
Verifying Quantitative Properties of Continuous
Probabilistic Timed Automata?

Marta Kwiatkowska1, Gethin Norman1, Roberto Segala2 and Jeremy Sproston2

1 University of Birmingham, Birmingham B15 2TT, United Kingdom
{M.Z.Kwiatkowska,G.Norman,J.Sproston}@cs.bham.ac.uk

2 Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo
Zamboni 7, 40127 Bologna, Italy

segala@cs.unibo.it

Abstract. We consider the problem of automatically verifying real-
time systems with continuously distributed random delays. We gener-
alise probabilistic timed automata introduced in [19], an extension of the
timed automata model of [4], with clock resets made according to con-
tinuous probability distributions. Thus, our model exhibits nondetermin-
istic and probabilistic choice, the latter being made according to both
discrete and continuous probability distributions. To facilitate algorith-
mic verification, we modify the standard region graph construction by
subdividing the unit intervals in order to approximate the probability to
within an interval. We then develop a model checking method for contin-
uous probabilistic timed automata, taking as our specification language
Probabilistic Timed Computation Tree Logic (PTCTL). Our method
improves on the previously known techniques in that it allows the ver-
ification of quantitative probability bounds, as opposed to qualitative
properties which can only refer to bounds of probability 0 or 1.

1 Introduction

Background: In recent years we have witnessed an increase in demand for
formal models and verification techniques for real-time systems such as commu-
nication protocols, digital circuits with uncertain delay lengths, and media syn-
chronization protocols. Automatic verification of quantitative timing constraints
has particularly been subject to significant attention, as indicated by the devel-
opment of associated software tools [9, 11] and their successful application in
industrial case studies.

Traditional approaches to real-time systems define behaviour purely in terms
of non-determinism. However, it may be desirable to express the relative likeli-
hood of the occurrence of certain behaviour. For example, we may wish to model
a system in which an event is triggered after a random, continuously distributed
delay, where the distribution may be e.g. uniform, normal, or exponential. Such
a framework would be particularly useful when modelling environments with
? Supported in part by EPSRC grants GR/M04617, GR/M13046 and GR/N22960.

C. Palamidessi (Eds), CONCUR 2000 - Concurrency Theory, volume 1877 of LNCS, pages 123-137,
2000.
c© Springer-Verlag Berlin Heidelberg 2000

unpredictable behaviour; for instance, those involving component failure or cus-
tomer arrivals in a network. Furthermore, we may also wish to refer to the
likelihood of certain temporal logic properties being satisfied by such a real-time
system, and to have a model checking algorithm for verifying the truth of these
assertions. The remit of this paper is to address these issues.

To provide an appropriate foundation for our work, we take the model of
timed automata [4], a framework for modelling non-deterministic real-time sys-
tems and a focus of much attention from both theoretical researchers and verifi-
cation practitioners alike. A timed automaton takes the form of a finite directed
graph equipped with a set of variables referred to as clocks. Since clocks are real-
valued, the state space of a timed automaton is infinite, and hence verification is
performed by constructing a finite-state quotient of the system model, called a
region graph [3], which is then subject to established model checking techniques.
Recently, we have shown that this region graph construction can also be ap-
plied to timed automata augmented with discrete probability distributions [19].
This result provides a method for verifying such probabilistic timed automata
against PTCTL. This result relies on the fact that all of the states encoded into
a single region satisfy the same formulae. However, if our system model admits
continuously distributed random delays, the latter property does not hold.

Motivating example: We illustrate why the region graph approach does
not work with continuously distributed random delays by means of the example
below due to Rajeev Alur [1]. Suppose in state s, at time t = 0, a clock d is set
to values in the interval (0, 1) according to some continuous density function.
Now suppose that, at time t < 1, a transition occurs to state s′ where d remains
scheduled and another clock d′ is newly scheduled, again set to values in the
interval (0, 1). Consider the three possible relationships between the clocks d
and d′ in state s′:

(1) d′ < d (2) d′ = d (3) d′ > d

The region-based approach only encodes the information that: (2) has proba-
bility 0, while (1) and (3) both have positive probability. However, the actual
probabilities depend on the value of t (when the transition from s to s′ is made).

Therefore, to perform any exact probability calculations with respect to con-
tinuous probabilistic real-time systems, we will require an infinite model, since,
as can be seen in the example above, for each different value of t the probabil-
ities of (1) and (3) will differ. On the other hand, a finite model is required for
decidable automatic verification.

Main contribution: Our key proposal is to refine the region graph con-
struction by subdividing the equivalence classes of clock values. In particular,
we split the unit intervals into n subintervals of equal size. Intuitively, this pro-
cess increases the granularity of the partitioning in order for the region graph
to more accurately retain information concerning the continuous random delays.
However, note that, for finite n, this will constitute an approximation of the ex-
act probability values involved; we supplement such approximate answers with
an estimate of the error . Further refinements into yet smaller intervals yields
better approximations of the probability bounds.

The main technical challenges in our approach are threefold. Firstly, we must
define the probability measure and σ-algebra of the infinite paths in the presence
of continuously distributed delays and dense time. Secondly, we need to show how
the refined region graph may be constructed, where the particular difficulty is due
to not knowing the relative order of clocks which are set continuously at random.
Thirdly, we have to estimate the error caused by the finite approximation.

Related work: There are many probabilistic verification frameworks, see
e.g. [6, 16, 13, 14], most of which only handle discrete probability and time. Our
results relate to those of [2, 12], which concern the model checking of probabilistic
real-time systems with continuous random delays against qualitative properties
that can only refer to probability bounds of 0 or 1. In [7], a quantitative model
checking procedure for continuous time Markov chains is presented. Recently a
method for approximating continuous Markov processes has been proposed in
[15], but the relationship between their approach and ours is not yet known.

2 Preliminaries

Throughout, we use standard notation from timed automata, based on [3]. La-
belled paths are non-empty finite or infinite sequences of the form: ω = σ0

l0−→
σ1

l1−→ σ2
l2−→ · · · where σi are states and li are labels for transitions. The first

state of ω is denoted by first(ω). If ω is finite then the last state of ω is denoted
last(ω). The length of a path is defined in the standard way (∞ if the path is
infinite) and is denoted |ω|. The prefix relation on paths is denoted by ≤ and
the concatenation by juxtaposition. If k ∈ N then ω(k) denotes the k-th state,
step(ω, k) the label of the k-th step, and ω(k) denotes the k-th prefix of ω.

We assume some familiarity with probability and measure theory, see e.g. [5].
Consider a set Ω. A σ-field on Ω, denoted F , is a field closed under countable
union. The elements of a σ-field are called the measurable sets, and (Ω,F) is
called a measurable space. Let (Ω,F) be a measurable space. A function P :
F → [0, 1] is a probability measure on (Ω,F), and P = (Ω,F , P) a probability
space, if P satisfies the following properties: P (Ω) = 1, and if A1, A2, . . . is a
disjoint sequence of elements of F , then P (∪iAi) =

∑
i P (Ai).

A continuous density function (cdf) on R is a function f such that f(x) ≥ 0
for all x ∈ R and

∫ +∞
−∞ f(x)dx = 1. Furthermore, f has support A ⊆ R if f(x) = 0

for all x ∈ R \ A. We define a cdf f to be positive bounded if its support lies
within a closed interval of R≥0. We denote by PB the set of positive bounded
cdfs, and the set of discrete probability distributions over a (finite) set S by µ(S).

2.1 Dense Markov Processes

Definition 1. A dense Markov Process M is a tuple (Q,F , q0, {Pq}q∈Q), where
Q is a set of states, F is a σ-field over Q, q0 is the initial state, and each Pq is
a probability measure on (Q,F).

Observe that we do not impose any limit on the cardinality of Q and that the
probability spaces associates with the states are not necessarily discrete. For
notational convenience we denote the dense Markov process (Q, q,F , {Pq′}q′∈Q)
by Mq. Our objective is to define a probability space, PMq = (ΩMq ,FMq , PMq),
for the infinite sequences of states that can be generated by a dense Markov
process.

The sample set ΩMq
is the set of infinite sequences qQω of states starting

in q. For the σ-field we generalise the cone construction for ordinary Markov
processes. The generalisation of a cone is a set of sequences of ΩMq that extend
some appropriate set of finite sequences. Formally, given a dense Markov process
Mq and a finite sequence X1X2 . . . Xk of elements of F , the set of sequences

BX1X2...Xk
= {qq1q2 . . . qkα | α ∈ Qω and qi ∈ Xi for all 1 ≤ i ≤ k}

is called a basic set . Special basic sets are Bε = ΩMq (ε denotes the empty
sequence) and B⊥ = ∅. We use β to range over sequences of elements of F .

The next step is to assign a measure to basic sets. It turns out that we
cannot assign a measure to all basic sets in general. We define basic measurable
sets together with their measures by induction.

Definition 2 (Basic measurable sets). The basic sets B⊥ and Bε are mea-
surable. The measure of B⊥ is PMq

[B⊥] = 0 and the measure of Bε is PMq
[Bε] =

1.
A basic set BXβ is a basic measurable set if

1. Bβ is a basic measurable set; and
2. the function fXβ that maps the state q to PMq [BXβ] is measurable from

(Q,F) to the Borel σ-field over the interval [0, 1], where PMq
[BXβ] is defined

to be
∫

Q
fβIXdPq and IX denotes the indicator function of X.

Note that in the integral above fβ is measurable because Bβ is a basic measurable
set, and IX is measurable because X ∈ F . Thus the above integral is well defined
by [5, Theorem 1.5.9].

Following an argument similar to [20], we can show that the measure PMq
is

σ-additive on the basic measurable sets. If all basic sets are basic measurable,
then we can generate the minimum field that contains the basic measurable sets
and show that there is a unique extension of the measure PMq

. Thus, we can
simply define the σ-field FMq to be the σ-field generated by the basic measurable
sets, and extend the measure PMq using [5, Theorem 1.3.6].

3 Definition of the model

Let AP be a set of atomic propositions. A clock x is a non-negative real-valued
variable which increases at the same rate as real-time. Let X be a set of clocks,
and let ν : X → R≥0 be a function assigning a non-negative real value to each
of the clocks in this set. Such a function is called a clock assignment . For any
X ⊆ X and t ∈ R≥0, we write ν[X := t] for the clock assignment that assigns t

to all clocks in X, and agrees with ν for all clocks in X \X. In addition, ν + t
denotes the clock assignment for which all clocks x in X take the value ν(x)+ t.

As with standard timed automata [4, 17], the conditions for progress between
nodes of the graph are described in terms of clock constraints.

Definition 3 (Clock Constraints). Let X be a set of clocks. The set of clock
constraints of clocks in X, CX , is defined inductively by the syntax:

ζ ::= x ≤ k |x ≥ k |x− y ≤ k |x− y ≥ k | ¬ζ | ζ ∨ ζ,

where x, y ∈ X and k ∈ N.

We say that a clock assignment ν satisfies the clock constraint ζ (also denoted
ν |= ζ) if substitution of each x ∈ X by ν(x) results in ζ resolving to true.

Definition 4 (Continuous Probabilistic Timed Automaton). A continu-
ous probabilistic timed automaton is a tuple G = (S, s̄, L,X , dens, inv , prob, 〈τs〉s∈S)
consisting of

– a finite set S of nodes, including a initial node s̄;
– a function L : S → 2AP assigning to each node of the graph the set of atomic

propositions that are true in that node;
– a finite set X of clocks;
– a partial function dens : S ×X → PB assigning to pairs of nodes and clocks

a positive bounded density function;
– a function inv : S → CX assigning to each node an invariant condition;
– a function prob : S → Pfn(µ(S)), assigning to each node a (finite non-empty)

set of discrete probability distributions on S;
– a family of functions 〈τs〉s∈S where, for any s ∈ S, τs : prob(s) → CX assigns

an enabling condition to each discrete probability distribution in prob(s).

Continuous probabilistic timed automata generalise the probabilistic timed au-
tomata of [19] through the addition of the partial function dens. Whenever de-
fined for a node s and a clock x, this function yields a cdf, say f , which captures
the reset of x upon entry into s. Such a reset results in a random assignment to
x (for f a general cdf in PB) or an assignment of an exact value (if f is a point
distribution). If dens is undefined, the clocks keep their old values, as in [2].

The behaviour of the model is as follows. It starts in node s̄ with all clocks
in X initialized to 0. The values of all the clocks increase uniformly with time.
At any point in time, if the system is in node s then it can behave in one of two
ways depending on the values of the clocks in X . It can either let time advance
such that the invariant condition inv(s) does not become violated, or make a
state transition, subject to certain conditions given below. State transitions are
instantaneous, and generalise the state transitions of the (discrete-)probabilistic
timed automata of [19] in the following sense:

– a distribution ps ∈ prob(s), whose corresponding enabling condition τs(ps) is
satisfied by the current values of the clocks, is selected nondeterministically ;

– then, supposing ps is chosen, for any s′ ∈ S, with probability ps(s′) the
system will make a transition to node s′ and reassign values to all the clocks
x for which dens(s′, x) is defined according to the cdfs given by dens(s′, x).

For notational convenience, for each node s ∈ S, we denote by O(s) the set of
clocks x for which dens(s, x) is not defined, i.e. those clocks that keep their old
value when s is reached, and by N(s) the set of clocks x for which dens(s, x) is
defined, i.e. those clocks that are reassigned a new value when s is reached.

Let G be a continuous probabilistic timed automaton. We now define formally
the behaviour of G as a probabilistic timed structure. We let Γ (G) denote the
set of all clock assignments for all the clocks in X .

Definition 5 (State). A state of G is a pair 〈s, ν〉 where s ∈ S, ν ∈ Γ (G) such
that inv(s) is satisfied by ν.

Definition 6 (Path). A path of G is an infinite or finite sequence

ω = 〈s0, ν0〉
t0,p0−−−→ 〈s1, ν1〉

t1,p1−−−→ 〈s2, ν2〉
t2,p2−−−→ · · ·

such that, for each i ∈ N :

1. si ∈ S, νi ∈ Γ (G), ti ∈ R≥0 and pi ∈ prob(si);
2. the invariant condition inv(si) is satisfied by (νi + t) for all 0 ≤ t ≤ ti;
3. the clock assignment (νi + ti) satisfies τsi

(pi);
4. pi(si+1) > 0, νi+1(x) is in the support of dens(si+1, x) for all x ∈ N(si+1)

and νi+1(x) = νi(x) + ti for all x ∈ O(si+1).

For all 0 ≤ i ≤ |ω|, define Tω(i), the elapsed time until the ith transition, as
follows: put Tω(0) = 0, and for any 1 ≤ i ≤ |ω|, let Tω(i) =

∑i−1
k=0 tk.

Consider an infinite path ω of G. A position of ω is a pair (i, t′), where i ∈ N and
t′ ∈ R such that 0 ≤ t′ ≤ ti. The state at position (i, t′), denoted by ω(i + t′), is
given by 〈si, νi + t′〉. Given a path ω, i, j ∈ N and t, t′ ∈ R such that t ≤ ti and
t′ ≤ tj , then we say that the position (j, t′) precedes the position (i, t), written
(j, t′) ≺ (i, t), if and only if j < i, or j = i and t′ < t.

For simplicity, as in [19], we add time successor transitions from each state
of the probabilistic timed structure determined by G in which time may diverge.
We omit the details of this approach to time divergence from this extended
abstract.

Due to the presence of both non-deterministic and probabilistic choice, we
use the notion of an adversary, based on e.g. [8]. The role of an adversary is
to select, for each finite path of G, the time point t and one of the probability
distributions p enabled in the last state of the path.

Definition 7 (Adversary of G). An adversary (or scheduler) of G is a func-
tion A mapping every finite path ω of G to a pair (t, p) where t ∈ R≥0 and
p ∈ µ(S) such that if last(ω) = 〈s, ν〉 then p ∈ prob(s), ν + t′ satisfies inv(s) for
all 0 ≤ t′ ≤ t, and ν + t satisfies τs(p).

For an adversary A of a continuous probabilistic timed automaton G we define
the following sets of paths: PathA

fin〈s, ν〉 (PathA
ful〈s, ν〉) is the set of finite (infi-

nite) paths such that step(ω, i) = A(ω(i)) for all 1 ≤ i < |ω| and first(ω) = 〈s, ν〉.
We now turn to the definition of a probability space over the set of infinite

paths PathA
ful〈s, ν〉 of a given adversary A and state 〈s, ν〉. When we use an

adversary to resolve the nondeterminism we obtain a dense Markov process,
whose path space is defined in Section 2.1. Each element of the sample set is
an infinite chain of paths; however, it is easy to see that such chains can be
replaced by their limits under prefix, i.e. an infinite path. We denote by PA,〈s,ν〉

the probability space over PathA
ful〈s, ν〉.

Below we give an idea of how an adversary A and state 〈s, ν〉 generate a dense
Markov process (Q,F , q0, {Pq}q∈Q). The set of states Q is the set PathA

fin〈s, ν〉
and the initial state q0 is 〈s, ν〉. The σ-field F is the σ-field generated by all the
sets of the form

Cq,s′,I = {q t,p−→ 〈s′, ν′〉 ∈ Q | ν′(x) ∈ I(x) for all x ∈ N(s′)},

where q ∈ Q, s′ ∈ S, A(q) = (t, p) and I denotes a function mapping clocks to
closed intervals. Finally, if q ∈ Q and A(q) = (t, p), then Pq is defined on the
sets Cq′,s′,I as follows:

Pq(Cq′,s′,I) =

p(s′) ·

(∏
x∈N(s′)

∫
I(x)

dens(s′, x) dx

)
if q = q′

0 otherwise

and then extended to F using [5, Theorem 1.3.6].

4 Probabilistic Timed Computation Tree Logic (PTCTL)

We now introduce Probabilistic Timed Computation Tree Logic (PTCTL) as
our logic for the specification of properties of probabilistic timed automata.
Before we can define our logic formally, we will need to appropriately restrict
the notion of an adversary of a continuous probabilistic timed automaton G.
Due to the unlimited power that we have given to an adversary, it is easy to
provide adversaries that would not guarantee the measurability of trivial events
such as the occurrence of a single action. On the other hand, such adversaries
would be extremely unnatural, and therefore we think it reasonable to rule out
such pathological adversaries by definition. Thus, for the rest of this paper, we
consider only feasible adversaries, that is, those that ensure the measurability of
all the events identified by PTCTL formulae.

A further restriction on adversaries that we shall require is that of time-
divergence; it is commonly imposed in real-time systems so that unrealisable
behaviour (i.e. corresponding to time not advancing beyond a time bound) is
disregarded during analysis. We say that an infinite path ω is divergent if for
any t ∈ R≥0, there exists j ∈ N such that Tω(j) > t.

Definition 8 (Divergent adversary). An adversary A for a continuous prob-
abilistic timed automaton G is divergent if and only if for each state 〈s, ν〉 of G
the probability PA,〈s,ν〉 of the divergent paths of PathA

ful〈s, ν〉 is 1. Let AG denote
the set of all divergent adversaries of G.

We now define the syntax and semantics of PTCTL. We have omitted the treat-
ment of reset quantifiers and clock constraints, the addition of which is straight-
forward, see [19].

Definition 9 (Syntax of PTCTL). The syntax of PTCTL is defined as fol-
lows:

φ ::= true | a | φ ∧ φ | ¬φ | [φ ∃ U∼k φ]wδ | [φ ∀ U∼k φ]wδ

where a ∈ AP, k ∈ N, δ ∈ [0, 1], ∼∈ {≤, <,≥, >}, and w is either ≥ or >.

Definition 10 (Satisfaction Relation). For any continuous probabilistic timed
automaton G, state 〈s, ν〉 of G, set of divergent adversaries AG of G, and
PTCTL formula φ, the satisfaction relation 〈s, ν〉 |=AG

φ is defined inductively
as follows:

〈s, ν〉 |=AG
true for all s ∈ S and ν ∈ Γ (G)

〈s, ν〉 |=AG
a ⇔ a ∈ L(s)

〈s, ν〉 |=AG
φ1 ∧ φ2 ⇔ 〈s, ν〉 |=AG

φi for all i ∈ {1, 2}
〈s, ν〉 |=AG

¬φ ⇔ s 6|=AG
φ

〈s, ν〉 |=AG
[φ1 ∃ U∼k φ2]wδ ⇔ PA,〈s,ν〉{ω ∈ PathA

ful〈s, ν〉 |ω |=AG
φ1 U∼k φ2} w δ

for some A ∈ AG

〈s, ν〉 |=AG
[φ1 ∀ U∼k φ2]wδ ⇔ PA,〈s,ν〉{ω ∈ PathA

ful〈s, ν〉 |ω |=AG
φ1 U∼k φ2} w δ

for all A ∈ AG

ω |=AG
φ1 U∼k φ2 ⇔ there exists a position (i, t) of ω such that

Tω(i) + t ∼ k, ω(i + t) |=AG
φ2, and for all

positions (j, t′) of ω such that (j, t′) ≺ (i, t),
ω(j + t′) |=AG

φ1 ∨ φ2 .

Note that the feasibility condition we impose on adversaries ensures that the set
{ω |ω ∈ PathA

ful(〈s, ν〉) & ω |=AG
φ1 U∼k φ2} is measurable with respect to the

probability space PA,〈s,ν〉 induced by A and 〈s, ν〉.

5 The Refined Region Graph

As already observed, the standard region construction applied to a continuous
probabilistic timed automaton fails in the case of quantitative probabilistic tem-
poral properties. We propose to quotient over smaller intervals of clock values,
and to this end subdivide each unit interval into n intervals of the same size
for some n ∈ N. The intuition is that, as we subdivide into smaller regions, we
obtain an improvement of the minimum/maximum probability bounds, which
in the limit tend to the exact bounds as the number of subdivisions increases.

We deal with the inevitable loss of information caused by the finiteness of the
construction by providing a bound on the error.

We first refine the equivalence relation of [4] to intervals of size 1
n .

Definition 11. For any x ∈ X , let kx be the largest constant x is compared to
in any of the invariant and enabling conditions of G. For any ν ∈ Γ (G) and
x ∈ X , define x to be relevant for ν if ν(x) ≤ kx.

Definition 12 (Clock equivalence). For clock assignments ν and ν′ in Γ (G)
and n ∈ N, ν ∼=n ν′ if and only if the following conditions are satisfied:

1. ∀x ∈ X either bn · ν(x)c = bn · ν′(x)c or x is not relevant for ν and ν′;
2. ∀x, x′ ∈ X relevant for ν:

(i) fract(ν(x)) < fract(ν(x′)) if and only if fract(ν′(x)) < fract(ν′(x′)).
(ii) fract(ν(x)) > fract(ν(x′)) if and only if fract(ν′(x)) > fract(ν′(x′)).

Let [ν]n denote the equivalence class to which ν belongs under ∼=n. The following
lemma allows us to extend the notion of satisfaction of clock constraints to
equivalence classes of clocks.

Lemma 1 ([4]). Let ν, ν′ ∈ Γ (G) such that ν ∼=n ν′. Then, for any clock con-
straint ζ ∈ CX , ν satisfies ζ if and only if ν′ satisfies ζ.

We now define a probabilistic graph Rn(G, φ) (where φ is a PTCTL formula)
whose vertices are pairs consisting of the nodes of G and the equivalence classes
with respect to ∼=n. As in [3], to improve the complexity of the model checking
algorithm, we keep track of the time elapsed when passing through sequences of
regions by adding an extra clock x to X and setting kx to be the maximal time-
bound appearing in the formula φ. We start with some preliminary definitions
following the construction in [3, 19].

Definition 13. Let α and β be distinct equivalence classes of Γ (G).

– The equivalence class β is said to be the successor of α, denoted succ(α), if
for all ν ∈ α, there exists t > 0 such that ν + t ∈ β and ν + t′ ∈ α∪ β for all
0 ≤ t′ < t.

– The class α is said to be an invariant class of s if succ(α) violates the in-
variant condition inv(s).

– The class α is an end class if, for all x ∈ X , x is not relevant for α. If α is
an end class then, for any s ∈ S, 〈s, α〉 is an end region.

Thus, if we are in an invariant class of s then we cannot let time advance
sufficiently to move into a new equivalence class without the invariant condition
being violated. If we are in an end class then we can remain in this region and
let time diverge.

The next step is to define the transition relation over regions. As in the
standard approach, there are two types of transitions, due to passage of time
and change of state respectively, which we consider in turn.

Transitions due to passage of time are straightforward using Definition 13: the
region that can be reached from 〈s, α〉 due to passage of time is 〈s, succ(α)〉. State

transitions are more complex to deal with. Suppose that we are in a region 〈s, α〉
and a state transition occurs. Then, by definition of the model, the following two
choices are made in succession:

– a discrete probability distribution ps ∈ prob(s), where ps ∈ µ(S), such that
the enabling condition τs(ps) is satisfied by α, is selected non-deterministically;

– then, supposing ps is chosen, a transition is made according to ps.

In order to establish which equivalence classes the system moves to, we con-
sider what happens to the values of all the clocks when the transition is made.
Consider a transition from a region 〈s, α〉 to some node s′. To understand the
possible equivalence classes of clock assignments associated with s′, we consider
the equivalence classes separately for the clocks of O(s′), denoted α′O and of
N(s′), denoted α′N .

The equivalence class α′O is the restriction of α to the clocks of O(s′), since
the clocks of O(s′) remain unchanged. The clocks of N(s′) are assigned new
values at random, and thus the new equivalence class α′N is determined by a
probability distribution that can be computed through simple integrations. We
call PN(s′) the joint probability measure for the clocks of N(s′).

The problem is how to combine the equivalence classes of α′O and α′N to
obtain a unique equivalence class of clock assignments, since we have no way of
stating the relative orders between the clocks in O(s′) and N(s′). Indeed, there
are several possible equivalence classes that work correctly. Since we have no
way of determining which one is correct, we introduce a nondeterministic choice
between them all, and consequently an error which we analyze in Section 6. The
definition below can be used to determine all the possible equivalence classes
that are consistent with α′O and α′N .

Definition 14. If α1 and α2 are equivalence classes of clock assignments defined
on some subset of clocks X1 and X2 respectively such that X1 ∩X2 = ∅, then we
let α1 ∪ α2 be the set of equivalence classes over X1 ∪X2 such that γ ∈ α1 ∪ α2

if and only if γ |̀X1 = α1, γ |̀X2 = α2, where |̀ denotes restriction.

Based on the discussion above, we introduce the notion of a union region, which
is a triple 〈s, αO, αN 〉, where αO is an equivalence class of O(s), and αN is an
equivalence class of N(s).

We are now ready to formulate the region graph for a continuous probabilistic
timed automaton G and PTCTL formula φ.

Definition 15 (Region Graph). The region graph Rn(G, φ) is defined to be
the graph (V,Rstep). The vertex set V is the set of regions and union regions
(satisfying the corresponding invariant condition). The probabilistic edge func-
tion Rstep : V → Pf (µ(V)) consists of three types of steps:

– (passage of time) if 〈s, α〉 ∈ V and α is not an invariant class of s, then
the point distribution over 〈s, succ(α)〉 is an element of Rstep〈s, α〉.

– (transitions of G) if 〈s, α〉 ∈ V , ps ∈ prob(s) and τs(ps) is satisfied by
α, then the distribution p such that the probability of each union region
〈s′, α′1, α′2〉 is ps(s′)PN(s′)(α′2) when α′1 = α |̀O(s) and is 0 otherwise is an
element of Rstep〈s, α〉.

– (division) if 〈s, α1, α2〉 ∈ V , then for each α′ ∈ α1∪α2, the point distribution
over 〈s, α′〉 is an element of Rstep〈s, α1, α2〉.

The definition of a path for a region graph is similar to the definition of a path for
a continuous probabilistic timed automaton with the exception that the labels
of the arrows do not contain time values.

Definition 16 (Adversary of Rn). A (randomized) adversary B on the region
graph is a function B mapping every finite path π of Rn(G, φ) to a distribution
over Rstep(last(π)).

The definition of a probability space PB,v on PathB
ful(v), given a randomized

adversary B and a region v, is standard [10, 20]. The definition of divergent
adversaries can also be adapted easily to region graphs (see [19]).

6 Model Checking Continuous Probabilistic Timed
Automata

The aim of this paper is to extend the result of [19], which we now recall.
Suppose G is a discrete probabilistic timed automaton and the mapping φ 7→ Φ
from PTCTL to PBTL [8] is as defined in [19]. Then, for any 〈s, ν〉 ∈ G and
φ ∈ PTCTL, we have

〈s, ν〉 |=AG
φ if and only if R1〈s, ν〉 |=AR1

Φ

where R1〈s, ν〉 denotes the unique state 〈s′, α′〉 ∈ R1(G, φ) of the region graph
such that s′ = s and α = [ν[x := 0]]1. In particular, the formula [φ1 ∀ U∼k φ2]wδ

is mapped to [Φ1 ∀U (Φ2∧ax∼k)]wδ, where ax∼k is the atomic proposition which
encodes the time bound subscript ∼ k, and labels a region 〈s, α〉 if and only if
α |= x ∼ k. By abuse of notation, we abbreviate Φ1 U (Φ2 ∧ ax∼k) to Φ1 U∼k Φ2.

Let G be a continuous probabilistic timed automaton, φ be a PTCTL for-
mula, and Rn(G, φ) be the region graph for G and φ with each unit interval
refined into n parts. The region graph Rn(G, φ) does not preserve the validity of
φ in general since its construction does not preserve the probabilities of events.
In particular, it is not the case that a state 〈s, ν〉 ∈ G satisfies φ if and only if
the corresponding state Rn〈s, ν〉 of Rn(G, φ) satisfies Φ.

To understand the problem better, let φ = [φ1 ∀ U∼k φ2]≥δ. Suppose that
there is a known upper bound λ on the error that we introduce by evaluating
the probability of Φ1U∼k Φ2 on Rn〈s, ν〉 rather than on 〈s, ν〉 (see Section 6.1 for
the method to compute λ), and that the minimum, over all B ∈ ARn(G,φ), of the
probability of the paths of B starting from Rn〈s, ν〉 and satisfying Φ1 U∼k Φ2 is
p1. Then we can deduce that, from 〈s, ν〉, there exists an adversary for which the
probability of paths from 〈s, ν〉 satisfying φ1 U∼k φ2 is in the interval [p1, p1 +λ].

If δ ≤ p1, then we can conclude that φ is valid; if δ > p1 + λ, then we can
conclude that φ is not valid. If δ is in the interval (p1, p1 + λ], then Φ is valid
in Rn〈s, ν〉; however, φ may or may not be valid in 〈s, ν〉. In this case we have
three possible choices for how to proceed:

1. consider a more refined graph in the hope of solving the uncertainty;
2. say that we do not know the correct answer (“don’t know”);
3. say that the formula is valid and warn the user that there may be an error

of λ in the determination of the probability bound.

The first case has obvious complexity implications. In the second case we need to
deal with a three-valued logic, which would involve propagating the “don’t know”
values to the higher levels of the parse tree of the PTCTL formula in question.
In the third case the difficulty is that we cannot quantify the propagation of the
error to super-formulae of φ. This is because in the worst case we may estimate
wrongly the validity of φ on most of the states of G. Thus, the only thing that
we can say safely in this case is that at each level we may be wrong by some
value λ in the estimation of probabilities.

The results we obtain allow us to adopt the third solution, namely, to calcu-
late an interval of probabilities to which the actual probability bound belongs,
together with an estimate of error, for a given number of subdivisions n, and
refine the region graph further in case “don’t know” outcomes have resulted.

6.1 Main Results

Before we can state our results we need some auxiliary definitions. For the rest of
the discussion we fix a continuous probabilistic timed automaton G and a formula
φ. Let s, s′ be nodes of G and let α, α′ be sets of clock assignments for the clocks
of G. We say that 〈s, α〉 is contained in 〈s′, α′〉, denoted 〈s, α〉 ≤ 〈s′, α′〉, if
s = s′ and α ⊆ α′. Given two region graphs Rm, Rn, we say that Rm refines Rn,
denoted by Rm ≤ Rn, if each region of Rn is contained in a region of Rm. The
next lemma implies that the probability bounds do not increase with further
subdivisions of the region graph.

Lemma 2. Rm(G, φ) ≤ Rn(G, φ) if n divides m.

The next notion plays an important part in estimating the error. Let Rm, Rn

be two region graphs such that Rm ≤ Rn, and v = 〈s, α1, α2〉 a union region of
Rm. We say that v is homogeneous with respect to Rn if there exists a unique
region v′ of Rn that contains each region of {〈s, γ〉 | γ ∈ α1 ∪ α2}.

Fix a refined region graph Rn for G, φ and some n ∈ N. For any A ∈ AG,
〈s, ν〉 ∈ G, B ∈ ARn , 〈s, α〉 ∈ Rn and φ1, φ2 ∈ PTCTL we let:

PA
φ1U∼kφ2

〈s, ν〉 def= PA,〈s,ν〉{ω |ω ∈ PathA
ful〈s, ν〉 and ω |=AG

φ1 U∼k φ2}

PB
Φ1U∼kΦ2

〈s, α〉 def= PB,〈s,α〉{π |π ∈ PathB
ful〈s, α〉 and π |=ARn

Φ1 U∼k Φ2}.

Suppose that φ1, φ2 ∈ PTCTL are such that for any 〈s, ν〉 ∈ G:

〈s, ν〉 |=AG
φ1 ⇔ Rn〈s, ν〉 |=ARn

Φ1 and 〈s, ν〉 |=AG
φ2 ⇔ Rn〈s, ν〉 |=ARn

Φ2.

Then we can show the following correspondence holds between adversaries of
the automaton G and its region graph Rn (see [18]).

Proposition 1. For any A ∈ AG, 〈s, ν〉 ∈ G and n ∈ N, there exists B ∈ ARn

such that PB
Φ1U∼kΦ2

〈s, α〉 = PA
φ1U∼kφ2

〈s, ν〉 where Rn〈s, ν〉 = 〈s, α〉.

Proposition 2. For any n ∈ N, B ∈ ARn , 〈s, α〉 ∈ Rn and 〈s, ν〉 ∈ G with
Rn〈s, ν〉 = 〈s, α〉, there exists A ∈ AG such that PA

φ1U∼kφ2
〈s, ν〉 and PB

Φ1U∼kΦ2
〈s, α〉

differ by at most the probability of reaching a non-homogeneous region before sat-
isfying or violating Φ1 U∼k Φ2.

As a corollary of Proposition 1 and Proposition 2, we obtain the following crucial
correspondence between the probability bounds calculated on Rn and those on
G. Its importance is in stating that the probabilities of a PTCTL until formula
over the divergent adversaries of G are bounded by the probabilities for the
corresponding PBTL formula over the divergent adversaries of the region graph.
The latter probability calculation is standard and proceeds via reduction to a
linear programming problem [10, 8]. Moreover, since the difference in these values
can be no more than the probability of reaching a non-homogeneous region before
satisfying or violating Φ1U∼k Φ2, this yields the estimate of error. This error can
also be calculated by standard methods [10, 8].

Corollary 1. For any 〈s, ν〉 ∈ G and n ∈ N, if Rn〈s, ν〉 = 〈s, α〉 and the
maximum probability of reaching a non-homogeneous region before satisfying or
violating Φ1 U∼k Φ2 from Rn〈s, ν〉 is λ, then

inf
A∈AG

PA
φ1U∼kφ2

〈s, ν〉 ∈
[

min
B∈ARn

PB
Φ1U∼kΦ2

〈s, α〉, min
B∈ARn

PB
Φ1U∼kΦ2

〈s, α〉+ λ

]
sup

A∈AG

PA
φ1U∼kφ2

〈s, ν〉 ∈
[

max
B∈ARn

PB
Φ1U∼kΦ2

〈s, α〉 − λ, max
B∈ARn

PB
Φ1U∼kΦ2

〈s, α〉
]

.

6.2 Example

We illustrate the working of our method with the help of an example. Consider
the automaton H in Figure 1. From s0 we enable a transition that moves to s1

and sets x uniformly in the interval [0, 1]. From s1 we enable two transitions: one
transition, T1, moves to node s2 and sets y uniformly in the interval [0, 1], while
the other transition, T2, moves to s3 with probability 2

3 and to s4 with probability
1
3 . From s2 we enable a transition to s4 if y > x. We consider the upper bound
on the probability of reaching of s4, i.e. the formula [true ∀ U≥0 as4]wδ. The
adversary that gives the highest probability (5

9) is obtained by scheduling T1

immediately in s1 if x < 2
3 and T2 otherwise.

From s0 to s1 the possible regions that can be reached are k
n < x < k+1

n

for k = 0, . . . , n − 1, each with probability 1
n . In the region 〈s1,

k
n < x < k+1

n 〉
there is a choice between letting time advance, taking the transition T1 or the
transition T2. It follows that the maximum probability of reaching s4 equals:∑n−1

k=0
1
n ·max

(
n−k

n , 1
3

)
.

To reach a non-homogeneous region, y must be set, then supposing x has
been set already, this has probability 1

n . Therefore, the maximum probability of
reaching a non-homogeneous region is 1

n , which yields the following:

y 7→ [0, 1]x 7→ [0, 1]
x > 0

x > 0 y > x
2
3

1
3 1

1 1s1 s2s0

s3 s4

Fig. 1. The continuous probabilistic timed automaton H

– R1: upper bound is 1, error 4
9 and estimate of error 1;

– R2: upper bound is 3
4 , error 7

36 and estimate of error 1
2 ;

– R4: upper bound is 31
48 , error 13

144 and estimate of error 1
4 ;

– R100: upper bound is 5589
10000 , error 301

90000 and estimate of error 1
100 .

7 Conclusions

We have proposed a model checking method for continuous probabilistic timed
automata against PTCTL specifications. In the formalism we propose, we can
specify timing properties such as “at least 80% of packets will be delivered
within k units of time assuming the packets arrive according to f” where f is a
continuous-time probability distribution (for example, uniform or normal) with
support within a closed interval of R≥0. The model checking algorithm runs on a
finite region-like graph, obtained through subdividing the unit intervals. We show
how to approximate the probability to within an interval, where approximations
improve with further subdivisions, and estimate the error of the approximation.

It is known that the complexity of the verification of real-time systems is ex-
pensive, and the method proposed here is no exception. Research into improving
the complexity of our procedure, for example using symbolic methods, would be
necessary before it can be applied to real-world problems.

8 Acknowledgements

We thank Pedro D’Argenio for pointing out a flaw in our previous attempt
to solve this problem. We also thank the anonymous referees for their helpful
comments.

References

[1] R. Alur. Private communication. 1998.
[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time

systems. In Proc. ICALP’91, volume 510 of LNCS. Springer, 1991.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1), 1993.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126, 1994.

[5] R. B. Ash. Real Analysis and Probability. Academic Press, 1972.
[6] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.

Symbolic model checking for probabilistic processes. In Proc. ICALP’97, volume
1256 of LNCS. Springer, 1997.

[7] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model check-
ing of continuous-time Markov chains. In CONCUR’99, volume 1664 of LNCS.
Springer, 1999.

[8] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11, 1998.

[9] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New
generation of uppaal. In Proc. International Workshop on Software Tools for
Technology Transfer, 1998.

[10] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In FST and TCS, volume 1026 of LNCS. Springer, 1995.

[11] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
a model-checking tool for real-time systems. In Proc. CAV’98, volume 1427 of
LNCS. Springer, 1998.

[12] P. D’Argenio, J.-P. Katoen, and E. Brinksma. Specification and analysis of soft
real-time systems: Quantity and quality. In Proc. IEEE Real-Time Systems Sym-
posium. IEEE Computer Society Press, 1999.

[13] L. de Alfaro. How to specify and verify the long-run average behaviour of proba-
bilistic systems. In Proc. LICS’98. IEEE Computer Society Press, 1998.

[14] L. de Alfaro. Stochastic transition systems. In Proc. CONCUR’98, volume 1466
of LNCS. Springer, 1998.

[15] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
labelled Markov processes. To appear in LICS’2000.

[16] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(4), 1994.

[17] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111(2), 1994.

[18] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of quantitative properties of continuous probabilistic real-time automata. Tech-
nical Report CSR-00-06, University of Birmingham, 2000.

[19] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Technical Report
CSR-00-02, University of Birmingham, 2000. Accepted for a Special Issue of
Theoretical Computer Science. Preliminary version of this paper appeared in Proc.
ARTS’99, LNCS vol 1601, 1999.

[20] R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

	Verifying Quantitative Properties of Continuous Probabilistic Timed Automata
	Introduction
	Preliminaries
	Dense Markov Processes

	Definition of the model
	Probabilistic Timed Computation Tree Logic (PTCTL)
	The Refined Region Graph
	Model Checking Continuous Probabilistic Timed Automata
	Main Results
	Example

	Conclusions
	Acknowledgements

