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Abstract. We study the maximal reachability probability problem for
infinite-state systems featuring both nondeterministic and probabilistic
choice. The problem involves the computation of the maximal probabil-
ity of reaching a given set of states, and underlies decision procedures
for the automatic verification of probabilistic systems. We extend the
framework of symbolic transition systems, which equips an infinite-state
system with an algebra of symbolic operators on its state space, with a
symbolic encoding of probabilistic transitions to obtain a model for an
infinite-state probabilistic system called a symbolic probabilistic system.
An exact answer to the maximal reachability probability problem for
symbolic probabilistic systems is obtained algorithmically via iteration
of a refined version of the classical predecessor operation, combined with
intersection operations. As in the non-probabilistic case, our state space
exploration algorithm is semi-decidable for infinite-state systems. We il-
lustrate our approach with examples of probabilistic timed automata, for
which previous approaches to this reachability problem were either based
on unnecessarily fine subdivisions of the state space, or which obtained
only an upper bound on the exact reachability probability.

1 Introduction

Many systems, such as control, real-time, and embedded systems, give rise to
infinite-state models. For instance, embedded systems can be modelled in for-
malisms characterised by a finite number of control states (representing a digi-
tal controller) interacting with a finite set of real-valued variables (representing
an analogue environment). Motivated by the demand for automatic verification
techniques for infinite-state systems, a number of results concerning the decid-
ability of problems such as reachability, model checking and observational equiv-
alence have been presented: isolated results concerning models such as timed
automata [3], hybrid automata [2] and data independent systems [22] have been
subject to unifying theories [1,10] and, in some cases, have provided the basis of
efficient analysis tools, such as the timed automata model checker Uppaal [17].

In this paper, we consider a probabilistic model for infinite-state systems. For
examples of infinite-state systems exhibiting probabilistic behaviour, consider
? Supported in part by the EPSRC grants GR/M04617 and GR/N22960.

K. Larsen and M. Nielsen (Eds.), 3th International Conference on Concurrency Theory (CON-
CUR’01), volume 2154 of LNCS, pages 52–66, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



the real-time algorithm employed in the root contention protocol of IEEE1394
(FireWire) [20], probabilistic lossy channels [12] and open queueing networks [8].
Our system model also admits nondeterministic choice, which allows the mod-
elling of asynchronous systems, and permits the underspecification of aspects of
a system, including probabilistic attributes. We focus on the maximal reacha-
bility probability problem for probabilistic systems, concerning the computation
of the maximal probability with which a given set of states is reachable. In the
same way that reachability underlies the verification of temporal modalities in
the non-probabilistic context, probabilistic reachability provides the foundation
for probabilistic model checking of temporal modalities [6,5].

To reason about properties of infinite-state systems, an implicit, symbolic
means to describe infinite state sets is required. The operations required on such
state sets include boolean and predecessor operations, which together enable
model checking of reachability properties by backwards exploration through the
state space. Our first contribution concerns the extension of symbolic transition
systems [10], which are infinite-state systems equipped with an algebra of such
operations, with a (discrete) probabilistic transition relation. Observe that, in the
context of quantitative reachability properties, it is not enough to know whether
a state makes a transition to another, as encoded in the traditional predecessor
operation: the probability of the transition must also be known. Our approach,
which is specifically designed for the computation of maximal reachability prob-
abilities, is to encode the transitions of a probabilistic system into a number
of types (giving a family of typed predecessor operations), and the probabilistic
branching of the system into a set of distributions over transition types called
distribution templates. The resulting model, which consists of symbolic encodings
of both states and transitions, together with an algebra of operations including
the typed predecessor operations, is called a symbolic probabilistic system.

Our second contribution concerns the computation of the maximal reachabil-
ity probability for certain classes of symbolic probabilistic systems by reduction
to a finite-state problem. First, a state space exploration algorithm successively
iterates typed predecessor and intersection operations, starting from the target
set. The typed predecessor operations characterise the sets of states which can
make a transition of a particular type to a previously generated set of states. To
reason about the probabilistic branching structure of the system, we compute
sets of states in which transitions of multiple types are enabled through inter-
sections of state sets. If the state space exploration algorithm terminates, then
a finite set of state sets is returned. Together, the transition types available in
each of these state sets, and the distribution templates, allow us to construct a
finite-state probabilistic system with an equal maximal reachability probability
to that of the symbolic probabilistic system.

The state space analysis algorithm is closed under typed predecessor and
intersection operations, and does not take differences between state sets; there-
fore, it differs from partition refinement algorithms. Our approach keeps the
number of operations on the state space to a minimum, while retaining suffi-
cient information for the computation of the maximal reachability probability.



In particular, noting that many symbolic approaches describe state sets in terms
of constraints, our algorithm avoids propagating constraints arising from differ-
ence operations. To our knowledge, reasoning about reachability probabilities
using a combination of predecessor and intersection operations is novel.

Related work. Approaches to infinite-state systems with discrete probability dis-
tributions include model checking methods for probabilistic lossy channel sys-
tems [12]. Two verification methods for probabilistic timed automata are pre-
sented in [15]. The first uses the “region graph” of [3] to compute exact reacha-
bility probabilities, but suffers from the state explosion problem (in particular,
the size of the verification problem is sensitive to the magnitudes of the model’s
timing constraints, which is not true of our technique). The second uses forwards
reachability, but, in contrast to our technique, only computes an upper bound
on the actual maximal probability. Verification methodologies for infinite-state
systems with continuous distributions are given in [4,7,14].

Plan of the paper. Section 2 defines symbolic probabilistic systems, and describes
how they are used to represent probabilistic timed automata [15]. We present
the semi-decidable algorithm to generate a finite-state representation of a sym-
bolic probabilistic system in Section 3. Section 4 offers a critique of the analysis
method, and suggests directions for future research.

2 Symbolic Probabilistic Systems

2.1 Preliminaries

A discrete probability distribution (subdistribution) over a finite set Q is a func-
tion µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1 (

∑
q∈Q µ(q) ≤ 1). For a possibly

uncountable set Q′, let Dist(Q′) (SubDist(Q′)) be the set of distributions (sub-
distributions) over finite subsets of Q′.

Recall that a transition system is a pair (S, δ) comprising a set S of states
and a transition function δ : S → 2S . A state transition s → t from a given state
s is determined by a nondeterministic choice of target state t ∈ δ(s). In contrast,
a (nondeterministic-) probabilistic system S = (S,Steps) includes a probabilistic
transition function Steps : S → 2Dist(S). A probabilistic transition s

µ→ t is made
from a state s ∈ S by first nondeterministically selecting a distribution µ from
the set Steps(s), and second by making a probabilistic choice of target state t
according to µ, such that µ(t) > 0. A path of a probabilistic system is a finite or
infinite sequence of probabilistic transitions of the form ω = s0

µ0→ s1
µ1→ s2 · · · .

For a path ω and i ∈ N, we denote by ω(i) the (i + 1)th state of ω, and if ω is
finite, last(ω) the last state of ω.

We now introduce adversaries which resolve the nondeterminism of a prob-
abilistic system [21]. Formally, an adversary of S is a function A mapping every
finite path ω to a distribution µ ∈ Dist(S) such that µ ∈ Steps(last(ω)). Let
AdvS be the set of adversaries of S. For any A ∈ AdvS, let PathA

ful denote the



set of infinite paths associated with A. Then, in the standard way, we define the
measure ProbA over PathA

ful [13].
The maximal reachability probability is the maximum probability with which

a given set of states of a probabilistic system can be reached from a particular
state. Formally, for the probabilistic system S = (S,Steps), state s ∈ S, and set
U ⊆ S of target states, the maximal reachability probability ProbReach(s, U) of
reaching U from s is defined as

ProbReach(s, U) def= sup
A∈AdvS

ProbA{ω ∈ PathA
ful | ω(0) = s ∧ ∃i ∈ N . ω(i) ∈ U}.

The maximal reachability probability can be obtained as the solution to a linear
programming problem in the case of finite probabilistic systems [6].

Computation of the maximal reachability probability allows one to verify
properties of the form “with at least probability 0.99, it is possible to correctly
deliver a data packet”. By duality, it also applies to the validation of invariance
properties such as “with probability at most 0.01, the system aborts”. Further-
more, in the context of real–time systems, maximal reachability probability can
be used to verify time-bounded reachability properties, also known as soft dead-
lines, such as “with probability 0.975 or greater, it is possible to deliver a message
within 5 time units”. For a more detailed explanation see [15].

2.2 Symbolic probabilistic systems: definition and intuition

Symbolic transition systems were introduced in [10] as (possibly infinite-state)
transition systems equipped with symbolic state algebras, comprising a set of
symbolic states (each element of which denotes a possibly infinite set of states),
boolean, predecessor, emptiness and membership operations on symbolic states.
In [10], classes of infinite-state systems for which a finitary structure can be iden-
tified by iteration of certain operations of the symbolic state algebra are defined,
consequently highlighting the decidability of certain verification problems.

Symbolic probabilistic systems augment the framework of symbolic transi-
tion systems with (1) a probabilistic transition relation, (2) a symbolic encoding
of probabilistic transitions, and (3) a redefined symbolic state algebra. Given
the definition of probabilistic systems in the previous section, point (1) is self-
explanatory. For point (2), note that information concerning probabilities is nec-
essary for computation of maximal reachability probabilities. Let s → t be the
state transition induced by a probabilistic transition s

µ→ t by abstracting the
distribution µ from the transition. The symbolic representation consists of two
steps: first, we encode state transitions induced by the probabilistic transitions
of the system within a set of transition types. Second, we encode the proba-
bilistic branching structure of the system, which is not represented in the set of
transition types, by a set of distribution templates, which are distributions over
the set of transition types. Finally, for point (3), the predecessor operation of a
symbolic transition system is now replaced by a family of predecessor operations,
each of which is defined according to the state transitions encoded by a transi-
tion type. This allow us to identify and reason about sets of states in which state



transitions of different transition types are available; in Section 3, we see that
this characteristic is vital to identify a finitary structure on which the system’s
maximal reachability probability can be computed.

We now give the definition of symbolic probabilistic systems which generalise
the symbolic transition systems of [10]. The definition of symbolic states R,
extension function p·q, and symbolic operators And,Diff,Empty and Member
agree with those given for symbolic transition systems, with the only difference
being the typed predecessor operations. Conditions 1(a–c) have been added to
represent probabilistic systems in such a way as to preserve maximal reachability
probabilities, and are explained after the definition. In other contexts, different
choices of symbolic representation and operations may be appropriate.

Definition of symbolic probabilistic systems. A symbolic probabilistic sys-
tem P = (S,Steps, R, p·q, Tra,D) comprises: a probabilistic system (S,Steps); a
set of symbolic states R; an extension function p·q : R → 2S; a set of transition
types Tra, and, associated with each a ∈ Tra, a transition function δa : S → 2S;
and a set of distribution templates D ⊆ Dist(Tra), such that the following condi-
tions are satisfied.

1. For all states s ∈ S, let Tra(s) ⊆ Tra be such that for any a ∈ Tra: a ∈ Tra(s)
if and only if δa(s) 6= ∅. Then, for all t ∈ S:
(a) if a ∈ Tra and t ∈ δa(s), then there exists µ ∈ Steps(s) such that µ(t) > 0;
(b) if µ ∈ Steps(s), then there exists ν ∈ D and a vector of states 〈ta〉a∈Tra(s) ∈∏

a∈Tra(s) δa(s) such that: ∑
a∈Tra(s)∧t=ta

ν(a) = µ(t);

(c) if ν ∈ D and 〈ta〉a∈Tra(s) is a vector of states in
∏

a∈Tra(s) δa(s), then
there exists µ ∈ Steps(s) such that:

µ(t) ≥
∑

a∈Tra(s)∧t=ta

ν(a).

2. There exists a family of computable functions {prea}a∈Tra of the form prea :
R → R, such that, for all a ∈ Tra and σ ∈ R:

pprea(σ)q = {s ∈ S | ∃t ∈ δa(s) . t ∈ pσq} .

3. There is a computable function And : R × R → R such that pAnd(σ, τ)q =
pσq ∩ pτq for each pair of symbolic states σ, τ ∈ R.

4. There is a computable function Diff : R × R → R such that pDiff(σ, τ)q =
pσq \ pτq for each pair of symbolic states σ, τ ∈ R.

5. There is a computable function Empty : R → B such that Empty(σ) if and
only if pσq = ∅ for each symbolic state σ ∈ R.

6. There is a computable function Member : S×R → B such that Member(s, σ)
if and only if s ∈ pσq for each state s ∈ S and symbolic state σ ∈ R.



We proceed to describe transition types and distribution templates in greater
depth.

Transition types. Recall that a transition type encodes a set of state transitions
of a symbolic probabilistic system. Hence, for each transition type a ∈ Tra there
is a transition relation δa : S → 2S encoding all of the state transitions of type
a. This grouping is not necessarily a partition of the state transitions and a
given state transition may correspond to more than one type. It follows from
the lemma below that every probabilistic transition is represented by a state
transition encoded in some transition type, and vice versa.

Lemma 1. Let P = (S,Steps, R, p·q, Tra,D) be a symbolic probabilistic system.
For any s, t ∈ S: µ(t) > 0 for some µ ∈ Steps(s) if and only if t ∈ δa(s) for
some a ∈ Tra.

Distribution templates. Recall that we use the set of distribution templates
to encode the actual probabilities featured in the system. Point 1(b) requires
that the probabilistic branching structure of the system is represented in the
distribution templates. Conversely, condition 1(c) expresses the fact that, in all
states, for any transition encoded by a distribution template and transition type,
there exists a system transition which assigns an equal or greater probability to
all target states. This implies that there may be combinations of distribution
templates and transition types which do not correspond to actual probabilistic
transitions of the system. However, condition 1(c) together with 1(b) ensures
that our model is nevertheless sufficient for the computation of the maximal
reachability probability.

Example 1. Consider a system in which the state space takes the form of val-
uations of a single real-valued variable x. In state s ∈ R, the variable x can
be reset nondeterministically in the intervals (1,3) and (2,4), each with proba-
bility 0.5. Consider representing the system as a symbolic probabilistic system,
where the set of symbolic states is the set of integer-bounded intervals of R. The
above behaviour can then be encoded by transition types a and b, such that
δa(s) = (1, 3) and δb(s) = (2, 4), and the distribution template ν ∈ Dist({a, b})
given by ν(a) = ν(b) = 0.5. Now, for any s′ ∈ (2, 3) there exists a distribution
µs′ ∈ Steps(s) which corresponds to moving from s and resetting x to s′ with
probability 1. For any such µs′ , the corresponding vector 〈ta, tb〉, described in
point 1(b), is given by ta = tb = s′.

Finiteness of transition types and templates. Observe that the sets of tran-
sition types and distribution templates associated with a symbolic probabilistic
system may be infinite. However, in Section 3, we restrict the analysis techniques
to systems with finite sets of distribution templates and transition types. This
assumption implies that the analysis method is appropriate for classes of infinite-
state system exhibiting finite regularity in probabilistic transitions. For example,
the probabilistic lossy channels of [12] cannot be modelled using a finite set of



distribution templates, because the probability of message loss varies with the
quantity of data in the unbounded buffer.

2.3 Example: Probabilistic Timed Automata

In this section, we show that probabilistic timed automata [15] can be repre-
sented as symbolic probabilistic systems. We assume familiarity with the classi-
cal, non-probabilistic timed automaton model [3,11]. For an in-depth introduc-
tion to probabilistic timed automata, refer to [15].

Let X be a set of real-valued variables called clocks. Let Zones(X ) be the set
of zones over X , which are conjunctions of atomic constraints of the form x ∼ c
and x − y ∼ c, for x, y ∈ X , ∼∈ {<,≤,≥, >}, and c ∈ N. A point v ∈ R|X | is
referred to as a clock valuation. The clock valuation v satisfies the zone ζ, written
v |= ζ, if and only if ζ resolves to true after substituting each clock x ∈ X with
the corresponding clock value vx from v.

A probabilistic timed automaton is a tuple PTA = (L,X , inv , prob, 〈gl〉l∈L),
where: L is a finite set of locations; the function inv : L → Zones(X ) is the
invariant condition; the function prob : L → 2Dist(L×2X ) is the probabilistic edge
relation such that prob(l) is finite for all l ∈ L; and, for each l ∈ L, the function
gl : prob(l) → Zones(X ) is the enabling condition for l. A state of a probabilistic
timed automaton PTA is a pair (l, v) where l ∈ L and v ∈ R|X |. If the current
state is (l, v), there is a nondeterministic choice of either letting time pass while
satisfying the invariant condition inv(l), or making a discrete transition accord-
ing to any distribution in prob(l) whose enabling condition gl(p) is satisfied. If
the distribution p ∈ prob(l) is chosen, then the probability of moving to the
location l′ and resetting all of the clocks in the set X to 0 is given by p(l′, X).

Example 2. Consider the probabilistic timed automaton PTA modelling a simple
probabilistic communication protocol given in Figure 1. The nodes represent the
locations: II (sender, receiver both idle); DI (sender has data, receiver idle); SI
(sender sent data, receiver idle); and SR (sender sent data, receiver received). As
soon as data has been received by the sender, the protocol moves to the location
DI with probability 1. In DI, after between 1 and 2 time units, the protocol
makes a transition either to SR with probability 0.9 (data received), or to SI
with probability 0.1 (data lost). In SI, the protocol will attempt to resend the
data after 2 to 3 time units, which again can be lost, this time with probability
0.05.

Before we represent a probabilistic timed automaton as a symbolic probabilistic
system, we introduce the following definitions. Let v ∈ R|X | be a clock valuation:
for any real η ≥ 0, the clock valuation v+η is obtained from v by adding η to the
values of each of the clocks; and, for any X ⊆ X , the clock valuation v[X := 0]
is obtained from v by resetting all of the clocks in X to 0. Now, for zone ζ
and η ≥ 0, let ζ + η, be the expression in which each clock x ∈ X is replaced
syntactically by x + η in ζ, and let [X := 0]ζ be the expression in which each
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Fig. 1. A probabilistic timed automaton modelling a probabilistic protocol.

clock x ∈ X is replaced syntactically by 0 in ζ. The set of edges of PTA, denoted
by EPTA ⊆ L2 × 2X × Zones(X ), is defined such that (l, l′, X, ζ) ∈ EPTA if and
only if there exists p ∈ prob(l) such that gl(p) = ζ and p(l′, X) > 0.

A probabilistic timed automaton PTA = (L,X , inv , prob, 〈gl〉l∈L) defines a sym-
bolic probabilistic system P = (S,Steps, R, p·q, Tra,D), where:

– (S,Steps) is the infinite-state probabilistic system obtained as a semantical
model for probabilistic timed automata in the standard manner [15].

– The set R of symbolic states is given by L×Zones(X ). The extension function
p·q is given by p(l, ζ)q = {(l, v) ∈ S | v |= ζ} for each (l, ζ) ∈ R.

– The set of transition types Tra is the set of edges EPTA plus the special type
time such that, for any edge (l′, l′′, X, ζ ′) ∈ EPTA, and state (l, v) ∈ S:

δtime(l, v) = {(l, v + η) | η ≥ 0 ∧ ∀ 0 ≤ η′ ≤ η . v + η′ |= inv(l)}

δ(l′,l′′,X,ζ)(l, v) =
{
{(l′′, v[X := 0])} if l = l′ and v |= ζ

∅ otherwise.

– The set of distribution templates D is such that ν ∈ D if and only if either:
1. ν(time) = 1, or
2. there exists a location l ∈ L and distribution p ∈ prob(l) such that, for

all transition types a ∈ Tra:

ν(a) =
{

p(l′, X) if a = (l, l′, X, gl(p)) for some l′ ∈ L and X ⊆ X
0 otherwise.

Given (l, v) ∈ S, the set δtime(l, v) represents the set of states to which a time
passage transition can be made, whereas δ(l′,l′′,X,ζ)(l, v) represents the unique
state which is reached after crossing the edge denoted by (l′, l′′, X, ζ), provided
that it is available, and the empty symbolic state otherwise. As time passage tran-
sitions are always made with probability 1, there exists a distribution template
νtime ∈ D, such that νtime(time) = 1; each of the other distribution templates



in D is derived from a unique distribution of the probabilistic timed automaton.
For any symbolic state (l, ζ) ∈ R, and any edge (l′, l′′, X, ζ ′) ∈ EPTA, the typed
predecessor operations are defined by:

pretime(l, ζ) = (l, (∃η ≥ 0 . ζ + η ∧ ∀ 0 ≤ η′ ≤ η . inv(l) + η′))

pre(l′,l′′,X,ζ′)(l, ζ) =
{

(l′, (ζ ′ ∧ inv(l′) ∧ [X := 0](ζ ∧ inv(l)))) if l = l′′

(l, false) otherwise.

Observe that these operations are defined in terms of pairs of locations and
constraints on clocks. Note that by classical timed automata theory [11], for each
a ∈ Tra, the function prea is well defined and computable. Boolean operations,
membership and emptiness are also well defined and computable for R. Both of
the sets Tra and D are finite, which follows from the finiteness of L and prob(l)
for each l ∈ L.

Points 1(b) and 1(c) of the definition of symbolic probabilistic systems apply
to probabilistic timed automata for the following reasons. As explained above,
the distribution template νtime encodes time passage transitions of the proba-
bilistic system (S,Steps) and conditions 1(b) and 1(c) follow trivially. The other
transitions of PTA consist of choices of enabled distributions. Recall that edges
of the probabilistic timed automaton are transition types. First consider condi-
tion 1(b): for any l ∈ L and p ∈ prob(l), there exists a distribution template
ν ∈ D assigning the same probability to the edges induced by p. Then, a prob-
abilistic transition of (S,Steps) corresponding to p will be encoded by this ν.
For condition 1(c), recall that each ν ∈ D \ {νtime} is derived from a particular
p ∈ prob(l) for some l ∈ L. Then, for the state (l′, v) ∈ S, either l′ = l and
v |= gl(p), and condition 1(c) follows as in the case of 1(b), or ν assigns proba-
bility 0 to all types in Tra(s), and hence any distribution available in this state
will ensure the satisfaction of 1(c).

The translation method can be adapted to classes of probabilistic hybrid au-
tomata [18,19], which are hybrid automata [2] augmented with a probabilistic
edge relation similar to that featured in the definition of probabilistic timed au-
tomata, given an appropriate set of symbolic states and algebra of operations.
For example, a translation for probabilistic linear hybrid automata is immediate,
given the above translation and the translation from non-probabilistic linear
hybrid automata to symbolic transition systems of [10].

3 Maximal Reachability Probability Algorithm

We now present a semi-decidable algorithm (semi-algorithm) solving the maxi-
mal reachability probability problem for symbolic probabilistic systems. As men-
tioned in the previous section, we restrict attention to those symbolic probabilis-
tic systems with finite sets of transition types and distribution templates. Note
that, even for symbolic probabilistic systems within this class, the algorithm is
not guaranteed to terminate.

Let P = (S,Steps, R, p·q, Tra,D) be a symbolic probabilistic system such
that the sets Tra and D are finite, and let F ⊆ R be the target set of symbolic



Symbolic semi-algorithm ProbReach
input: (R, Tra, {prea}a∈Tra , And, Diff, Empty, Member)

target set F ⊆ R
T0 := F ;
E := ∅;
for i = 0, 1, 2, . . . do

Ti+1 := Ti

for all a ∈ Tra ∧ σ ∈ Ti do
Ti+1 := prea(σ) ∪ Ti+1

Ti+1 := {And(prea(σ), τ) | τ ∈ Ti+1} ∪ Ti+1 (∗)
E := {(prea(σ), a, σ)} ∪ E

end for all
until pTi+1q ⊆ pTiq
(T, E) := ExtendEdges(Ti, E)
return (T, E)

Procedure ExtendEdges
input: graph (T, E)
for all σ ∈ T ∧ (σ′, a, τ) ∈ E do

if pσq ⊆ pσ′q then
E := {(σ, a, τ)} ∪ E

end if
end for all
return (T, E)

Fig. 2. Backwards exploration using predecessor and intersection operations

states which for which the maximal reachability probability is to be computed.
Our first task is to generate a finite graph (T,E), where T ⊆ R and E ⊆
T × Tra × T . The nodes of the graph (T,E) will subsequently form the states
of a finite-state probabilistic system, and the edges will be used to define the
required probabilistic transitions. The symbolic semi-algorithm ProbReach which
generates the graph (T,E) is shown in Figure 2.

The algorithm ProbReach proceeds by successive iteration of predecessor and
intersection operations. For each i ∈ N and for all currently generated symbolic
states in the set Ti, the algorithm constructs the set Ti+1 of symbolic states
by adding to Ti the typed predecessors of the symbolic states in Ti, and the
intersections of these predecessors with symbolic states in Ti. Furthermore, the
edge relation E is expanded to relate the existing symbolic states to their newly
generated typed predecessors. For any two symbolic states σ, τ ∈ R, the test
pσq ⊆ pτq is decided by checking whether Empty(Diff(σ, τ)) holds. Then the
termination test pTi+1q ⊆ pTiq denotes the test {pσq | σ ∈ Ti+1} ⊆ {pσq | σ ∈
Ti}, which is decided as follows: for each σ ∈ Ti+1, check that there exists τ ∈ Ti

such that both pσq ⊆ pτq and pτq ⊆ pσq [10].



If the outer for loop of the symbolic semi-algorithm ProbReach terminates,
then we call the procedure ExtendEdges on the graph (T,E). Intuitively, for a
particular edge (σ, a, τ) ∈ E, the procedure constructs edges with the transition
type a and target symbolic state τ for all subset symbolic states of σ in T .
Finally, observe that the set T is closed under typed predecessor and intersection
operations. However, in a practical implementation of ProbReach, symbolic states
encoding empty sets of states, and their associated edges, do not need to be added
to the sets T and E respectively.

Remark 1 (termination of ProbReach). Termination of ProbReach is reliant on
the termination of the outer for loop, because, if this terminates, T and E are
finite, and hence the procedure ExtendEdges will also terminate. Observe that
the inner for loop of the algorithm will not terminate if the set Tra is not finite.
Now let � be a binary relation on the state space S of P such that s � t implies,
for all a ∈ Tra and s′ ∈ δa(s), there exists t′ ∈ δa(t) such that s′ � t′. We call
such a relation a typed simulation. Let ≈ be an equivalence relation on the state
space S such that s ≈ t if there exists typed simulations �,�′ such that s � t
and t �′ s. We call a relation such as ≈ a typed mutual simulation, and say ≈
has finite index if there are finitely many equivalence classes of ≈.

The arguments of [10] are adapted to show that ProbReach will terminate
for any symbolic probabilistic system for which there exists a typed mutual
simulation ≈ with finite index, given that the target set F is a set of equivalence
classes of ≈. That is, we show that for all σ ∈ T , the set pσq is a union of
equivalence classes of ≈. This is achieved by proving by induction on i ∈ N
that, for all s, t ∈ S such that s � t for some typed simulation �, if σ ∈ Ti

and s ∈ pσq, then t ∈ pσq. Probabilistic timed automata and probabilistic
rectangular automata with two continuous variables exhibit such a relation, as
indicated by [3] and [9] respectively.

If the semi-algorithm ProbReach terminates, the graph (T,E) is such that each
symbolic state σ ∈ T encodes a set of states of the symbolic probabilistic system
P, all of which can reach the target set F with positive probability. The following
lemma asserts that the states encoded by the source of an edge in E are encoded
by the appropriately typed predecessor of the edge’s target symbolic state.

Lemma 2. Let P = (S,Steps, R, p·q, Tra,D) be a symbolic probabilistic system
and let (T,E) be the graph constructed using the semi-algorithm ProbReach. For
any transition type a ∈ Tra, if (σ, a, τ) ∈ E, then pσq ⊆ pprea(τ)q.

Next, we construct a finite-state probabilistic system, the states of which are
the symbolic states generated by ProbReach, and the transitions of which are in-
duced by the set of edges E and the finite set of distribution templates D. That
is, we lift the identification of state transitions encoded in E to probabilistic tran-
sitions. We achieve this by grouping edges which have the same source symbolic
state and which correspond to different transition types. Then a probabilistic
transition of Q is derived from a distribution template by using the associa-
tion between target symbolic states and the transition types of the edges in the



identified group. Formally, we define a sub-probabilistic system Q = (T,StepsQ),
where StepsQ : T → 2SubDist(T ) is the sub-probabilistic transition relation StepsQ
constructed as follows. For any symbolic state σ ∈ T , let π ∈ StepsQ(σ) if and
only if there exists a subset of edges Eπ ⊆ E and a distribution template ν ∈ D
such that:

1. if (σ′, a, τ ′) ∈ Eπ, then σ′ = σ;
2. if (σ, a, τ), (σ, a′, τ ′) ∈ Eπ are distinct edges, then a 6= a′;
3. the set Eπ is maximal;
4. for all symbolic states τ ∈ T :

π(τ) =
∑

a∈Tra∧(σ,a,τ)∈Eπ

ν(a).

For any symbolic state σ ∈ T , any π ∈ StepsQ(σ) may be a sub-distribution,
as it is not necessarily the case that all of the transition types assigned positive
probability by the distribution template associated with π are featured in the
edges in Eπ: some transition types may lead to states which cannot reach the
target F . Note that the finiteness of the set D of distribution templates is required
for the construction of the sub-probabilistic system Q to be feasible.

We now state the formal correctness of our algorithm (the proof can be found
in [16]); that is, for any state s ∈ S and symbolic state σ ∈ T such that s ∈ pσq,
the maximal reachability probability of P reaching the set pFq of states from
the state s equals that of Q reaching the set F from σ.

Theorem 1. If Q = (T,StepsQ) is the sub-probabilistic system constructed us-
ing the algorithm ProbReach, with input given by the symbolic probabilistic system
P = (S,StepsP, R, p·q, Tra,D) and target set F ⊆ R, then for any state s ∈ S:

ProbReach(s, pFq) = max
σ∈T∧s∈pσq

ProbReach(σ, F ) .

Recall from Section 2.1 that the maximal reachability probability for finite prob-
abilistic systems can be computed using established methods [6].

We now describe a method which removes information from Q which is re-
dundant to the computation of the maximal reachability probability.

Remark 2 (redundant conjunction operations). The purpose of the conjunction
operation And in the algorithm ProbReach is to generate symbolic states for
which multiple transition types are available. However, taking the conjunction
of predecessors of transition types which are never both assigned positive prob-
ability by any distribution template does not add information concerning the
probabilistic branching of the symbolic probabilistic system to Q, and hence
does not affect in the computation of the maximal reachability probability. To
avoid taking such redundant conjunctions of state sets, we can replace the line
marked (∗) in the semi-algorithm ProbReach with the following:

for all ν ∈ D such that ν(a) > 0 do
Ti+1 := {And(prea(σ), σ′) | (σ′, b, τ) ∈ relevant(a, ν, E)} ∪ Ti+1

E := {(And(prea(σ), σ′), c, τ) | (σ′, b, τ) ∈ relevant(a, ν, E) ∧ c ∈ {a, b}} ∪ E
end for all



where (σ, b, τ) ∈ relevant(a, ν, E) if and only if b 6= a, ν(b) > 0 and (σ, b, τ) ∈ E.

Example 2 (continued). Say that we want to find the maximal probability of
the probabilistic timed automaton of Figure 1 reaching the location SR, corre-
sponding to correct receipt of a message, within 4 time units of the data arriving
at the sender. Given that the target set F equals {(SR, y < 4)}, application of
ProbReach on the symbolic probabilistic system of this automaton results in the
construction of the sub-probabilistic system in Figure 3. As suggested above, we
do not consider symbolic states corresponding to empty sets of states. By clas-
sical probabilistic reachability analysis on this system, the maximal probability
of reaching SR within 4 time units of the data arriving at the sender is 0.995.

(DI, x ≤ 2 ∧ y < 4 ∧ y < x + 3)

(DI, x ≤ 2 ∧ y < 2 ∧ y < x + 1)

(DI, 1 ≤ x ≤ 2 ∧ y < 4)

(DI, 1 ≤ x ≤ 2 ∧ y < 2)

(SR, y < 4)

(SI, x ≤ 3 ∧ y < 4 ∧ y < x + 2)
0.9

0.1

1

1

0.9

1

(II, true)

1

(SI, 2 ≤ x ≤ 3 ∧ y < 2)

0.95

(SI, 2 ≤ x ≤ 3 ∧ y < 4)

1

1

(SI, x ≤ 3 ∧ y ≤ 2 ∧ y < x)
0.05

0.95

Fig. 3. The probabilistic system generated by ProbReach for the PTA in Figure 1.

The symbolic states and the solid edges are generated by the main loop of
the algorithm ProbReach, while the dashed lines are added by the procedure
ExtendEdges. For example, there is a solid edge corresponding to a particular
transition type from the symbolic state (DI, 1 ≤ x ≤ 2 ∧ y < 4) to the symbolic
state (SR, y < 4). Then, as (DI, 1 ≤ x ≤ 2 ∧ y < 2) is a subset of (DI, 1 ≤
x ≤ 2 ∧ y < 4), the procedure ExtendEdges adds an extra edge from (DI, 1 ≤
x ≤ 2 ∧ y < 2) to (SR, y < 4) of the same transition type. On inspection of
Figure 1, and by the definition of the translation method for probabilistic timed
automata to symbolic probabilistic systems, there exists a distribution template
which assigns probability 0.9 and 0.1 to the transition types of the edges from
(DI, 1 ≤ x ≤ 2 ∧ y < 2) to (SR, y < 4), and to (SI, x ≤ 3 ∧ y < 4 ∧ y <
x + 2), respectively. Therefore, the distribution associated with the symbolic
state (DI, 1 ≤ x ≤ 2 ∧ y < 2) shown in Figure 3 is constructed.

4 Conclusions

Recall that the state space exploration algorithm presented in Section 3 iterates
predecessor and intersection operations; unlike a partition refinement algorithm,
it does not perform difference operations. Our motivation is that state sets of
many infinite-state systems, including timed and hybrid automata, are described



by constraints. If difference operations are used when intersecting state sets, then
constraints representing the states within the intersection, and the negation of
these constraints, are represented, rather than just the former.

Note that the algorithm could be applied only to the portion of the state
space which is reachable from initial states, thereby avoiding analysis of unreach-
able states. Furthermore, the practical implementation of our approach can be
tailored to the model in question. For probabilistic timed automata, state sets
and transitions resulting from time transitions do not need to be represented;
instead, typed predecessors are redefined to reflect both time passage and edge
transitions. Observe that the state space exploration technique presented here
will only generate convex zones; non-convex zones are notoriously expensive in
terms of space.

Our method extends to enable the verification of symbolic probabilistic sys-
tems against the existential fragments of probabilistic temporal logics such as
PCTL [6,5], though at a cost of adding union and difference operations in order
to cater for disjunction and negation. However, to enable the verification of full
PCTL a solution to the minimum reachability probability problem is required.

Finally, we conjecture that the methods presented in this paper have signifi-
cance for the verification of probabilistic hybrid and parameterised systems.
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1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. LICS’96, pages 313–321. IEEE Computer
Society Press, 1996.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Proc. CAV 2000, vol-
ume 1855 of LNCS, pages 358–372. Springer, 2000.

5. C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

6. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. FSTTCS’95, volume 1026 of LNCS, pages 499–513. Springer,
1995.

7. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
labeled Markov processes. In Proc. LICS 2000, pages 95–106. IEEE Computer
Society Press, 2000.

8. B. Haverkort. Performance of Computer Communication Systems: A Model-Based
Approach. John Wiley and Sons, 1998.

9. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations
on finite and infinite graphs. In Proc. FOCS’95, pages 453–462. IEEE Computer
Society Press, 1995.



10. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic
transition systems, 2001. Preliminary version appeared in Proc. STACS 2000,
volume 1770 of LNCS, pages 13–34, Springer, 2000.

11. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

12. P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proc. TAP-
SOFT’97, volume 1214 of LNCS, pages 667–681. Springer, 1997.

13. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. Grad-
uate Texts in Mathematics. Springer, 2nd edition, 1976.

14. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In Proc. CONCUR 2000,
volume 1877 of LNCS, pages 123–137. Springer, 2000.

15. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 2001. Special issue on ARTS’99. To appear.

16. M. Z. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of max-
imal probabilistic reachability. Technical Report CSR-01-5, School of Computer
Science, University of Birmingham, 2001.

17. P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of the European Association
for Theoretical Computer Science, 70:40–44, 2000.

18. J. Sproston. Decidable model checking of probabilistic hybrid automata. In Proc.
FTRTFT 2000, volume 1926 of LNCS, pages 31–45. Springer, 2000.

19. J. Sproston. Model Checking of Probabilistic Timed and Hybrid Systems. PhD
thesis, University of Birmingham, 2001.

20. M. I. A. Stoelinga and F. Vaandrager. Root contention in IEEE1394. In Proc.
ARTS’99, volume 1601 of LNCS, pages 53–74. Springer, 1999.

21. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In Proc. FOCS’85, pages 327–338. IEEE Computer Society Press, 1985.

22. P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proc. POPL’86, pages 184–193. ACM, 1986.


	Symbolic Computation of Maximal Probabilistic Reachability
	Introduction
	Symbolic Probabilistic Systems
	Preliminaries
	Symbolic probabilistic systems: definition and intuition
	Example: Probabilistic Timed Automata

	Maximal Reachability Probability Algorithm
	Conclusions


