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Abstract—In this paper we extend CSL (Continuous Stochastic Logic) with an expected time

and an expected reward operator, both of which are parameterized by a random terminal time. With

the help of such operators we can state for example that the expected sojourn time in a set of goal

states within some generally distributed delay is at most (at least) some time threshold. In addition,

certain performance measures of systems which contain general distributions can be calculated with
the aid of this extended logic. We extend the efficient model checking of CTMCs against the logic

CSL developed by Katoen et al. [1] to cater for the new operator. Our method involves precomputing
a family of mixed Poisson expected sojourn time coefficients for a range of random variables which
includes Pareto, uniform and gamma distributions, but otherwise carries the same computational
cost as calculating CSL until formulae. c© 1900 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Continuous time Markov chains (CTMCs) form an important class of models widely used in

performance and dependability analysis. The class is characterised by allowing only exponential

distributions – the time that the system remains in a state is given by an exponential distri-

bution. This restriction allows one to employ well established efficient analysis techniques for

both transient and steady-state probabilities, and hence also for determining standard perfor-

mance measures such as throughput, mean waiting time and average cost. Recently extensions of

temporal logic have been proposed which can express such properties. The temporal logic CSL

(Continuous Stochastic Logic) introduced by Aziz et al. [2,3] and since extended by Baier et al.

[4] is based on the temporal logics CTL [5] and PCTL [6] and provides a powerful means to spec-

ify both path-based and traditional state-based performance measures on CTMCs. CSL contains

a time-bounded until operator that allows one to express properties such as “the probability of 3

servers becoming faulty within 7.01 seconds is at most 0.1”. Model checking of CTMCs against
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CSL has been improved in [7,1] through the use of uniformisation [8,9] and transient analysis, and

implemented in the tool PRISM [10,11]. The usefulness of this approach has been demonstrated

by a number of case studies ranging from a wireless cell to a flexible manufacturing system.

However, in practice it is often the case that exponential distributions are not an adequate mod-

elling tool for capturing the behaviour of stochastic systems. Examples of such situations include

modelling file transfer over the Internet, timeouts in communication protocols and the residence

time in a wireless cell. For these cases the modelling framework must be capable of handling

general distributions, such as Pareto, Erlang, gamma or phase-type. An unfortunate consequence

of including general distributions within the modelling framework, as has been demonstrated

recently, for example in [12] and [13], is a considerable increase in the complexity of performance

analysis, or, if using phase-type distributions, a substantial increase in the size of the state space.

In [14] we made an alternative proposal, namely, to remain in the CTMC framework and

instead extend the logic CSL with a variant of the time-bounded until operator which allows

generally distributed random time bounds. In this paper we further extend CSL with expected

time and expected reward operators which are parameterized by a generally distributed random

time bound. We extend the efficient model checking of CTMCs against the logic CSL developed

in [1] to cater for the new operator. Our method involves precomputing a family of coefficients

for a range of random variables which includes Pareto, uniform and gamma distributions, but

otherwise carries the same computational cost as calculating CSL until formulae.

With the help of these operators we can state that the expected sojourn time in a set of goal

states or the expected reward within some random delay is at most (at least) some time thresh-

old. Although general distributions cannot be added explicitly to the model in a completely

arbitrary way, with the aid of this extended logic, one can establish certain performance mea-

sures of systems which include generally distributed delays. As an example application consider

a queue where the customers arrive with some generally distributed delay, then by letting the

random time bound have the same distribution we can express (and verify) properties such as:

“if the queue if full then, when the next customer arrives, the expected number of customers

in the queue is at most k”. The applicability of this approach is demonstrated in [11,15] and

Section 4 where this extended logic has been used to analyse power management systems when

the inter-arrival rate of jobs has a general distribution.

Outline of paper. We begin by recalling the definition of CTMCs and the logic CSL. Next we

introduce the new expected time and expected cost operators both parameterised by a random

time bound, give their semantics and a model checking algorithm which uses a family of coeffi-

cients called mixed Poisson expected sojourn times. Next we show that these coefficients can be

calculated by means of the algorithms developed in [14] for generating mixed Poisson probability

coefficients. In the remainder of the paper we describe some experimental results for a power

management system example using these operators.

2. PRELIMINARIES

In this section we briefly recall basic concepts we require in the remainder of the paper.

Random variables. Let T denote a nonnegative random variable. We let F (F̄ ) denote the

distribution (survival) function of T , i.e. F (t) = P(T6t) (F̄ (t) = P(T>t)), and E[T ] its expected

value, that is E[T ] =
∫ ∞

0
F̄ (t) dt.

Continuous time Markov Chains. Let AP be a finite set of atomic propositions. A (labelled)

CTMC M is a tuple (S,Λ, L) where S is a finite set of states, Λ : S × S → R+ is the rate matrix

and L : S → 2AP is a labelling function which assigns to each state s the set L(s) of atomic

propositions valid in s. For any state s ∈ S, the probability of leaving state s within time t is
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given by 1− e−E(s)·t where E(s) =
∑

s′∈S Λ(s, s′).

A path through a CTMC is an alternating sequence σ = s0 t0 s1 t1 s2 . . . such that Λ(si, si+1)

and ti are positive for all i. The time stamps ti denote the amount of time spent in state si. Let

PathM(s) denote the set of paths of M which start in state s (i.e. s0 = s); σ@t denote the state

of σ occupied at time t, i.e. σ@t = σ[i] where i is the largest index such that
∑i−1

j=0 tj 6 t; and

Ps denote the unique probability measure on sets of paths that start in s [4]. Let πM(s, t)(s′)

denote the probability of being in state s′ at time t given that the system starts in state s, i.e.

πM(s, t)(s′) = Ps{σ ∈ PathM(s) : σ@t = s′}. Moreover, let Es[·] = E[·|M(0) = s] for s ∈ S,

that is Es is the expected value operator conditional to the CTMC M starting in state s.

Reward structure. Often a CTMC M = (S,Λ, L) is extended with a reward or cost structure

[16]. It takes the form of a tuple (r,R), where for any s, s′ ∈ S: rs denotes the rate at which the

reward (cost) is incurred continuously in s, and Rs,s′ denotes the instantaneous reward (cost)

associated with the transition from s to s′, where Rs,s = 0 for all s. The reward Markov process

associated to M is then (M,RM), where the reward accumulated in the interval of time (0, t] is

RM(t) =

∫ t

0

rM(u) du+

∫ t

0

RM(u−),M(u)dN
M(u) (1)

where NM is the counting process of state transitions in M, i.e., NM(u) is the number of state

transitions of M in the time interval (0, u].

Uniformisation. For CTMC M = (S,Λ, L) the embedded uniformised discrete time Markov

chain (DTMC) (with uniformisation rate q > max{E(s) : s ∈ S}) is u(M) = (S,Pu(M), L),

where Pu(M) = I+[Λ−diag(E)]/q is its transition probability matrix. We let Nq = {Nq(t), t>0}

denote the (uniformising) Poisson process with rate q, independent of u(M). Then (see, e.g.,

[17]), the original CTMC {M(t), t>0} has the same distribution as the uniformised CTMC

{Mq(t) = u(M)Nq(t)
, t>0}. Hence, the distribution of the CTMC M can be characterised

completely through the distribution of the embedded uniformised DTMC u(M). In particular,

the probabilities πM(s, t)(s′) can be computed as follows:

πM(s, t) = πM(s, 0) ·
∞
∑

k=0

e−q·t (q·t)
k

k!

[

Pu(M)
]k

=
∞
∑

k=0

γ(k, q·t) · πu(M)(s, k) (2)

where γ(k, q·t) = e−q·t·(q·t)k/k! is the kth Poisson probability with parameter q·t, and the vector

πu(M)(s, k) denotes the probability distribution in u(M) after k epochs when starting in s, i.e.

πu(M)(s, k) = πM(s, 0) · [Pu(M)]k, where πM(s, 0)(s) = 1 and πM(s, 0)(s′) = 0 if s 6= s′.

The logic CSL. Let a ∈ AP, p ∈ [0, 1], ./ ∈ {6,>} and t ∈ R+ (or ∞). The syntax of CSL is:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | S./p[Φ] | P./p[Φ U6t Φ] .

The semantics of CSL for the boolean operators is identical to that for CTL [5]. S./p[Φ] asserts

that the steady-state probability for a Φ-state meets the bound ./ p, whereas P./p[Φ U6t Φ]

asserts that with probability ./ p, by the time t a state satisfying Ψ will be reached such that all

preceding states satisfy Φ. CSL model checking algorithms can be found in [4,7,1].

In [14] the logic CSL was extended to include random time-bounded until formulae of the

form P./p[Φ U6T Ψ], where T is a nonnegative random variable. The formula asserts that, with

probability ./ p, by the random time T a state satisfying Ψ will be reached such that all preceding

states satisfy Φ.
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Mixed Poisson probabilities. For a nonnegative random variable T , we let αT (k, q) =
∫ ∞

0
γ(k, q·t) dF (t) denote its associated kth mixed Poisson probability, which is equal to the

probability that exactly k renewals take place in the uniformising Poisson process with rate q

until the random time T . As reported in [14], for any k ∈ N:

αU[0,t]
(k, q) =

∫ t

0

1

t
· γ(k, q·u) du =

1

q·t

∞
∑

j=k+1

γ(k, q·t) (3)

where U[0,t] denotes a random variable with uniform distribution on [0, t]. Efficient algorithms

for computing the mixed Poisson probabilities when the distribution of the random time T is a

finite discrete, uniform, gamma or Pareto distribution, or is a finite mixture of distributions of

these types are provided in [14].

3. EXPECTED TIME AND REWARD FORMULAE

WITH RANDOM TIME-BOUNDS

We now extend the logic CSL to include expected time and expected reward operators which

are parameterized by a generally distributed nonnegative random variable T and consider model

checking algorithms for such formulae. The formulae we introduce are of the form E6T
./V [Ψ] and

ER6T
./V , where T is independent of the CTMC under study, Ψ is a CSL formula and V ∈ R+.

The formula E6T
./V [Ψ] asserts that the expected amount of time on the interval (0, T ] that Ψ is

satisfied is ./ V . Similarly, the formulae ER6T
./V is true in a state if the the expected reward (cost)

before the random terminal time T is ./ V . To introduce the semantics of these operators, we

let EM(s, E6tΨ) denote the expected time until t that Ψ is satisfied when starting from state s,

and EM(s,RM(t)) denote the expected reward until time t starting from state s. Hence,

s |= E6T
./V [Ψ] ⇔ EM(s, E6TΨ) ./ V & s |= ER6T

./V ⇔ EM(s,RM(T )) ./ V

where

EM(s, E6TΨ) =

∫ ∞

0

EM(s, E6tΨ)dF (t) and EM(s,RM(T )) =

∫ ∞

0

EM(s,RM(t)) dF (t).

Here RM(t) is given by (1) and E6tΨ =
∫ t

0
1(M(u) |= Ψ)du, where 1(A) is the indicator function

of A, i.e., 1(A) is one if A is true and is zero otherwise. Note that, in view of (1), E6T
./V [Ψ] reduces

to ER6T
./V using the reward tuple (ιΨ,0), where: ιΨ characterises Sat(Ψ), i.e. ιΨ(s) = 1 if s |= Ψ,

and 0 otherwise, and 0 is a matrix with all entries null.

In the following sections we develop model checking algorithms for formulae of the type ER6T
./V

based on the approach used for verifying time-bounded until formulae [1]. These algorithms

may then be specialized to model check formulae of the type EM(s, E6TΨ) ./ V by setting

(r,R) = (ιΨ,0). We begin by considering deterministic terminal times and then proceed to

random terminal times. Below, we presume M is a CTMC with state space S and Nq denotes

the uniformising Poisson process with rate q, independent of the embedded uniformised DTMC

u(M).

3.1. Deterministic Terminal Times

The following result summarizes how EM(s,RM(T )) may be computed for a general reward

structure (r,R) and a deterministic terminal time.

Theorem 1. For any s ∈ S and t ∈ R+ :

EM(s,RM(t)) =

∞
∑

k=0

γ̄t(k, q)·π
u(M)(s, k)·fq(r,R) (4)
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where

γ̄t(k, q) = E

[
∫ t

0

1(Nq(u) = k)du

]

=

∫ t

0

γ(k, q·u)du =
1

q

∞
∑

j=k+1

γ(j, q·t) (5)

and

fq(r,R) = r + q·[Pu(M) • R]·1 (6)

with • denoting the Schur or entrywise multiplication of matrices and 1 a vector with unitary

entries.

Proof. We start by proving (5), which follows since, using dominated convergence [18] and the

fact that γ(k, q·u) = P(Nq(u) = k) = E[1(Nq(u) = k)]:

γ̄t(k, q) = E

[
∫ t

0

1(Nq(u) = k) du

]

=

∫ t

0

γ(k, q·u)du =
1

q

∞
∑

j=k+1

γ(j, q·t)

where the last equality follows from (3). Moreover, since M has the same distribution as the

uniformised CTMC {Mq(u) = u(M)Nq(u)
, u>0}, it follows from (1) that

EM(s,RM(t)) = Es

[
∫ t

0

rM(u) du

]

+ Es





Nq(t)
∑

k=1

Ru(M)
k−1,u(M)

k



 . (7)

Note that
∫ t

0
rM(u) du =

∫ t

0

∑

s′∈S rs′ ·1(M(u)=s′) du =
∑

s′∈S rs′

∫ t

0
1(M(u)=s′) du and, using

dominated convergence,

Es

[
∫ t

0

1(M(u)=s′) du

]

=

∫ t

0

Es [1(M(u)=s′)] du =

∫ t

0

πM(s, t)(s′) du.

These facts and (2) lead, after rearranging terms, to

Es

[
∫ t

0

rM(u) du

]

=

∫ t

0

∞
∑

k=0

γ(k, q·u)·πu(M)(s, k)·r du =
∞
∑

k=0

γ̄t(k, q)·π
u(M)(s, k)·r . (8)

Since Es[Ru(M)
k−1,u(M)

k
] =

(

[Pu(M)]k−1·[Pu(M) • R]·1
)

s
and E[X] = E[E[X|Y ]] for any random

variables X and Y , for any s ∈ S and t ∈ R+ we have

Es





Nq(t)
∑

k=1

Ru(M)
k−1,u(M)

k



 =

∞
∑

n=1

γ(n, q·t)·Es

[

n
∑

k=1

Ru(M)
k−1,u(M)

k

]

=
∞
∑

n=1

γ(n, q·t)·
n
∑

k=1

πu(M)(s, k − 1)·[Pu(M) • R]·1

=

∞
∑

k=0

γ̄t(k, q)·π
u(M)(s, k)·q·[Pu(M) • R]·1 . (9)

where for the last equality we have interchanged summations and used (5). Finally, (4) follows

from (7)-(9). ¥

From the definition (5), γ̄t(k, q) is the expected sojourn time in state k of the uniformising Poisson

process. Hence, we call γ̄t(k, q) the k-th Poisson expected sojourn time coefficient (on the interval

[0, t] with associated rate q). Note that, from (5), it follows that the Poisson expected sojourn time

coefficients are non-increasing, take values on the interval [0, 1/q], and
∑∞

k=0 γ̄t(k, q) = t. Thus,

the expected sojourn times on [0, t] of the uniformising Poisson process on each of its states,
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k = 0, 1, 2, . . . , tend to be smaller than regular expected sojourn times in states, which have

expected value 1/q, and decrease with k. Moreover, the Poisson expected sojourn time coefficients

are related to the mixed Poisson probability coefficients associated with the uniform distribution

on [0, t], γ̄t(k, q) = t·αU[0,t]
(k, q), where αU[0,t]

(k, q) is the kth mixed Poisson probability associated

with the uniform distribution on [0, t], as given in (3).

The vector fq(r,R) associated with the reward tuple (r,R) denotes the vector of expected

reward per unit of time in the states of the CTMC M and is the sum of the vectors r and

q·[Pu(M) •R]·1. The vector r corresponds to the expected rewards per unit of time accumulated

continuously in the states of M, whereas q·[Pu(M) •R]·1 contains the expected rewards per unit

of time associated with state transitions, which take place at rate q in the uniformised CTMC

Mq. The entry corresponding to state s of [Pu(M) •R]·1 is the expected reward associated to a

random transition out from state s.

Following the approach taken in [1], the computation of EM(s,RM(t)) for all states reduces

to computing the following sum over vectors of coefficients:

EM(RM(t)) =

∞
∑

k=0

γ̄t(k, q) ·
[

Pu(M)
]k

· fq(r,R) . (10)

3.2. Random Terminal Times

In this section we consider formulae of the form ER6T
./V , where T is a nonnegative random variable.

Below is the main observation with regards to model checking such formulae.

Theorem 2. For any s ∈ S and nonnegative random time T with finite expected value:

EM(s,RM(T )) =
∞
∑

k=0

ᾱT (k, q)·π
u(M)(s, k)·fq(r,R)

where, as given in (6), fq(r,R) = r + q·[Pu(M) • R]·1 , and

ᾱT (k, q) = E

[

∫ T

0

1(Nq(t) = k)dt

]

=

∫ ∞

0

γ̄t(k, q)dF (t) =
1

q

∞
∑

j=k+1

αT (j, q) (11)

and this last relation also holds when E[T ] = ∞.

Proof. We start by proving (11). In view of (5) and since E[X] = E[E[X|Y ]], for any random

variables X and Y ,

ᾱT (k, q) = E

[

∫ T

0

1(Nq(u) = k) du

]

=

∫ ∞

0

E

[
∫ t

0

1(Nq(u) = k)du

]

dF (t)

=

∫ ∞

0

γ̄t(k, q) dF (t) .

Thus, (11) follows since using (5) and monotone convergence [18]:

ᾱT (k, q) =

∫ ∞

0

γ̄t(k, q) dF (t) =

∫ ∞

0

1

q

∞
∑

j=k+1

γ(j, q·t) dF (t) =
1

q

∞
∑

j=k+1

αT (j, q)



7

by definition of αT (j, q). From Theorem 1 and definition of EM(s,RM(T )), for any s ∈ S and

nonnegative random time T with finite expected value, EM(s,RM(T )) equals:

∫ ∞

0

EM(s,RM(t)) dF (t) =

∫ ∞

0

∞
∑

k=0

γ̄t(k, q)·π
u(M)(s, k)·fq(r,R) dF (t)

=

∞
∑

k=0

∫ ∞

0

γ̄t(k, q) dF (t)·πu(M)(s, k)·fq(r,R)

=

∞
∑

k=0

ᾱT (k, q)·π
u(M)(s, k)·fq(r,R)

where the second equality follows by dominated convergence, as required. ¥

Note that, from the definition, ᾱT (k, q) is the expected sojourn time of the uniformising Pois-

son process in state k until the random time T . Accordingly, we call ᾱT (k, q) the k-th mixed

Poisson expected sojourn time coefficient (associated with the random time T and the uni-

formisation rate q). The mixed Poisson expected sojourn time coefficients enjoy properties

similar to those of Poisson expected sojourn time coefficients. In particular, the coefficients

ᾱT (k, q) are non-increasing and take values on the interval [0, 1/q], and
∑∞

k=0 ᾱT (k, q) = E[T ],

independently of T having finite or infinite expected value. Moreover, using the last part of

(11), it follows that limk→∞ ᾱT (k, q) = 0 since, for any t ∈ R+: ᾱT (k, q) = 1
q
·P(Nq(T )>k) 6

1
q
· [P(Nq(t)>k) + P(T>t)] .

The mixed Poisson expected sojourn times are equivalent to the αF̄ -factors introduced in [12]

which are used in the calculation of steady-state probabilities for non-Markovian stochastic Petri

nets. Alternative proofs of some of the stated properties for the mixed Poisson expected sojourn

times are presented in [12] under more restrictive conditions.

Note that computing EM(s,RM(T )) for all states is similar to the case where T is deter-

ministic and may be done as in (10) by replacing the Poisson expected sojourn time coeffi-

cients by the ᾱT (k, q) coefficients. As
∑∞

k=0 ᾱT (k, q) = E[T ], provided E[T ] < ∞ we have

limk→∞

∑

n>k ᾱT (n, q) = 0. This result is in the basis of the pseudo-code given in Figure 1

for a generic algorithm for computing the values of EM(s,RM(T )) with an error of at most ε,

for arbitrary positive ε. The algorithm is based on the fact that if we choose K(ε) such that
∑K(ε)

n=0 ᾱT (n, q) > E[T ]− ε/α, with α = maxs∈S |fq(r,R)s|, then

∣

∣

∣

∣

∣

∣

EM(RM(T ))−

K(ε)
∑

k=0

(

ᾱT (k, q) ·
[

Pu(M)
]k

· fq(r,R)

)

∣

∣

∣

∣

∣

∣

< ε .

Note that the DTMC u(M) may reach steady state before K(ε) and, in this case, the summation

can be truncated at this earlier point [19].

3.3. Computing Mixed Poisson Expected Sojourn Times

From (11), it follows that the mixed Poisson expected sojourn times may be computed recursively

using the mixed Poisson probabilities through

ᾱT (k, q) = ᾱT (k − 1, q)−
1

q
αT (k, q)

for k ∈ N, with ᾱT (−1, q) = 1/q. Thus, algorithms for the computation of mixed Poisson expected

sojourn times when the distribution of the random time T has a finite discrete, uniform, gamma

or Pareto distribution, or is a finite mixture of distributions of these types, may be obtained

directly from the algorithms given in [14] for the corresponding mixed Poisson probabilities.
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input : ᾱT (0, q), . . . , ᾱT (K(ε), q) such that

K(ε)
∑

k=0

ᾱT (k, q) > E[T ]− ε/α

b := fq(r,R)

sol := 0

for k = 0 to K(ε) do

sol := sol + ᾱT (k, q)·b

b := Pu(M)·b

endfor

output : EM(RM(T )) := sol

Figure 1. Generic algorithm for computing EM(RM(T ))

4. EXAMPLE

We consider a simple power management system taken from [20]. The model consists of four

components: a service requester (SR) which generates requests to be served; a (finite) service

request queue (SQ) which stores the requests before service; a service provider (SP) which pro-

cesses requests; and a power manager (PM) which monitors the states of the other components

and issues state transition commands to the SP. We suppose that the requests arrive according

to a renewal process with inter-renewal time distributed as T .

The SP has three states: sleep, idle and busy. In sleep the SP is inactive, and hence no requests

can be served; in idle the SP is active but is not working on any requests (i.e. the SQ is empty)

and in busy requests are being served. The transitions between sleep and idle are controlled

by the PM, while transitions between idle and busy correspond to the arrival of requests in the

queue and the service of requests. In each state of the SP power is consumed at a certain rate

and there is a switching energy associated with each pair of states – the energy needed for the

SP to switch between these states. Note that requests can only be served when the SP is in state

busy and we suppose that the service time and transition times between the states of the SP are

exponentially distributed.

We consider the simple PM which switches the SP on (from sleep to idle) as soon as a request

arrives (the SQ becomes nonempty) and switches the SP off (from idle to sleep) as soon as there

are no longer any requests to be served (the SQ becomes empty).

For this system we compute the average number of waiting requests in the SQ as the perfor-

mance metric and the average power consumption of the SP as the power metric. These measures

are calculated by through the following procedure.

• Construct a restricted model of the system in which transitions corresponding to new

requests are removed.

• In the restricted model, calculate the expected reward until the random terminal time T

for the cases when the reward structure corresponds to the power consumption and to the

size of the queue.

• Construct the embedded DTMC model of the full system taking the time of the next

service request as one unit of time1 and calculate the steady state probabilities of this

DTMC.

• Combine the expected reward values and steady state probabilities using the theory of

Markov regenerative processes [17] to give the performance and power metrics.

1This can be achieved following the methodology of [12] or by calculating the probability of satisfying random
time-bounded until formulae on the restricted model.
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Table 1. Performance results for power management model as inter-arrival time dis-

tribution varies

performance inter-arrival time distribution
measure deterministic Erlang 10 uniform[0,b] exponential Pareto
power 3.0198 2.9793 2.8883 2.6714 0.3790

performance 1.6880 1.6939 1.7145 1.7343 0.7700
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Figure 2. Performance and power results as the expected inter-arrival time varies

Note that, in the restricted model, all transitions have an exponential delay, that is, it is a

CTMC, and since the service time distribution is independent of the arrival time distribution,

the inter-arrival time distribution is independent of this model.

We constructed the restricted model using the probabilistic model checker PRISM [10,11] and

then exported the generator matrix of this model to a prototype implementation in Matlab

to calculate the measures of interest. We consider five different distributions for the arrivals of

requests: deterministic, exponential, Erlang (10 phases), uniform and Pareto. In the Table 1 we

give the results in the case when the parameters of the system are those given in [20]. Moreover,

in Figure 2 we have plotted the performance metrics as the expected time inter-arrival time of

requests varies for each of the considered distributions.

As can be seen in both Table 1 and Figure 2 the expected queue size and the power consumption

when requests arrive with a Pareto distribution are much smaller than when requests arrive with

the other distributions considered. This is a result of the Pareto distribution’s heavy tail, which

means that, in the long run, many requests will not arrive for a very long time, and hence in

these cases the service provider (SP) will serve all pending requests, and then the system will

spend a long time with the queue empty and the SP in its sleep state consuming very little power.

Moreover, more requests are blocked for the Pareto distribution than with the other distributions.

The performance metric (average queue size) for the remaining distributions is very similar for

all the other distributions considered, which is not true of the power metric. The relation between

the power consumption for the remaining distributions corresponds to the difference between the

“tails” of the distributions – the larger the tail the higher the chance of the SP spending time off

preserving power. For example, the deterministic distribution is zero for all values greater than

the expected value, whereas the uniform distribution is zero for any value greater than two times

the expected value, and the exponential distribution has a heavier tail than an Erlang (with more

than one phase).

For all the distributions considered, Figure 2 shows that, as the expected inter-arrival time

increases, both the average queue size and power consumption decreases. This is to be expected,

as increasing the expected inter-arrival time means that, on average, there will be more time for

the SP to serve requests between the arrival of successive requests, and hence, in the long run,

the queue will be smaller and more time will be spent with the SP off (i.e. consuming less power).
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Finally, we note the similarity between the cases for requests arriving with a deterministic or

Erlang distribution; this is to be expected as the Erlang distribution is often used as a continuous

approximation of a (discrete) deterministic distribution.

5. CONCLUSIONS

This paper presents an extension of CSL with expected time and expected reward formulae with

random time bounds where the time bound takes the form of a general nonnegative random

variable. As the example demonstrates, in certain cases, using such formulae enables us to

calculate performance measures of systems which include general distributions. It is shown that

model checking for such formulae can be efficiently carried out by first precomputing mixed

Poisson expected sojourn time coefficients.

So far, we have only considered a prototype implementation in Matlab. In future we aim to

implement these algorithms in the probabilistic symbolic model checker PRISM in order to tackle

the verification of more complex models. Additionally, we would like to work on generalising this

approach to other important families of distributions, apply analytic methods to finding upper

bounds for K(ε), and extend our approach to express random time intervals rather than simply

the time bound T .
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13. G. Infante Lópes, H. Hermanns and J-P. Katoen, Beyond Memoryless Distributions, In Proc. 1st Joint Inter-

national Workshop on Process Algebra and Probabilistic Methods, Performance Modeling and Verification

(PAPM/PROBMIV’01), (eds. L. de Alfaro and S. Gilmore), Lecture Notes in Computer Science, Vol. 2165,

pp. 57–70, Springer-Verlag, (2001).

14. M. Kwiatkowska, G. Norman and A. Pacheco, Model Checking CSL Until Formulae with Random Time

Bounds, In Proc. 2nd Joint International Workshop on Process Algebra and Probabilistic Methods, Perfor-

mance Modeling and Verification (PAPM/PROBMIV’02), (eds. H. Hermanns and R. Segala), Lecture Notes

in Computer Science, Vol. 2399, pp. 152–168, Springer-Verlag, (2002).



11

15. G. Norman, D. Parker, M. Kwiatkowska, S. Shukla and R. Gupta, Formal Analysis and Validation of Continu-

ous Time Markov Chain Based System Level Power Management Strategies, In Proc. 7th Annual IEEE Inter-

national Workshop on High Level Design Validation and Test (HLDVT’02), (eds. W. Rosenstiel), pp. 45–50,

IEEE Computer Society Press, (2002).

16. M. Telek, A. Pfening and G. Fodor, An effective numerical method to compute the moments of the completion

time of Markov reward models, Computers & Mathematics with Applications 36 8, 59–65, (1998).

17. V.G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman and Hall, (1995).

18. Resnick, S. I., A Probability Path, Birkhäuser, Boston, MA, (1999).
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