
Automated Verification of a Randomized
Distributed Consensus Protocol Using Cadence

SMV and PRISM?

Marta Kwiatkowska1, Gethin Norman1, and Roberto Segala2

1 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
{M.Z.Kwiatkowska,G.Norman}@cs.bham.ac.uk

2 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italy

segala@cs.unibo.it

Abstract. We consider the randomized consensus protocol of Aspnes
and Herlihy for achieving agreement among N asynchronous processes
that communicate via read/write shared registers. The algorithm guaran-
tees termination in the presence of stopping failures within polynomial
expected time. Processes proceed through possibly unboundedly many
rounds; at each round, they read the status of all other processes and at-
tempt to agree. Each attempt involves a distributed random walk : when
processes disagree, a shared coin-flipping protocol is used to decide their
next preferred value. Achieving polynomial expected time depends on
the probability that all processes draw the same value being above an
appropriate bound. For the non-probabilistic part of the algorithm, we
use the proof assistant Cadence SMV to prove validity and agreement for
all N and for all rounds. The coin-flipping protocol is verified using the
probabilistic model checker PRISM. For a finite number of processes (up
to 10) we automatically calculate the minimum probability of the pro-
cesses drawing the same value. The correctness of the full protocol follows
from the separately proved properties. This is the first time a complex
randomized distributed algorithm has been mechanically verified.

1 Introduction

Randomization in the form of coin-flipping is a tool increasingly often used as a
symmetry breaker in distributed algorithms, for example, to solve leader election
or consensus problems. Such algorithms are inevitably difficult to analyse, and
hence appropriate methods of automating their correctness proofs are called for.
Furthermore, the use of random choices means that certain properties become
probabilistic, and thus cannot be handled by conventional model checking tools.

We consider the randomized consensus protocol due to Aspnes and Herlihy
[1] for achieving agreement among N asynchronous processes that communicate
via read/write shared registers, which guarantees termination in the presence of
? Supported in part by EPSRC grants GR/M04617 and GR/M13046.

G. Berry, H. Common and A. Finkel (Eds.), 13th Conference on Computer Aided Verification
(CAV’01), volume 2102 of LNCS, pages 194–206, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

stopping failures in polynomial expected time. Processes proceed through pos-
sibly unboundedly many rounds; at each round, they read the status of all other
processes and attempt to agree. Each agreement attempt involves a distributed
random walk (a Markov decision process, i.e. a combination of nondetermin-
istic and probabilistic choices): when processes disagree, a shared coin-flipping
protocol is used to decide their next preferred value. Achieving polynomial ex-
pected time depends in an essential way on ensuring that the probability that all
non-failed processes draw the same value being above an appropriate bound.

One possible approach to analyse this algorithm is to verify it using a prob-
abilistic model checker such as PRISM [6]. However, there are a number of
problems with this approach. Firstly, the model is infinite. Secondly, even when
we restrict to a finite model by fixing the number of processes and rounds, the re-
sulting models are very large: 9×106 states for the simpler (exponential expected
time) protocol with 3 processes and 4 rounds. Thirdly, many of the requirements
are non-probabilistic, and can be discharged with a conventional model checker.
Therefore, we adopt a different approach, introduced by Pogosyants, Segala and
Lynch [15]: we separate the algorithm into two communicating components, one
non-probabilistic (an asynchronous parallel composition of processes which pe-
riodically request the outcome of a coin protocol) and the other probabilistic (a
coin-flipping protocol shared by the processes). For the non-probabilistic part
we use the proof assistant Cadence SMV1, which enables us to verify the non-
probabilistic requirements for all N and for all rounds by applying the reasoning
introduced in [14]. The shared coin-flipping protocol is verified using the proba-
bilistic model checker PRISM. For a finite number of processes (up to 10) we are
able to mechanically calculate the minimum probability of the processes draw-
ing the same value, as opposed to a lower bound established analytically in [1]
using random walk theory. The correctness of the full protocol (for the finite
configurations mentioned above) follows from the separately proved properties.

This is the first time a complex randomized distributed algorithm has been
mechanically verified. Our proof structure is similar to the non-mechanical proof
of [15], but the proof techniques differ substantially. Although we did not find
any errors, the techniques introduced here are applicable more generally, for
example, to analyse leader election [10] and Byzantine agreement [5].

Related work: The protocol discussed in this paper was originally proposed in
[1], then further analysed in [15]. Distributed algorithms verified with Cadence
SMV for any number of processes include the bakery algorithm [14]. We know of
two other probabilistic model checkers, ProbVerus [2] and E T MC2 [9] (neither
of which supports nondeterminism that is essential here).

2 The Protocol

Consensus problems arise in many distributed applications, for example, when
it is necessary to agree whether to commit or abort a transaction in a distributed
1 http://www-cad.eecs.berkeley.edu/~kenmcmil/smv

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv

database. A distributed consensus protocol is an algorithm for ensuring that a
collection of distributed processes, which start with some initial value supplied
by their environment, eventually terminate agreeing on the same value. Typical
requirements for such a protocol are:

Validity: If a process decides on a value, then it is the initial value of a process.
Agreement: Any two processes that decide must decide on the same value.
Termination: All processes eventually decide.

A number of solutions to the consensus problem exist (see [11] for overview).
There are several complications, due to the type of model (synchronous or asyn-
chronous) and the type of failure tolerated by the algorithm. If the processes
can exhibit stopping failures then the Termination requirement is too strong
and must be replaced by Wait-free termination: All initialized and non-failed
processes eventually decide. Unfortunately, the fundamental impossibility result
of [7] demonstrates that there is no deterministic algorithm for achieving wait-
free agreement in the asynchronous distributed model with communication via
shared read/write variables even in the presence of one stopping failure2. One
solution is to use randomization, which necessitates a weaker termination guar-
antee:

Probabilistic wait-free termination: With probability 1, all initialized and
non-failed processes eventually decide.

The algorithm we consider is due to Aspnes & Herlihy [1]. It is a complex algo-
rithm using a sophisticated shared coin-flipping protocol. In addition to Valid-
ity and Agreement, it guarantees Probabilistic wait-free termination with
polynomial expected time for the asynchronous distributed model with commu-
nication via shared read/write variables in the presence of stopping failures.

The algorithm proceeds in rounds. Each process maintains two multiple-read
single-write variables, recording its preferred value 1 or 2 (initially unknown,
represented as 0), and its current round. The contents of the array start deter-
mines the initial preferences. Additional storage is needed to record copies of the
preferred value and round of all other processes as observed by a given process;
we use arrays values and rounds for this purpose. Note that the round number is
unbounded, and due to asynchrony the processes may be in different rounds at
any point in time. In Cadence SMV we have the following variable declarations:

#define N 10 /* number of processes (can be changed without affecting the proof) */
ordset PROC 1..N ; /* set of process identifiers */
ordset NUM 0..; /* round numbers */
typedef PC {INITIAL, READ , CHECK , DECIDE , FAIL}; /* process phases */
act : PROC ; /* the scheduler’s choice of process */
start : array PROC of 1..2; /* start[i], initial preference of i */
pc : array PROC of PC ; /* pc[i], the phase of process i */
value : array PROC of 0..2; /* value[i], current preference of i */
round : array PROC of NUM ; /* round [i], current round number of i */

2 See [11] for solutions based on read/modify/write variables, such as test-and-set.

values : array PROC of array PROC of 0..2;
/* values[i][j], j’s preference when last read by i */
rounds : array PROC of array PROC of NUM ;
/* rounds[i][j], j’s round number when last read by i */
count : array PROC of PROC ; /* auxiliary counter for the reading loop */

The processes begin with the INITIALisation phase, where the unknown value is
replaced with the preferred value from the array start and the round number is
set to 1. Then each process repeatedly executes the READing then CHECKing
phase until agreement. READing consists of reading the preferred value and
round of all processes into the arrays values and rounds. Process i terminates in
the CHECKing phase if it is a leader (i.e. its round is greater than or equal to
that of any process) and if all processes whose round trails i’s by at most 1 (i.e.
are presumed not to have failed) agree. Otherwise, if all leaders agree, i updates
its value to this preference, increments its round and returns to READing. In
the remaining case, if i has a definite preference it “warns” that it may change
by resetting it to 0 and returns to READing without changing its round number;
if its preference is already 0, then i invokes a coin-flipping protocol to select a
new value from {1, 2} at random, increments its round number and returns to
READing.

In Cadence SMV a simplified protocol (we have removed the possibility of
FAILure for clarity) can be described as follows, where the random choice of
preference from {1, 2} has been replaced by a nondeterministic assignment :

switch (pc[act]) {
INITIAL : {
next(value[act]) := start [act];
next(round [act]) := round [act] + 1;
next(pc[act]) := READ ; }

READ : {
next(pc[act]) := (count [act] = N) ? CHECK : READ ;
next(rounds[act][count [act]]) := round [count [act]];
next(values[act][count [act]]) := value[count [act]];
next(count [act]) := (count [act] = N) ? count [act] : count [act] + 1; }

CHECK : {
if (decide[act]) { /* all who disagree trail by two and I am a leader */
next(pc[act]) := DECIDE ;

else if (agree[act][1] | agree[act][2]) { /* all leaders agree */
next(pc[act]) := READ ;
next(count [act]) := 1;
next(value[act]) := agree[act][1] ? 1 : 2; /* set value to leaders’ preference */
next(round [act]) := round [act] + 1; }

else {
next(pc[act]) := READ ;
next(count [act]) := 1;
next(value[act]) := (value[act] > 0) ? 0 : {1, 2}; /* warn others or flip coin */
next(round [act]) := (value[act] > 0) ? round [act] : round [act] + 1; } }

}

where the missing formulas decide and agree are defined below, assuming that
j ∈ obsi (process i has observed j) if either j < count [i] or pc[i] = CHECK :

agree[i][v] is true if, according to i, all leaders whose values have been read by
process i agree on value v, where v is either 1 or 2; formally:

agree[i][v]
def
=

∧
j array agree[i][v][j]

array agree[i][v][j]
def
= j ∈ obsi → (rounds[i][j] ≥ maxr [i] → values[i][j] = v)

maxr [i]
def
= maxj∈obsi rounds[i][j]

decide[i] is true if, according to i, all that disagree trail by 2 or more rounds
and i is a leader; formally:

decide[i]
def
= maxr [i] = round [i] ∧ (m1 agree[i][1] ∨m1 agree[i][2])

m1 agree[i][v]
def
=

∧
j array m1 agree[i][v][j]

array m1 agree[i][v][j]
def
= j ∈ obsi → (rounds[i][j] ≥ maxr [i]− 1 → values[i][j] = v)

The above necessitates a variable, maxr , to store the maximum round number.
The full protocol can be found at www.cs.bham.ac.uk/~dxp/prism/consensus.

It remains to provide a coin-flipping protocol which returns a preference 1 or
2, with a certain probability, whenever requested by a process in an execution.
This could simply be a collection of N independent coins, one for each process,
which deliver 1 or 2 with probability 1

2 (independent of the current round). In
[1] it is shown that such an approach yields exponential expected time to termi-
nation. The polynomial expected time is guaranteed by a shared coin protocol,
which implements a collective random walk parameterised by the number of pro-
cesses N and a constant K > 1 (independent of N). A new copy of this protocol
is started for each round. The processes access a global shared counter, initially
0. On entering the protocol, a process flips a coin, and, depending on the out-
come, increments or decrements the shared counter. Since we are working in a
distributed scenario, several processes may simultaneously want to flip a coin,
which is modelled as a nondeterministic choice between probability distributions,
one for each coin flip. Note that several processes may be executing the protocol
at the same time. Having flipped the coin, the process then reads the counter,
say observing c. If c ≥ KN it chooses 1 as its preferred value, and if c ≤ −KN
it chooses 2. Otherwise, the process flips the coin again, and continues doing
so until it observes that the counter has passed one of the barriers. The barri-
ers ensure that the scheduler cannot influence the outcome of the protocol by
suspending processes that are about to move the counter in a given direction.

We denote by CF such a coin-flipping protocol and CF r the collection of
protocols, one for each round number r. Model checking of the shared coin
protocol is described in Section 5.

3 The Proof Structure

Recall that to verify this protocol correct we need to establish the properties of
Validity, Agreement and Probabilistic wait-free termination. The first

www.cs.bham.ac.uk/~dxp/prism/consensus

two are independent of the actual values of probabilities. Therefore, we can
verify these properties by conventional model checking methods, replacing the
probabilistic choices with nondeterministic ones. In Section 4 we describe how
we verify Validity and Agreement using the methods introduced in [12,13,14]
for Cadence SMV.

We are left to consider Probabilistic wait-free termination. This prop-
erty depends on the probability values with which either 1 or 2 is drawn, and,
in particular, on the probabilistic properties of the coin-flipping protocol. How-
ever, there are several probabilistic progress properties which do not depend
on any probabilistic assumptions. Similarly to the approach of [15] we analyse
such properties in the non-probabilistic variant of the model, except we use Ca-
dence SMV, thus confining the probabilistic arguments to a limited section of
the analysis.

We now describe the outline of the proof based on [15]. First, we identify
subsets of states of the protocol as follows: D, the set of states in which all
processes have decided; and Fv, for v ∈ {1, 2}, the set of states where there
exists r ∈ N and unique process i such that i’s preferred value is v, i has just
entered round r, and i is the only leader.

Non-probabilistic arguments: There are a number of non-probabilistic argu-
ments, see [15]. We state the two needed to explain the main idea of the proof:

Invariant 1 From any state, the maximum round does not increase by more
than 1 without reaching a state in F0 ∪ F1 ∪ D.

Invariant 2 From any state of Fv with maximum round r, if in round r all
processes leave the protocol CF r agreeing on the value v, then the maximum
round does not increase by more than 2 without reaching a state in D.

These properties are independent of the probabilities of the coin-flipping proto-
col. So we can replace the random choices of CF with nondeterministic ones,
except in round r where CF r must return value v for all processes.

Probabilistic arguments: There are two probabilistic properties, listed below.

C1 For each fair execution of CF r that starts with a reachable state of CF r,
with probability 1 all processes that enter CF r will eventually leave.

C2 For each fair execution of CF r, and each value v ∈ {1, 2}, the probability
that all processes that enter CF r will eventually leave agreeing on the value
v is at least p, where 0 < p ≤ 1.

Putting the arguments together: By Invariant 1 and C1 (since the coin-flipping
protocol must return a value in order to continue), from any reachable state of
the combined protocol, under any scheduling of nondeterminism, with probability
1 one can always reach a state either in D, F1 or F2 such that the maximum
round number increases by at most 1. Next by Invariant 2, C1 and C2, from a
state in Fv, under any scheduling of nondeterminism, with probability at least p
one can always reach a state in D with the maximum round number increasing

by at most 2. Therefore, from these two properties, starting from any reach-
able state of the combined protocol, under any scheduling of nondeterminism,
with probability at least p one can always reach a state in D (all processes have
decided) with the maximum round number increasing by at most 3(=1+2).

It then follows that the expected number of rounds until D is reached is O(1
p).

Thus, using independent coins where p = 1
2N the expected number of rounds is

O(2N). For the shared coin protocol, since p = K−1
2K , it is O(1) (i.e. constant).

This is because the round number does not increase while the processes perform
the shared coin protocol. However, we must take account of the number of steps
performed within the shared coin protocol; by random walk theory this yields
expected time of (K + 1)2N2 = O(N2) [1], which is indeed polynomial.

In the sequel we show how to use Cadence SMV and PRISM to mechanically
verify the non-probabilistic and probabilistic arguments respectively. These have
to be carried out at a low level, and therefore constitute the most tedious and
error-prone part of the analysis. The remaining part of the proof, in which the
separately verified arguments are put together, is not proved mechanically. It is
sufficiently high level that it can be easily checked by hand. We believe that a
fully mechanical analysis can be achieved with the help of a theorem prover.

4 The Cadence SMV Proof

Cadence SMV is a proof assistant which supports several compositional methods
[12,13,14]. These methods permit the verification of large, complex, systems by
reducing the verification problem to small problems that can be solved automat-
ically by model checking. Cadence SMV provides a variety of such techniques
including induction, circular compositional reasoning, temporal case splitting and
data type reduction. For example, data type reduction is used to reduce large or
infinite types to small finite types, and temporal case splitting breaks the proof
into cases based on the value of a given variable. Combining data type reduction
and temporal case splitting can reduce a complex proof to checking only a small
number of simple subcases, thus achieving significant space savings.

There are two main challenges posed by the algorithm we consider: the round
numbers are unbounded, leading to an infinite data type NUM , and we wish to
prove the correctness for any number of processes, or, in other words, for all
values of N . We achieve this by suitably combining data type reduction (ordset)
with induction, circular compositional reasoning and temporal case splitting.

We briefly explain the ordset data type reduction implemented in Cadence
SMV [14] with the help of the type NUM . For a given value r this reduction
constructs an abstraction of this type shown in Figure 1, where the only constant
is 0. The only operations permitted on this type are: equality/inequality test-
ing (between abstract values), equality/inequality test against a constant, and
increment/decrement the value by 1. For example, the following are allowed:
comparisons r > 0 and r = 0 (but not r = 1) and next(r) := r + 1. With these
restrictions on the operations, the abstract representations as shown in Figure 1
are isomorphic for all r ∈ NUM . Therefore, it suffices to check a property for a

single value of r. The reduction of the data type PROC is similar, except that
there are two constants, 1 and N ; see [14] for more detail.

{r + 1, . . . }
+1

r

+1 +1

{0, . . . , r − 1}
+1

Fig. 1. Abstraction of NUM

We now illustrate the ordset reduction with a simple property, concern-
ing the global maximum round, that is, the maximum round number over all
processes. In Cadence SMV we can define this as follows:

next(gmaxr) := next(round [act]) > gmaxr ? next(round [act]) : gmaxr ;

However, since act ranges over PROC , the value of gmaxr depends on all in-
stances round [i] for i ∈ N . We therefore introduce a history variable which
records the value of round [act] and replaces the implicit dependence on N with
a dependence on a single variable. We redefine gmaxr as follows:

next(hist) := next(round [act]);
next(gmaxr) := next(hist) > gmaxr ? next(hist) : gmaxr ;

We can now state that gmaxr is indeed the global maximum round number:

forall (i in PROC) max [i] : assert G (round [i] ≤ gmaxr);

To prove this holds, we case split on the value of round [i] and suppose that max [i]
holds at time t− 1. Furthermore, by setting the variables that do not affect the
satisfaction of max [i] to be free (allowing these variables to range over all the
possible values of their types), we can improve the efficiency of model checking
by a factor of 10. Though perhaps not important for this simple property, such
improvements are crucial for more complex properties, as without freeing certain
variables model checking quickly becomes infeasible. The proof is:

forall (r in NUM) {
subcase max [i][r] of max [i] for round [i] = r; /* case split on round [i] */
using (max [i]), /* assume max [i] holds at time t− 1 */
agree//free, decide//free, start//free, value//free, /* free variables */
prove max[i] };

Through the ordset data type reduction SMV reduces this proof to checking
max [i][r] for a single value of i (=2) and a single value of r (=1).

The full proof of Validity, Agreement and Non-probabilistic progress
is available at www.cs.bham.ac.uk/~dxp/prism/consensus. The proof consists
of approximately 50 lemmas, requiring at most 270 MB of memory3. Judicious
choice of data reduction/freeing is important, as otherwise SMV may return false,
but SMV allows one to inspect the cone of influence to identify the variables that
are used in the proofs.
3 The version of Cadence SMV we have used is not fully compatible with the release

of 08.08.00.

www.cs.bham.ac.uk/~dxp/prism/consensus

4.1 Proof of Validity

We now outline the proof of Validity, which we verify by proving the contra-
positive: if no process starts with value v then no process decides on v. For
simplicity suppose v = 2. The hypothesis is that no process starts with value 2:

forall (i in PROC) valid assump[i] : assert G ¬(start [i] = 2);

which is assumed throughout the proof, and the conclusion is:
forall (i in PROC) validity [i] : assert G(pc[i] = DECIDE → ¬(value[i] = 2));

The important step in proving validity is seeing that if all processes start with
preference 1, then any process i past its INITIAL phase, i.e. whose round number
is positive, has preferred value 1 and the predicate agree[i][1] holds. To prove
validity we therefore first prove the stronger properties:

forall (i in PROC) {
valid1 [i] : assert G (round [i] > 0 → value[i] = 1);
valid2 [i] : assert G (round [i] > 0 → agree[i][1]); }

We prove valid1 [i] by case splitting on round [i] and assuming valid2 [i] holds
at time t − 1. Also, since round [i] = 0 is a special case, we must add 0 to
the abstraction of NUM (otherwise Cadence SMV returns false), i.e. NUM is
abstracted to 0, {1, . . . , r−1}, r, {r+1, . . . }. The proof in Cadence SMV has the
following form:

forall (r in NUM) {
subcase valid1 [i][r] of valid1 [i] for round [i] = r;
using valid assump[i], (valid2 [i]), NUM → {0, r}, . . . , prove valid1 [i][r]; }

To prove valid2 [i], we have the additional complication of agree[i][1] being de-
fined as the conjunction of an array (array agree[i][1][j] for j ∈ PROC), which
again contains an implicit dependency on all values of the set PROC . Instead,
we consider each element of the array separately. In particular, we first prove
the auxiliary property valid3 [i] elementwise, assuming valid1 holds, and again
add 0 to the abstraction of NUM :
forall (i in PROC) forall (j in PROC) {

valid3 [i][j] : assert G (round [i] > 0 → array agree[i][1][j]);
forall (r in NUM) {

subcase valid3 [i][j][r] of valid3 [i][j] for maxr [i] = r;
using valid assump[j], valid1 [j], NUM →{0, r}, . . . , prove valid3 [i][j][r]; }}

Next we use valid3 [i][j] to prove valid2 [i] through a proof by contradiction: first
consider the processes j such that array agree[i][1][j] is false:

forall (i in PROC) y[i] := { j : j in PROC , ¬array agree[i][1][j] };
Then we consider a particular j ∈ y[i] when proving valid2 [i] while using the
fact that valid3 [i][j] holds:

forall (j in PROC) {
subcase valid2 [i][j] of valid2 [i] for y[i] = j;
using valid3 [i][j], . . . , prove valid2 [i][j]; }

The contradiction then arises since, by valid3 [i][j], array agree[i][1][y[i]] must be
true. The apparent circularity between these properties is broken since valid1
assumes valid2 at time t− 1.

4.2 Proof of Agreement

We now outline the proof of Invariant 6.3 of [15] which is used to prove Agree-
ment, the most difficult of the requirements. First we define new predicates
fill maxr [i], array fill agree[i][v][j] and fill agree[i][v] to be the same as the corre-
sponding predicates maxr [i], array agree[i][v][j] agree[i][v], except an incomplete
observation of a process is “filled in” with the actual values of the unobserved
processes. More formally:

fill rounds[i][j]
def
= if j ∈ obsi then rounds[i][j] else round [j]

fill values[i][j]
def
= if j ∈ obsi then values[i][j] else value[j].

Invariant 6.3 of [15]. Let i be a process. Given a reachable state, let v =
value[i]. If fill maxr [i] = round [i], m1 agree[i][v] and fill agree[i][v], then

a. ∀j agree[j][v]
b. ∀j round [j] ≥ round [i] → value[j] = v
c. ∀j∈obsi (round [j] = round [i]− 1 ∧ value[j] 6= v) → fill maxr [j] ≤ round [i].

We now describe our approach to proving Invariant 6.3. For simplicity, we have
restricted our attention to when v = 1. To ease the notation we let:

C[i] def= (fill maxr [i] = round [i]) ∧m1 agree[i][1] ∧ fill agree[i][1] ∧ (value[i] = 1).

We first split Invariant 6.3 into separate parts corresponding to the conditions
a, b and c. The main reason for this is that the validity of the different cases de-
pends on different variables of the protocol. We are therefore able to “free” more
variables when proving the cases separately, and hence improve the efficiency of
the model checking. Formally, conditions a and b of Invariant 6.3 are given by:

forall (i in PROC) forall (j in PROC)
inv63a[i][j] : assert G (C[i] → agree[j][1]);
inv63b[i][j] : assert G (C[i] → (round [j] ≥ round[i] → value[j] = 1));

Note that, when proving inv63a[i][j], agree[j][1] is the conjunction of an array.
We therefore use the same proof technique as outlined for valid2 [i] in Section 4.1,
that is, we first prove:

forall (i in PROC) forall (j in PROC) forall (k in PROC)
inv63ak [i][j][k] : assert G (C[i] → array agree[j][1][k]);

We encounter a similar problem with the precondition, C[i], since m1 agree[i][1]
and fill agree[i][1] are conjunctions of arrays. In this case, we use a version of
Lemma 6.12 of [15]. Informally, this lemma states: if C[i] holds in the next state
and the transition to reach this state does not involve process i changing the
value of round[i] or value[i], then C[i] holds in the current state. More precisely,
we have the following properties:

forall (i in PROC) {
lem612a[i] : assert G ((¬(act = i) ∧ X (C[i])) → (C[i]));
lem612b[i] : assert G ((act = i ∧ (pc[i] = READ) ∧ X (C[i])) → (C[i]));
lem612c[i] : assert G ((act = i ∧ X ((pc[i] = DECIDE) ∧ C[i])) → (C[i])); }

When proving inv63ak [i][j][k] we case split on round [i] and assume inv63ak [i][j][k]
and inv63b[i][k] hold at time t − 1 (Invariant 6.3c is not needed). Additional
assumptions include those of Lemma 6.12 given above. Also, since m1 agree[i]
involves r−1 where r is of type NUM , we abstract NUM to {0, . . . , r−2}, r − 1,
r, {r + 1, . . . }. The actual proof in Cadence SMV has the following form:

forall (r in NUM) {
subcase inv63ak [i][j][k][r] of inv63ak [i][j][k] for round [i] = r;
using (inv63ak [i][j][k]), (inv63b[i][k]), lem612a[i], lem612b[i], lem612c[i],
NUM → {r − 1 . . r}, . . . , prove inv63ak [i][j][k][r]; }

5 Verification with PRISM

PRISM, a Probabilistic Symbolic Model Checker, is an experimental tool de-
scribed in [6], see www.cs.bham.ac.uk/~dxp/prism. It is built in Java/C++
using the CUDD [16] package which supports MTBDDs. The system descrip-
tion language of the tool is a probabilistic variant of Reactive Modules. The
specifications are given as formulas of the probabilistic temporal logic PCTL
[8,4]. PRISM builds a symbolic representation of the model as an MTBDD and
performs the analysis implementing the algorithms of [3,4]. It supports a sym-
bolic engine based on MTBDDs as well as a sparse matrix engine.

A summary of experimental results obtained from the shared coin-flipping
protocol modelled and analysed using the MTBDD engine is included in the table
below. Further details, including the description of the coin-flipping protocol, can
be found at www.cs.bham.ac.uk/~dxp/prism/consensus. Both properties C1
and C2 are expressible in PCTL. C1 is a probability 1 property, and therefore
admits efficient qualitative [17] probabilistic analysis such as the probability-
1 precomputation step [6], whereas C2, on the other hand, is quantitative, and
requires calculating the minimum probability that, starting from the initial state
of the coin-flipping protocol, all processes leave the protocol agreeing on a given
value. Our analysis is mechanical, and demonstrates that the analytical lower
bound K−1

2K obtained in [1] is reasonably tight (the discrepancy is greater for
smaller values of K, not included).

N K #states construction C1 C2
time (s): time (s): time (s): probability: bound (K − 1)/2K:

2 64 8,208 1.108 0.666 3689 0.493846 0.4921875

4 32 329,856 2.796 6.497 212784 0.494916 0.484375

8 16 437,194,752 54.881 59.668 1085300 0.47927 0.46875

10 8 10,017,067,008 26.719 139.535 986424 0.4463 0.4375

Fig. 2. Model checking of the coin-flipping protocol

www.cs.bham.ac.uk/~dxp/prism
www.cs.bham.ac.uk/~dxp/prism/consensus

6 Conclusion

In this paper we have for the first time mechanically verified a complex ran-
domized distributed algorithm, thus replacing tedious proofs by hand of a large
numbers of lemmas with manageable, re-usable, and efficient proofs with Ca-
dence SMV and an automatic check of the probabilistic properties with PRISM.
The verification of the protocol is fully mechanised at the low level, while some
simple high-level arguments are carried out manually. A fully automated proof
can be achieved by involving a theorem prover for the manual part of the analy-
sis. We believe that the techniques introduced here are applicable more generally,
for example, to analyse [10,5].

Acknowledgements: We are grateful to Ken McMillan for supplying a recent
version of Cadence SMV and suggesting appropriate proof methods.

References

1. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Jour-
nal of Algorithms, 11(3):441–460, 1990.

2. C. Baier, E. Clarke, and V. Hartonas-Garmhausen. On the semantic foundations
of Probabilistic VERUS. In C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan,
editors, Proc. PROBMIV’98, volume 22 of ENTCS, 1998.

3. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

4. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P. Thiagarajan, editor, Proc. FST & TCS, volume 1026 of LNCS,
pages 499–513, 1995.

5. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Prac-
tical asynchronous byzantine agreement using cryptography. In Proc. PODC’00,
pages 123–132, 2000.

6. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-
bolic model checking of concurrent probabilistic systems using MTBDDs and
the Kronecker representation. In S. Graf and M. Schwartzbach, editors, Proc.
TACAS’2000, volume 1785 of LNCS, pages 395–410, 2000.

7. M. Fischer, N. Lynch, and M.Paterson. Impossibility of distributed commit with
one faulty process. Journal of the ACM, 32(5):374–382, 1985.

8. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(4):512–535, 1994.

9. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain
Model Checker. In S. Graf and M. Schwartzbach, editors, Proc. TACAS 2000,
volume 1785 of LNCS, pages 347–362, 2000.

10. A. Itai and M. Rodeh. The lord of the ring or probabilistic methods for breaking
symmetry in distributed networks. Technical Report RJ 3110, IBM, 1981.

11. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

12. K. McMillan. Verfication of an implementation of Tomasulo’s algorithm by com-
positional model checking. In A. Hu and M. Vardi, editors, Proc. CAV’98, volume
1427 of LNCS, pages 110–121, 1998.

13. K. McMillan. Verification of infinite state systems by compositional model check-
ing. In L. Pierre and T. Kropf, editors, Proc. CHARME’99, volume 1703 of LNCS,
pages 219–233, 1999.

14. K. McMillan, S. Qadeer, and J. Saxe. Induction and compositional model checking.
In E. Emerson and A. P. Sistla, editors, Proc. CAV 2000, volume 1855 of LNCS,
pages 312–327, 2000.

15. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–
186, 2000.

16. F. Somenzi. CUDD: CU decision diagram package. Public software, Colorado
University, Boulder, 1997.

17. M. Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Proc. FOCS’85, pages 327–338, 1985.

	Automated Verification of a Randomized Distributed Consensus Protocol Using Cadence SMV and PRISM
	Introduction
	The Protocol
	The Proof Structure
	The Cadence SMV Proof
	Proof of Validity
	Proof of Agreement

	Verification with PRISM
	Conclusion

