over a finite number of alternatives. Hence, we use the notation N̄P
(where the overbar denotes that the nondeterministic choice could be infinite,
whereas the absence of a bar over P indicates that probabilistic branching is
only finitary) to denote the set of such nondeterministic-probabilistic systems,
and henceforth refer to N̄P systems.

We consider two ways in which a probabilistic system’s computation may be
represented. A path represents a particular resolution of both nondeterminism
and probability. Formally, a path is a finite or infinite sequence of probabilistic
transitions of the form ω = s0

µ0−→ s1
µ1−→ · · · . We denote by ω(i) the (i + 1)th

state of ω and last(ω) the last state of ω if ω is finite.
On the other hand, an adversary represents a particular resolution of non-

determinism only. Formally, an adversary of NP is a function A mapping every
finite path ω to a distribution µ ∈ Steps(last(ω)). Let AdvNP be the set of
adversaries of NP. For any A ∈ AdvNP, let PathA

ful (s) denote the set of infinite
paths associated with A starting in the state s ∈ S. Then, in the standard way,
we define the measure ProbA over PathA

ful (s) for each state s ∈ S [KSK76].

2.2 Probabilistic Computation Tree Logic

The syntax of Pctl (Probabilistic Computation Tree Logic) [HJ94, BdA95] is
defined as follows:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | P∼λ(φUφ) | P∼λ(2φ)

where p is an observable from some set P , ∼∈ {<,≤,≥, >} is a comparison
operator, and λ is probability threshold. The sub-formula φ1Uφ2 is the classical
“until” path formula, with the usual abbreviation 3φ ≡ trueUφ, and 2φ is
the classical “globally” path formula. The symbol P∼λ is a quantifier over
adversaries that permits reference to probability thresholds within the formula.
The logic Pctl is useful to verify properties of the form “with probability at
least 0.99, a data packet is delivered” (P≥0.99(3deliver)), or “an error state is

4

reached with probability less than 0.01” (P<0.01(3error)). In addition, for real-
time systems, it can be used to verify time-bounded reachability properties, also
known as soft deadlines, such as “with probability 0.975 or greater, a leader is
elected within 100 time units” (P≥0.975((time≤100) U leader)).

Given an N̄P system NP = (S,Steps, P, 〈〈·〉〉) and a set A of adversaries
of NP, we define the satisfaction relation |=A of Pctl as follows. Note that
we write v∈ {<,≤} and w∈ {≥, >}. Let s ∈ S be a state of NP. The
satisfaction relation for the observables and Boolean combinators is standard:
that is, s |=A p if and only if s ∈ 〈〈p〉〉, s |=A ¬p if and only if s ∈ 〈〈p̄〉〉,
s |=A φ1 ∨ φ2 if and only if s |=A φ1 or s |=A φ2, and s |=A φ1 ∧ φ2 if and
only if s |=A φ1 and s |=A φ2. The satisfaction relation for the probabilistically
quantified formulae is as follows:

s |=A Pvλ(φ1Uφ2) ⇔ MaxU(φ1, φ2,A, s) v λ
s |=A Pvλ(2φ) ⇔ Max2(φ,A, s) v λ
s |=A Pwλ(φ1Uφ2) ⇔ MinU(φ1, φ2,A, s) w λ
s |=A Pwλ(2φ) ⇔ Min2(φ,A, s) w λ .

The maximal (minimal) until probability MaxU(φ1, φ2,A, s) (MinU(φ1, φ2, s))
is defined as the maximal (respectively, minimal) probability with which “φ1

until φ2” can be satisfied by any adversary in A, starting from the state s. The
maximal and minimal globally probabilities are defined in an analogous manner.
More formally, and using φ1Uφ2 and 2φ to express the until and globally path
formulas, respectively, the semantics of which are defined in the usual way (see,
for example, [CGP99]), we have:

MaxU(φ1, φ2,A, s) = supA∈A ProbA{ω ∈ PathA
ful (s) | ω |=A φ1Uφ2}

MinU(φ1, φ2,A, s) = infA∈A ProbA{ω ∈ PathA
ful (s) | ω |=A φ1Uφ2} ,

with Max2(φ,A, s) and Min2(φ,A, s) defined in an analogous manner. The
maximal and minimal until and globally probabilities can be obtained as solu-
tions to linear programming problems in the case of finite systems [BdA95].

Note that dual of the until path formula φ1Uφ2 is the release formula
(¬φ1)V(¬φ2) (for the semantics of release, see for example [CGP99]). Next
observe that, for any path formula ϕ, any state s ∈ S and any adversary A:

ProbA{ω ∈ PathA
ful (s) | ω |=A ϕ} = 1− ProbA{ω ∈ PathA

ful (s) | ω |=A ¬ϕ} .

Hence, we can rewrite the formula for the minimal until probability into a for-
mula referring to the maximal probability of satisfying the dual release formula:

MinU(φ1, φ2,A, s) = MaxV(¬φ1,¬φ2,A, s)
= sup

A∈A
ProbA{ω ∈ PathA

ful (s) | ω |=A (¬φ1)V(¬φ2)} .

Finally, we note that 2φ ≡ falseVφ and 2φ ≡ ¬3¬φ, and hence

Max2(φ,A, s) = MaxV(false, φ,A, s)
Min2(φ,A, s) = MaxU(true,¬φ,A, s) .

To conclude, we can concentrate on algorithms for computing MaxU and MaxV
in order to solve Pctl model checking.

5

{x, y := 0}

true

true

x ≤ 2

{x, y := 0}

{x := 0}

true

x ≥ 2

x ≥ 1

{x := 0}

1

1

0.9

0.95

0.1

0.05

x ≤ 3true

DIII

SR SI

Figure 1: A probabilistic timed automaton modelling a probabilistic protocol.

2.3 Probabilistic timed automata

We now present probabilistic timed automata [KNSS02], which are classical
timed automata [AD94, HNSY94] extended with probabilistic branching over
the edges. Let X be a set of real-valued variables called clocks. Let Zones(X)
be the set of zones over X , which are conjunctions of atomic constraints of the
form x ∼ c and x − y ∼ c, for x, y ∈ X , ∼∈ {<,≤,≥, >}, and c ∈ N. A
probabilistic timed automaton is a tuple PTA = (L,X , inv , prob, 〈gl〉l∈L), where:

• L is a finite set of locations;

• the function inv : L → Zones(X) is the invariant condition;

• the function prob : L → 2Dist(L×2X) is the probabilistic edge relation such
that prob(l) is finite for all l ∈ L;

• for each l ∈ L, the function gl : prob(l) → Zones(X) is the enabling
condition for l.

A state of PTA is a pair (l, v) where l ∈ L and v ∈ R|X |. If the current state is
(l, v), there is a nondeterministic choice of either letting time pass while satis-
fying the invariant condition inv(l), or making a discrete transition according
to any distribution in prob(l) whose enabling condition gl(p) is satisfied. If the
distribution p ∈ prob(l) is chosen, then the probability of moving to l′ and
resetting all of the clocks in X to 0 is given by p(l′, X).

Example. Consider the PTA modelling a simple probabilistic communication
protocol given in Figure 1. The nodes represent the locations: II (sender,
receiver both idle); DI (sender has data, receiver idle); SI (sender sent data,
receiver idle); and SR (sender sent data, receiver received). As soon as data
has been received by the sender, the protocol moves to the location DI with
probability 1. In DI, after between 1 and 2 time units, the protocol makes
a transition either to SR with probability 0.9 (data received), or to SI with
probability 0.1 (data lost). In SI, the protocol will attempt to resend the data
after 2 to 3 time units, which again can be lost, this time with probability 0.05.

6

3 Symbolic probabilistic systems

3.1 NPN̄ systems

We can also envisage different classes of system in which nondeterministic and
probabilistic choice coexist; for example, the class of PN̄ systems would make a
transition by first making a probabilistic choice over a finite set of alternatives,
and then making a choice over a possibly infinite set of nondeterministic alter-
natives. Indeed, we need not limit ourselves to transition comprising only two
phases of choice; for this paper, we find it convenient to work with the class of
NPN̄ systems, in which transition are performed according to three phases of
choice. An NPN̄ system NPN = (S,Steps, P, 〈〈·〉〉) comprises a set S of states,
a set P of observations, and an observation function 〈〈·〉〉; however, in contrast
with N̄P systems, the NPN̄ transition function Steps : S → 2Dist(2S) is defined
such that, for each state s ∈ S, the set Steps(s) is finite, and, for each dis-
tribution ν ∈ Steps(s), each U ⊆ S such that ν(U) > 0 is a possibly infinite
set. That is, an NPN̄ system makes an NPN̄ transition s

ν→ t according to a
three-phase choice:

1. the first phase comprises the nondeterministic selection of a distribution
ν from the finite set Steps(s);

2. the second phase comprises a probabilistic choice of a state set U ⊆ S
according to ν (hence, we must have ν(U) > 0);

3. the third phase comprises a nondeterministic choice of the target state
t ∈ U .

3.1.1 From NPN̄ systems to N̄P systems.

As we regard N̄P systems as a more natural, or “canonical” model for nondeter-
ministic-probabilistic systems, we now show how an NPN̄ system can be rep-
resented as an N̄P system. Intuitively, the idea is that we push the third
transition phase of NPN̄ system to the first phase of choice. Hence, the possi-
bly infinite nondeterministic choice in the third phase moves to the first phase,
resulting in a first phase in which possibly infinitely many nondeterministic
choices can be made, as in the definition of N̄P systems. More formally, given
an NPN̄ system NPN = (S,Steps, P, 〈〈·〉〉), we construct its associated N̄P sys-
tem NP = (S,Steps, P, 〈〈·〉〉). The sets S and P of states and observables, and
the observation function 〈〈·〉〉, are the same for NPN and NP. We now explain
how Steps may be used to obtain Steps. For each state s ∈ S, let

Steps(s) =
⋃

ν∈Steps(s)

Stepsν(s) ,

where each Stepsν(s) is defined in the following manner. Denote support(ν) =
{U1, ..., Un}, and let vectors(s, ν) = U1 × · · · × Un. Note that, if (t1, ..., tn) ∈
vectors(s, ν), because it is possible that Ui ∩ Uj 6= ∅ for some 1 ≤ i, j ≤ n, we
may also have ti = tj for some 1 ≤ i, j ≤ n. Then

Stepsν(s) = {µ~t ∈ Dist(S) | ~t ∈ vectors(s, ν)} ,

7

where, for each ~t = (t1, ..., tn) and for each state t ∈ S, we have:

µ~t(t) =
∑

1≤i≤n & t=ti

ν(Ui) .

Now that we have obtained a N̄P system from a NPN̄ system, we can of course
define the notions of its paths, adversaries, and satisfaction of Pctl formulae.

3.1.2 Finite-template NPN̄ systems.

Let NPN = (S,Steps, P, 〈〈·〉〉) be an NPN̄ system, and let

Dist(NPN) =
⋃
s∈S

Steps(s)

be the set of all distributions used in NPN. We say that two distributions
ν, ν ′ ∈ Dist(2S) are isomorphic, written ν ∼= ν ′, if and only if there exists
a bijection f : support(ν) → support(ν ′) such that ν(U) = ν ′(f(U)) for all
U ∈ support(ν) (clearly ∼= is an equivalence relation). We use Dist(NPN)/∼=
to denote the an ∼=-quotient of Dist(NPN) such that, for each state s ∈ S,
then each pair ν, ν ′ ∈ Steps(s) of distributions belong to different equivalence
classes of Dist(NPN)/∼=. We then say that NPN is a finite-template NPN̄ system
if there exists a finite Dist(NPN)/∼=. The intuition is that an equivalence class
C ∈ Dist(NPN)/∼= denotes a “template” for the distributions within C, in which
the support sets of the distributions are immaterial, but the probabilities are
paramount.

3.1.3 Example: probabilistic timed automata.

We show how NPN̄ systems may be use to represent probabilistic timed au-
tomata. Note that the semantics of probabilistic timed automata are tradition-
ally represented in terms of N̄P systems [KNSS02].

Let PTA = (L,X , inv , prob, 〈gl〉l∈L) be a probabilistic timed automaton. A
point v ∈ R|X | is referred to as a clock valuation. For v ∈ R|X | and η ∈ R≥0,
the clock valuation v + η is obtained from v by adding η to the value of each
clock; and, for any X ⊆ X , the clock valuation v[X := 0] is obtained from v by
resetting all clocks in X to 0. The clock valuation v satisfies the zone ζ, written
v |=zone ζ, if and only if ζ resolves to true after substituting each x ∈ X with
the corresponding value vx from v.

The NPN̄ system NPN = (S,Steps, P, 〈〈·〉〉) associated with PTA is defined
in the following way.

• Let S = {(l, v) | l ∈ L and v |=zone inv(l)}.

• For each state (l, v) ∈ S, let

Steps(l, v) = {νtime} ∪ {νp | p ∈ prob(l) ∧ v |=zone gl(p)} ∪ {νtime} ,

where, νtime(U) = 1 for

U = {(l, v + η) | η ≥ 0 ∧ ∀ 0 ≤ η′ ≤ η . v + η′ |=zone inv(l)} .

8

and for each p ∈ prob(l):

νp(l′, v′) =
∑

X⊆X∧v′=v[X:=0]

p(l′, X) .

• Let P ⊆ 2L×Zones(X).

• Let 〈〈l, ζ〉〉 = {(l′, v) ∈ S | l = l′ ∧ v |=zone ζ} for each (l, ζ) ∈ P .

It can be verified that NPN corresponds to an N̄P system which defines the se-
mantics of probabilistic timed automata, as presented in [KNSS02]. Also note
that NPN is a finite-template NPN̄ system. We note that hybrid automata
with probabilistic branching over edges can also be represented as NPN̄ sys-
tems; indeed, the notion of resetting continuous variables within intervals upon
traversal of an edge, as seen in polyhedral hybrid automata [AHH96], uses the
full generality of NPN̄ systems.

3.2 Symbolic bi-labelled structures

3.2.1 Bi-labelled structures.

A bi-labelled structure B = (S, L1, L2,Γ1,Γ2, δ, P, pp·qq) is a tuple comprising:

• a possibly infinite set S of states,

• two finite sets L1, L2 of transition labels,

• two label assignments Γ1 : S → 2L1 \ ∅, Γ2 : S → 2L2 \ ∅ defining the set
of labels permissible in each state,

• a partial transition function δ : S ×L1 ×L2 → 2S assigning to each state
s ∈ S and labels a ∈ L1(s), b ∈ L2(s) a possibly infinite set of successor
states δ(s, a, b),

• a finite set P of observables,

• an observation function pp·qq : P → 2S which maps every observable to
the set of states in which it is observed.

For each observable p ∈ P , we require that there exists a complementary ob-
servable p̄ ∈ P such that ppp̄qq = S \ pppqq. 1

1 The reader may notice that bi-labelled structures and (infinite-state, 2-player) game
structures [HHM99, dAHM01] are essentially equivalent. That is, in any state s ∈ S, player
1 makes a choice of its move by choosing a label a ∈ Γ1(s), and similarly player 2 makes
a choice of its move by choosing a label from b ∈ Γ2(s); then the game moves to a state
t ∈ δ(s, a, b). Game structures are used in the context of adversarial relationships between
system components and their environment, which differs from our aim of studying probabilistic
behaviour, and therefore we have changed the name to avoid semantic confusion.

9

3.2.2 From NPN̄ systems to bi-labelled structures.

In this subsection and the next, we show how bi-labelled structures relate to
finite-template NPN̄ systems. The construction is defined such that L1-labels
refer to the first phase of nondeterministic choice in an NPN̄ transition, whereas
L2-labels refer to the second phase of probabilistic choice. For a finite-template
NPN̄ system NPN = (S,Steps, P, 〈〈·〉〉), we define an associated bi-labelled
structure B(NPN) = (S, L1, L2,Γ1,Γ2, δ, P, pp·qq) in the following way.

• The sets of states and observables are the same in NPN and B, and we let
pp·qq = 〈〈·〉〉.

• Let L1 = {aC | C ∈ Dist(NPN)/∼=} be a set of labels; that is, there is
a distinct label in L1 for each of the equivalence classes distributions of
Dist(NPN)/∼=. The label set L2 is defined as any finite set {b1, b2, ...} of
labels with cardinality greater than maxν∈Dist(NPN) |support(ν)|, the max-
imum branching degree of the distributions of NPN.

• For each state s ∈ S, we define the label assignments by

Γ1(s) = {aC | C ∈ Dist(NPN)/∼= s.t. ∃ν ∈ Steps(s) for which ν ∈ C}

and Γ2(s) = {b1, ..., bn} where n = maxν∈Steps(s) |support(ν)|.

• For each state s ∈ S, and each pair of distributions ν, ν ′ in the same ∼=-
class C ∈ Dist(NPN)/∼=, we index the support sets support(ν) = {U1, ..., Um}
and support(ν ′) = {U ′

1, ..., U
′
m} such that ν(Ui) = ν ′(U ′

i) for all 1 ≤ i ≤ m
(which is possible because ν and ν ′ are isomorphic). Then, for each distri-
bution ν ∈ Steps(s), where ν ∈ C ∈ Dist(NPN)/∼=, we let δ(s, aC , bi) = Ui

for each 1 ≤ i ≤ m, and δ(s, aC , bi) = ∅ for each m < i ≤ n.

Finally, by abuse of notation, for any ∼=-class C ∈ Dist(NPN)/∼=, we denote by
C(bi) the probability that a distribution belonging to the class C assigns to the
ith element in its support (the ith element will correspond to label bi by the
above construction of B(NPN)).

3.2.3 Symbolic theories.

We proceed to define the notion of symbolic theory of bi-labelled structures,
following closely the precedent of symbolic theories for non-probabilistic systems
[dAHM01, HMR03]. A symbolic theory (R, p·q) for a bi-labelled structure B
consists of a possibly infinite set of region R paired with an extension function
p·q : R → 2S mapping each region σ ∈ R to a possibly infinite set of states pσq,
such that the following four conditions hold:

1. we have P ⊆ R (every observable is a region), and pppqq = ppq for all
observables p ∈ P (pp·qq and p·q agree on all observables). We also include
the regions true, false ∈ R where ptrueq = S and pfalseq = ∅.

10

2. For each pair σ, τ ∈ R of regions, we have regions And(σ, τ) ∈ R,Or(σ, τ) ∈
R, and Diff(σ, τ) ∈ R, such that And(σ, τ) = pσq ∩ pτq, Or(σ, τ) = pσq ∪
pτq, and Diff(σ, τ) = pσq\pτq. Furthermore, the functions And : R×R →
R, Or : R×R → R and Diff : R×R → R are computable.

3. For each region σ ∈ R and each pair a ∈ L1, b ∈ L2, there is a region
Prea,b(σ) ∈ R such that pPrea,b(σ)q =

{s ∈ S | a ∈ Γ1(s) and b ∈ Γ2(s) and ∃t ∈ δ(s, a, b) such that t ∈ pσq} .

Furthermore, the function Pre : R× L1 × L2 → R is computable.

4. There exist computable functions Empty : R → B and Member : S ×R →
B such that Empty(σ) if and only if pσq = ∅ and Member(s, σ) if and only
if s ∈ pσq (all emptiness and membership questions about regions can be
decided).

The tuple (R,P, And,Or,Diff,Pre,Empty) is called a region algebra for B.

3.2.4 Example: probabilistic timed automata.

It is not difficult to obtain a bi-labelled structure representation of a timed or
hybrid automaton (indeed, this is made explicit in the context of timed and
hybrid games in [HHM99, dAHM01]). We note briefly that the finite-template
NPN̄ system of a probabilistic timed or hybrid automaton may be used to obtain
a bi-labelled structure using the technique presented in the previous subsection.
Furthermore, symbolic theories for probabilistic timed automata, using the clas-
sical zone-based representation of regions [HNSY94], and for probabilistic poly-
hedral hybrid automata, using the classical polyhedra-based representation of
regions [AHH96], are available for the resulting bi-labelled structures, as made
explicit in [dAHM01, HMR03].

3.3 Symbolic probabilistic systems

A symbolic probabilistic system SPS = (NPN, R, p·q) comprises a finite-template
NPN̄ system NPN, and a symbolic theory (R, p·q) for a bi-labelled structure
B(NPN) corresponding to NPN.

4 Pctl model checking

In this section, we show how symbolic probabilistic systems may be model
checked against Pctl formulae. In the manner standard for model check-
ing, we progress up the parse tree of a Pctl formula, from the leaves to the
root, recursively calling the symbolic semi-algorithm PCTLModelCheck, shown
in Figure 2, for each sub-formula. (Note that we refer to PCTLModelCheck
as a semi-algorithm because for finite-template NPN̄ systems the model check-
ing algorithm is semi-decidable.) Handling observables and Boolean operations
is classical, and we therefore reduce our problem to computing the functions

11

Symbolic semi-algorithm PCTLModelCheck
input: (R,P, And,Or,Diff,Pre,Empty)

Pctl formula φ

output: [φ] :=
if φ = p then return p;
if φ = ¬p then return p̄;
if φ = φ1 ∨ φ2 then return Or([φ1], [φ2]);
if φ = φ1 ∧ φ2 then return And([φ1], [φ2]);
if φ = P∼λ(φ1Uφ2) then return Until(φ1, φ2,∼, λ);
if φ = P∼λ(2φ) then return Globally(φ,∼, λ);

Figure 2: PCTL model checking for symbolic probabilistic systems

Until(φ1, φ2,∼, λ) and Globally(φ,∼, λ) which arise when we check an proba-
bilistically quantified formula. The former function relies on the computation
of maximal or minimal until probabilities, whereas the latter relies on the com-
putation of maximal or minimal globally probabilities. We present a method
for computing the maximal until probabilities in the next section, which, using
the duality result mentioned in Section 2.2, also can be used for computing the
minimal globally probabilities. Then, in Section 4.2, we present a method for
computing the maximal release probabilities, which can be used for computing
the maximal globally probabilities, and, again by duality, the minimal until
probabilities.

4.1 The maximal probability of until

The semi-algorithm of [KNS01], which computes the maximal probability with
which a certain state set of a symbolic probabilistic system can be reached, can
be extended to deal with until formulae in the following way: first, the “target
set” of states of the previous algorithm corresponds to the region [φ2] which
satisfies φ2; secondly, the backwards search through the state space, which
commences from [φ2], is now restricted to the set of states which satisfy φ1,
as represented by the And operations which conjunct the generated predecessor
regions with the region [φ1]. The termination condition pTi+1q ⊆ pTiq, which is
shorthand for {pσq | σ ∈ Ti} ⊆ {pσq | σ ∈ Ti+1}, reflects the fact that the algo-
rithm computes progressively larger sets of states (as in a classical least fix-point
expression). If a fix-point is reached, then the graph (Ti+1, Ei+1) is returned.
The edge set Ei+1, is then “extended” to generate the new edge set E such
that, for every pair regions σ, σ′ ∈ Ti+1, if pσ′q ⊆ pσq and (σ, (a, b), τ) ∈ Ei+1,
then (σ′, (a, b), τ) ∈ E (see [KNS01] for details). For simplicity, we henceforth
drop the subscript on Ti+1.

The graph (T,E) is then used to construct the finite-state N̄P system NP =
(T,Steps, P, 〈〈·〉〉). The construction is similar to the corresponding construction

12

Symbolic semi-algorithm MaxUntil
input: (R,P, And,Or,Diff,Pre,Empty)

until formula φ1Uφ2

T0 := [φ2]
E0 := ∅
for i = 0, 1, 2, . . . do

Ti+1 := Ti

for all a ∈ L1, b ∈ L2 ∧ σ ∈ Ti do
σ′ := And(Prea,b(σ), [φ1])
Ti+1 := {σ′} ∪ Ti+1

Ei+1 := {(σ′, (a, b), σ)} ∪ Ei+1

Ti+1 := {And(σ′, τ) | τ ∈ Ti+1} ∪ Ti+1 (?)
end for all

until pTi+1q ⊆ pTiq
return (Ti+1, Ei+1)

Figure 3: State-space exploration for until formulae

in [KNS01], and also to the release case presented below, so we proceed to the
main result concerning until formulae.

Proposition 1 For the symbolic probabilistic system SPS = (NPN, R, p·q), the
until formula φ1Uφ2, and the finite-state N̄P system NP constructed from the
semi-algorithm MaxUntil, then for any state s ∈ S of NPN, we have:

MaxU(φ1, φ2,AdvNPN, s) = max
σ∈T∧s∈pσq

MaxU(φ1, φ2,AdvNP, σ) .

Note that this proposition refers to the full adversary sets AdvNPN and AdvNP

of NPN and NP.
Using these results, we are in a position to return the set of regions denoted

by Until(φ1, φ2,v, λ) for v∈ {<,≤}. That is, using the classical probabilistic
model checking methods of [BdA95], we first compute MaxU(φ1, φ2,Adv , σ);
next, we compute the set of regions Tvλ ⊆ T such that σ ∈ Tvλ if and only if
MaxU(φ1, φ2,Adv , σ) v λ; finally, we let Until(φ1, φ2,v, λ) = Tvλ.

Similarly, we can return the set of regions denoted by Globally(φ,w, λ) for
w∈ {≥, >}. We first compute MaxU(true,¬φ,Adv , σ) for each σ ∈ T ; next,
we compute the set of regions Twλ ⊆ T such that σ ∈ Twλ if and only if
1−MaxU(true,¬φ,Adv , σ) w λ; finally, we let Globally(φ,w, λ) = Twλ.

4.2 The maximal probability of release

We now present a method for computing the maximal probability with which
a symbolic probabilistic system satisfies a release property. An algorithm for
the analysis of the bi-labelled structure B(NPN) corresponding to a symbolic

13

Symbolic semi-algorithm MaxRelease
input: (R,P, And,Or,Diff,Pre,Empty)

release formula φ1Vφ2

T0 := [φ2]
E0 := ∅
for i = 0, 1, 2, . . . do

Ti+1 := [φ1 ∧ φ2]
for all a ∈ L1, b ∈ L2 ∧ σ ∈ Ti do

σ′ := And(Prea,b(σ), [φ2])
Ti+1 := {σ′} ∪ Ti+1

Ei+1 := {(σ′, (a, b), σ)} ∪ Ei+1

Ti+1 := {And(σ′, τ) | τ ∈ Ti+1} ∪ Ti+1 (?)
end for all

until pTi+1q ⊇ pTiq
return (Ti+1, Ei+1)

Figure 4: State-space exploration for release formulae

probabilistic system is shown in Figure 4. Like the semi-algorithm MaxUntil,
of Figure 3, the semi-algorithm MaxRelease iterates successively conjunction
and predecessor operations. The region [φ2] is taken as the initial region; to
see why, consider the fact that φ1Vφ2 ≡ φ2 ∧ (φ1 ∨ X(φ1Vφ2)). Hence, the
semi-algorithm MaxRelease proceeds by iterating predecessor and intersection
operations from the initial region [φ2], at each stage taking the region [φ2 ∧ φ1]
and the intersection of the predecessor regions of the previous stage with [φ2].
The termination condition pTi+1q ⊇ pTiq reflects the fact that the algorithm
computes progressively smaller sets of states (as in a classical greatest fix-point
expression). If a fix-point is reached, then the graph (Ti+1, Ei+1) is returned,
and the set of edges Ei+1 is extended to the set E using the same methodology
as presented in Section 4.1. We drop the subscript also on T and henceforth
use (T,E) to refer to the graph generated by MaxRelease.

Next, we construct a finite-state N̄P system NP = (T,Steps, P, 〈〈·〉〉) from
(T,E). The state set T is the set of generated regions, the set P of observables
is {φ1, φ̄1, φ2, φ̄2}, and 〈〈φi〉〉 = [φi] and 〈〈φ̄i〉〉 = T \[φi] for i ∈ {1, 2}. In contrast
to our usual presentation of N̄P systems, the transition relation Steps : T →
2SubDist(T) uses sub-distributions, which are distributions which need not sum
to 1; formally, a sub-distribution π is a function π : T → [0, 1] such that∑

σ∈T π(σ) ≤ 1. Then, for any region σ ∈ T , let π ∈ Steps(σ) if and only if
there exists an equivalence class C ∈ Dist(NPN)/∼= of distributions of NPN, and
there exists a subset Eπ ⊆ E of edges such that:

• all edges of Eπ have the same source regions (that is, (σ′, (a, b), τ) ∈ Eπ

implies σ′ = σ);

• all edges of Eπ have the same L1-label, which is aC (that is, (σ′, (a, b), τ) ∈

14

Eπ implies a = aC);

• all edges of Eπ have distinct L2-labels (that is, if (σ′, (a, b), τ ′), (σ, (a, b′), τ ′)
are distinct edges, then b 6= b′);

• the set Eπ is maximal;

• for all regions τ ∈ T , we have

π(τ) =
∑

(σ′,(aC ,b),τ)∈Eπ

C(b) .

Proposition 2 For the symbolic probabilistic system SPS = (NPN, R, p·q), the
release formula φ1Vφ2, and the finite-state N̄P system NP constructed from the
semi-algorithm MaxRelease, then for any state s ∈ S of NPN, we have:

MaxV(φ1, φ2,AdvNPN, s) = max
σ∈T∧s∈pσq

MaxV(φ1, φ2,AdvNP, σ) .

Using these results, we are in a position to return the set of regions denoted by
Until(φ1, φ2,w, λ) for v∈ {≥, >}. That is, using classical probabilistic model
checking methods [BdA95, dA97], we first compute MaxV(¬φ1,¬φ2,AdvNP, σ);
next, we compute the set of regions Tvλ ⊆ T such that σ ∈ Tvλ if and only if
1−MaxV(¬φ1,¬φ2,AdvNP, σ) w λ; finally, we let Until(φ1, φ2,w, λ) = Twλ.

Similarly, we can return the set of regions denoted by Globally(φ,v, λ) for
v∈ {<,≤}. We first compute MaxV(false, φ,Adv , σ) for each σ ∈ T ; next,
we compute the set of regions Tvλ ⊆ T such that σ ∈ Tvλ if and only if
MaxV(false, φ,Adv , σ) v λ; finally, we let Globally(φ,v, λ) = Tvλ.

4.3 Decidability of Pctl model checking

The termination of the semi-algorithm depends on the termination of the fix-
point algorithms MaxUntil and MaxRelease presented in Figure 3 and Figure 4.
As both of these algorithms iterate progressively conjunction and predecessor
operations, if a bi-labelled structure of a symbolic probabilistic system is closed
under such operations, starting from the set P of observables, then both Max-
Until and MaxRelease, and hence PCTLModelChecking, will terminate.

Consider a bi-labelled structure B(NPN) of a symbolic probabilistic system.
Let � be a binary relation on the state space S of NPN such that s�t implies:

1. for all observables p ∈ P , we have s ∈ pppqq if and only if t ∈ pppqq;

2. for all a ∈ L1, b ∈ L2 and s′ ∈ δ(s, a, b), there exists t′ ∈ δ(t, a, b) such
that s′�t′.

We call such a relation a bi-labelled simulation. Let ≈ be an equivalence relation
on the state space S such that s≈t if there exist bi-labelled simulations �,�′
such that s�t and t�′s. We call such an equivalence ≈ a bi-labelled mutual
simulation, and write that ≈ has finite index if there are finitely many equiv-
alence classes of ≈. A symbolic probabilistic system (NPN, R, p·q) has a finite

15

bi-labelled mutual simulation quotient if there exists a bi-labelled structure
B(NPN) with a finite bi-labelled mutual simulation quotient. The following re-
sult follows from similar conclusions in the non-probabilistic setting [HMR03],
which state that closure of P under conjunction, union and predecessor op-
erations characterizes simulation on (symbolic) transition systems, and in the
maximal probabilistic reachability setting [KNS01].

Theorem 3 Pctl model checking is decidable for symbolic probabilistic sys-
tems with a finite bi-labelled mutual simulation quotient.

Note that this result contrasts with the analogous results in the non-probabilistic
context, in which Ctl model checking is decidable for symbolic transition sys-
tems with a finite bisimulation quotient [HMR03].

4.4 Probabilistic timed automata and time-divergence

The application of the semi-algorithms MaxUntil and MaxRelease to the sym-
bolic probabilistic system of a probabilistic timed automaton is clear; however,
we would like to consider only time-divergent adversaries, which let the elapsed
time on a path diverge with probability 1 (see, for example, [KNSS02]). In
particular, we note that the distinction between adversaries which let time di-
verge and those which do not is critical for the computation of Max2(φ, ,),
because of the presence of adversaries which let time converge while staying in
φ, therefore trivially making Max2(φ, ,) = 1. Indeed, for formula of the form
Pvλ(2φ), we restrict ourselves to the cases when φ = p for some observable p
which contains at most one pair (l,) for each location l ∈ L, as our approach
relies of the convexity of zones generated during the state-space exploration.

First, we assume the following condition: that for all states of a probabilistic
timed automaton PTA, for any adversary which makes discrete (edge-traversal)
transitions infinitely often, there exists an divergent adversary which makes the
same discrete choices. We can then proceed to construct the finite-state N̄P
system NP according to the methodology of Section 4.2. However, we remove
all self-loops of regions generated by the time label, except for those regions
which have zone components which are unbounded from above (that is, those
regions (, ζ) for which, for every clock valuation v |=zone ζ and every η ≥ 0, we
have v + η ∈ ζ).

Proposition 4 For a probabilistic timed automaton subject to the assump-
tion of the previous paragraph, with its associated symbolic probabilistic system
(NPN, R, p·q), a formula 2p, and the finite-state N̄P system NP constructed
from the semi-algorithm MaxRelease, then for any state s ∈ S of NPN, we have:

MaxV(false, p,Advdiv
PTA, s) = max

σ∈T∧s∈pσq
MaxV(false, p,AdvNPred , σ) .

We now return to the probabilistic timed automaton in Figure 1 to find the
minimal probability of a message being correctly delivered within 4 time units
of the data arriving at the sender (reaching 〈SR, y<4)〉 from 〈DI, x=y=1)〉).

16

〈DI, 1≤x≤2〉

〈DI, x≤2∧y≥x− 1〉〈DI, x≤2∧y≥x + 2〉

〈DI, 1≤x≤2∧y≥4〉 〈DI, 1≤x≤2∧y≥1〉

〈SI, 2≤x≤3∧y≥4〉

〈SI, x≤3∧y≥x + 1〉

〈SI, 2≤x≤3〉〈SI, 2≤x≤3∧y≥1〉

〈SI, x≤3∧y≥x− 2〉

〈SR, y≥4〉

time time time

time

0.95

0.1 0.1

1
1

0.9

timetimetime

time

time time time

〈SI, x≤3〉

〈DI, x≤2〉

〈II, true〉

time

timetime
0.05 0.05

0.1

Figure 5: Graph generated by the algorithm MaxRelease

Following our methodolgy for Pctl model checking, we first calculate the max-
imum probability of remaining in the set of states

I = {〈SR, y≥4〉, 〈SI, true〉, 〈DI, true〉, 〈II, true〉} ,

and derive the minimal probability of reaching 〈SR, y<4)〉 as 1 minus this com-
puted probability.

Therefore we apply the algorithm MaxRelease with φ1 equal to false and φ2

set to the formula which represents the set of states I. Applying this algorithms
returns the graph given in Figure 5 from which we can then construct the
probabilistic system on which we can calculate this maximum probability. Note
that, as explained above, to limit our anaylsis to divergent adversaries we must
remove the self-loops generated by the time label from those regions whose
zone component is bounded. For this example such self-loops are represented
with the dotted arrows, and hence these edges are ignored in the construction
of the probabilistic system. By verifying the constructed probabilistic system,
we find that the maximimum probability of remaining in this set of states
after data arrives at the sender (that is, from a region containing the state
〈DI, x=y=0〉), is 0.9. To illustrate this result, in Figure 6 we have represented
the choices of an adversary which admits this maximal probability. Note that,
since 〈SI, 2≤x≤3∧y≥4〉 ⊂ 〈SI, 2≤x≤3∧y≥1〉, the transition from 〈SI, 2≤x≤3∧
y≥4〉 to 〈SI, x≤3 ∧ y≥x+1〉 is generated from from the edge

(〈SI, 2≤x≤3 ∧ y≥1〉, 0.05, 〈SI, x≤3 ∧ y≥x+1〉)

of the graph in Figure 5.
Finally, we conclude that the minimal probability of a message being cor-

rectly delivered within 4 time units of the data arriving at the sender is 1−0.9 =
0.1.

17

〈DI, x≤2∧y≥x− 1〉

〈DI, 1≤x≤2∧y≥1〉

〈SI, 2≤x≤3∧y≥4〉

〈SI, x≤3∧y≥x + 1〉

〈SR, y≥4〉

time

time

0.95

0.1

time
0.05

Figure 6: Adversary which admits the maximal probability

5 Conclusions

We have presented a method for model checking Pctl properties of symbolic
probabilistic systems. The decidability result of Theorem 3 is of interest, and
highlights differences between the probabilistic quantification over adversaries
of Pctl and the quantification over paths in Ctl. Note also that we reduce the
problem of computing the minimum probability of satisfying an until formula
to a Pctl model checking problem on a finite-state structure, which has a time
complexity which is polynomial in the size of the system and linear in the size
of the formula.

Acknowledgements

We would like to thank an anonymous referee of a previous version of this paper
for helpful advice.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AHH96] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic veri-
fication of embedded systems. IEEE Transactions on Software En-
gineering, 22(3):181–201, 1996.

[AR03] P. A. Abdulla and A. Rabinovich. Verification of probabilistic sys-
tems with faulty communication. In A. Gordon, editor, Proc. Foun-
dations of Software Science and Computational Structures (FOS-
SACS 2003), volume 2620 of LNCS, pages 39–53. Springer, 2003.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. Thiagarajan, editor, Proc. 15th
Conference on Foundations of Software Technology and Theoretical

18

Computer Science, volume 1026 of LNCS, pages 499–513. Springer,
1995.

[BHHK00] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model
checking continuous-time Markov chains by transient analysis. In
A. Emerson and A. Sistla, editors, Proc. 12th International Con-
ference on Computer Aided Verification (CAV’00), volume 1855 of
LNCS, pages 358–372. Springer, 2000.

[BK98] C. Baier and M. Z. Kwiatkowska. Model checking for a proba-
bilistic branching time logic with fairness. Distributed Computing,
11(3):125–155, 1998.

[BS03] N. Bertrand and Ph. Schnoebelen. Model checking lossy chan-
nels systems is probably decidable. In A. Gordon, editor, Proc.
Foundations of Software Science and Computation Structures (FOS-
SACS’2003), volume 2620 of LNCS, pages 120–135. Springer, 2003.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[dA97] L. de Alfaro. Formal verification of probabilistic systems. PhD
thesis, Stanford University, Department of Computer Science, 1997.

[dAHM01] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algo-
rithms for infinite-state games. In K. Larsen and M. Nielsen, editors,
Proc. CONCUR 2001 - Concurrency Theory, volume 2154 of LNCS,
pages 536–550. Springer, 2001.

[dAM01] L. de Alfaro and R. Majumdar. Quantitative solution of omega-
regular games. In Proc. 33rd Annual ACM Symposium on Theory
of Computing (STOC 2001), pages 675–683. ACM Press, 2001.

[DGJP00] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Ap-
proximating labeled Markov processes. In Proc. 15th Annual IEEE
Symposium on Logic in Computer Science (LICS 2000), pages 95–
106. IEEE Computer Society Press, 2000.

[DJJL01] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachabil-
ity analysis of probabilistic systems by successive refinements. In
L. de Alfaro and S. Gilmore, editors, Proc. 1st Joint International
Workshop on Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV’01), volume
2165 of LNCS, pages 39–56. Springer, 2001.

[HHM99] T. A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular
hybrid games. In S. Mauw J. Baeten, editor, Proc. CONCUR
’99: Concurrency Theory, volume 1664 of LNCS, pages 320–335.
Springer, 1999.

19

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[HMP92] T. Henzinger, Z. Manna, and A. Puneli. What good are digital
clocks? In W. Kuich, editor, Proc. 19th International Colloquium
on Automata, Languages and Programming (ICALP’92), volume
623 of LNCS, pages 545–558. Springer, 1992.

[HMR03] T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of
symbolic transition systems, 2003. To appear. Preliminary version
appeared in Proc. STACS 2000, volume 1770 of LNCS, pages 13–34,
Springer, 2000.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computa-
tion, 111(2):193–244, 1994.

[KNS01] M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic com-
putation of maximal probabilistic reachability. In K. Larsen and
M. Nielsen, editors, Proc. Proc. CONCUR ’01: Concurrency The-
ory, volume 2154 of Lecture Notes in Computer Science, pages 169–
183. Springer, 2001.

[KNS02] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model
checking of deadline properties in the IEEE 1394 FireWire root
contention protocol. Special Issue of Formal Aspects of Computing,
2002. To appear.

[KNSS00] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying
quantitative properties of continuous probabilistic timed automata.
In C. Palamidessi, editor, Proc. CONCUR 2000 - Concurrency The-
ory, volume 1877 of LNCS, pages 123–137. Springer, 2000.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Au-
tomatic verification of real-time systems with discrete probability
distributions. Theoretical Computer Science, 282:101–150, 2002.

[KSK76] J. G. Kemeny, J. L. Snell, and A. W Knapp. Denumerable Markov
Chains. Graduate Texts in Mathematics. Springer, 2nd edition,
1976.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite
state programs. In Proc. 26th Annual Symposium on Foundations
of Computer Science (FOCS’85), pages 327–338. IEEE Computer
Society Press, 1985.

A Appendix: optimizations

In order to ease presentation, we have presented our techniques with our opti-
mizations and for a restricted class of symbolic probabilistic systems, where the

20

restrictions mainly concern conditions for the translation to bi-labelled struc-
tures. However, the techniques of this paper are applicable without such re-
strictions. We proceed to describe techniques which can both help to optimize
the verification process and to apply the techniques to a wider class of symbolic
probabilistic system.

A.1 Definition of finite-template NPN̄ system.

Note that isomorphism of probability distributions in the definition of finite-
template NPN̄ system may mean that the number of equivalence classes of
distributions is unnecessarily high, therefore resulting in an elevated number
of labels in the set L1. We could instead define a partial order � over the set
Dist(NPN) by letting ν ′�ν if and only if there exists a function f : support(ν) →
2support(ν′) such that (1) f(U1) ∩ f(U2) 6= ∅ for all U1, U2 ∈ support(ν), and (2)
for every U ∈ support(ν), we have ν(U) =

∑
U ′∈f(U) ν ′(U ′). For example, if ν

is such that ν(U1) = 0.5 and ν(U2) = 0.5, and ν ′ is such that ν ′(U3) = 0.2,
ν ′(U4) = 0.3 and ν ′(U5) = 0.5, then ν ′�ν (using the function f(U1) = {U3, U4}
and f(U2) = {U5}). Intuitively, we write ν ′ � ν if the probabilistic branching
of ν can be obtained from the probabilistic branching ν ′, possibly by summing
over some of the alternatives of ν ′. Then, to every distribution ν ∈ Dist(NPN),
we can assign a unique minimal element νmin of Dist(NPN), according to the
partial order �, such that νmin � ν. If we then regard distributions with the
same assigned minimal elements as being equivalent, provided that they are not
enabled within the same state, we have an equivalence over Dist(NPN). Note
that, if this equivalence has a finite quotient, then Dist(NPN)/∼= has a finite
quotient. This equivalence can be used in a similar way as the equivalence
presented in the main text, although the definition of a bi-labelled structure of
an NPN̄ system must be changed, in particular with regard to the probability
distribution over labels of the set L2.

A.2 Redundant conjunction operations.

As noted in [KNS01], the purpose of the conjunction operator And in the semi-
algorithms MaxUntil and MaxRelease is to generate regions in which transitions
resulting from distinct pairs (a, b) of L1- and L2-labels are available. However,
there is no need to perform the conjunction of regions which are generated by
predecessor operations which are not labelled with the same L1-label. This can
be seen on consideration that we uniquely identify each distribution template
(that is, each equivalence class of Dist(NPN)/∼=) with a label in L1. Hence, if two
regions are generated by predecessor operations with different L1-labels, then
they correspond to pairs (a, b) and (a′, b′) of label-pairs which are never both
assigned positive probability in the construction of the finite-state N̄P systems.
Therefore, conjunction operations on regions generated by different L1-labels
are redundant. We can therefore alter the lines labelled by (?) to:

Ti+1 := {And(σ′, τ) | τ ∈ Ti+1 such that ∃(τ, (a, b′), τ ′) ∈ Ei+1} ∪ Ti+1 .

21

A.3 Reconciliation with [KNS01].

The framework of [KNS01] for computing the maximal reachability probability
presented a more general superclass of symbolic transition systems than that
presented here, in which label pairs are represented by a single label which can
be shared amongst multiple distribution templates, and in which distribution
templates which do not have a correspondence with any system transition may
be included. Our algorithms MaxUntil and MaxRelease can also be used with
this more general model.

More formally we now give the definition of the symbolic probabilistic sys-
tems of [KNS01], and give a translation from the framework developed in this
paper to such a system.

Definition of symbolic probabilistic systems. A symbolic probabilistic
system P = (S,Steps, R, p·q, Tra,D) comprises: a probabilistic system (S,Steps);
a set of symbolic states R; an extension function p·q : R → 2S; a set of
transition types Tra, and, associated with each a ∈ Tra, a transition function
δa : S → 2S; and a set of distribution templates D ⊆ Dist(Tra), such that the
following conditions are satisfied.

1. For all states s ∈ S, let Tra(s) ⊆ Tra be such that for any a ∈ Tra:
a ∈ Tra(s) if and only if δa(s) 6= ∅. Then, for all t ∈ S:

(a) if a ∈ Tra and t ∈ δa(s), then there exists µ ∈ Steps(s) such that
µ(t) > 0;

(b) if µ ∈ Steps(s), then there exists ν ∈ D and a vector of states
〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s) such that:∑

a∈Tra(s)∧t=ta

ν(a) = µ(t);

(c) if ν ∈ D and 〈ta〉a∈Tra(s) is a vector of states in
∏

a∈Tra(s) δa(s), then
there exists µ ∈ Steps(s) such that:

µ(t) ≥
∑

a∈Tra(s)∧t=ta

ν(a).

2. There exists a family of computable functions {Prea}a∈Tra of the form
Prea : R → R, such that, for all a ∈ Tra and σ ∈ R:

pPrea(σ)q = {s ∈ S | ∃t ∈ δa(s) . t ∈ pσq} .

3. There is a computable function And : R×R → R such that pAnd(σ, τ)q =
pσq ∩ pτq for each pair of symbolic states σ, τ ∈ R.

4. There is a computable function Diff : R×R → R such that pDiff(σ, τ)q =
pσq \ pτq for each pair of symbolic states σ, τ ∈ R.

5. There is a computable function Empty : R → B such that Empty(σ) if and
only if pσq = ∅ for each symbolic state σ ∈ R.

22

6. There is a computable function Member : S×R → B such that Member(s, σ)
if and only if s ∈ pσq for each state s ∈ S and symbolic state σ ∈ R.

For a NPN̄ system NPN = (S,Steps, P, 〈〈·〉〉), with a corresponding bi-labelled
structure B = (S, L1, L2,Γ1,Γ2, δ, P, pp·qq) and symbolic theory (R, p·q) we now
construct a symbolic probabilistic system PB = (S,StepsB, R, p·q, TraB,DB) as
follows:

• StepsB is the step function from the N̄P system underlying NPN (see
Section 3.1.1);

• TraB = L1 × L2 where for any s ∈ S: δ(a,b)(s) = δ(s, a, b);

• DB = {νC |C ∈ Dist(NPN)/∼=} where for any (aC′ , b) ∈ TraB:

νC(aC′ , b) =
{

C(b) if C = C ′

0 otherwise.

We now prove the correctness of this translation, that is, prove that PB is indeed
a symbolic probabilistic system. First note that conditions 2–6 of a symbolic
probabilistic system follow from the fact that (R, p·q) is a symbolic theory and
the fact that δ(a,b)(s) = δ(s, a, b). It therefore remains to prove 1(a)–(c) which
we consider in turn.

1(a) If a ∈ Tra and t ∈ δa(s), then a = (aC , b) and t ∈ δ(s, aC , b) for some
aC ∈ L1 and b ∈ L2. Now, by construction of the bi-labelled system, there
exists ν ∈ Steps(s) such that ν(δ(s, aC , b)) > 0. The result then follows
from the construction of the underlying N̄P system (see Section 3.1.1).

1(b) Consider any s ∈ S and µ ∈ StepsB(s), now by construction of the
underlying NP system, there exists a ν ∈ Steps(s) with support(ν) =
{U1, . . . , Um} and a vector of states (t1, . . . , tm) ∈ U1 × · · · × Um such
that µ(t) =

∑
1≤i≤m∧ti=t ν(Ui). Now letting νC ∈ D be such that ν is in

the equivalence class C, it follows from the construction of the bi-labelled
structure that δ(s, aC , bi) = Ui for all 1 ≤ i ≤ m. Therefore taking the
same vector and states we have:∑

a∈Tra(s)∧t=ta

νC(a) = µ(t)

as required.

1(c) Consider any state s, distribution template νC ∈ D and vector of states
〈ta〉a∈Tra(s) ∈

∏
a∈Tra(s) δa(s). If there does not exist a ν ∈ Steps(s) such

that ν ∈ C we have δ(s, aC , b) = ∅ for all b ∈ L2, and hence ν(a) = 0 for
all a ∈ Tra(s). Therefore for any ν ∈ Steps(s) and t ∈ S:

µ(t) ≥ 0 =
∑

a∈Tra(s)∧t=ta

ν(a) .

23

On the other hand, if there exists ν ∈ Steps(s) such that ν ∈ C, from
the construction of the underlying NP system, supposing support(ν) =
{U1, . . . , Un}, then for any vector of states (t1, . . . , tn) ∈ U1×· · ·×Un there
exists µ ∈ Steps(s) such that for any t ∈ S: µ(t) =

∑
1≤i≤m∧ti=t ν(Ui).

Then since δaC ,bi
(s) = δ(s, aC , bi) = Ui for all 1 ≤ i ≤ m and C(bi) = 0

for all i > m, we can show that there exists µ ∈ Steps(s) such that for
any t ∈ S:

µ(t) =
∑

a∈Tra(s)∧t=ta

ν(a)

as required.

B Appendix: Proof of Proposition 2

Before we give the proof of Proposition 2, we require the following notation,
definitions and lemmas. First, by abuse of notation, we say that a region σ
satisfies a Pctl formula φ, written pσq |= φ, if and only if pσq ⊆ [φ]. Such
notation allows us to occasionally avoid referring to observables and observation
function explictly in the definition of N̄P systems.

Let NP = (S,Steps, P, 〈〈·〉〉) be an N̄P system. For any adversary A ∈ AdvNP,
let PathA

ful =
⋃

s∈S PathA
ful (s); similarly, for any state s ∈ S, let Path ful (s) =⋃

A∈AdvNP
PathA

ful (s). Then, for any adversary A ∈ AdvNP, we define a sequence
of functions (pVA

n)n∈N such that for a state s ∈ S and Pctl formulae φ1, φ2,
pVA

n (φ1, φ2, s) equals:

ProbA{ω ∈ PathA
ful (s) | for all 0≤j≤n if ω(i) 6|= φ1 for every i<j then ω(j) |= φ2} .

Definition 5 Let NP = (S,Steps, P, 〈〈·〉〉) be an N̄P system and φ1, φ2 be Pctl
formulae. For any adversary A ∈ AdvNP and finite path ω ∈ PathA

fin , let:

pVA
0 (φ1, φ2, ω) =

{
1 if last(ω) |= φ2

0 otherwise,

and for any i ∈ N, if A(ω) = µ:

pVA
i+1(φ1, φ2, ω) =

1 if last(ω) |= φ1 ∧ φ2∑

s′∈S

µ(s′) · pVA
i (φ1, φ2, ω

µ→ s′) if last(ω) |= ¬φ1 ∧ φ2

0 otherwise.

Lemma 6 Let NP = (S,Steps, P, 〈〈·〉〉) be an N̄P system. For any state s ∈ S
and Pctl formulae φ1, φ2:

MaxV(φ1, φ2, s) = sup
A∈AdvNP

lim
i→∞

pVA
i (φ1, φ2, s) .

Lemma 7 Let {(Ti, Ei)}1≤i≤k be the sequence of graphs constructed in the algo-
rithm MaxRelease. For any i ∈ N, if (σ, (a, b), τ) ∈ Ei, then pσq ⊆ pPrea,b(τ)q.

24

Definition 8 If {(Ti, Ei)}1≤i≤k, are the graphs constructed in the algorithm
MaxRelease, then let NP∞ = (T∞,StepsNP∞) be the N̄P system defined as fol-
lows:

• T∞ =
⋃∞

i=0 Ti × {i};

• For any (σ, i) ∈ T∞ if i = 0, then StepsNP∞(σ, i) = ∅, and if i > 0, then
π ∈ StepsNP∞(σ, i) if and only if there exists a subset of edges Eπ ⊆ Ei

and an equivalence class C ∈ Dist(NPN)/∼= of distributions of NPN such
that:

1. if (σ′, (a′, b′), τ ′) ∈ Eπ, then pσq ⊆ pσ′q and a = aC ;

2. if (σ′, (aC , b′), τ ′) 6= (σ′′, (aC , b′′), τ ′′) ∈ Eπ, then b′ 6= b′′;

3. the set Eπ is maximal;

4. for all (τ, j) ∈ T :

π(τ, j) =

∑

(σ′,(aC ,b),τ)∈Eπ

C(b) if j = i− 1

0 otherwise.

where (Ti, Ei) = (Tk, Ek) for all i > k.

By abuse of notation, we say a state (σ, i) of T∞ satisfies a Pctl formula φ if
and only if σ satisfies φ.

Lemma 9 For the NPN̄ system NPN and Pctl formula φ1Vφ2, if NP and
NP∞ = (T∞,StepsNP∞) are the N̄P systems constructed through the algorithm
MaxRelease and by Definition 8 respectively, then for any σ ∈ T :

MaxV(φ1, φ2,AdvNP, σ) = sup
B∈AdvNP∞

lim
i→∞

pVB
i (φ1, φ2, (σ, i)) .

Proof. The proof follows from the fact that there exists k ≥ 0 such that
(Ti, Ei) = (T,E) for all i ≥ k and the fact that the probabilistic transitions of
NP and NP∞ are constructed in the same way. ut

Lemma 10 Let NP∞ = (T∞,StepsNP∞) be the probabilistic system constructed
through Definition 8. For any i ∈ N, (σ, i+1) ∈ T∞ which satisfies φ2 ∧ ¬φ1

and π ∈ Steps(σ, i+1), if Eπ and C ∈ Dist(NPN)/∼= are the set of edges and
equivalence class of distributions used to construct π, then

pVB
i+1(φ1, φ2, (σ, i+1)) =

∑
(σ′,(aC ,b),τ)∈Eπ

C(b) · pVB
i (φ1, φ2, σ

π→ (τ, i)) .

Proof. Consider any i ∈ N, (σ, i+1) ∈ T∞ and B ∈ AdvT∞ , if B(σ, i+1) = π
and π is constructed from is the set of edges Eπ and class of distributions
C ∈ Dist(NPN)/∼=, then by definition for any (τ, j) ∈ T∞ we have:

π(τ, j) =

∑

(σ′,(aC ,b),τ)∈Eπ

C(b) if j = i− 1

0 otherwise.
(1)

25

Since (σ, i+1) ∈ T∞ satisfies φ2 ∧ ¬φ1, from Definition 5 we have:

pVB
i+1(φ1, φ2, (σ, i+1))

=
∑

τ ′∈T∞

π(τ ′) · pVB
i (φ1, φ2, (σ, i+1) π→ τ ′)

=
∑

(τ,i)∈T∞

 ∑
(σ′,(aC ,b),τ)∈Eπ

C(b)

 · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i)) by (1)

=
∑
τ∈Ti

 ∑
(σ′,(aC ,b),τ)∈Eπ

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i))

 by Definition 8

=
∑

(σ′,(aC ,b),τ)∈Eπ

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i)) rearranging

as required. ut

We now give the proof of Proposition 2, that is we show:

For the symbolic probabilistic system SPS = (NPN, R, p·q), the release formula
φ1Vφ2, and the finite-state N̄P system NP constructed from the semi-algorithm
MaxRelease, then for any state s ∈ S of NPN, we have:

MaxV(φ1, φ2,AdvNPN, s) = max
σ∈T∧s∈pσq

MaxV(φ1, φ2,AdvNP, σ) .

Proof of Proposition 2. Let {(Ti, Ei)}i=0,1,... be the sequence of graphs
constructed in the algorithm MaxRelease, for the formula φ1Vφ2. We split the
proof into proving a sequence of properties: (a), (b) and (c). First consider the
following:

(a) σ ∈ Ti if and only if for all s ∈ pσq there exists a path ω ∈ Path ful (s)
such that for all 0≤j≤i if ω(k) 6|= φ1 for every k<j, then ω(j) |= φ2.

The proof is by induction on i ∈ N. The case when i = 0 follows from the fact
that T0 = [φ2]. Now suppose that (a) holds from some i ∈ N and consider any
σ ∈ Ti+1. From MaxRelease it follows that either pσq |= φ1∧φ2 and the result is
immediate, or pσq |= φ2 and σ ⊆ Prea,b(τ) for some a ∈ L1, b ∈ L2 and τ ∈ Ti.
Now, by construction of the symbolic theory for NPN we have: s ∈ pPrea,b(τ)q
for some a ∈ L1, b ∈ L2 if and only if there exists ν ∈ Steps and U ⊆ S such
that ν(U) > 0 and U ∩ pτq 6= ∅. Using these facts and induction property (a)
follows.

It follows from (a) that σ ∈ Ti if and only if for any s ∈ pσq, there ex-
ists an adversary A such that pVA

i (φ1, φ2, s) > 0. Moreover, we have that

26

if MaxV(φ1, φ2, s) > 0, then there exists σ ∈ T such that s ∈ pσq.

We now give the main step in the proof which involves showing a correspon-
dence between the probability values of pVA

i for adversaries A of NPN and pVB
i

for adversaries B of NP∞. Formally we show that for any i ∈ N and s ∈ S such
that pVA

i (φ1, φ2, s) > 0:

(b) if B ∈ AdvNP∞ , σ ∈ Ti and s ∈ pσq, then there exists A ∈ AdvNPN such
that pVA

i (φ1, φ2, s) ≥ pVB
i (φ1, φ2, (σ, i));

(c) if A ∈ AdvNPN, then there exists σ ∈ Ti and B ∈ AdvNP∞ such that
s ∈ pσq and pVB

i (φ1, φ2, (σ, i)) ≥ pVA
i (φ1, φ2, s).

It follows from (a), Lemma 6 and Lemma 9 that to prove Proposition 2 it is
sufficient to show that (b) and (c) hold. We now prove (b) and (c) by induction
on n ∈ N. The case for i = 0 for both (b) and (c) follow from Definition 5 and
the fact that T0 = [φ2].

Next, suppose (b) and (c) hold for some i ∈ N and consider any s ∈ S
such that pVA

i+1(φ1, φ2, s) > 0. If s |= φ1 ∧ φ2, then the result follows from
Definition 5 and since ([φ1 ∧ φ2], i+1) ∈ T∞. Therefore, from Definition 5 and
(a) it remains to consider the case when s |= ¬φ1 ∧ φ2.

(b) Consider any adversary B ∈ AdvNP∞ and region σ ∈ Ti+1 such that s ∈ pσq;
then B(σ, i+1) = π for some distribution π ∈ StepsNP∞(σ). By construction
of NP∞, there exists an equivalence class C ∈ Dist(NPN)/∼= of distributions of
NPN and non-empty set of edges:

Eπ ⊆ Ei+1 ∩ (Ti+1×({aC}×L2)×Ti)

used to construct π. From the construction of the bi-labelled structure of NPN
given in Section 3.2, there exists ν ∈ Steps(s) such that ν ∈ C. Further-
more, from this construction, the support set support(ν) of ν can be writ-
ten as {U1, U2, . . . , Um} such that δ(s, aC , bj) = Uj for all 1 ≤ j ≤ m and
δ(s, aC , bj) = ∅ for all m < j ≤ n. Note that, since δ(s, aC , bj) = ∅ for all
m < j ≤ n, if (σ′, (aC , bj), τ ′) ∈ Ei+1 for any m < j ≤ n, then s 6∈ pσ′q, and
hence pσq 6⊆ pσ′q. From Definition 8 it then follows that (σ′, (aC , bj), τ ′) 6∈ Eπ

for any m < j ≤ n.
Now, if we consider any (σ′, (aC , bj), τ ′) ∈ Eπ, it follows from Definition 8

and Lemma 7 that pσq ⊆ pσ′q and pσ′q ⊆ pPreaC ,bj (τ ′)q. Therefore, from the
construction of the bi-labelled structure we have pτq ∩ δ(s, aC , bj) 6= ∅. Using
these results, for each 1 ≤ i ≤ m, we define a state tj ∈ δ(s, aC , bj) as follows:

• if (σ′, (aC , bj), τ ′) ∈ Eπ for some σ′ ∈ Ti+1 and τ ′ ∈ Ti, let tj ∈ pτq ∩
δ(s, aC , bj);

• if (σ′, (aC , bj), τ ′) 6∈ Eπ for any σ′ ∈ Ti+1 and τ ∈ Ti, let tj be arbitrary.

Therefore, in the NP system underlying the NPN̄ system NPN (see Section 3.1.1
for this construction), there exists a distribution µ ∈ Steps(s) such that, for all

27

states s′ ∈ S:

µ(s′) =
∑

1≤j≤m∧s′=tj

ν(Uj) =
∑

1≤j≤m∧s′=tj

C(bj). (2)

By induction, for any (σ′, (aC , bj), τ) ∈ Eπ, there exists an adversary Aj such
that:

pVAj

i (φ1, φ2, tj) ≥ pVB′
i (φ1, φ2, (τ, i)) = pVB

i (φ1, φ2, (σ, i+1) π→ (τ, i)) (3)

where B′ ∈ AdvNP∞ is the adversary such that B′(ω) = B((σ, i+1) π→ ω). Now
suppose A ∈ AdvNPN is the adversary that chooses µ in state s and then behaves
like Aj once it reaches the state tj (if tj = tk for j 6= k, then let A behave like
Aj if pVAj

i (φ1, φ2, tj) ≥ pVAk
i (φ1, φ2, tk) and Ak otherwise). By Definition 5 we

have:

pVA
i+1(φ1, φ2, s) =

∑
t∈S

µ(t) · pVA
i (φ1, φ2, s

µ→ t)

=
∑
t∈S

 ∑
1≤j≤m
∧ tj=t

C(bj)

 · pVA
i (φ1, φ2, s

µ→ t) by (2)

≥
∑
t∈S

 ∑
(σ′,(aC ,bj),τ)∈Eπ

∧ tj=t

C(bj)

 · pVA
i (φ1, φ2, s

µ→ t) by construction of tj

=
∑

(σ′,(aC ,bj),τ)∈Eπ

C(bj) · pVA
i (φ1, φ2, s

µ→ tj) rearranging

=
∑

(σ′,(aC ,bj),τ)∈Eπ

C(b) · pVAj

i (φ1, φ2, tj) by construction of A

≥
∑

(σ′,(aC ,bj),τ)∈Eπ

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i)) by (3)

= pVB
i+1(φ1, φ2, (σ, i+1)) by Lemma 10.

Since B ∈ AdvNP∞ and σ ∈ T are arbitrary, (b) holds by induction.

(c) Consider any adversary A ∈ AdvNPN such that pVA
i+1(φ1, φ2, s) > 0, then

A(s) = µ for some µ ∈ StepsNPN(s). From the construction of the N̄P sys-
tem underlying NPN given in Section 3.1.1, µ is constructed from some ν ∈
Steps(s). Letting C by the equivalence class of Dist(NPN)/∼= of which ν be-
longs, from construction of the bi-labelled structure (see Section 3.2), support(ν)
is of the form {U1, . . . , Un} such that δ(s, aC , bj) = Uj and ν(Uj) = C(bj) for all

28

1 ≤ j ≤ m. Now since µ is constructed from ν, there exists a vector of states
(t1, . . . , tm) ∈ U1 × · · · × Um such that for all t ∈ S:

µ(t) =
∑

1≤j≤m∧t=tj

ν(Uj) =
∑

1≤j≤m∧t=tj

C(bj). (4)

Now, for any t ∈ S such that µ(t) > 0 and pVA
i (φ1, φ2, s

µ→ t) > 0, by induction
there exists τt ∈ Ti and an adversary Bt ∈ AdvNP∞ such that t ∈ pτtq and

pVBt
i (φ1, φ2, (τt, i)) ≥ pVA′

i (φ1, φ2, t) = pVA
n (φ1, φ2, s

µ→ t) (5)

where A′ ∈ AdvNPN is the adversary such that A′(ω) = A(s
µ→ ω).

Next, let Lt(s) be the set of labels of L2 such that bj ∈ Lt(s) if and only if
ν(bj) > 0 and tj = t. Note that, for any distinct t, t′ ∈ S: Lt(s) ∩ Lt′(s) = ∅.
Furthermore, let σt equal

And{And(PreaC ,b(τt), [φ2]) | b ∈ Lt(s)}

and Et equal the set of edges

{(And(PreaC ,b(τt), [φ2]), (aC , b), τt) | b ∈ Lt(s)} .

By construction s |= φ2 and s ∈ pPreaC ,b(τt)q for all b ∈ Lt(s), and hence
s ∈ pσtq, σt ∈ Ti+1 and Et is a subset of Ei+1.

Since this was for arbitrary t ∈ S such that µ(t) > 0 and pVA
i (φ1, φ2, s

µ→
t) > 0, letting σ equal

And{σt | t ∈ S ∧ µ(t) > 0 ∧ pVA
n (φ1, φ2, s

µ→ t) > 0} ,

and Eµ equal the union of the edges Et for t ∈ S such that µ(t) > 0 and
pVA

n (φ1, φ2, s
µ→ t) > 0, it follows that σ ∈ Ti+1, s ∈ pσq and Eµ is a subset of

Ei+1 such that:

• if (σ′, (a, b), τ ′) ∈ Eµ, then pσq ⊆ pσ′q and a = aC ;

• if (σ′, (aC , b), τ ′), (σ′′, (aC , b′), τ ′′) ∈ Eµ are distinct, then b 6= b′ (since for
any distinct t, t′ ∈ S: Lt(s) ∩ Lt′(s) = ∅).

Now, by construction of NP∞ (Definition 8) there exists π ∈ StepsNP∞(σ, i+1)
and Eπ ⊇ Eµ such that for all τ ∈ T :

π(τ, k) =

∑

(σ′,(aC ,b),τ)∈Eπ

C(b) if k = i− 1

0 otherwise.

Now suppose that B is the adversary which chooses π in (σ, i+1) and for all
t ∈ S such that µ(t) > 0 and pVA

i+1(φ1, φ2, s
µ→ t) > 0 behaves like Bt when

it reaches the state τt (if τt = τt′ for t 6= t′, then let A behave like At if

29

pVBt
i (φ1, φ2, (τt, i)) ≥ pVBt′

i (φ1, φ2, (τt′ , i)) and Bt′ otherwise). By Lemma 10
and construction of π we have:

pVB
i+1(φ1, φ2, (σ, i+1)) =

∑
(σ′,(aC ,b),τ)∈Eπ

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i)

≥
∑

(σ′,(aC ,b),τ)∈Eµ

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τ, i))

since Eµ ⊆ Eπ

=
∑

t∈S∧µ(t)>0∧
pVA

i (φ1,φ2,s
µ→t)>0

 ∑
b∈Lt(s)

C(b) · pVB
i (φ1, φ2, (σ, i+1) π→ (τt, i))

by construction of Eµ

=
∑

t∈S∧µ(t)>0∧
pVA

i (φ1,φ2,s
µ→t)>0

 ∑
b∈Lt(s)

C(b) · pVBt
i (φ1, φ2, (τt, i))

by construction of B

≥
∑

t∈S∧µ(t)>0∧
pVA

n (φ1,φ2,s
µ→t)>0

 ∑
b∈Lt(s)

C(b) · pVA
i (φ1, φ2, s

µ→ t)

by (5)

=
∑

t∈S∧µ(t)>0∧
pVA

n (φ1,φ2,s
µ→t)>0

 ∑
b∈Lt(s)

C(b)

 · pVA
i (φ1, φ2, s

µ→ t)

rearranging

=
∑

t∈S∧µ(t)>0∧
pVA

n (φ1,φ2,s
µ→t)>0

 ∑
1≤j≤m∧t=tj

C(bj)

 · pVA
i (φ1, φ2, s

µ→ t)

by construction of Lt(s)
=

∑
t∈S∧µ(t)>0∧

pVA
n (φ1,φ2,s

µ→t)>0

µ(t) · pVA
i (φ1, φ2, s

µ→ t)

by (4)
= pVA

i+1(φ1, φ2, s)
by Definition 5

as required. ut

30

	Introduction
	Preliminaries
	Nondeterministic-probabilistic systems
	Probabilistic Computation Tree Logic
	Probabilistic timed automata

	Symbolic probabilistic systems
	NP systems
	From NP systems to P systems.
	Finite-template NP systems.
	Example: probabilistic timed automata.

	Symbolic bi-labelled structures
	Bi-labelled structures.
	From NP systems to bi-labelled structures.
	Symbolic theories.
	Example: probabilistic timed automata.

	Symbolic probabilistic systems

	Pctl model checking
	The maximal probability of until
	The maximal probability of release
	Decidability of Pctl model checking
	Probabilistic timed automata and time-divergence

	Conclusions
	Appendix: optimizations
	Definition of finite-template NP system.
	Redundant conjunction operations.
	Reconciliation with KNS01.

	Appendix: Proof of Proposition 4.2

