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Abstract

Although the populations of biological systems are
inherently discrete and their dynamics are strongly
stochastic, it is usual to consider their limiting be-
haviour for large environments in order to study some
of their features. Such limiting behaviour is described
as the solution of a set of ordinary differential equa-
tions, i.e., a continuous and deterministic trajectory.
It will be shown that this trajectory does not always
average correctly the system behaviour, such as sus-
tained oscillations, in the neighbourhood of determin-
istic equilibrium points. In order to overcome this
mismatch, an alternative set of differential equations
based on polar coordinates is proposed. This set of
equations can be used to easily compute the average
amplitude and frequency of stochastic oscillations.

1 Introduction

The population dynamics of many biochemical
systems can be naturally described in terms of
continuous-time Markov chains (CTMCs). In these
processes, the population of each species is given by an
integer number and the occurrence of a reaction is rep-
resented by an event (or jump). The time to the next
event follows an exponential distribution whose mean
depends on the rate associated to the reaction and the
population of each species that takes part in the reac-
tion. The resulting dynamics are therefore stochastic.

Alternatively, the dynamics of such systems can
be described by considering population densities in-
stead of absolute populations. When the size (or vol-
ume) of the system is significantly large, limit theo-
rems [10, 6, 9] offer an appealing mathematical tool to
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compute the average behaviour of the system densities.
In particular, limit theorems provide a system of or-
dinary differential equations (ODE) whose solution is
the limiting behavior of the densities when the system
size tends to infinity. It must be noted that, in con-
trast to the CTMC dynamics, the trajectory described
by an ODE is continuous and deterministic.

Although the use of ODEs is straightforward and
they represent a mathematically proved average be-
haviour (continuous and deterministic), they might
also provide a somewhat myopic view of the original
discrete and stochastic system since only the average
behaviour is being considered. This can lead to con-
clusions about the dynamics in which important prop-
erties such as commutations, stochastic resonance, etc.
are passed over [7, 2, 4, 1].

This paper focuses on evaluating stochastic oscil-
lations that are frequently seen as equilibrium points
by the limiting ODE. Identifying oscillatory behaviour
and estimating quantitative properties like amplitude
and frequency, is crucial to correctly analyse real bio-
logical systems where such behaviour is essential [5, 8],
e.g., reactions associated to circadian rhythm.

The method proposed here to evaluate stochas-
tic oscillations is based on the design of an ODE that
expresses the system behaviour in polar coordinates.
The method is also applicable to other application do-
mains in which similar stochastic models are consid-
ered, e.g., population dynamics, ecological models, etc.

As a running example a simple population dy-
namics system described in [2, 12] is considered. The
system is similar to those arising when modeling bio-
chemical reactions [11] and predator-prey systems [14].
The state of the system is given by two populations
(integer variables) S and I representing the number of
susceptible and infected individuals. There are three
events, Birth, Contagion, Death, that modify the state
of the system. Table 1 shows the effect and rates of
each event, e.g., event Contagion decreases the num-
ber of susceptible individuals by one, increases the
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Figure 1: Time evolution of variable S according to
the ODE (1) and the CTMC.

number of infected individuals by one and has rate
wc = (β·S·I)/V . Parameters a, b and β are related to
the rates of Birth, Death and Contagion respectively,
and V represents the size (or volume) of the system.

Event Effect Transition rate

Birth {S, I} → {S+1, I} wb = a·V
Contagion {S, I} → {S−1, I+1} wc = (β·S·I)/V
Death {S, I} → {S, I−1} wd = b·I

Table 1: Events and rates of the running example.

The described system dynamics can be expressed
by means of the following chemical reactions:

∅ wb−−→ S S + I
wc−−→ 2I I

wd−−→ ∅

Let us focus on the concentrations x1= S
V and x2= I

V of
the populations of susceptible and infected individuals.
When the parameters of the CTMC satisfy some con-
vergence conditions, its limiting behaviour as V tends
to infinity can be expressed as an ODE [10, 3]. Assum-
ing the example satisfies such conditions, its limiting
behaviour can be expressed by the following ODE:

dx1
dt

= − β·x1·x2
dx2
dt

= β·x1·x2 − b·x2 (1)

Figure 1 shows the time evolution of S = V ·x1 given by
both the solution of ODE (1) and just one stochastic
simulation run of the CTMC. The parameters used in
Figure 1 are a=1, b=10, β=10 and V=104. For these
parameters the ODE dynamics has only one equilib-
rium point at xeq1 =1, xeq2 =0.1, thus in terms of popu-
lations the equilibrium point is Seq=104, Ieq=103.

Notice that, whereas the ODE shows damped
oscillations tending toward its equilibrium point
(Seq=104, Ieq=103), the CTMC dynamics exhibits
sustained oscillations [2, 13]. Thus, for this example,
the ODE representing the limiting behaviour does not
capture the sustained oscillations of the CTMC.
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Figure 2: Frequency spectrum of the stochastic trajec-
tory of variable S.

Figure 2 shows the frequency spectrum of the
stochastic trajectory of Figure 1, i.e., it represents the
signal in the frequency domain. A clear peak appears
around the frequency 0.5. This phenomenon cannot
be observed if the results of several runs of the CTMC
are then averaged. In other words, the averaged pop-
ulations converge to the solution of the ODE, but the
ODE does not imitate the oscillations present in the
CTMC dynamics around the equilibrium.

The goal of the paper is to develop an ODE that
provides a complementary view of the dynamics of the
CTMC that correctly averages sustained oscillations.
Sections 2 and 3 describe the stochastic and determin-
istic models for the systems under consideration. The
behaviour of both models around equilibrium points
is analysed in Section 4. Section 5 proposes an ODE
based on polar coordinates to average stochastic oscil-
lations. Section 6 concludes the paper.

2 Stochastic models

The dynamics of many biological systems with dis-
crete populations can be naturally expressed in terms
of CTMCs. The following parameters allow us to de-
scribe the dynamics of the concentrations of the pop-
ulations over time.

Definition 1 (System parameters)

• V ∈ R>0 is the size (or volume);
• q ∈ N is the number of species;
• n0 ∈ Zq≥0 is the initial population of the q species;
• α = {α1, . . . , αE} is a set of E ∈ N events;
• δ = {δ1, . . . , δE} defines the system change after

the occurrence of events, i.e., δj ∈ Rq determines
the population density change produced by αj;
• w = {w1, . . . , wE} is a set of functions such that
wj : Rq≥0 → R≥0 defines the transition rate of
event αj, i.e., wj(x) is the transition rate of αj
when the population density is x.



For a population n ∈ Zq≥0, its density (or concen-
tration) is x=n/V . Although some variables, such
as x, depend on time, for readability we will use x
rather than x(t). E.g., the parameters for the event
Death of the running example are: δd = (0,−1/V )
and wd(x1, x2) = b·V ·x2. The system evolution fol-
lows the usual dynamics of a CTMC: when an event
αj takes place, the population density is updated from
x to x+δj . The time to the next event is exponen-
tially distributed. For a given density x, the mean
of the exponential distribution associated to event αj
is 1/wj(x). We will restrict our attention to CTMCs
that satisfy the mass-action law, i.e., those processes
whose reaction rates are proportional to the product
of the concentrations of the participating species.

3 Deterministic models

The vector field for species i ∈ {1 . . . q} is given by [13]:

Fi(x
c) =

∑E
j=1 δj ·wj(xc) (2)

where xc ∈ Rq≥0 denotes the state of the process. In the
deterministic model the state xc represents the average
behaviour of the stochastic model, that is the reason
why the different notations x and xc are used for the
Markovian and the deterministic models respectively.

When the parameters of the CTMC satisfy cer-
tain conditions [10, 3], its limiting behaviour is given
by the following set of differential equations:

dxc

dt
=
∑E
j=1 δj ·wj(xc) (3)

A state xeq is said to be a deterministic equilibrium
point if it holds that

∑E
j=1 δj · wj(xeq) = 0. This pa-

per focuses on systems having only one deterministic
equilibrium. The ODE given in (3) is a deterministic
approximation for the densities of the species in the
system. For the particular system parameters of the
running example ODE (3) corresponds to ODE (1) .

Figure 3 shows the evolution of the ODE (1) in
the phase space over 20 time units. Each dot in the
figure corresponds to the state of a simulation run of
the CTMC after 20 time units. Conversely, as Figure 1
demonstrates, at time 20 the deterministic trajectory
has already reached its equilibrium point. It can be
observed that the center of mass of the black dots
lays on the equilibrium point towards which the ODE
converges. This is an expected result since the system
satisfies the conditions of the limit theorems [10].

The static picture of Figure 3 does not show that
each particular run is not tending to the deterministic
equilibrium point. This at first glance surprising phe-
nomenon can be intuitively explained. Figure 4 shows
the potential evolutions, i.e., changes produced by the
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Figure 3: Evolution of the ODE (1) in the phase space
and final states of several simulation runs.
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Figure 4: Phase space evolution of the CTMC.

events, of the state of the CTMC together with the
rates associated to them. If (seq, ieq) is a determinis-
tic equilibrium point, all the components of the vector
field cancel out, i.e., (2) becomes null, and therefore
the solution ODE remains at (seq, ieq). However, the
CTMC does not remain at the deterministic equilib-
rium indefinitely since the rates of the events at that
point are positive. Moreover at the deterministic equi-
librium all three rates are equal, hence the CTMC will
evolve similarly to a random walk in a neighborhood
close to the equilibrium. In fact, as pointed out in [13],
non-extinction deterministic equilibria have associated
a region of stochastic instability. This intuitive expla-
nation is developed mathematically in the next section.

4 System behaviour around
equilibrium points

We now compare the evolution, with respect to a deter-
ministic equilibrium point, of ODE (3) and the CTMC.
We focus on the evolution of the euclidian distance
squared from the system state to the equilibrium point.

Let xeq ∈ Rq be a deterministic equilibrium point,
i.e.,

∑E
j=1 δj · wj(xeq) = 0. Let us define the distance



of a point x ∈ Rq to xeq as:

D(x, xeq) =
∑q
i=1(xi − xeqi )2 (4)

The variation of D(xc, xeq) per time unit, where xc is
the continuous trajectory provided by (3), is given by:

dD(xc, xeq)

dt
=
∑q
i=1

d(xci − x
eq
i )2

dt
(5a)

=
∑q
i=1 2·(xci − x

eq
i ) · dx

c
i

dt
(5b)

=
∑q
i=1

(
2·(xci − x

eq
i ) ·

∑E
i=1δji · wj(x

c)
)

(5c)

where δji is the density change of the ith species due
to the occurrence of event αj . The expression in (5b)
is obtained by applying the chain rule, and (5c) is ob-
tained by using Equation (3).

In order to compute the time evolution of (4) on
the CTMC, we will first obtain an expression for the
expected change of D(x, xeq) after the occurrence of
an event. To obtain such an expression, the embed-
ded Markov chain is used. In the following, all the
expressions related to expected values depend on the
current state x, i.e., they are conditional expectations.
For brevity, the current state will be omitted in the
expressions, e.g., E[∆D(x, xeq)|x] will be shortened to
E[∆D(x, xeq)]. Let us define R(x) as the average num-
ber of events per time unit:

R(x) =
∑E
j=1 wj(x)

By the product rule of the difference operator we have:

∆(xi−xeqi )2 = 2·(xi−xeqi ) ·∆xi + (∆xi)
2

and hence the expected increment of D(x, xeq) after
an event is:

E[∆D(x, xeq)] = E
[∑q

i=1∆(xi−xeqi )2
]

= E
[∑q

i=1

(
2·(xi−xeqi ) ·∆xi + (∆xi)

2
)]

=
∑q
i=1E[(∆xi)

2] +
∑q
i=12·(xi−xeqi ) · E[∆xi]

=
q∑
i=1

E[(∆xi)
2] +

q∑
i=1

(
2·(xi−xeqi ) ·

∑E
j=1 δji · wj(x)

R(x)

)

Since at state x, the average number of events per
time unit is R(x), the average change of the distance
squared per time unit is given by:

dE[∆D(x, xeq)]

dt
= R(x) · E[∆D(x, xeq)] (7a)

= R(x)·
n∑
i=1

E[(∆xi)
2] +

q∑
i=1

(
2·(xi−xeqi )·

E∑
j=1

δji·wj(x)
)

(7b)

By making use of Equations (5c) and (7b), the follow-
ing equality for the same concentrations of the contin-
uous and discrete trajectories, xc = x, is obtained:

dE[∆D(x, xeq)]

dt
= R(x)·

n∑
i=1

E[(∆xi)
2] +

dD(xc, xeq)

dt

More precisely, if x is not a deadlock point, i.e., there
is at least one event αj with strictly positive wj(x),
then R(x)·

∑n
i=1E[(∆xi)

2] > 0 and it holds that:

dE[∆D(x, xeq)]

dt
>
dD(xc, xeq)

dt
(8)

Equation (8) implies that ODE (3) is not averaging
correctly the distance to the equilibrium point of the
CTMC dynamics.

Due to the mass-action law, R(x) is proportional
to V for a given concentration x, i.e., R(x)=O(V )
where O(V ) is the Landau notation to describe lim-
iting behaviours. On the other hand, the changes in
the concentration x produced by events are O(1/V ),
hence

∑q
i=1 E[(∆xi)

2] = O(1/V 2) implying that:

R(x) ·
(∑q

i=1 E[(∆xi)
2]
)

= O(1/V )

Therefore as V tends to infinity, R(x) ·
∑q
i=1 E[(∆xi)

2]
vanishes and the ODE (3) improves its quality with
respect to the average distance to equilibrium. Nev-
ertheless, in many practical cases V is finite, and the
term R(x) ·

∑q
i=1 E[(∆xi)

2] cannot be ignored.

5 Stochastic oscillations

5.1 Polar ODE

To study the behaviour of the CTMC around the de-
terministic equilibrium, we propose to average the dis-
tance to the deterministic equilibrium for the differ-
ent potential evolutions, i.e., events, of the CTMC. To
achieve this goal, an ODE based on polar coordinates
is designed. The origin of such coordinates is the de-
terministic equilibrium xeq around which the system
dynamics is to be studied. Notice deterministic equi-
librium points can be easily computed by solving the
system of equations

∑E
j=1 δj · wj(xeq) = 0 (see Equa-

tion (3)). In contrast to the classical approach that
focuses on the cartesian coordinates, polar coordinates
explicitly refer to the distance to an equilibrium state.
After some mathematical considerations, an ODE that
averages the distance and angle to the deterministic
equilibrium is obtained. We will constrain our atten-
tion to systems with two species, i.e., q = 2.

Figure 5 shows the system evolution after the
event Contagion for the cartesian (S, I) and polar
(r, φ) coordinates. For the polar coordinates the de-
terministic equilibrium (seq, ieq) is taken as the origin.
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Figure 5: System evolution from event Contagion.

To define the state of the process in polar coor-
dinates, radial and angular coordinates are required.
The distance, or radial coordinate, of a point x to the
equilibrium point xeq is given by the function rad(x):

r = rad(x) =

√
(x1−xeq1 )

2
+ (x2−xeq2 )

2
(9)

For a given x, the angular coordinate of φ is given by:

φ=atan(x2−xeq2 , x1−x
eq
1 ) (10)

where atan(y, x) : R×R → R is the arctangent of a
point with cartesian coordinates (x, y). The range of
atan(y, x) is (−π, π].

For the running example, the expected increment
at state x of the radial coordinate is given by:

E[∆r] =

∑E
j=1 wj(x)·rad(x+δj)

R(x)
− rad(x) (11)

and the expected increment of the angle φ is:

E[∆φ] =

∑E
j=1 wj(x)·atan(x+δj)

R(x)
− atan(x) (12)

where atan is as in (10) but now has one bidimensional
argument instead of two unidimensional ones.

There are two problems associated with equa-
tion (12). First, when the state is close to angle φ = π,
the function atan might yield values close to π for the
angle after a given event, and close to −π for the an-
gle after another event if the abscissa is crossed. The
average of those angles will be close to 0, which is not
meaningful. Second, the angular coordinate φ might
be used not only to localize the state of the system but
also to evaluate the overall number of degrees traveled
by the system around the equilibrium. To cope with
these two issues E[∆φ] is redefined as follows:

E[∆φ] =∑E
j=1 wj(x)·

(
atan(x+δj)+g(x, δj))

R(x)
− atan(x) (13)
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Figure 6: Time evolution of ODEs (3) and (15).

where g(x, δj) is defined as:

g(x, δj)=


−2·π if atan(x)<−π2 and atan(x+δj)>

π
2

+2·π if atan(x)>π
2 and atan(x+δj)<−π2

0 otherwise

(14)
The term g(x, δj) is used to check whether φ has
crossed the value π. If the crossing is clockwise, then
g(x, x+δj) = −2·π, while if it is counterclockwise, then
g(x, x+δj) = 2·π. Thus, g(x, x+δj) allows the incre-
ments of E[∆φ] to be smooth.

The inclusion of g(x, x+δj) in the computation
of E[∆φ] solves the two mentioned problems: a) the
average of angles close to π is now ensured to be close
to π; b) if φ is updated according to its increments
computed with g(x, x+δj) it will record the number of
degrees traveled by the system around the equilibirum.

At a given state x, the average number of events
per time unit is R(x). Hence, the term R(x) ·E[∆r] is
the average speed of change of r. Given that the same
reasoning applies to φ, the following ODE can be used
to describe the behaviour over time of r and φ:

dr

dt
= R(x)·E[∆r]

dφ

dt
= R(x)·E[∆φ] (15)

Given that x is just the cartesian coordinate of (r, φ),
ODE (15) is composed of 2 equations and 2 variables.

5.2 Average amplitude and frequency

Consider again the running example. Figures 6 and 7
show the evolution of both ODEs, (3) (labelled carte-
sian ODE) and (15) (labelled polar ODE), over time
and in the phase space. It can be observed that,
while (3) exhibits damped oscillations, (15) tends to
a limit cycle with clear sustained oscillations.

The ODEs present complementary views both
useful for analysing the CTMC dynamics. While (3)
focuses on the limiting behaviour of the concentrations
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Figure 7: Phase space evolution of ODEs (3) and (15).

as V goes to infinity, (15) describes the dynamics in
terms of polar coordinates for a given V which uncov-
ers the oscillating behaviour around the equilibrium.

The ODE (15) can be used to evaluate the aver-
age oscillations of the CTMC. To compute the average
distance to the equilibrium, r, of the oscillation in the
steady state, the following formula can be used:

r = limτ→∞
1
τ ·
∫ τ
0
rdt (16)

For the running example r = 1.801 · 10−2, thus
the average distance in terms of populations (not den-
sities) to the deterministic equilibrium is r·V = 180.1.
This value is in good agreement with the average dis-
tance to the equilibrium of the dots shown in Figure 3.

In (15) the term dφ/dt is the angular speed ω
of the system for angle φ. Thus the average angular
speed of the system in steady state is given by:

ω = limτ→∞
1
τ ·
∫ τ
0
ωdt = limτ→∞

φ
τ

(17)

For the example f = ω/(2·π) = 0.535 which matches
the peak exhibited in Figure 2. This can be interpreted
as if the dots in Figure 3 where orbiting around the
equilibrium point at an average frequency of 0.535.

6 Conclusions

Limit theorems constitute a useful mathematical tool
for computing the limiting behaviour of large systems
appearing in biology, chemistry and ecology. When ap-
plied to CTMCs such theorems can be used to obtain a
set of ordinary differential equations (ODE) whose so-
lution is the limiting behavior of the system when the
size tends to infinity. Although important conclusions
can be drawn from the limiting behaviour, it must be
taken into account that it can also mask interesting
features of the system dynamics as oscillations.

It has been shown that the ODE associated to
the limiting behaviour does not average correctly the

variations of the distance to a deterministic equilib-
rium point. More precisely, while the solution of the
ODE is stable at such a point, the original CTMC is
unstable in a neighbourhood of this point.

To average the evolution of the distance to the
equilibrium, an ODE based on polar coordinates has
been developed. Such an ODE can be used to compute
the average amplitude and frequency of oscillation of
the system in the steady state. The developed ODE
must be understood as a complementary tool to un-
derstand the behaviour of the CTMC: while the initial
ODE describes the overall cartesian tendency of pop-
ulations, the proposed ODE describes the oscillating
behaviour of the populations. A limitation is that the
ODE must have a unique equilibrium point; a possi-
ble direction of future work is to extend this work to
systems where the ODE has multiple equilibria.
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