
Electronic Notes in Theoretical Computer Science 13 (1998)
URL: http://www.elsevier.nl/locate/entcs/volume13.html

A Fully Abstract Metric-Space Denotational
Semantics for Reactive Probabilistic Processes

M.Z. Kwiatkowska and G.J. Norman

School of Computer Science,
University of Birmingham,

Edgbaston, Birmingham B15 2TT, UK

Abstract

We consider the calculus of Communicating Sequential Processes (CSP) [8] ex-
tended with action-guarded probabilistic choice and provide it with an operational
semantics in terms of a suitable extension of Larsen and Skou’s [14] reactive prob-
abilistic transition systems. We show that a testing equivalence which identifies
two processes if they pass all tests with the same probability is a congruence for
a subcalculus of CSP including external and internal choice and the synchronous
parallel. Using the methodology of de Bakker and Zucker [3] introduced for classical
process calculi, we derive a metric-space semantic model for the calculus and show
it is fully abstract.

1 Introduction

When specifying concurrent probabilistic systems, for example fault-tolerant
systems, probabilistic protocols and randomized algorithms, it is convenient
to use a process calculus which allows compositional specifications: compo-
nents of the system are specified first, and then combined into larger spec-
ifications by means of process operators such as the parallel composition or
non-deterministic choice. An important issue that arises when deriving such a
calculus is which process equivalence to choose, and, having chosen an equiv-
alence, which process operators are preserved under all contexts, or, in other
words, is the chosen equivalence a congruence for the process operators? The
choice of the equivalence depends on the power of discriminating between com-
putations that is necessary for the applications at hand, and can be linear-
time, branching-time, or a suitable variant. The congruence property allows
to ‘collapse’ all equivalent processes into a single object, which can prove use-
ful when e.g. constructing data structures for automatic verification (as in
e.g. the model checker fdr2 [21]). It is also a prerequisite when constructing
a denotational model for the calculus which is fully abstract , i.e. the denota-

c©1998 Published by Elsevier Science B. V.

Kwiatkowska and Norman

tions of two processes are equal precisely when their operational meanings are
equivalent.

Many probabilistic extensions of process calculi have been proposed to
date, based on CCS [17], CSP [5] and ACP [4] and including amongst others
[6,7,16,19,23]. Likewise, several probabilistic equivalences have been intro-
duced, for example: probabilistic bisimulation, defined by Larsen and Skou
[14] for reactive systems and extended with non-determinism by Hansson [7];
probabilistic equivalences of Jou and Smolka [11]; probabilistic simulation of
Segala and Lynch [22]; Wang Yi and Larsen’s testing equivalence [24]; and
CSP equivalences of Morgan et al. [19], Lowe [16] and Seidel [23]. The above
equivalences differ in their discriminating power, and also in how they in-
teract with process operators [11]. Generally, if one works with a fine (or
strong) equivalence such as probabilistic bisimulation then almost all CCS or
CSP operators can be adapted to the probabilistic setting. For example, van
Glabbeek et al. [6] show that probabilistic bisimulation is a congruence over
their calculus PCCS (which contains all the usual SCCS operators) and Baier
and Kwiatkowska [2] show congruence properties of full CCS extended with
action-guarded probabilistic choice. However, there are cases when probabilis-
tic bisimulation is too fine, as it discriminates between processes that cannot
be distinguished under a realistic testing scenario.

One alternative is to work with a weaker (or coarser) equivalence, for ex-
ample extensions of the traces and failures CSP equivalences [5], which are
essentially testing equivalences, and hence will only distinguish processes that
can be distinguished under a realistic testing scenario. The difficulty with this
approach is that only a subset of operators can be considered if we wish to
ensure our equivalence is a congruence; the latter is an important property,
since without it any resulting denotational model will not be compositional.
Examples of such difficulties include Jou and Smolka [11], where even restric-
tion forces both trace and failure equivalence to fail to be congruences, and
[23] and [16], where hiding cannot be defined.

A further complication is that in some process calculi, such as those that
derive from CSP, there is a distinction between a process (the software behind
the black box) and an environment (the user that interacts with the black
box by means of pressing buttons that cause it to perform actions), which is
reflected in the presence of two choice operators: internal (determined by the
process) and external (determined by the environment). Each choice opera-
tor satisfies a set of intuitive axioms which must be preserved when enriching
CSP with probabilistic choice. We stress that it would be inappropriate to
replace non-deterministic choice with probabilistic choice, as both arise natu-
rally in, and are therefore needed to model, randomized distributed systems:
probabilistic choice is made internally according to a probability distribution,
whereas non-deterministic choice is made by a scheduler (or a demon) that
decides which independently acting component of a distributed system should
make a move next.

2

Kwiatkowska and Norman

The aim of this paper is to derive an appropriate process equivalence for
the CSP calculus extended with action-guarded probabilistic choice which is
a congruence for a large subset of the CSP process operators. The proba-
bilistic choice we consider is internal , i.e. made neither by the environment
nor by the process but according to a given probability distribution. As a
result, our equivalence is applicable when the outcome of a probability distri-
bution is not affected by actions or environment choices, as e.g. in the exam-
ple of scratch cards [19], but would have to be extended to handle external
probabilistic choices. The choice of CSP means that we have to reject fully
branching-type equivalences such as probabilistic bisimulation, and instead
derive an equivalence based on testing . We use Larsen and Skou’s reactive
transition systems suitably generalised to take account of the three kinds of
choice: non-deterministic, deterministic and probabilistic. Milner’s button
pushing experiments scenario is extended with random experiments, and the
testing equivalence defined so that two processes are identified precisely if they
agree on the outcome of all the experiments.

We show that thus defined equivalence is a congruence for most of the
CSP operators (we are not able to deal with hiding and asynchronous paral-
lel). We then formulate a metric-space denotational semantics based on the
constructions of de Bakker and Zucker [3] and show it is fully abstract, in the
sense that it maps equivalent processes on to the same denotation. In [13,20]
the equivalence considered here is endowed with a logical characterization in
terms of the quantitative variant of the Hennessy-Milner Logic introduced in
[9]. This completes the work started in [9] by characterizing the equivalence
induced by (a variant of) the quantitative HML.

Related research concerning probabilistic extensions of CSP includes the
work of Seidel [23], where the difference from the standard CSP is that an
internal probabilistic choice operator replaces the internal (non-deterministic)
choice operator, and so the model constructed is fully deterministic. Simi-
larly, in Lowe [15] non-deterministic choice is replaced by internal probabilistic
choice, and external choice by prioritised choice. The result is a rather com-
plex semantic model in which all forms of choice are probabilistic in nature.
Lowe [16] has since considered a model which includes internal probabilistic
choice, external choice and internal choice, but unfortunately the equivalences
considered fail to be congruences. Similarly to [16], Morgan et al. [19] add
probabilistic choice to CSP by adding an extra operator, and therefore the
original external and internal choice remain part of their model. They give
denotational semantics to this calculus by applying the probabilistic power-
domain construction of Jones and Plotkin [10] (which is possible over any
directed complete partial order) to an extended failures model for CSP. Intu-
itively, they consider probabilistic processes as probability distributions over
the non-probabilistic processes of CSP, where, for any probabilistic process E,
the value corresponding to any process P of CSP is the probability that E is
the process P . There are, however, problems with the behaviour of certain

3

Kwiatkowska and Norman

operators in their model, for example internal choice fails to be idempotent.
Solutions to these problems have been investigated in [18].

As far as metric-space denotational models are concerned, we should men-
tion the metric model of [12] where a deterministic subcalculus of CCS ex-
tended with action-guarded probabilistic choice was considered, and that of
Baier and Kwiatkowska [2] for full CCS extended with action-guarded proba-
bilistic choice.

2 The Model and Testing Equivalence

In this section we overview the definitions necessary for the technical develop-
ment included in the remainder of this paper; for detailed justification of the
constructions see [13,20]. First, we recall the definition of our model, called
reactive probabilistic transition systems, which extend Larsen and Skou’s prob-
abilistic labelled transition systems [14] by allowing processes of the system
to exhibit three types of choice: (internal action-guarded) probabilistic, ex-
ternal (deterministic) and internal (non-deterministic). Next we define the
testing equivalence [13,20] over reactive probabilistic transition systems which
will distinguish two processes only if they can be differentiated by means of
experiments.

A (discrete) probability distribution on a set D is a function π : D −→
[0, 1] such that

∑
d∈D π(d) = 1. We use µ(D) to denote the set of discrete

probability distributions on D. A subset X of the cartesian product A× S of
sets A and S is said to satisfy the reactiveness condition if, for any distinct
(a1, s1), (a2, s2) ∈ X: a1 6= a2. We let Pfr(· × ·) denote the powerset operator
restricted to only finite reactive subsets of cartesian products satisfying the
reactiveness condition.

Definition 2.1 [13,20] A Reactive Probabilistic Transition System is a tuple
(R,Act ,→), where R is a set of states, Act is a finite set of actions and → a
transition relation

→ ⊆ R×Pfr(Act × µ(R))

satisfying: for all E ∈ R there exists S ∈ Pfr(Act×µ(R)) such that (E, S) ∈→.
We write E → S instead of (E, S) ∈→.

The elements E ∈ R of a reactive probabilistic transition system exhibit: non-
deterministic choice between reactive sets associated with E via the transition
relation →, with each such set S = {(a1, π1), . . . , (am, πm)} modelling a pro-
cess, deterministic on its first step, that offers a menu a1, . . . , am of actions to
the environment; deterministic choice between the actions of the menu made
by the environment; and action-guarded probabilistic choice made according to
the unique distribution πi following a selection of action ai from the menu. The
models of [14] correspond to the class of deterministic reactive probabilistic
transition systems.

4

Kwiatkowska and Norman

We now define the testing preorder and equivalence for reactive proba-
bilistic transition systems as introduced in [13,20]. We extend Milner’s but-
ton pushing experiments [17] for transition systems with random experiments ,
that is, tests which have as outcome the probability of the process passing the
given test 1 . Two experiments are said to be independent if they are associated
with pressing different buttons in the first step. To capture the three types of
choice exhibited by processes of a reactive probabilistic transition system, we
introduce the following three respective experiments:

(i) a.t, where a ∈ Act : push the a-button and then, if the button goes down,
perform the experiment t.

(ii) (t1, . . . , tm), where for all 1 ≤ i 6= j ≤ m the experiments ti and tj are
independent: make m copies of the process being tested and then perform
the experiment ti on one of the copies for all 1 ≤ i ≤ m.

(iii) (|t|): make sufficiently many copies of the process being tested, so that
any non-deterministic choice the process can make will occur on at least
one of the copies made, and then perform the experiment t on each of
the copies.

Intuitively, the success or failure of a process passing an experiment corre-
sponds to the success or failure of one run (or execution) of the process being
experimented on, under different conditions: (t1, . . . , tm) corresponds to the
changes in the environment (e.g. users selecting actions from menus), whereas
(|t|) corresponds to the changes the demons introduce to influence the non-
deterministic choices that the processes make.

Formally, the testing language Tω is given as follows, where we use [t, . . . , t]
to distinguish the different types of tests and apply the same restriction to this
construct as to (t, . . . , t). Let T and Tω, with elements t and T respectively,
be the testing languages defined inductively by:

r ::= ω | [a.T, . . . , a.T]

t ::= (|r|)

T ::= (t, . . . , t)

where a ∈ Act .

The outcome of a random experiment is captured by a pair of maps Rglb

and Rlub from R and Tω to the unit interval which, for any process E ∈ R
and test (|r|) ∈ T, yield the greatest lower bound and the least upper bound
on the probability of E passing the test r respectively. This is because in the
presence of non-determinism we are unable to calculate the exact probability
of processes passing the tests, and instead choose to estimate the worst case
and the best case outcome, which in turn yields an interval of probabilities.
This is the only realistic option since we cannot establish the frequency of non-

1 Our testing scenario differs from that of Larsen and Skou’s in that we attach a different
meaning to the phrase “the probability of the process passing a test [13,20]”.

5

Kwiatkowska and Norman

deterministic choices, and thus there is no way of calculating any meaningful
average. We mention that intervals were also used in [24].

Definition 2.2 [13,20] Let Rglb, Rlub : R −→ (Tω −→ [0, 1]) be the maps
defined inductively on Tω where R∗ stands for either Rglb or Rlub. For any
E ∈ R put:

Rglb(E)((|r|)) = min
E→S

Rglb(S)(r), Rlub(E)((|r|)) = max
E→S

Rlub(S)(r)

and R∗(E)((t1, . . . , tm)) =
m∏

j=1

R∗(E)(tj)

where for any S ∈ Pfr(Act × µ(R)) and 1 ≤ i ≤ m put:

R∗(S)(ω) = 1, R∗(S)([a1.T1, . . . , am.Tm]) =
m∏

i=1

R∗(S)(ai.Ti) and

R∗(S)(a.T) =

∑

F∈R
π(F) · R∗(F)(T) if (a, π) ∈ S for some π ∈ µ(R)

0 otherwise.

With the help of the above maps, we are now in a position to define
our operational order and subsequent equivalence on all reactive probabilistic
transition systems. We simply require that the process higher up the order
must pass all tests with probability at least as high as those below. It turns
out that we need only consider the tests T, as opposed to the (larger) set of
tests Tω.

Definition 2.3 [13,20] For any E, F ∈ R, E vglb F if Rglb(E)(T) ≤ Rglb(F)(T)
and E vlub F if Rlub(E)(T) ≤ Rlub(F)(T) for all T ∈ Tω respectively. More-
over, for any E, F ∈ R, E vR F if E vglb F and E vlub F , and E

R∼F if
E vR F and F vR E.

Thus, the order vR is an intersection of orders vglb and vlub. The equivalence
R∼ is coarser than probabilistic bisimulation [14], and yet non-probabilistic

branching time. It is finer than the CSP equivalences of [16,23] but incompa-
rable to that of [19].

3 The Process Calculus

In this section, we present the process calculus for reactive probabilistic pro-
cesses RP, based on CSP [5,8,21], in which prefixing is replaced with action-
guarded probabilistic choice. We begin by introducing the notation necessary
to derive our calculus and investigate its properties.

Definition 3.1 (Process Calculus Notation)

• Act is a (finite) set of actions (or labels) that processes can perform (ranged
over by a, b . . .) and B is any subset of Act .

• {µi | i ∈ I} is any countable indexed subset of (0, 1] such that
∑

i∈I µi = 1.

6

Kwiatkowska and Norman

• X is the set of process variables (ranged over by x, y . . .).

• λ is a relabelling function, that is, a function from Act to Act ; we also
require that λ is bijective.

The following notation pertains to our testing scenario. We write a ∈ t (a
occurs in the test t) if t’s corresponding button-pushing experiment involves,
at some stage, pressing the a–button. Formally, we can define this by induction
on tests: for any a ∈ Act : a 6∈ (|ω|), a ∈ (|[a1, T1, . . . , am.Tm]|) if either a = ai,
or a ∈ Ti for some 1 ≤ i ≤ m, and a ∈ (ti, . . . , tm) if a ∈ ti for some
1 ≤ i ≤ m. We also need to extend any relabelling function λ : Act → Act
to a function on our testing language T. Again, this can be done by induction
on tests as follows: we define the extended map λ : T→ T by putting: λ(ω)

def
=

ω and λ([a.T, . . . , a.T])
def
= [λ(a).λ(T), . . . , λ(a).λ(T)], λ((|r|)) def

= (|λ(r)|) and

λ((t, . . . , t))
def
= (λ(t), . . . , λ(t)).

The calculus RP, which derives its syntax from that of CSP, is given below.

Definition 3.2 The set of RP expressions is given by the syntax:

F ::= x | 0 | a.
∑
i∈I

µi.Fi | F1 uF2 | F1 tuF2 | F1 ‖F2 | F |̀B | F [λ] | fixx.F.

As usual, 0 denotes the inactive process, F1 uF2 internal choice, F1 tuF2 exter-
nal choice, F1 ‖F2 (synchronous) parallel composition, F |̀B restriction, F [λ]
relabelling and fixx.F recursion. Action-guarded probabilistic choice is de-
noted by a.

∑
i∈I µi.Fi. Observe that prefixing is a special case of probabilistic

choice: a → F and a.F (prefixing in CSP and CCS notation respectively) are
equivalent to a.1.F , meaning after a is performed the process becomes F with
probability 1.

As is customary, since the above syntax allows variables to occur freely in
expressions, we will only consider guarded and closed expressions as terms of
our calculus, denoting the set of guarded expressions of RP by G and the set
of processes (expressions without free or unguarded variables) by Pr.

3.1 Operational Semantics

We give operational semantics for the calculus RP in terms of reactive prob-
abilistic transition systems, where the states are the processes of RP and
→ ⊆ Pr × Pfr(Act × µ(Pr)) is the smallest relation satisfying the following
conditions:

(i) O[[0]] → ∅.
(ii) O[[a.

∑
i∈I µi.Fi]] → {(a, π)} such that for any F ∈ Pr: π(F)

def
=

∑
i∈I

Fi=F

µi.

(iii) O[[E1 uE2]] → S, if O[[E1]] → S or O[[E2]] → S.

(iv) O[[E1 tuE2]] → S, if O[[E1]] → S1 and O[[E2]] → S2 such that S is a

7

Kwiatkowska and Norman

maximal reactive subset of S1 ∪ S2.

(v) O[[E1 ‖E2]] → S, if O[[E1]] → S1 and O[[E2]] → S2 such that (a, π) ∈ S if
and only if there exists (a, πi) ∈ Si for i ∈ {1, 2}, and for any F ∈ Pr:

π(F)
def
=

 π1(F1) · π2(F2) if F = F1 ‖F2

0 otherwise.

(vi) O[[E |̀B]] → S, if O[[E]] → S ′ such that (a, π) ∈ S if and only if there
exists (a, π′) ∈ S ′, a ∈ B and for any F ∈ Pr:

π(F)
def
=

 π′(F ′) if F = F ′ |̀B

0 otherwise.

(vii) O[[E [λ]]] → S, if O[[E]] → S ′ such that (a, π) ∈ S if and only if there
exists (λ−1(a), π′) ∈ S ′ and for any F ∈ Pr:

π(F)
def
=

 π′(F ′) if F = F ′ [λ]

0 otherwise.

(viii) O[[fixx.E]] → S, if O[[E{fixx.E/x}]] → S, where E{F/x} denotes the
result of changing all free occurrences of x in E by F , with change of
bound variables to avoid clashes.

With the exception of the rule for tu, all the above transition rules are as
expected. The rule for tu ensures that deterministic choice is made be-
tween distinct initial actions of the subprocesses, which degenerates to a
non-deterministic choice between the corresponding distributions when sub-
processes can perform the same action as their initial move. To see this
consider the following examples. First, if O[[E1]] → {(a, π)} and O[[E2]] →
{(b, π′)} where a 6= b, then from the transition rules we have O[[E1 tuE2]] →
{(a, π), (b, π′)}, and hence E1 tuE2 makes a deterministic choice between the
actions a and b. A a second example, suppose O[[E1]] → {(a, π), (c, π1)} and
O[[E2]] → {(b, π′), (c, π2)} for some distinct actions a, b and c, then O[[E1 tuE2]]
→ {(a, π), (b, π′), (c, πi)} for i ∈ {1, 2}, and thus E1 tuE2 makes a determin-
istic choice between the actions a, b and c, but there is a non-deterministic
choice between the distributions π1 and π2 when performing the action c.

We show that the above semantics is well-defined by means of the following
proposition.

Proposition 3.3 If E ∈ Pr and O[[E]] → S, then S ∈ Pfr(Act × µ(Pr)).

Proof. The proof follows by induction on the structure of E ∈ Pr. 2

3.2 RP and the testing order vR

Using the operational semantics defined above, we now relate the order vR to
RP. First, it follows from Proposition 3.3 that we can calculate Rglb(O[[E]])(t)

8

Kwiatkowska and Norman

and Rlub(O[[E]])(t) for all E ∈ Pr and t ∈ T, and hence the order vR is well-
defined on the set {O[[E]] |E ∈ Pr}. We therefore begin by investigating the
properties of the maps Rglb and Rlub with respect to the processes Pr and
semantic operators of RP. As usual, we extend the order vR to all guarded
expressions by means of the following definition.

Definition 3.4 For all F, G ∈ G, O[[F]] vRO[[G]] if and only if O[[F{Ẽ/x̃}]] vR

O[[G{Ẽ/x̃}]] for all Ẽ ⊆ Pr, where the free variables of F and G are contained
in the vector of variables x̃.

With the help of the above definition, all results for the set of processes of RP
will also hold for the guarded terms of RP, and hence for the remainder of this
section we will only prove results with respect to processes. Furthermore, to
ease notation, let R∗ denote either Rglb or Rlub and for any E ∈ Pr and t ∈ T

we will denote R∗(O[[E]])(t) by R∗(E)(t).

Lemma 3.5 For all E1, E2, E ∈ Pr, t ∈ T, B ⊆ Act and relabelling function
λ:

(a) Rglb(E1 uE2)(t) = min{Rglb(E1)(t), Rglb(E2)(t)}

(b) Rlub(E1 uE2)(t) = max{Rlub(E1)(t), Rlub(E2)(t)}

(c) R∗(E1 ‖E2)(t) = R∗(E1)(t) · R∗(E2)(t)

(d) R∗(E |̀B)(t) =

 0 if a ∈ t for any a ∈ Act \B

R∗(E)(t) otherwise.

(e) R∗(E [λ])(t) = R∗(E)(λ−1(t)).

Proof. The proofs of (a) and (b) follow by Definition 2.2 and the transition
rules, and the remaining cases follow by induction on (|r|) ∈ T. We only
consider the case for Rglb and ‖, the other cases follow similarly. If r = ω,
then by definition of Rglb for any E1, E2 ∈ Pr: Rglb(E1 ‖E2)((|r|)) = 1 = 1 ·1 =
Rglb(E1)((|r|)) · Rglb(E2)((|r|)).

If r = [a1.T1, . . . , am.Tm], then Ti is of the form (ti1, . . . , t
i
mi

) where tij ∈ T

for all 1 ≤ j ≤ mi and 1 ≤ i ≤ m. Therefore, for any E1, E2 ∈ Pr and
1 ≤ i ≤ m:

Rglb(E1 ‖E2)(Ti) = Rglb(E1)(Ti) · Rglb(E2)(Ti).(1)

by induction and the definition of Rglb. Next consider any S ∈ Pfr(Act ×
µ(Pr)) such that O[[E1 ‖E2]] → S, then by definition of the transition rules
there exists associated S1, S2 ∈ Pfr(Act × µ(Pr)) such that O[[E1]] → S1 and
O[[E2]] → S2, and hence to ease notation we will denote S by S1 ‖S2. If we
now consider any 1 ≤ i ≤ m we have the following two possibilities:

(i) (ai, π) 6∈ S1 ‖S2 for any π ∈ µ(Pr), then without loss of generality we can
suppose (ai, π) 6∈ S1 for any π ∈ µ(Pr), and therefore:

Rglb(S1 ‖S2)(ai.Ti) = Rglb(S1)(ai.Ti) · Rglb(S2)(ai.Ti)

9

Kwiatkowska and Norman

by definition of Rglb.

(ii) (ai, π) ∈ S1 ‖S2 for some π ∈ µ(Pr), then (ai, π1) ∈ S1 and (ai, π2) ∈ S2

for some π1, π2 ∈ µ(Pr) by definition of the transition rules, and hence
by definition of Rglb and the transition rules Rglb(S1 ‖S2)(ai.Ti) equals:

=
∑

F1‖F2∈Pr

(
π1(F1) · π2(F2)

)
· Rglb(F1 ‖F2)(Ti)

=
∑

F1‖F2∈Pr

(
π1(F1) · π2(F2)

)
·
(
Rglb(F1)(Ti) · Rglb(F2)(Ti)

)
by (1)

=

(∑
F1∈Pr

π1(F1) · Rglb(F1)(Ti)

)
·
(∑

F2∈Pr

π2(F2) · Rglb(F2)(Ti)

)
rearranging

= Rglb(S1)(ai.Ti) · Rglb(S2)(ai.Ti) by Definition 2.2.

Since these are the only possible cases and this was for arbitrary 1 ≤ i ≤ m
and S1, S2 ∈ Pfr(Act × µ(Pr)) such that O[[E1]] → S1 and O[[E2]] → S2, by
definition of Rglb it follows that:

Rglb(S1 ‖S2)(r) = Rglb(S1)(r) · Rglb(S2)(r)(2)

for all S1, S2 ∈ Pfr(Act × µ(Pr)) such that O[[E1]] → S1 and O[[E2]] →
S2. Finally, by definition of Rglb and using the notation above we have
Rglb(E1 ‖E2)((|r|)) is equal to:

= min{Rglb(S1 ‖S2)(r) | O[[E1]] → S1 & O[[E2]] → S2}

= min{Rglb(S1)(r) · Rglb(S2)(r) | O[[E1]] → S1 & O[[E2]] → S2}

by (2)

= (min{Rglb(S1)(r) | O[[E1]] → S1}) · (min{Rglb(S2)(r) | O[[E2]] → S2})

rearranging

= Rglb(E1)(r) · Rglb(E2)(r) by Definition 2.2

and hence the lemma holds for Rglb and ‖ by induction on t ∈ T. 2

The next two lemmas establish connections between the orders vglb and vlub

on processes and the maps Rglb and Rlub which record the outcomes of random
experiments.

Lemma 3.6 For all E, F ∈ Pr, O[[E]] vglbO[[F]] if and only if for any (|r|) ∈ T

and S ′ ∈ Pfr(Act × µ(Pr)) such that O[[F]] → S ′ there exists S ′′ ∈ Pfr(Act ×
µ(Pr)) such that O[[E]] → S ′′ and Rglb(S

′)(r) ≥ Rglb(S
′′)(r).

Proof. First, if E, F ∈ Pr and O[[E]] vglb O[[F]], then for any (|r|) ∈ T and

10

Kwiatkowska and Norman

S ′ ∈ Pfr(Act × µ(Pr)) such that O[[F]] → S ′:

Rglb(S
′)(r) ≥ min{Rglb(S)(r) | O[[F]] → S}

= Rglb(F)((|r|)) by definition of Rglb

≥ Rglb(E)((|r|)) since E vglb F

= min{Rglb(S)(r) | O[[E]] → S} by definition of Rglb

= Rglb(S
′′)(r) for some S ′′ such that O[[E]] → S ′′

and since this was for any (|r|) ∈ T and S ′ ∈ Pfr(Act × µ(Pr)) such that
O[[F]] → S ′, the “if” direction holds.

Second, suppose for any (|r|) ∈ T and S ′ ∈ Pfr(Act × µ(Pr)) such that
O[[F]] → S ′ there exists S ′′ ∈ Pfr(Act × µ(Pr)) such that O[[E]] → S ′′ and
Rglb(S

′)(r) ≥ Rglb(S
′′)(r). Then for any (|r|) ∈ T, Rglb(F)((|r|)) equals:

= min{Rglb(S)(r) | O[[F]] → S} by definition of Rglb

= Rglb(S
′)(r) for some S ′ such that O[[F]] → S ′

≥ Rglb(S
′′)(r) for some S ′′ such that

O[[E]] → S ′′ by hypothesis

≥ min{Rglb(S)(r) | O[[E]] → S} since O[[E]] → S ′′

= Rglb(E)((|r|)) by definition of Rglb

and since this was for arbitrary (|r|) ∈ T, O[[E]] vglbO[[F]] and hence the “only
if” direction holds. 2

Lemma 3.7 For all E, F ∈ Pr, O[[E]] vlubO[[F]] if and only if for any (|r|) ∈ T

and S ′ ∈ Pfr(Act × µ(Pr)) such that O[[E]] → S ′ there exists S ′′ ∈ Pfr(Act ×
µ(Pr)) such that O[[F]] → S ′′ and Rlub(S

′)(r) ≤ Rlub(S
′′)(r).

Proof. The proof is the dual of Lemma 3.6 above. 2

The next two lemmas demonstrate that the operational semantics is well-
behaved on guarded terms with respect to substitution of free variables.

Lemma 3.8 If G ∈ G such that G{E/x} ∈ Pr for all E ∈ Pr, then there
exists a set SG ⊆ Pfr(Act ×µ(RP)) such that for any E ∈ Pr, O[[G{E/x}]] →
SE if and only if there exists SG ∈ SG where (a, πE) ∈ SE if and only if
(a, πG) ∈ SG and for any F ∈ Pr:

πE(F) =

 πG(H) if F = H{E/x} for some H ∈ RP

0 otherwise.

Proof. The proof follows by induction on the structure of G ∈ G and the
transition rules. 2

11

Kwiatkowska and Norman

Lemma 3.9 For any H ∈ RP and F, F ′ ∈ Pr such that H{E/x} ∈ Pr for all
E ∈ Pr and R∗(F)(t) ≤ R∗(F

′)(t) for all t ∈ T then:

R∗(H{F/x})(t) ≤ R∗(H{F ′/x})(t) for all t ∈ T.

Proof. Consider any H ∈ RP and F, F ′ ∈ Pr such that H{E/x} ∈ Pr for
any E ∈ Pr and R∗(F)(t) ≤ R∗(F

′)(t) for all t ∈ T. We prove the lemma by
induction on the structure of H ∈ RP.

(i) If H ∈ X , then by the hypothesis H = x and for any t ∈ T:

R∗(H{F/x})(t) = R∗(F)(t) ≤ R∗(F
′)(t) = R∗(H{F ′/x})(t).

(ii) If H = a.
∑

i∈I µi.Hi and t ∈ T, then we have the following three cases to
consider.
(a) t = (|ω|), then R∗(H{F/x})(t) = 1 = R∗(H{F ′/x})(t) by Defini-

tion 2.2.
(b) t 6= (|ω|) and t 6= (|[a.T]|) for any T ∈ Tω, then R∗(H{F/x})(t) = 0 =

R∗(H{F ′/x})(t) by Definition 2.2 and the transition rules.
(c) t = (|[a.T]|) for some T ∈ Tω, then T = (t1, . . . , tm) where ti ∈ T for

all 1 ≤ i ≤ m, and hence by induction and Definition 2.2 we have:

R(Hi{F/x})(T) ≤ R(Hi{F ′/x})(T) for all i ∈ I.(3)

Furthermore, by Definition 2.2 and the transition rules:

R∗(H{F/x})((|[a.T]|)) =
∑
i∈I

µi · R∗(Hi{F/x})(T)

≤
∑
i∈I

µi · R∗(Hi{F ′/x})(T) by (3)

= R∗(H{F ′/x})((|[a.T]|)).

(iii) If H = H1 uH2, H = H1 tuH2, H = H1 ‖H2, H = H ′ |̀B or H = H ′ [λ],
the result follows using induction and Lemma 3.5.

(iv) If H = fixy.H
′, then either x = y in which case x is not free in H,

therefore H{F/x} = H{F ′/x} = H, and hence the lemma holds in this
case, or y 6= x in which case for any t ∈ T and E ∈ Pr since x 6= y by
definition of the transition rules we can show:

R∗(H{E/x})(t) = R∗(H
′{H/y}{E/x})(t).(4)

Therefore, for any t ∈ T:

R∗(H{F/x})(t) = R∗(H
′{H/y}{F/x})(t)

≤ R∗(H
′{H/y}{F ′/x})(t) by induction on H ′{H/y}

= R∗(H{F ′/x})(t) by (4)

and hence the lemma holds in this case.

2

Using the lemmas above we can now show that
R∼ is a congruence over RP.

12

Kwiatkowska and Norman

Proposition 3.10 (Congruence) The pre-order vR is preserved by all con-
texts in the language RP. Formally, if we have that O[[Ei]] vR O[[Fi]] for all
i ∈ I and O[[E]] vRO[[F]], then:

O[[a.
∑

i∈I µi.Ei]] vRO[[a.
∑

i∈I µi.Fi]]

O[[E tuG]] vRO[[F tuG]]

O[[E uG]] vRO[[F uG]]

O[[E ‖G]] vRO[[F ‖G]]

O[[E |̀B]] vRO[[F |̀B]]

O[[E [λ]]] vRO[[F [λ]]]

O[[fixx.E]] vRO[[fixx.F]].

Proof. The proof follows straightforwardly from Lemma 3.5, except in the
cases of tu and fix which we now prove.

In the case for tu , suppose E, F, G ∈ Pr and O[[E]] vR O[[F]]. If S ′ ∈
Pfr(Act × µ(Pr)) and O[[F tuG]] → S ′, then by definition of the transition
rules there exist S1, S2 ∈ Pfr(Act × µ(Pr)) such that O[[F]] → S1, O[[G]] → S2

and S ′ is a maximal reactive subset of S1 ∪S2. Now, considering any (|r|) ∈ T,
either r = ω, in which case since by construction O[[E tuG]] → S ′′ for some
S ′′ ∈ Pfr(Act ×µ(Pr)), by definition of Rglb: Rglb(S

′)(ω) = 1 = Rglb(S
′′)(ω), or

r is of the form [a1.T1, . . . , am.Tm], then putting:

r2 = [a′1.T
′
1, . . . , a

′
m′ .T ′

m′]

where for any 1 ≤ i ≤ m′ there exists a unique 1 ≤ j ≤ m such that a′i.T
′
i =

aj.Tj and (ai, π) ∈ S ′ ∩ S2, and putting:

r1 = [a′′1.T
′′
1 , . . . , a′′m′′ .T ′′

m′′]

where for any 1 ≤ i ≤ m′′, there exists a unique 1 ≤ j ≤ m such that
a′′i .T

′′
i = aj.Tj and a′k.T

′
k 6= aj.Tj for all 1 ≤ k ≤ m′. By definition of Rglb we

have:

Rglb(S
′)(r) = Rglb(S1)(r1) · Rglb(S2)(r2).

Moreover, since O[[E]] vR O[[F]], by definition O[[E]] vglb O[[F]] and since
O[[F]] → S1, Lemma 3.6 implies there exists S ′1 ∈ Pfr(Act × µ(Pr)) such
that Rglb(S

′
1)(r1) ≤ Rglb(S1)(r1) and O[[E]] → S ′1. Furthermore, it follows by

definition of the transition rules that there exists S ′′ ∈ Pfr(Act × µ(Pr)) such
that O[[E tuG]] → S ′′ and

Rglb(S
′′)(r) = Rglb(S

′
1)(r1) · Rglb(S2)(r2).

Combining the above, we have Rglb(S
′)(r) ≥ Rglb(S

′′)(r), and since this was for
any (|r|) ∈ T and S ′ ∈ Pfr(Act × µ(Pr)) such that O[[F tuG]] → S ′, Lemma 3.6
implies O[[E tuG]] vglbO[[F tuG]].

Similarly, using Lemma 3.7 instead of Lemma 3.6 and considering any
S ′ ∈ Pfr(Act × µ(Pr)) such that O[[E tuG]] → S ′, we can show O[[E tuF]] vlub

13

Kwiatkowska and Norman

O[[F tuG]], and thus, since vR is the intersection of the orderings vglb and vlub,
O[[E tuG]] vRO[[F tuG]] as required.

In the case for fix, to simplify the proof we only consider the case when E
and F have at most x as a free variable. Then by definition fixx.E, fixx.F ∈ Pr
and E{G/x}, F{G/x} ∈ Pr for all G ∈ Pr. Furthermore, since by hypoth-
esis O[[E]] vR O[[F]], we have O[[E{G/x}]] vR O[[F{G/x}]] for all G ∈ Pr by
Definition 3.4, and hence:

R∗(E{G/x})(t) ≤ R∗(F{G/x})(t) for all G ∈ Pr and t ∈ T.(5)

To prove O[[fixx.E]] vRO[[fixx.F]] by definition of vR, it is sufficient to show:

R∗(fixx.E)((|r|)) ≤ R∗(fixx.F)((|r|)) for all (|r|) ∈ T(6)

which we now prove by induction on (|r|) ∈ T, where to ease notation we let
E ′ = fixx.E and F ′ = fixx.F . If r = ω, then (6) holds by Definition 2.2.

If r is of the form [a1, T1, . . . , am.Tm], we first consider the test Ti for
any 1 ≤ i ≤ m. By definition of the testing language T, Ti is of the form
((|ri

1|), . . . , (|ri
mi
|)), and hence by Definition 2.2:

R∗(E
′)(Ti) =

mi∏
j=1

R∗(E
′)((|ri

j|))

≤
mi∏
j=1

R∗(F
′)((|ri

j|)) by induction

= R∗(F
′)(Ti) by Definition 2.2.

Therefore, by Lemma 3.9 we have:

R∗(H{E ′/x})(Ti) ≤ R∗(H{F ′/x})(Ti)(7)

for any H ∈ RP such that H{G/x} ∈ Pr for all G ∈ Pr.

Next, since by hypothesis F{G/x} ∈ Pr for all G ∈ Pr, using Lemma 3.8
we infer that for any SE′ ∈ Pfr(Act × µ(Pr)) such that O[[F{E ′/x}]] → SE′

there exists SF ′ ∈ Pfr(Act × µ(Pr)) where O[[F{F ′/x}]] → SF ′ , (a, πE′) ∈ SE′

if and only if (a, πF ′) ∈ SF ′ and for any G ∈ Pr:

πE′(G) =

 πF (H) if G = H{E ′/x} for some H ∈ RP

0 otherwise
(8)

and

πF ′(G) =

 πF (H) if G = H{F ′/x} for some H ∈ RP

0 otherwise
(9)

for some πF ∈ µ(RP).

Then, considering the test ai.Ti we have the following two cases:

(i) (a, π) 6∈ SE′ for any π ∈ µ(Pr) then (a, π) 6∈ SF ′ for any π ∈ µ(Pr), and
hence R∗(SE′)(ai.Ti) = 0 = R∗(S

′)(ai.Ti) by Definition 2.2.

(ii) (a, πE′) ∈ SE′ for some πE′ ∈ µ(Pr), then by Definition 2.2 and (8),

14

Kwiatkowska and Norman

R∗(SE′)(ai.Ti) equals:

=
∑

H∈RP

πF (H) · R∗(H{E ′/x})(Ti) for some πF ∈ µ(RP)

≤
∑

H∈RP

πF ′(H) · R∗(H{F ′/x})(Ti) by (7)

= R∗(SF ′)(ai.Ti) by Definition 2.2 and (9).

Now, since these are all the possible cases and this was for arbitrary 1 ≤
i ≤ m, we have R∗(SE′)(r) ≤ R∗(SF ′)(r) by Definition 2.2. Furthermore,
since SE′ ∈ Pfr(Act × µ(Pr)) was arbitrary, for any SE′ ∈ Pfr(Act × µ(Pr))
such that O[[F{E ′/x}]] → SE′ there exists SF ′ ∈ Pfr(Act × µ(Pr)) such that
O[[F{F ′/x}]] → SF ′ and Rlub(SE′)(r) ≤ Rlub(SF ′)(r). Furthermore, by symme-
try for any SF ′ ∈ Pfr(Act × µ(Pr)) such that O[[F{F ′/x}]] → SF ′ there exists
SE′ ∈ Pfr(Act × µ(Pr)) such that O[[F{E ′/x}]] → SE′ and Rlub(SE′)(r) ≤
Rlub(SF ′)(r). Putting this together, by Definition 2.2 we have

R∗(F{E ′/x})((|r|)) ≤ R∗(F{F ′/x})((|r|))

⇒ R∗(E{E ′/x})((|r|)) ≤ R∗(F{F ′/x})((|r|)) by (5)

⇒ R∗(E
′)((|r|)) ≤ R∗(F

′)((|r|)) by the transition rules

and hence (6) holds by induction as required. 2

3.3 Equational Laws

In this section, we investigate equational laws for RP. We first define the fol-
lowing “equality” and “order” relations co-inductively over the set of processes
of RP.

Definition 3.11 A relation ≡e⊆ Pr×Pr is an “equality” relation if whenever
E ≡e F :

(i) if O[[E]] → S ′ then O[[F]] → S ′′ such that S ′ ≡e S ′′

(ii) if O[[F]] → S ′′ then O[[E]] → S ′ such that S ′′ ≡e S ′

where for any S ′, S ′′ ∈ Pfr(Act×µ(RP)), S ′ ≡e S ′′ if whenever (a, π′) ∈ S ′ then
(a, π′′) ∈ S ′′ such that for any G′ ∈ RP there exists G′′ ∈ RP with G′ ≡e G′′

and π′(G′) = π′′(G′′), and vice versa.

Furthermore, a relation ve⊆ Pr × Pr is an “order” relation if whenever
E ve F :

if O[[E]] → S ′ then O[[F]] → S ′′ such that S ′ ve S ′′

where for any S ′, S ′′ ∈ Pfr(Act × µ(RP)), S ′ ve S ′′ if (a, π′) ∈ S ′ implies
(a, π′′) ∈ S ′′ such that for any G′ ∈ RP there exists G′′ ∈ RP with G′ ve G′′

and π′(G′) = π′′(G′′).

Now, following the standard techniques we introduce the maximum such
“equivalence” and “order” relations as our equality and order over RP.

15

Kwiatkowska and Norman

Definition 3.12 Let ≡ and v be the maximum “equality” relation and “or-
der” relation respectively.

We now list some of the equational laws of RP in Figure 1 below, where we
assume a, b ∈ Act are distinct.

E uE ≡ E

E uF ≡ F uE

E u (F uG) ≡ (E uF)uG

E tuF ≡ F tuE

E tu (F tuG) ≡ (E tuF)tuG

E tu (F uG) ≡ (E tuF)u (E tuG)

E u0 v E

E tu0 ≡ E

(a.
∑

i∈I µi.Ei)u (b.
∑

j∈J λj.Fj) v (a.
∑

i∈I µi.Ei)tu (b.
∑

j∈J λj.Fj)

(a.
∑

i∈I µi.Ei)u (a.
∑

j∈J λj.Fj) ≡ (a.
∑

i∈I µi.Ei)tu (a.
∑

j∈J λj.Fj)

E ‖F ≡ F ‖E

E ‖ (F ‖G) ≡ (E ‖F) ‖G

E ‖ (F uG) ≡ (E ‖F)u (E ‖F)

E ‖0 ≡ 0

(a.
∑

i∈I µi.Ei) ‖ (b.
∑

j∈J λj.Fj) ≡ 0

(a.
∑

i∈I µi.Ei) ‖ (a.
∑

j∈J λj.Fj) ≡ a.
∑

i∈I & j∈J (µi · λj) .Ei ‖Fj

E |̀ Act ≡ E

(E |̀B1) |̀B2 ≡ E |̀ (B1 ∩B2)

E |̀ ∅ ≡ 0

E [idAct] ≡ E

(E [λ1]) [λ2] ≡ E [λ2 ◦ λ1]

fix x.E ≡ E{fix x.E/x}

Fig. 1. Equational Laws of RP.

We see that many of the laws coincide with those for non-probabilistic process
calculi. For example, u is idempotent, symmetric and associative, and both

tu and ‖ are associative, symmetric and distribute through u . Also, we see

16

Kwiatkowska and Norman

that tu degenerates to u when processes can perform the same action. Other
equational laws for RP include those for restriction and relabelling, which
distribute over u , tu and ‖.

However, certain laws fail to extend from the non-probabilistic setting,
for example tu is not idempotent. To illustrate this consider the process
E = (a.1.0)u (b.1.0); then by definition of the transition rules we can represent
E and E tuE graphically as given in Figure 2 below.

Er
�

�
�

�=

Z
Z

Z
Z~

τ τ

b
11

a

r r
r r? ? ??

?

E tuEr
�

�
�

�=

Z
Z

Z
Z~

τ τ τ

a
1 11 1

b

rr r
rrr r

�

J
J

JĴ

a b rr
Fig. 2. Example to show external choice is not idempotent.

By definition of ≡, it is clear that E tuE 6≡ E.

Another standard CSP law that fails is that u no longer distributes
through tu . To illustrate this, suppose E is the process given above, F = b.1.0
and G = b.1.0. Then it is straightforward to show that: E u (F tuG) ≡ E and
(E uF)tu (E uG) ≡ E tuE, and therefore since E 6≡ E tuE: E u (F tuG) 6≡
(E uF)tu (E uG).

4 Denotational Semantics

In this section we present denotational semantics for our probabilistic calculus
RP, based on de Bakker and Zucker’s metric-space construction of denota-
tional semantics for non-probabilistic process calculi [3]. The reader should
note though that through the addition of probabilistic behaviour our setting
becomes more complex, and as a result several of the techniques of de Bakker
and Zucker and the more general metric constructions of America and Rutten
[1] could not be used. For example, we were unable to inductively define a
metric and use the categorical techniques of [1] to derive a domain equation for
reactive probabilistic processes. Instead, we use a metric simultaneously based
on both the tree-like “paths” that processes can perform and truncations, and
construct a complete metric space of reactive probabilistic processes via the
standard completion of the finite processes. For a more detailed account of
our construction and the problems encountered see [20].

We proceed by applying the techniques of [3] to derive an inductively
defined collection of carrier sets (Rn)n∈N, where the elements of the spaces
model finite reactive probabilistic processes. Intuitively, for any n ∈ N, Rn

models the reactive probabilistic processes capable of performing transitions
up to the depth n. First, however, we require the following definition.

Definition 4.1 For any sets A and R, let A ⇀ R denote the set of partial
maps from A to R. Furthermore, for any f ∈ A ⇀ S, let dom(f) denote the

17

Kwiatkowska and Norman

subset of A on which f is defined, and let ⊥∈ A ⇀ R be the totally undefined
function, that is, ⊥ is the partial map such that dom(⊥) = ∅.

Formally, we define the carrier sets (Rn)n∈N as follows, where Pfn(·) denotes
the powerset operator restricted to finite nonempty subsets.

Definition 4.2 (Finite reactive probabilistic processes) Let Rn, n ∈ N,
be a collection of carrier sets defined inductively by:

R0 = {⊥} and Rn+1 = Pfn(A ⇀ µ(Rn)).

Furthermore, let Rω = ∪nRn denote the set of reactive probabilistic processes
of bounded depth.

As mentioned above, the metric we introduce is based on the tree-like “paths”
that processes can perform and truncations, which we now introduce. First,
the set of “paths” that processes can perform, A∗

r , is defined as follows, where
Pfnr(· × ·) denotes the powerset operator restricted to finite nonempty subsets
of cartesian products satisfying the reactiveness condition.

Definition 4.3 Let An
r , n ∈ N, be the sets inductively defined as follows.

Put:

A0
r = Pfnr(A) and An+1

r = Pfnr

(
(A× Pfnr(A

n
r)) ∪ A

)
.

Furthermore, let A∗
r = ∪nA

n
r .

The elements of A∗
r can be thought of graphically as tree-like computation

paths. For example, {a1, (a2, {{b1, b2}, {c}})} ∈ A1
r can be represented as fol-

lows: r
�

�
�

�=

Z
Z

Z
Z~

a1 a2b r

�

J
J

JĴ

�

J
J

JĴ ?

τ τ

b1 b2 cb b
r r

b
Next we introduce the map V which calculates the probability of processes per-
forming “paths” in A∗

r . As already stated earlier, since processes can perform
non-deterministic choices we will be unable to calculate the exact probabil-
ities. To overcome this we let V take values in the set of closed intervals
(subsets) of [0, 1], denoted by the set I, which we endow with a distance dI .
Therefore, before we introduce the map V , we formally define I and introduce
the operators on I required in the definition of V , and also the definitions
pertaining to I that we will require later on in this section.

Definition 4.4 (Intervals) Let I = {[a, b] | 0 ≤ a ≤ b ≤ 1}. We now define
addition, multiplication, union and scalar multiplication on I as follows. For
all [a, b], [c, d] ∈ I and e ∈ [0, 1]:

18

Kwiatkowska and Norman

[a, b] + [c, d] = [a + c, b + d]

[a, b] · [c, d] = [a · c, b · d]

[a, b] t [c, d] = [min{a, c}, max{b, d}]
e · [a, b] = [e · a, e · b].

Furthermore, we introduce the orderings ≤left and ≤right and induced equiva-
lences =left and =right over I as follows. For all [a, b], [c, d] ∈ I:

[a, b] ≤left [c, d] if a ≤ c and [a, b] ≤right [c, d] if b ≤ d.

Proposition 4.5 For all finite I1, I2 ⊆ I: t[a,b]∈I1 [a, b] = t[c,d]∈I2 [c, d] if and
only if

min
[a,b]∈I1

[a, b] =left min
[c,d]∈I2

[c, d] and max
[a,b]∈I1

[a, b] =right max
[c,d]∈I2

[c, d]

where the minimum and maximum are taken with respect to the orderings ≤left

and ≤right respectively.

Definition 4.6 Let dI : I × I −→ [0, 1] be the map defined as follows. For
all [a1, b1], [a2, b2] ∈ I put:

dI([a1, b1], [a2, b2]) = max{|a1 − a2|, |b1 − b2|}.

Proposition 4.7 The mapping dI is a metric on I.

Lemma 4.8 For all [a, b], [c, d] ∈ I, 0 ≤ dI([a, b], [c, d]) ≤ 1.

Proposition 4.9 For all [a1, b1], [a2, b2] and [c, d] ∈ I:

(a) dI([a1, b1] · [c, d], [a2, b2] · [c, d]) ≤ dI([a1, b1], [a2, b2])

(b) dI([a1, b1] t [c, d], [a2, b2] t [c, d]) ≤ dI([a1, b1], [a2, b2]).

Proposition 4.10 If n ≥ 1 and {[ai, bi] | i ∈ {1, . . . , n}} and {[ci, di] | i ∈
{1, . . . , n}} are subsets of I, then there exists j ∈ {1, . . . , n} such that:

dI(tn
i=1[ai, bi],tn

i=1[ci, di]) ≤ dI([aj, bj], [cj, dj]).

We are now in a position to define V as follows. Given a “path” V in A∗
r

and a process p in Rω, the map V calculates the interval of probabilities to
which the probability of the process p performing V belongs.

Definition 4.11 Let V : (A∗
r×Rω) −→ I be the mapping defined inductively

on An
r as follows. For any f ∈ A ⇀ µ(Rω), a ∈ A, V ∈ An

r and V ∈ Pfnr(A
n
r)

put:

V(a, f) =

 [1, 1] if a ∈ dom(f)

[0, 0] otherwise

V(aV, f) =

∑

q∈Rω

f(a)(q) · V(V, q) if a ∈ dom(f)

[0, 0] otherwise

19

Kwiatkowska and Norman

V(V, f) =
∏

v∈V

V(v, f)

and furthermore for all p ∈ Rω put:

V(V, p) =
∏

V ∈V

V(V, p) and V(V, p) =
⊔
f∈p

V(V, f).

To show the well-definedness of the above map we use the following lemma.

Lemma 4.12 For all p ∈ Rω and V ∈ A∗
r : V(V, p) ∈ I.

Using the map V and metric dI defined above we can introduce a metric
on processes in Rω given below. For a pair of processes p, q we first calculate,
for each “path” V , the interval of probabilities of p performing V , and q
performing V respectively, and then take the max norm over the “paths” V
of the distance dI between thus computed intervals. Thus, the closer the
intervals of probabilities, the closer the processes are. Summation could not
be used in place of max since it is unbounded.

Proposition 4.13 Rω (and Rn for any n ∈ N) is a pseudo-metric space with
respect to the metric:

dV(p, q) = max
V ∈A∗

r

dI(V(V, p),V(V, q)).

Furthermore, 0 ≤ dV(p, q) ≤ 1 for all p, q ∈ Rω.

Intuitively, the metric dV over Rω gives us the correct notion of convergence
of Cauchy sequences. If we consider the sequence of processes 〈En〉n of RP
where En = a.(2−n).b.1.0 + a.(1 − 2−n).0 then, as n → ∞, the probability
of En performing the trace ab becomes more and more insignificant, that is,
the operational behaviour of En converges to the process a.1.0, and hence
we would expect the sequence 〈En〉n to be Cauchy. Now, for any n ∈ N the
distance between the denotations of En and En+1 with respect to the metric
dV would be 2−(n+1), and thus 〈En〉n is Cauchy as required. In contrast, with
respect to the classically derived ultra-metric of [2], the distance between En

and En+1 would be 1
2
, and so this convergence property would be lost.

Unfortunately, the pseudo-metric dV does not give us the Cauchy sequences
we would expect to model recursive reactive probabilistic processes. For ex-
ample, we would expect the sequence 〈Fn〉n where

Fn =

n times︷ ︸︸ ︷
a.1. . . . a.1.0

for all n ∈ N to be Cauchy so that the limit can then be used to model the
recursive process fix x.a.1.x. However, the distance between Fn and Fm for
any n 6= m with respect to the metric dV is 1, and thus 〈Fn〉n is not a Cauchy
sequence with respect to dV . To solve this problem we introduce truncations
of processes to the finite depth k ∈ N as follows.

Definition 4.14 (Truncations) Let f ∈ A ⇀ µ(Rω). For k ∈ N define the
kth truncation of f , f [k] ∈ A ⇀ µ(Rω) by induction on k ∈ N by putting:

20

Kwiatkowska and Norman

f [0] =⊥ and for any k ∈ N, dom(f [k + 1]) = dom(f) and for any a ∈
dom(f [k + 1]) and p ∈ Rω,

f [k + 1](a)(p) =
∑

q∈Rω
& q[k]=p

f(a)(q)

where for any q ∈ Rω and k ∈ N: q[k] = {g[k] | g ∈ q}.

The truncations of processes satisfy the properties given below, useful in the
proofs included in the remainder of this section.

Proposition 4.15 For all p, q ∈ Rω and k, m ∈ N:

(a) if p ∈ Rm, then p[k] ∈ Rk when k < m and p[k] = p otherwise.

(b) (p[m])[k] = p[min{m, k}].

(c) p[m] = q[m] if and only if p[k] = q[k] for all k ≤ m.

(d) dV(p[k], q[k]) ≤ dV(p, q).

Lemma 4.16 For all p ∈ Rω, V ∈ A∗
r and k ∈ N: V(V, p[0]) = [0, 0] and

V(V, p[k + 1]) =

V(V, p) if V ∈ Ak
r

[0, 0] otherwise.

Proof. The proof follows by induction on k ∈ N. 2

Now, using the metric dV together with truncations, we reach the following
metric on Rω, where the distance is set to an infinite sum of distances between
the truncations of the two processes with respect to the metric dV , with each
summand weighted by the depth of the truncation in inverse proportion.

Definition 4.17 For all p, q ∈ Rω, we define dω : Rω×Rω −→ [0, 1] as follows:

dω(p, q) =
∞∑

k=1

2−k · dV(p[k], q[k]).

Proposition 4.18 (Rω, dω) (and (Rn, dω) for any n ∈ N) is a pseudo-metric
space. Furthermore, 0 ≤ dω(p, q) ≤ 1 for all p, q ∈ Rω.

We now apply the standard metric completion technique to derive the
metric space (R, d) of (finite and infinite) reactive probabilistic processes.

Definition 4.19 Define the space (R, d) of reactive probabilistic processes as
the metric completion of (Rω, dω).

Since we have applied standard completion techniques, R consists of the set of
equivalence classes of Cauchy sequences of Rω under the equivalence ∼, where

〈pn〉n∈N ∼ 〈qn〉n∈N if and only if lim
n→∞

dω(pn, qn) = 0,

21

Kwiatkowska and Norman

and for any Cauchy sequences 〈pn〉n∈N and 〈qn〉n∈N the metric d is given by:

d(〈pn〉n∈N, 〈qn〉n∈N) = lim
n→∞

dω(pn, qn).

Categorical techniques of [1] have not been used to derive a domain equation
for reactive probabilistic processes as it is unclear how to define a functor to
represent this construction; this is due to the fact that our pseudo-metric dω is
not defined inductively in correspondence with the inductively defined metric
spaces.

We now introduce some useful lemmas concerning the Cauchy sequences
of Rω.

Lemma 4.20 For all p ∈ Rω, 〈p[n]〉n is a Cauchy sequence.

Lemma 4.21 If 〈pn〉n∈N is a sequence in Rω such that pn+1[n] = pn[n] for
all n ∈ N, then 〈pn〉n∈N is Cauchy and pm[n] = pn[n] for all m ≥ n ∈ N.
Furthermore, if 〈qn〉n∈N is a sequence in Pω such that qn+1[n] = qn[n] for all
n ∈ N and 〈pn〉n∈N ∼ 〈qn〉n∈N, then dω(pn[n], qn[n]) = 0 for all n ∈ N.

4.1 Modelling Semantic Operators of RP

Having obtained the complete metric space (R, d) (assuming A = Act), we
can now give denotational semantics for our language RP. The first step is the
introduction of the semantic operators: union (for non-deterministic choice),
deterministic choice, synchronous parallel, restriction and relabelling. We have
to verify that each operator is well-defined and continuous.

Definition 4.22 (Union) For any p, q ∈ Rω, let p∪ q be set-theoretic union.

Lemma 4.23 For all p, q ∈ Rω and n ∈ N: (p ∪ q)[n] = p[n] ∪ q[n].

Proposition 4.24 ∪ is continuous and well-defined on (Rω, dω).

Proof. Consider any p, q, r ∈ Rω, V ′ ∈ A∗
r and n ∈ N. Then by Lemma 4.23

and the definition of V , dI(V(V ′, (p ∪ r)[n]),V(V ′, (q ∪ r)[n]) equals:

= dI(V(V ′, p[n]) t V(V ′, r[n]),V(V ′, q[n]) t V(V ′, r[n]))

≤ dI(V(V ′, p[n]),V(V ′, q[n])) by Proposition 4.7(b)

≤ maxV ∈A∗
r
dI(V(V, p[n]),V(V, q[n])) since V ′ ∈ A∗

r

= dV(p[n], q[n]) by definition of dV .

Then, since this was for arbitrary V ′ ∈ A∗
r and n ∈ N, it follows by definition

of d and dV that dω(p ∪ r, q ∪ r) ≤ dω(p, q), and hence ∪ is continuous.

To complete the proof we show p ∪ q ∈ Rω for all p, q ∈ Rω which follows
by definition of Rω. 2

Definition 4.25 (External Choice Operator) For any p, q ∈ Rω, let

ptu q = {h |h ∈ f tu g, f ∈ p and g ∈ q}
22

Kwiatkowska and Norman

where f tu g is the subset of A ⇀ µ(Rω) such that h ∈ f tu g if and only
if dom(h) = dom(f) ∪ dom(g) and for any a ∈ dom(h): h(a) = f(a) if
a 6∈ dom(g), h(a) = g(a) if a 6∈ dom(f) and either h(a) = f(a) or h(a) = g(a)
otherwise.

Lemma 4.26 For all p, q ∈ Rω and V ∈ A∗
r :

V(V, ptu q) =
⊔

V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q)

where V1, V2 ∈ A∗
r ∪ {∅} and V(∅, r) def

= [1, 1] for any r ∈ Rω.

Proof. Consider any p, q ∈ Rω and V ∈ A∗
r , then by definition of V and

Proposition 4.5, it is sufficient to prove that:

min
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q) =left min
h∈XtuY

V(V, h)

and

max
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q) =right max
h∈XtuY

V(V, h).

We only prove the case for max as the case for min follows similarly. First,
consider any h′ ∈ ptu q. By definition of tu , there exists f ′ ∈ p and g′ ∈ q
such that h′ ∈ f ′ tu g′. If we set:

V ′
1 = {v | v = a ∈ V or v = aV ∈ V and h′(a) = f ′(a)} and V ′

2 = V \ V ′
1

then V ′
1 ∪ V ′

2 = V , V ′
1 ∩ V ′

2 = ∅ and by definition of V we have:

V(V, h′) = V(V ′
1 , f

′) · V(V ′
2 , g

′)

≤right max
f∈p

V(V ′
1 , f) ·max

g∈q
V(V ′

2 , g) since f ′ ∈ p and g′ ∈ q

=right V(V ′
1 , p) · V(V ′

2 , q) by definition of V

≤right max
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q) since V ′
1 ∪ V ′

2 = V and V ′
1 ∩ V ′

2 = ∅.

Thus, since this was for arbitrary h′ ∈ ptu q we infer:

max
h∈ptuq

V(V, h) ≤right max
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q).(10)

On the other hand, considering any V ′
1 , V

′
2 ∈ A∗

r ∪{∅}, such that, V ′
1 ∪V ′

2 =
V and V ′

1 ∩ V ′
2 = ∅, by definition of V there exists f ′ ∈ p and g′ ∈ q such

that V(V ′
1 , p) =right V(V ′

1 , f
′) and V(V ′

2 , q) =right V(V ′
2 , g

′). Now letting h′ ∈
A ⇀ µ(R) be a partial map satisfying the following conditions: dom(h′) =
dom(f ′) ∪ dom(g′) and for any a ∈ dom(h′):

• h′(a) = f ′(a) if a ∈ V ′
1 or aV ∈ V ′

1 for some V ∈ Pfnr(A
∗
r)

• h′(a) = g′(a) if a ∈ V ′
2 or aV ∈ V ′

2 for some V ∈ Pfnr(A
∗
r)

• h′(a) = f ′(a) or h(a) = g(a) if a 6∈ V and aV 6∈ V for all V ∈ Pfnr(A
∗
r).

23

Kwiatkowska and Norman

then by Definition 4.25 we have h′ ∈ ptu q. Then similarly to the first part of
the lemma we have:

V(V ′
1 , f

′) · V(V ′
2 , g

′) = V(V, h′) ≤right max
h∈ptuq

V(V, h).

Since this was for any V ′
1 , V

′
2 ∈ A∗

r ∪ {∅} with V ′
1 ∪ V ′

2 = V and V ′
1 ∩ V ′

2 = ∅,
by construction of f ′ and g′ we obtain:

max
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q) ≤right max
h∈ptuq

V(V, h).(11)

Putting (10) and (11) together we have:

max
V1∪V2=V
& V1∩V2=∅

V(V1, p) · V(V2, q) =right max
h∈ptuq

V(V, h)

as required. 2

Lemma 4.27 For all p, q ∈ Rω and n ∈ N: (ptu q)[n] = p[n]tu q[n].

Proposition 4.28 tu is continuous and well-defined on (Rω, dω).

Proof. Consider any p, q, r ∈ Rω, V ′ ∈ A∗
r and n ∈ N. Then by Lemma 4.27,

dI(V(V ′, (ptu r)[n]),V(V ′, (q tu r)[n]) equals:

= dI(V(V ′, p[n]tu r[n]),V(V ′, q[n]tu r[n]))

≤ dI(V(V1, p[n]) · V(V2, r[n]),V(V1, q[n]) · V(V2, r[n]))

for some V1, V2 ∈ A∗
r ∪ {∅} such that V1 ∪ V2 = V ′ and V1 ∩ V2 = ∅ by

Lemma 4.26 and Proposition 4.10. Considering the possible forms of V1, then
either V1 = ∅ and since V(∅, r′) def

= [1, 1] for any r′ ∈ Rω:

dI(V(V ′, (ptu r)[n]),V(V ′, (q tu r)[n]))

≤ dI([1, 1] · V(V2, r[n]), [1, 1] · V(V2, r[n]))

= 0 since dI is a metric

≤ dV(p[n], q[n]) by Proposition 4.13

or V1 ∈ A∗
r and in this case by Proposition 4.9(a):

dI(V(V ′, (ptu r)[n]),V(V ′, (q tu r)[n]) ≤ dI(V(V1, p[n]),V(V1, q[n]))

≤ maxV ∈A∗
r
dI(V(V, p[n]),V(V, q[n])) since V1 ∈ A∗

r

= dV(p[n], q[n]) by definition of dV .

The remainder of the proof follows similarly to Proposition 4.24 above. 2

Before we can introduce the remaining semantic operators, we need the fol-
lowing definition.

Definition 4.29 The degree of a process p ∈ Rω is defined inductively by
putting: deg(p) = 0 if p = {⊥}, deg(p) = n + 1 if p ∈ Rn+1 \ Rn for some
n ∈ N.

24

Kwiatkowska and Norman

Using this we can now define the remaining operators by induction on the
degree.

Definition 4.30 (Synchronous Parallel Operator) For any p, q ∈ Rω of
non-zero degree, let {⊥} ‖ {⊥} = {⊥}, {⊥} ‖p = p ‖ {⊥} = {⊥} and p‖q =
{f‖g | f ∈ p and g ∈ q} where for any f, g ∈ A ⇀ µ(Rω): dom(f‖g) =
dom(f) ∩ dom(g) and for any a ∈ dom(f‖g) and r ∈ Rω:

(f ||g)(a)(r) =
∑

r1,r2∈Rω
& r1‖r2=r

f(a)(r1) · g(a)(r2).

Lemma 4.31 For all p, q ∈ Rω and V ∈ A∗
r and n ∈ N: V(V, p ‖ q) = V(V, p) ·

V(V, q) and (p ‖ q)[n] = p[n] ‖ q[n].

Proposition 4.32 ‖ is continuous and well-defined on (Rω, dω).

Proof. The proof follows similarly to Proposition 4.24 using Lemma 4.8(a)
and Lemma 4.31. 2

Definition 4.33 (Restriction Operator) For any p ∈ Rω with non-zero
degree and B ⊆ A let {⊥} |̀B = {⊥} and p |̀B = {f |̀B | f ∈ p} where for any
f ∈ A ⇀ µ(Rω), dom(f |̀B) = dom(f) ∩ B and for any a ∈ dom(f |̀B) and
q ∈ Rω:

(f |̀B)(a)(q) =
∑

r∈Rω &
r |̀B=q

f(a)(r).

Lemma 4.34 For all p ∈ Rω, V ∈ A∗
r , B ⊆ A and n ∈ N:

V(V, p |̀B) =

 [0, 0] if a ∈ V for some a ∈ A \B

V(V, p) otherwise

and (p |̀B)[n] = p[n] |̀B.

Proposition 4.35 For all B ⊆ A, |̀B is continuous and well-defined on
(Rω, dω).

Definition 4.36 (Relabelling Operator) For any p ∈ Rω with non-zero
degree and λ : A → A let {⊥}[λ] = {⊥} and p[λ] = {f [λ] | f ∈ p} where
for any f ∈ A ⇀ µ(Rω), dom(f [λ]) = {λ(a) | a ∈ dom(f)}, and for any
a ∈ dom(f [λ]) and q ∈ Rω:

f(a) [λ](q) =
∑

r∈Rω &
r [λ]=q

f(a)(r).

Lemma 4.37 For all p ∈ Rω, V ∈ A∗
r , λ : A → A and n ∈ N: V(V, p [λ]) =

V(λ−1(V), p) and (p [λ])[n] = (p[n]) [λ].

Proposition 4.38 For all λ : A → A, [λ] is continuous and well-defined on
(Rω, dω).

25

Kwiatkowska and Norman

4.2 Denotational Semantics for RP

We are now in a position to give denotational semantics to the guarded ex-
pressions G of RP. We accomplish this by defining a map D from RP to R,
but only consider properties of this map over guarded terms. By construc-
tion, the elements of R are the equivalence classes of the Cauchy sequences of
(Rω, dω) under the equivalence relation ∼, and we therefore first construct a
sequence of maps (Dn)n∈N from RP to Rω such that 〈D[[E]]〉n∈N is Cauchy for
any E ∈ G, and then set D[[E]] = [〈D[[E]]〉n∈N]∼ for any E ∈ G.

As usual, in order to handle the variables x in the expressions RP, we
introduce environments Env, ranged over by ρ, defined by Env = X → R.
Similarly to the above discussion, for any ρ ∈ Env we can suppose that there
exists a sequence of maps (ρn)n∈N such that ρn : X → Rω for all n ∈ N,
〈ρn(x)〉n∈N is Cauchy in (Rω, dω) and ρ(x) = [〈ρn(x)〉n∈N]∼ for all x ∈ X .

In addition, we shall require the following auxiliary function.

Definition 4.39 For any set R, a ∈ A and family 〈µi, pi〉i∈I where 〈µi, pi〉 ∈
(0, 1]×R for all i ∈ I and q ∈ R, let:

dom(ΦR(a, 〈µi, pi〉i∈I)) = {a} and ΦR(a, 〈µi, pi〉i∈I)(a)(q) =
∑

i∈I &
q=pi

µi.

Lemma 4.40 If
∑

i∈I µi = 1, then ΦR(a, 〈µi, pi〉i∈I) ∈ A ⇀ µ(R).

We can now define denotational metric-space semantics for RP.

Definition 4.41 (Denotational Semantics) Let Dn : RP → (Env → Rω),
n ∈ N, be the collection of maps defined inductively as follows. Put D0[[E]] =
{⊥} for all E ∈ RP, and Dn+1 be defined inductively on the structure of
elements of RP as follows:

Dn+1[[x]](ρ) = ρn+1(x)

Dn+1[[0]](ρ) = {⊥}

Dn+1[[
∑

i∈I aµi
.Ei]](ρ) = {ΦRω(a, 〈µi,Dn[[Ei]](ρ)〉i∈I)}

Dn+1[[E1 uE2]](ρ) = Dn+1[[E1]](ρ) ∪ Dn+1[[E2]](ρ)

Dn+1[[E1 tuE2]](ρ) = Dn+1[[E1]](ρ)tuDn+1[[E2]](ρ)

Dn+1[[E1 ‖E2]](ρ) = Dn+1[[E1]](ρ) ‖Dn+1[[E2]](ρ)

Dn+1[[E |̀B]](ρ) = Dn+1[[E]](ρ) |̀B

Dn+1[[E [λ]]](ρ) = Dn+1[[E]](ρ) [λ]

Dn+1[[fix x.E]](ρ) = Dn+1[[E]](ρ{Dn[[fix x.E]](ρ)/x}).

Furthermore, let D : RP → (Env → R) be the map defined as follows: for any
E ∈ RP put D[[E]](ρ) = [〈Dn[[E]](ρ)〉n∈N]∼.

26

Kwiatkowska and Norman

To prove the well-definedness of the semantic map we shall require the follow-
ing technical lemma.

Lemma 4.42 For all E ∈ RP, G ∈ G, F ∈ Pr, ρ ∈ Env and n ∈ N:

(a) Dn+1[[G]](ρ)[n] = Dn[[G]](ρ)[n]

(b) Dn[[E{F/x}]](ρ)[n] = Dn[[E]](ρ{Dn[[F]]/x})[n]

(c) Dn+1[[G{F/x}]](ρ)[n + 1] = Dn+1[[G]](ρ{Dn[[F]]/x})[n + 1].

Proof. The lemma follows by induction on the structure of E ∈ RP and
G ∈ G. 2

Proposition 4.43 D is well-defined on the guarded expressions of RP.

Proof. First, we prove that Dn[[E]](ρ) ∈ Rω for all E ∈ G and n ∈ N by
induction on n. The case for n = 0 is trivial.

Now suppose Dn[[E]](ρ) ∈ Rω for all E ∈ G and some n ∈ N, we prove the
case for n + 1 by induction on the structure of E ∈ G.

(i) If E = 0, then by definition Dn+1[[0]](ρ) = {⊥} ∈ Rω.

(ii) If E = a.
∑

i∈I µi.Ei, then by induction Dn[[Ei]](ρ) ∈ Rω for all i ∈ I, and
since by construction

∑
i∈I µi = 1, using Lemma 4.40 we have:

ΦRω(a, 〈µi,Dn[[Ei]](ρ) 〉i∈I) ∈ A ⇀ µ(Rω)

and therefore, Dn+1[[E]](ρ) ∈ Rω by definition of Dn+1.

(iii) If E = E1 uE2, E = E1 tuE2, E = E1 ‖E2, E = E ′ |̀B or E = E ′ [λ],
the proposition holds by definition of Dn+1, the well-definedness of the
semantic operators and induction.

(iv) If E = fix x.E
′, then Dn+1[[E

′]](ρ) ∈ Rω and Dn[[E]](ρ) ∈ Rω by induction
on E ′ and n ∈ N respectively, and hence Dn+1[[E]](ρ) ∈ Pω, by definition
of Dn+1.

Finally, to prove that D is well-defined we show that for any E ∈ G the
sequence 〈Dn[[E]]〉n∈N is Cauchy in (Rω, dω), which follows from the continuity
of the semantic operators, Lemma 4.21 and Lemma 4.42. 2

4.2.1 Full Abstraction

In this section we show that the above denotational model is fully abstract,
that is, two RP expressions are equivalent with respect to

R∼ if and only if their
denotations (under the semantic map D) have distance zero. By definition,
the operational equivalence

R∼ is based on the maps Rglb and Rlub where

Rglb, Rlub : {O[[E]] |E ∈ Pr} −→ (T −→ [0, 1])

and the metric d is based on the map V , where

V :
(
A∗

r × {Dn[[E]] |E ∈ G}
)
−→ I

27

Kwiatkowska and Norman

for all n ∈ N. Therefore, to obtain a full abstraction result, we must first
relate the semantic maps O and D and our testing language T and the set of
trees A∗

r , and then, using these results, the maps Rglb, Rlub and V . This leads
to a connection between

R∼ and the metric dω, and hence the full abstraction
result. Formally, we have the following lemmas and definition.

Lemma 4.44 For all E ∈ Pr, ρ ∈ Env and S ∈ Pfr(Act × µ(Pr)), we have
O[[E]] → S if and only if fS

n+1 ∈ Dn+1[[E]](ρ) for all n ∈ N such that if
S = ∅ then fS

n+1 =⊥, and if S = {(a1, π1), . . . (am, πm)} then dom(fS
n+1) =

{a1, . . . , am}, and for any 1 ≤ i ≤ m and Y ∈ R:

fS
n+1(ai)[n + 1](Y) =

∑
F∈RP&

Dn[[F]](ρ)[n]=Y

πi(F).

Definition 4.45 Let ξ : A∗
r → T\{(| ⊥ |)} be the mapping defined inductively

as follows:

ξ({a1, . . . , am}) = (|[a1.(| ⊥ |), . . . , am.(| ⊥ |)]|)
ξ({V1, . . . , Vm}) = (ξ(V1), . . . , ξ(Vm′))

ξ({a1V1, . . . , amVm}) = (|[a1.ξ(V1), . . . am.ξ(Vm)]|).

Lemma 4.46 The mapping ξ is bijective.

Lemma 4.47 For all E ∈ Pr, ρ ∈ Env, V ∈ An
r and n ∈ N:

V(V,Dn+1[[E]](ρ)[n + 1]) = [Rglb(E)(ξ(V)), Rlub(E)(ξ(V))].

Proof. The proof is by induction on n ∈ N. If V ∈ A0
r , then V = {a1, . . . , am}

for some {a1, . . . , am} ⊆ A and by Definition 4.45 we have ξ({a1, . . . , am}) =
(|[a1.(| ⊥ |), . . . , am.(| ⊥ |)]|). Now, considering any S ∈ (Act × µ(Pr)) and
letting r = [a1.(| ⊥ |), . . . , am.(| ⊥ |)]:

R∗(S)(r) =

 1 if {(a1, π1), . . . , (am, πm)} ⊆ S & {π1, . . . , πm} ⊆ µ(Pr)

0 otherwise
(12)

by Definition 2.2. Furthermore, using the notation of Lemma 4.44 above we
have:

V(V, fS
1 [1]) =

 [1, 1] if {a1, . . . , am} ⊆ dom(fS
1 [1])

[0, 0] otherwise

=

 [1, 1] if {a1, . . . , am} ⊆ dom(fS
1)

[0, 0] otherwise
by Definition 4.14

= [Rglb(S)(r), Rlub(S)(r)] by Lemma 4.44 and (12).(13)

28

Kwiatkowska and Norman

Then for any E ∈ Pr by Lemma 4.44:

V(V,D1[[E]][1]) = t{V(V, fS
1 [1]) | O[[E]] → S}

=

[
min

O[[E]]→S
V(V, fS

1 [1]), max
O[[E]]→S

V(v, fS
1 [1])

]
by Definition 4.4

=

[
min

O[[E]]→S
Rglb(S)(r), max

O[[E]]→S
Rlub(S)(r)

]
by (13)

= [Rglb(E)((|r|)), Rlub(E)((|r|))] by Definition 2.2

= [Rglb(E)(ξ(V)), Rlub(E)(ξ(V))] by definition of r

and thus the lemma holds for n = 0.

Now suppose the lemma holds for some n ∈ N and consider any V ∈
Pfnr(A

n
r), then V = {V1, . . . , Vm} for some m ≥ 1 and by definition of V :

V(V,Dn+1[[E]][n + 1]) =
m∏

i=1

V(Vi,Dn+1[[E]][n + 1])

=
m∏

i=1

[Rglb(E)(ξ(Vi)), Rlub(E)(ξ(Vi))] by induction

=

[
m∏

i=1

Rglb(E)(ξ(Vi)),
m∏

i=1

Rlub(E)(ξ(Vi))

]
by Definition 4.4

= [Rglb(E)(ξ(V)), Rlub(E)(ξ(V))] by definition of ξ.

Next consider any v ∈ (A × An
r) ∪ A and S ∈ Pfr(Act × µ(Pr)), then either

v ∈ A and similarly to the case when n = 0 we can show:

V(v, fS
n+2[n + 2]) = [Rglb(S)(ξ(v)), Rlub(S)(ξ(v))]

or v = aV for some a ∈ Act and V ∈ Pfnr(A
n
r) in which case we have the

following two possibilities:

(i) (a, π) ∈ S for some π ∈ µ(Pr), in which case using Lemma 4.44 a ∈
dom(fS

n+2), and therefore by definition of V :

V(v, fS
n+2[n + 2]) =

∑
q∈Rω

fS
n+2(a)[n + 2](q) · V(V, q)

=
∑

q∈Rω

 ∑
F∈Pr &

Dn+1[[F]][n+1]=q

π(F)

 · V(V, q) by Lemma 4.44

=
∑

F∈Pr

π(F) · V(V,Dn+1[[F]][n + 1]) rearranging

=
∑

F∈Pr

π(F) · [Rglb(F)(ξ(V)), Rlub(F)(ξ(V))] from above

=

[∑
F∈Pr

π(F) · Rglb(F)(ξ(V)),
∑

F∈Pr

π(F) · Rlub(F)(ξ(V))

]
by Definition 4.4

= [Rglb(S)(ξ(v)), Rlub(S)(ξ(v))] by Definition 2.2.

29

Kwiatkowska and Norman

(ii) (a, π) 6∈ S for any π ∈ µ(Pr), and hence by Definition 2.2, V and
Lemma 4.44:

V(v, fS
n+2[n + 2]) = [0, 0] = [Rglb(S)(ξ(v)), Rlub(S)(ξ(v))].

Then since these are all the possible cases and v ∈ (A×An
r)∪A was arbitrary:

V(v, fS
n+2[n + 2]) = [Rglb(S)(ξ(v)), Rlub(S)(ξ(v))](14)

for all v ∈ (A× An
r) ∪ A.

Now considering any V ∈ An+1
r , by definition V = {v1, . . . , vm} for some

m ∈ N where vi ∈ (A× An
r) ∪ A for all 1 ≤ i ≤ m, and hence by definition of

V :

V(V, fS
n+2[n + 2]) =

m∏
i=1

V(vi, f
S
n+2[n + 2])

=
m∏

i=1

[Rglb(S)(ξ(vi)), Rlub(S)(ξ(vi))] by (14)

=

[
m∏

i=1

Rglb(S)(ξ(vi))
m∏

i=1

Rlub(S)(vi))

]
by Definition 4.4

= [Rglb(S)(ξ(V)), Rlub(S)(ξ(V))] by Definition 4.45.

The remainder of the proof follows as for the case when n = 0. 2

Theorem 4.48 (Full abstraction) For all E, F ∈ G:

O[[E]]
R∼O[[F]] if and only if D[[E]](ρ) = D[[F]](ρ) for all ρ ∈ Env.

Proof. We only consider the case for E, F ∈ Pr, as the case for E, F ∈ G \Pr
follows by definition of

R∼ and we remove ρ for simplicity. First, consider any
E, F ∈ Pr such that D[[E]] = D[[F]]. Then dω(Dn[[E]][n],Dn[[F]][n]) = 0 for all
n ∈ N by Lemma 4.21 and Lemma 4.42, and hence by definition of d and dV :

V(V,Dn+1[[E]][n + 1]) = V(V,Dn+1[[F]][n + 1]) for all V ∈ An
r & n ∈ N

⇒ R∗(E)(ξ(V)) = R∗(F)(ξ(V)) for all V ∈ A∗
r by Lemma 4.47

⇒ R∗(E)(t) = R∗(F)(t) for all t ∈ T \ (|ω|) by Lemma 4.46

⇒ R∗(E)(t) = R∗(F)(t) for all t ∈ T by Definition 2.2

⇒ O[[E]]
R∼O[[F]] by definition of

R∼
as required. 2

5 Conclusions

We have considered a process calculus based on CSP [5,8,21] extended with in-
ternal action-guarded probabilistic choice. A testing equivalence, coarser than
probabilistic bisimulation [14], has been defined for this calculus and shown
to be a congruence for the main CSP process operators, including external
(deterministic) and internal (non-deterministic) choice and synchronous par-
allel. A logical characterization of the equivalence can be found in [13,20]. We

30

Kwiatkowska and Norman

were unable to model the hiding and asynchronous parallel operators which
is related to our model containing action-guarded probabilistic choice. If we
were to add the hiding operator, for example, then there will exist proba-
bilistic transitions which are hidden, and it would be problematic to establish
the probability of such hidden moves through testing. The inability to model
hiding is unfortunate since the model checker fdr2 [21] uses it in an essential
way. Asynchronous parallel is not so crucial for verification, but is needed
for compositional specification of e.g. distributed probabilistic protocols. It
would be worthwhile to formulate a testing equivalence which is a congruence
for the full calculus of CSP, including hiding, extended with internal proba-
bilistic choice; a preliminary proposal for how this might be achieved has been
made in [20].

Using de Bakker and Zucker’s construction for classical process calculi [3],
we have derived a denotational model for our process calculus which we have
shown is fully abstract with respect to our operational model. The denota-
tional semantics we have constructed is “smooth”, as opposed to the “dis-
crete” fully abstract model constructed by Baier and Kwiatkowska [2] for a
CCS-based calculus, in the following sense. Consider the space of probability
distributions over a two point set. With the metric presented here it is isomor-
phic to the Euclidean metric over [0,1], whereas the ultra-metric of [2] gives
rise to the discrete topology on [0,1]. The Euclidean metric is intuitively de-
sirable in the continuous setting of probabilities, but this comes at a cost: we
only have a pseudo-metric, whereas the metric defined in [2] is an ultra-metric.
Also, our metric is not inductive, and as a result we cannot use America and
Rutten’s general framework for metric semantics [1] applicable in the case of
the inductive metric of [2].

The above raises important issues that would be worth studying. What
should the notion of a probabilistic process be? We have found the transition
systems modelling paradigm limiting and in some cases misleading. Could
Banach spaces be used instead? What is the correct categorical approach
to use here? In particular, can one define an inductive metric satisfying the
intuitive properties of our metric?

Acknowledgement

We are grateful to Michael Huth, Achim Jung, Gavin Lowe and Bill Roscoe
for comments on earlier versions of this work.

References

[1] P.H.M. America and J.J.M.M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. Journal of Computer and System Science,
39(3):343-375, 1989.

31

Kwiatkowska and Norman

[2] C. Baier and M.Z. Kwiatkowska. Domain equations for probabilistic processes
(Extended Abstract). In C. Palamidessi and J. Parrow , editors, Proc.
EXPRESS’97, volume 7, Electronic Notes in Theoretical Computer Science,
Elsevier, 1997.

[3] J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54(1/2):70-120, 1982.

[4] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60:109-134, 1984.

[5] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560-599, 1984.

[6] R.J. van Glabbeek, S.A. Smolka, B. Steffen and C.M.N. Tofts. Reactive,
generative and stratified models of probabilistic processes. In Proc. 5th IEEE
Int. Symp. on Logic in Computer Science (LICS), pages 130-141, 1990.

[7] H.A. Hansson. Time and probability in the formal design of distributed systems.
Volume 1 of Real-Time Safety Critical Systems, Elsevier, 1994.

[8] C.A.R. Hoare. Communicating sequential processes, Prentice Hall, 1985.

[9] M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking.
In Proc. 12th IEEE Int. Symp. on Logic in Computer Science (LICS), pages
111-122, 1997.

[10] C. Jones and G.D. Plotkin. A probabilistic powerdomain of evaluations. In
Proc. 4th IEEE Int. Symp. on Logic in Computer Science (LICS), pages 186-
195, 1989.

[11] C-C. Jou and S.A. Smolka. Equivalences, congruences and complete
axiomatisations for probabilistic processes. In J.C.M. Baeten and J.W. Klop,
editors, CONCUR’90, volume 458 of Lecture Notes in Computer Science, pages
367-383, Springer Verlag, 1990.

[12] M.Z. Kwiatkowska and G. Norman. Probabilistic metric semantics for a
simple language with recursion. In W. Penczek and A. Szalas, editors, Proc.
Mathematical Foundations of Computer Science (MFCS), volume 1113 of
Lecture Notes in Computer Science, pages 419-430, Springer Verlag, 1996.

[13] M.Z. Kwiatkowska and G.J. Norman. A testing equivalence for reactive
probabilistic processes. To appear in Proc. EXPRESS’98, Electronic Notes in
Theoretical Computer Science, Elsevier, September 1998.

[14] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94(1):1-28, 1991.

[15] G. Lowe. Probabilistic and Prioritized Models of Timed CSP. Theoretical
Computer Science, 138:315-352, 1995.

[16] G. Lowe. Representing nondeterministic and probabilistic behaviour in reactive
processes. Technical Report, 1993. Available at
http://www.mcs.le.ac.uk/~glowe/Publications.html.

32

Kwiatkowska and Norman

[17] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[18] C. Morgan, A. McIver, K. Seidel and J.W. Sanders. Argument duplication in
probabilistic CSP. Technical Report PRG-TR-95, Oxford University Computing
Laboratory, 1995.

[19] C. Morgan, A. McIver, K. Seidel and J.W. Sanders. Refinement-oriented
probability for CSP. Formal Aspects of Computing, 8(6):617-647, 1996.

[20] G.J. Norman. Metric semantics for reactive probabilistic processes. Ph.D
Thesis, School of Computer Science, the University of Birmingham, November
1997.

[21] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall
International Series in Computer Science, 1997.

[22] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Proc. CONCUR’94, volume 836 of Lecture
Notes in Computer Science, pages 481-496, Springer, 1994.

[23] K. Seidel. Probabilistic communicating processes. Theoretical Computer
Science, 152:219-249, 1995.

[24] Wang Yi and K.G. Larsen. Testing probabilistic and non-deterministic
processes. Protocol Specification, Testing and Verification XII:47-61, Florida,
USA, 1992.

33

	Introduction
	The Model and Testing Equivalence
	The Process Calculus
	Operational Semantics
	RP and the testing order R -
	Equational Laws

	Denotational Semantics
	Modelling Semantic Operators of RP
	Denotational Semantics for RP

	Conclusions
	Acknowledgement
	References

