
Analysis of a Gossip Protocol in PRISM

Marta Kwiatkowska, Gethin Norman and David Parker

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD

ABSTRACT
Gossip protocols have been proposed as a robust and effi-
cient method for disseminating information throughout dy-
namically changing networks. We present an analysis of a
gossip protocol using probabilistic model checking and the
tool PRISM. Since the behaviour of these protocols is both
probabilistic and nondeterministic in nature, this provides a
good example of the exhaustive, quantitative analysis that
probabilistic model checking techniques can provide. In par-
ticular, we compute minimum and maximum values, repre-
senting the best- and worst-case performance of the pro-
tocol under any scheduling, and investigate both their re-
lationship with the average values that would be obtained
through simulation and the precise scheduling which achieve
these values.

1. INTRODUCTION
Gossip protocols are a class of communication protocols
which, inspired by the way that gossiping propagates mes-
sages in social networks, disseminate content through a net-
work based on periodic exchanges of data with random mem-
bers of the network. These techniques are designed to func-
tion robustly and efficiently on networks that are large, het-
erogeneous and dynamic in nature. They are hence be-
coming increasingly important due to the prevalence of, for
example, mobile ad-hoc networks, wireless sensor networks
and peer-to-peer technologies.

Gossip-based protocols require each node of the system
to periodically exchange information with a number of its
peers. The choice of which peers nodes communicate with
is crucial to how information gets disseminated through the
network. Theoretically, a node could randomly select a sub-
set of all the available nodes in the network. In practice,
however, this is not feasible since it would require each node
to keep a complete network membership table which is ex-
pensive to store and maintain. In this paper, we study the
peer sampling framework of [9] where each node instead
maintains a relatively small local membership table pro-
viding a partial view of the network which is periodically
updated using a gossiping procedure.

Probabilistic model checking is a formal verification tech-
nique for the analysis of stochastic systems. It is based
on the construction of a probabilistic model from a precise,
high-level description of a system’s behaviour. A quantita-
tive analysis of this model is then performed, by applying a
combination of exhaustive search techniques and numerical
solution methods. In this paper, we investigate how prob-
abilistic model checking can be used to study gossip pro-

tocols. The majority of existing analyses of such systems
are based on discrete-event simulation. In contrast, proba-
bilistic model checking provides both an exhaustive search
of all possible behaviours of the system, including best- and
worst-case scenarios, and exact, rather than approximate,
quantitative results. Of course, a trade-off inevitably exists.
Simulation-based approaches are scalable to much larger and
more complex models, at the expense of exhaustiveness and
numerical accuracy. The intention of this work is not to
show that model checking is ‘better’ than simulation-based
approaches, but rather to highlight that model checking can
be used in conjunction with simulation to provide additional
insights into a system.

Gossip protocols exhibit both nondeterministic and prob-
abilistic behaviour. Nondeterminism arises because we con-
sider a distributed network in which the activities of individ-
ual nodes occur asynchronously. Other actions, such as the
random selection of a node with whom to exchange infor-
mation, are inherently probabilistic. We model the protocol
as a Markov decision process (MDP) using the probabilistic
model checker PRISM [8, 16]. We investigate the expected
number of rounds of gossiping required for the nodes to form
a connected network and how the expected path length be-
tween nodes evolves over the execution of the protocol. The
presence of nondeterminism means that these measures can
take a range of values. Hence, we compute minimum and
maximum values, representing the best- and worst-case per-
formance of the protocol under any scheduling of nodes. We
investigate the relationship of these results with average val-
ues, as would be obtained through simulation. We also use
PRISM to identify the precise situations under which the
best- and worst-case behaviour arises.

Related Work. Simulation-based studies of the peer sam-
pling service used in the paper can be found in [9]. A survey
of how different formal verification techniques can be ap-
plied to the analysis of gossip protocols is presented in [3].
Probabilistic model checking and PRISM have been used by
Fehnker and Gao [6] to study the influence of different mod-
elling choices on message propagation in flooding and gos-
siping protocols, and by Werner and Schmitt [19] to analyse
the performance of a secure authenticated query flooding
protocol. PRISM has also been used to model and analyse
a number of different wireless protocols, for example, the
IEEE 802.11 backoff mechanism [14] and device discovery
in Bluetooth [5]. See the PRISM case study repository [16]
for more details and further examples.

2. PROBABILISTIC MODEL CHECKING
AND PRISM

Probabilistic model checking is a formal verification tech-
nique for systems that exhibit stochastic behaviour. It in-
volves the construction, from a precise description in a high-
level specification language, of a probabilistic model de-
scribing the behaviour of the system to be analysed. Typi-
cally, this model takes the form of a state-transition system,
augmented with probabilistic information. States of the
model correspond to the possible configurations of the sys-
tem; transitions represent the ways in which the system can
evolve between these states and include information about
the likelihood (or timing) with which they will occur.

A discrete-time Markov chain (DTMC) labels each transi-
tion in the model with a probability such that the sum over
the outgoing transitions for each state equals one. These
give the probability, from any state in the model, of moving
to any other state in the next discrete time-step. Markov de-
cision processes (MDPs) extend DTMCs by also modelling
nondeterministic behaviour. More precisely, each state of
an MDP is associated with a set of probability distributions
over the states of the MDP. A transition between states of
the model occurs in two steps: first, there is a nondetermin-
istic choice between available distributions in the current
state; second, the next state is selected at random accord-
ing to the chosen distribution.

The behaviour of a DTMC is fully probabilistic. We can,
in standard fashion [10], define a probability space over in-
finite paths through the model and thus quantify the like-
lihood of a particular event occurring. For an MDP, on
the other hand, we can only reason about its probabilis-
tic behaviour once the nondeterministic choices have been
resolved. We refer to a particular resolution of nondetermin-
ism as an adversary (sometimes also called a scheduler or
policy). Under a given adversary, the execution of an MDP
can be represented by a (potentially infinite state) DTMC.
To reason about MDPs, we can compute the minimum or
maximum probability of an event occurring, over all adver-
saries, i.e. over all possible resolutions of nondeterminism.

In probabilistic model checking, properties to be analysed
of a system are typically expressed in temporal logics, such
as PCTL [7]. For example, the following:

Pmax=?[F≤T “error”]

represents the maximum probability of an error occurring
within T time-steps. DTMCs and MDPs can also be aug-
mented with reward structures, which label states and tran-
sitions with numerical values. These can be used to rea-
son about a wide range of quantitative measures, such as
“elapsed time”, “energy consumed” or “number of messages
sent”. For example:

R{“rounds”}min=?[F “terminated”]

represents the minimum expected number of rounds of an
algorithm required before it terminates.

Another alternative to DTMCs is continuous-time Markov
chains (CTMCs) which offer a dense model of time. In
CTMCs, transitions are labelled with rates which represent
parameters of negative exponential distributions and give
the delay until the transition is enabled. For further details
see, for example, [1].

PRISM [8, 16] is a probabilistic model checking tool de-
veloped at the Universities of Birmingham and Oxford. It

provides support for several types of probabilistic models,
including DTMCs, MDPs and CTMCs, and provides a sim-
ple, high-level modelling language for describing such mod-
els. The tool automatically calculates the results for tem-
poral logic queries, such as those given above. The un-
derlying computation in PRISM involves a combination of
graph-theoretical algorithms and numerical solution meth-
ods. See, for example, [4, 2, 17] for further details. No-
table features of PRISM include the uses a state-of-the-
art symbolic approach, allowing compact representation and
efficient manipulation of large, structured models, and a
discrete-event simulation engine, generating approximate so-
lutions through Monte Carlo methods and sampling.

3. MODELLING THE PROTOCOL
We base our gossip protocol model on the framework of [9].
We assume a network of N nodes, each with an address that
is required for sending a message to it (as in, for example,
a wireless network). Each node maintains a partial view of
the network: a list of up to c (< N) node descriptors, each of
which comprises a node’s network address and an age that
represents the freshness of the descriptor.

Periodically each node will execute a gossiping algorithm
which exchanges the information contained in their views.
This allows information about the topology of the network
(and changes to it) to be propagated between nodes. The
fundamental idea behind gossip-based protocols is that each
node passes information to a small, random subset of the
other nodes. This prevents overloading of the network with
large numbers of superfluous messages.

The framework of [9] includes a number of design choices
regarding the gossip protocol. For example peer selection,
which is the choice of a node to exchange views with, can be
done at random or by selecting the node in the view with the
oldest age. We will assume a random choice. Several strate-
gies also exist for view propagation, which defines how two
nodes exchange their views, e.g. push or pushpull : one- or
two-way exchange of views between the sending and receiv-
ing node. We use the former and assume that the sending
node pushes the whole of its view to the receiving node.
Finally, the receiving node requires a strategy for view se-
lection, which combines the incoming and the existing view
information. In our model, we in fact use hop-counts as a
coarse (bounded) measure of the age of each node descrip-
tor. A receiving node increments the the hop-count of all
the incoming descriptors, merges these with the descriptors
in its own view (keeping the entry with the youngest count
in cases of duplication) and then keeps the c newest entries
from the combined set.

With regards to the timing of the protocol, we assume
that the exchange of data between nodes occurs periodi-
cally (with some fixed period) and that each node sends its
data exactly once in each round of execution. Such a scheme
can be achieved in practice through synchronisation of local
clocks. Due to the distributed nature of the system, how-
ever, the order in which the nodes participate in each round
is unknown (and may be different each time).

The gossip protocol therefore exhibits both probabilistic
behaviour (random peer selection) and nondeterministic be-
haviour (scheduling of nodes within a round) and is nat-
urally modelled as a Markov decision process (MDP). We
constructed a model of the gossip protocol in PRISM, using

0 50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

time (T)

ex
pe

ct
ed

 m
ax

im
um

 p
at

h
le

ng
th

 a
t t

im
e

T

maximum
average
average ± s.d.
minimum

(a) N=3

0 500 1000 1500 2000 2500 3000
1.5

2

2.5

3

3.5

4

4.5

time (T)

ex
pe

ct
ed

 m
ax

im
um

 p
at

h
le

ng
th

 a
t t

im
e

T

maximum
average
average ± s.d.
minimum

(b) N=4

0 100 200 300 400
1.5

2

2.5

3

3.5

4

4.5

time (T)

ex
pe

ct
ed

 m
ax

im
um

 p
at

h
le

ng
th

 a
t t

im
e

T

maximum
average
average ± s.d.
minimum

(c) N=4 (zoom)

Figure 1: Expected path length: Minimum, maximum and average (± standard deviation).

the tool’s high-level description language.1

We opt to build a small, but detailed, model of the sys-
tem. The model comprises several components: one for for
each node in the network and one representing a scheduler
who chooses (nondeterministically) the order in which nodes
execute the protocol. The state of each node in the network
includes its current view, information about which part of
the protocol it is currently executing and a buffer to store in-
coming data from other nodes. The scheduler simply keeps
track of which nodes have sent data in the current round.
For simplicity, we assume that the sending and updating of
views is an atomic step, i.e. throughout the process of one
node sending its view to another, no other communication
occurs in the network.

Because of the detailed nature of the model and the corre-
sponding state space size, we consider only very small sizes
of network (N=3, 4) and fix a local view size of c = 2. It
is possible, though, that anomalies observed in these small
models will also be exhibited by networks of a more realistic
size. As regards the initial configuration of the model (i.e.
the initial local views of each node), we assume that one
node is “public” and that all other nodes know the address
of this node (but it is not aware of the others). This con-
figuration is suitably realistic and ensures that a connected
network is possible.

For N=3, the model has 829 states and 946 transitions;
for N=4, it has 74,034 states and 87,410 transitions. These
MDPs are constructed by PRISM in 1.73 seconds and 95.0
seconds, respectively (on a 2GHz PC with 2GB RAM).

4. ANALYSIS AND RESULTS
We used PRISM to analyse the performance of the gossip
protocol described in the previous section, illustrating the
kind of analysis that can be performed with probabilistic
model checking. We concentrate on how the topology of the
network induced by the local views of the nodes varies over
time, investigating first the maximum path length (longest
route between nodes) and then the time for the network to
become connected. For the former, we demonstrate an anal-
ysis of the best- and worst-case behaviour of the model, and

1The full PRISM model can be found at:
http://www.prismmodelchecker.org/casestudies/gossip.php

how this relates to the average case. For the latter, we show
how obtaining best and worst-case adversaries (schedulers)
of the MDP can help to identify the scenarios in which the
best and worst cases occur. The next two sections describe
these two illustrative properties in some detail; following
this, we list some other properties that could be analysed.

4.1 Best, worst and average case behaviour
We first study how the longest path length between nodes in
the network varies over the execution of the protocol. This
is done using PRISM properties of the form:

R{“path len”}min=?[I=T]
R{“path len”}max=?[I=T]

which represent the minimum/maximum expected value of
“path len” at time instant T . This assumes that we have
added a reward structure called “path len” to the PRISM
model, which associates with each state of the MDP a value
representing the longest path length between any two nodes
at that point (for the case where the graph is not connected,
we let “path len” be N).

These properties give the minimum and maximum values
over all possible resolutions of nondeterminism in the MDP
which, in this model, means quantifying over all possible
schedulings of the nodes. This allows us to determine the
best- and worst-case behaviour of the system in any even-
tuality. Since the gossip protocol makes random choices,
its execution under a particular scheduling is probabilistic.
Hence our use of minimum/maximum expected values.

It is also possible, with a simple modification of the PRISM
model, to compute the average value of the longest path
length over time. This is done by replacing nondetermin-
ism in the scheduler component of the PRISM model with
uniform probabilistic choices, yielding a DTMC instead of
an MDP. Although this is no longer an accurate model of
the scheduling, it is interesting because the results computed
from the DTMC model can be seen as the values that would
be obtained through simulation by averaging the results ob-
tained over a large number of simulation runs.

Furthermore, we can also calculate the standard devia-
tion of the random variable corresponding to the longest
path length; again this is information that could be obtained
(approximately) through simulation. Computing this value

0 200 400 600 800 1000
1.5

2

2.5

3

3.5

4

4.5

time (T)

ex
pe

ct
ed

 m
ax

im
um

 p
at

h
le

ng
th

 a
t t

im
e

T

5 runs
50 runs
500 runs
5000 runs

Figure 2: Simulation results (N=4).

(exactly) with PRISM is done by adding a second reward
structure, which associates each state of the model with the
square of the “path len” value, and then using the equiva-
lence σ(X)2 = E(X2)−E(X)2.

Figures 1(a) and 1(b) show the full set of these results for
N=3 and N=4 nodes, respectively. The thicker solid lines
show the minimum and maximum expected longest path
length after T time-steps, for a range of values of T . In
between these, the thinner solid line shows the average (i.e.
expected) value for the same time points. The dashed lines
indicate the standard deviation.

The results demonstrate that there is a significant differ-
ence between the minimum and maximum values, i.e. be-
tween the best- and worst- case behaviour of the protocol.
Both values eventually stabilise at 1, for N=3, and 2, for
N=4 (in each case, this is the shortest possible longest path
length since the local views are of size two).

Note that, despite the discontinuities seen in the graphs,
these results are exact and have been computed for every
time step. In fact, plots of this kind are typical for systems
which operate in rounds, each one requiring multiple discrete
time-steps. In the case of the maximum values for N=4 (Fig-
ure 1(b)) we see that, although the longest path length is
converging towards two, there are many small jumps where
it increases and then decreases again. This phenomenon
can be observed more clearly in Figure 1(c), which shows
the same plots for a smaller range of time values. This be-
haviour can be attributed to the fact that, within each round
of the protocol, the adversary can schedule nodes in a mali-
cious fashion such that the longest path length temporarily
increases. Because of the design of the protocol, though,
the expected longest path length decreases as the rounds
progress. Figure 1(c) also demonstrates that, although they
are not as pronounced, the same fluctuations occur for the
other plots (average and minimum values).

It is also interesting to observe the relationship between
the minimum and maximum values (obtained from the MDP)
and the average and standard deviation values (obtained
from the DTMC). For the case where N=3, we see that the
average values and standard deviation give a slightly pes-

simistic view: in fact, the best and worst possible behaviour
is within the bounds given by the standard deviation. For
N=4, on the other hand, the worst-case (maximum values)
are significantly higher. Also, for N=3, the average case
falls roughly half-way between the minimum and maximum
values, where as, for N=4, it is much closer to the best-case
(minimum) behaviour.

Lastly, to illustrate the relationship between the above
results and those obtained from discrete-event simulation,
in Figure 2 we have included the average results over 5, 50,
500 and 5,000 simulation runs for the network of 4 nodes.
The plots demonstrate that, as we increase the number of
simulation runs, the average values converge to the (average)
results for the DTMC model given in Figure 1(b).

4.2 Best and worst-case scheduling
One weakness with the property analysed in the previous
section is the notion of time used. Each time-step (as mea-
sured on the X-axis in the plots) corresponds to a single
transition in the model. Because the model comprises a set
of processes running in parallel this does not give an ac-
curate measure of elapsed time. Since the gossip protocol
proceeds in rounds of fixed time interval, however, we can
improve this by considering the number of rounds.

More precisely, we compute the (minimum and maximum)
expected number of complete gossiping rounds required be-
fore the combined views of the nodes generate a connected
network. This is a desirable configuration for the network to
reach since, when the local views do not form a connected
topology, the nodes have insufficient information to ensure
that a message gets propagated to all other nodes in the
network. The PRISM properties are:

R{“num rounds”}min=?[F “connected”]
R{“num rounds”}max=?[F “connected”]

where “num rounds” is a reward structure that assigns a
reward of 1 to transitions marking the end of a round and
“connected” labels states in which a path exists between any
pair of nodes in the network.

As well as computing these measures, we use PRISM to
generate actual adversaries that result in the minimum and
maximum values.2 Since the only nondeterminism in the
model is due to scheduling of the nodes (i.e. the order in
which they forward their views to their neighbours), we can
extract from an adversary the corresponding scheduling.

We consider first the network of three nodes. The min-
imum and maximum number of complete rounds required
for the local views to generate a connected network is 0
and 1 respectively. For comparison, in the DTMC model,
where nondeterminism has been replaced by uniform ran-
dom choice, the expected number of rounds is 0.667.

Figure 3 illustrates the sequences of node schedulings that
result in these minimum and maximum values. Initially, all
nodes can see node n2, but no others. The best-case be-
haviour (minimum expected number of complete rounds)
can be obtained by first scheduling node n1 and then node
n3, after which n2 has added both n1 and n3 to its view and
the network is connected. Since n2 has yet to be scheduled,
the minimum expected number of complete rounds is 0. For
worst-case behaviour (maximum value), we can schedule n2

2We used a prototype extension of the tool that includes
this functionality.

schedule n1

schedule n3

n3n1 n2 n4

n2n1 n3 n4

n2n1 n3 n4

n4n3n2n1 n1 n2 n3 n4

schedule n4

n4n3n2n1 n1 n2 n3 n4

schedule n2schedule n2
choose n1 choose n3

schedule n4

(a) minimum

n3n1 n2 n4

schedule n1

schedule n3

n2n1 n3 n4

n2 n3 n4n1

n2n1 n3 n4

n4n3n2n1 n1 n2 n3 n4

schedule n4

schedule n2schedule n2
choose n3 choose n4

(b) maximum

Figure 4: Scheduling for the 4 node network (first gossiping round).

n1 n2 n3

n1 n2 n3

n1 n2 n3

schedule n1

schedule n3

(a) minimum

n1 n2

n1 n2 n3

n1 n2 n3

n1 n2 n3

n3

schedule n1

schedule n2

schedule n3

(b) maximum

Figure 3: Scheduling for the 3 node network.

before either n1 or n3 is scheduled. This adds no new infor-
mation to the local views and means that a complete gossip-
ing round is required before the network becomes connected.

For the network consisting of four nodes, we find that
the minimum and maximum expected number of complete
rounds before connectivity are 1.5 and 4.5 respectively. For
comparison, the expected number of rounds for the DTMC
model is 2.788 which, unlike in the case of the three node
network, is closer to the minimum than the maximum.

This case is more complex than the three node network.
Since more than one round may be required before the net-
work becomes connected and the number of possible neigh-
bours exceeds the size of the view, descriptors can be dropped
from the views as more recent information becomes avail-
able. Furthermore, we must consider a node’s choice of who
to send data to. Figure 4 shows part of the scheduling (the
first gossiping round) that can result in the minimum and
maximum expected number of complete rounds. In both

n1 n2 n3 nk

Figure 5: Chain of k nodes.

cases notice that, when node n4 is scheduled the view of n2

is updated, causing the removal of n1 (the oldest descrip-
tor). Not also that, when node n2 is scheduled it makes a
(random) selection between communicating with n1 or n3

since both are in its view at the time.
For the minimum case (Figure 4(a)) we see that, if n2

chooses to gossip with n3 (i.e. the right-hand branch), then
the network is complete by the end of the first round. If it
chooses n1 (i.e. the left branch) this is not the case (there
are no paths to n1) and further rounds of the protocol are
required. This leads to a (minimum) expected number of
rounds of 1.5. For the maximum case (Figure 4(b)), the
network is not connected under either choice and several
further rounds are required.

The properties analysed in both this and the previous
section demonstrate a considerable discrepancy between the
minimum and maximum values. To give a simple intuitive
explanation for this, consider a chain of nodes of length k
(illustrated in Figure 5) in which n1 is trying to pass a mes-
sage to node nk. Suppose that all nodes are scheduled in
each round and that nodes send only messages to their right-
hand neighbour (ni only sends messages to ni+1). Then, the
scheduling n1, n2, . . . , nk would propagate the message to
node nk in a single round but the scheduling nk, nk−1, . . . ,
n1 would require k−1 rounds to achieve this.

As the number of nodes in the network increases, so does
the amount of nondeterminism present in the model. Hence,
the potential influence of the scheduling (the difference be-
tween the minimum and maximum values) is also likely to
increase. As the comparison of the cases of three and four
nodes suggests, however, it may also be the case that, for
larger numbers of nodes, the average behaviour is closer to
the best-case behaviour than the worst-case.

4.3 Other properties
The PRISM model we have constructed could also be used
to analyse a variety of other properties. For example:

• the maximum probability that a connected network
eventually becomes disconnected;

• the minimum probability node ni can communicate
with node nj after k gossiping rounds or t time steps;

• the probability that node ni can communicate with
node nj before it can communicate with node nk;

• the maximum expected number of updates to the par-
tial views before the network is connected.

Furthermore, the model could easily be adapted to study the
effect on performance of a variety of other factors such as
failures of network links and the dynamic addition/removal
of additional nodes. It could also be modified to study
possible ways of preventing the potential inefficiencies high-
lighted by our analysis. We could, for example, investigate
the performance of a modified version of the gossip protocol
in which the delays between each node’s execution of the
protocol is also randomised.

5. CONCLUSIONS
In this paper, we have shown that probabilistic model check-
ing can be used to find interesting properties of gossiping
protocols that would be difficult to discover using alterna-
tive analysis techniques such as simulation. Although using
probabilistic model checking limits the size of the networks
that can be analysed, these ‘small’ networks can still high-
light interesting behaviour that may also occur in more re-
alistic network configurations. The results we have obtained
demonstrate that modelling unknown choices (the schedul-
ing of the nodes in each gossiping round) with randomness
causes a loss of information: the average case can be very
different from the extreme (best/worst) cases.

Possible future work includes extending the approach to
include timing characteristics by using probabilistic timed
automata [13, 15]. These can be considered as an extension
of MDPs that allows the modelling of real-time character-
istics, in addition to probabilistic and nondeterministic be-
haviour. Another direction would be to employ techniques
such as abstraction [11, 18] and symmetry reduction [12] to
enable the analysis of larger network configurations.

Acknowledgments
The authors are supported in part by the EPSRC grants
EP/D07956X and EP/D076625. This work was initiated at
the “Two Decades of Probabilistic Verification - Reflections
and Perspectives” meeting at the Lorentz Center, Leiden,
organised by the NWO/DFG-funded VOSS II project.

6. REFERENCES
[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P.

Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software
Engineering, 29(6):524–541, 2003.

[2] C. Baier and M. Kwiatkowska. Model checking for a
probabilistic branching time logic with fairness.
Distributed Computing, 11(3):125–155, 1998.

[3] R. Bakhshi, F. Bonnet, W. Fokkink, and
B. Haverkort. Formal analysis techniques for gossiping
protocols. ACM SIGOPS Operating Systems Review,
41(5):28–36, 2007.

[4] A. Bianco and L. de Alfaro. Model checking of
probabilistic and nondeterministic systems. In Proc.
FST&TCS’95, volume 1026 of LNCS, pages 499–513.
Springer, 1995.

[5] M. Duflot, M. Kwiatkowska, G. Norman, and
D. Parker. A formal analysis of Bluetooth device
discovery. Int. Journal on Software Tools for
Technology Transfer, 8(6):621–632, 2006.

[6] A. Fehnker and P. Gao. Formal verification and
simulation for performance analysis for probabilistic
broadcast protocols. In Proc. ADHOC-NOW’06,
volume 4104 of LNCS, pages 128–141. Springer, 2006.

[7] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5):512–535, 1994.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic verification
of probabilistic systems. In Proc. TACAS’06, volume
3920 of LNCS, pages 441–444. Springer, 2006.

[9] M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec,
and M. van Steen. Gossip-based peer sampling. ACM
Trans. Computer Systems, 25(3), 2007.

[10] J. Kemeny, J. Snell, and A. Knapp. Denumerable
Markov Chains. Springer-Verlag, 2nd edition, 1976.

[11] M. Kwiatkowska, G. Norman, and D. Parker.
Game-based abstraction for Markov decision
processes. In Proc. QEST’06, pages 157–166. IEEE
Press, 2006.

[12] M. Kwiatkowska, G. Norman, and D. Parker.
Symmetry reduction for probabilistic model checking.
In Proc. CAV’06, volume 4114 of LNCS, pages
234–248. Springer, 2006.

[13] M. Kwiatkowska, G. Norman, D. Parker, and
J. Sproston. Performance analysis of probabilistic
timed automata using digital clocks. Formal Methods
in System Design, 29:33–78, 2006.

[14] M. Kwiatkowska, G. Norman, and J. Sproston.
Probabilistic model checking of the IEEE 802.11
wireless local area net work protocol. In Proc.
PAPM/PROBMIV’02, volume 2399 of LNCS, pages
169–187. Springer, 2002.

[15] M. Kwiatkowska, G. Norman, J. Sproston, and
F. Wang. Symbolic model checking for probabilistic
timed automata. Information and Computation,
205(7):1027–1077, 2007.

[16] PRISM web site. www.prismmodelchecker.org.

[17] J. Rutten, M. Kwiatkowska, G. Norman, and
D. Parker. Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems, P. Panangaden
and F. van Breugel (eds.), volume 23 of CRM
Monograph Series. AMS, 2004.

[18] B. Wachter, L. Zhang, and H. Hermanns. Probabilistic
model checking modulo theories. In Proc. QEST’07,
pages 129–140. IEEE Press, 2007.

[19] F. Werner and P. Schmitt. Analysis of the
authenticated query flooding protocol by probabilistic
means. In Proc. WONS’08, pages 101–104, 2008.

