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Abstract

We consider a generalisation of Larsen and Skou’s [19] reactive probabilistic transi-
tion systems which exhibit three kinds of choice: action-guarded probabilistic choice,
external (deterministic) and internal (non-deterministic) choice. We propose an op-
erational preorder and equivalence for processes based on testing. Milner’s button
pushing experiments scenario is extended with random experiments by assessing
the probability of processes passing a test. Two processes are then identified with
respect to the testing equivalence if they pass all tests with the same probability.
The derived equivalence is a congruence for a subcalculus of CSP extended with
action-guarded probabilistic choice. It is coarser than probabilistic bisimulation,
yet non-probabilistic branching-time, and differs from probabilistic equivalences de-
veloped for CSP [20,22,26]. We provide a logical characterization of the equivalence
in terms of the quantitative interpretation of HML of [14] and show how fixed points
can be added to the logic.

1 Introduction

Many probabilistic extensions of process algebras have been proposed to date,
such as those based on CCS [21], CSP [7] and ACP [4]. Probabilistic bisimu-
lation, introduced by Larsen and Skou [19] for reactive systems and extended
with non-determinism and time by Hansson [12], is a generalisation of Milner’s
bisimulation. Other probabilistic process equivalences include probabilistic
simulation of Segala and Lynch [25], Wang Yi and Larsen’s testing equiva-
lence [27], and CSP equivalences of Morgan et al. [22], Lowe [20] and Seidel
[26].

Probabilistic bisimulation is strongly related to bisimulation [6] and has
many useful properties: it has a logical characterization in terms of the
Hennessy-Milner logic [19] (see also [8]), has an efficient (polynomial) decision
procedure [2], and is a congruence for typical process operators. For example,
van Glabbeek et al. [11] show that probabilistic bisimulation is a congruence
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over their calculus PCCS (which contains all the usual SCCS operators) and
Baier and Kwiatkowska [3] show congruence properties of full CCS extended
with action-guarded probabilistic choice. Generally, if one works with a fine
(or strong) equivalence such as probabilistic bisimulation then almost all CCS
or CSP operators can be adapted to the probabilistic setting. However, there
are cases when probabilistic bisimulation is too fine, as it discriminates be-
tween processes that cannot be distinguished under a realistic testing scenario.

One alternative is to work with a weaker (or coarser) equivalence, i.e. one
that only distinguishes processes that can be differentiated by external obser-
vations. The difficulty with this approach is that only a subset of operators
can be considered if we wish to ensure our equivalence is a congruence (see
e.g. Jou and Smolka [17], where even restriction forces both trace and failure
equivalence to fail to be congruences, and also in [26] and [20] where hiding
cannot be defined); the latter is an important property, since without it any
resulting denotational model will not be compositional.

This paper is motivated by the need to work with a process language which
allows both external choice (determined by the environment) and internal
choice (determined by the process itself) in the sense of CSP [24], together
with probabilistic choice (which we shall assume to be action-guarded). In
addition, we shall assume that the probabilistic choice is internal 1 , that is,
the point at which probabilistic choices occur is unimportant, since they are
made neither by the process nor by the environment, but by some prescribed
probability distribution. An example of such a situation involving scratch
cards can be found in [22]. In such cases probabilistic bisimulation is too
fine, as it makes distinctions between processes that cannot be distinguished
by a reasonable notion of observation. To illustrate this point, consider the
processes given in Figure 1 below.
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Fig. 1. Probabilistic bisimulation is too fine.

Both E and F make a random choice with probability 1
2

at some stage in their
computations. Each random choice can be thought of as flipping a coin and
then selecting the left or the right branch depending on the outcome. The
process E, therefore, first flips a coin and then performs the actions abc if the
coin lands on heads, or the actions abd if the coin lands on tails. The process

1 There may be cases when external probabilistic choice is needed, which we shall not
discuss in this paper.
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F , on the other hand, first performs an a action, and then flips a coin and
performs the actions bc if the coin lands on heads, or the actions bd if the
coin lands on tails. Since performing an a action before or after flipping a
coin has no effect on whether the coin lands on heads or tails , the processes
should be observationally equivalent. However, probabilistic bisimulation will
distinguish between these processes, due to the difference in their probabilistic
branching behaviour.

In this paper we consider an extension of Larsen and Skou’s reactive sys-
tems [19] so that they allow three types of choice: probabilistic, external and
internal. For such systems we formulate an equivalence based on testing, de-
veloped in the setting of Milner’s button pushing experiments by the addition
of random experiments. These are experiments in which the probability of a
given process passing a test or not can be assessed. One process is then said
to be greater than or equal to another if it passes all the tests with prob-
ability at least as high as the former. Two processes are equivalent if they
pass all tests with the same probability. The idea for this equivalence is to
only make distinctions that are in some sense observable (for which there is
a test that the processes pass with different probabilities), while at the same
time ensuring that it is a congruence for the three types of choice operators,
particularly external choice. We compare the derived equivalence with similar
probabilistic equivalences.

Finally, we provide a ‘logical’ characterization in terms of the quanti-
tative interpretation of the Hennessy-Milner logic introduced by Huth and
Kwiatkowska [14]. Each formula of the quantitative HML is interpreted as a
map from processes to the interval [0,1], giving the probability of the process
satisfying this formula. Each such formula is shown to correspond to a random
experiment, and vice-versa. We also show how a fixed point operator can be
added to the quantitative HML.

For full details of the results presented here the reader is referred to [23]. A
fully abstract metric-space denotational semantics for the calculus presented
here can be found in [23,18].

2 A Testing Scenario with Random Experiments

In this section, we first introduce reactive probabilistic transition systems
which extend Larsen and Skou’s probabilistic labelled transition systems [19]
by allowing processes of the system to exhibit three types of choice: (inter-
nal action-guarded) probabilistic, external (deterministic) and internal (non-
deterministic). Next we introduce an operational preorder over reactive proba-
bilistic transition systems based on testing which will distinguish two processes
only if they have observably different behaviour. We then compare this order
and equivalence with alternative probabilistic equivalences and give suitable
examples.
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2.1 Reactive Probabilistic Processes

Let D be a set. A (discrete) probability distribution on D is a function
π :D −→ [0, 1] such that

∑
d∈D π(d) = 1. Furthermore, let µ(D) denote the

set of discrete probability distributions on D. Let A and S be sets. A subset
X of A × S is said to satisfy the reactiveness condition if, for any distinct
(a1, s1), (a2, s2) ∈ X: a1 6= a2. Furthermore, let Pfr(· × ·) denote the pow-
erset operator restricted to only finite reactive subsets of cartesian products
satisfying the reactiveness condition.

Definition 2.1 A Reactive Probabilistic Transition System is a tuple (R,Act ,
→), where R is a set of states, Act is a finite set of actions and → a transition
relation

→ ⊆ R×Pfr(Act × µ(R))

satisfying: for all E ∈ R there exists S ∈ Pfr(Act×µ(R)) such that (E, S) ∈→.
We write E → S instead of (E, S) ∈→.

Note that elements E ∈ R of a reactive probabilistic transition system
(the processes) are associated via the (unlabelled) transition relation → with
reactive sets of pairs consisting of an action a ∈ Act and a probability distri-
bution π on the processesR. Intuitively, any such S = {(a1, π1), . . . , (am, πm)}
should be viewed as a reactive probabilistic process deterministic on its first
step, which offers to the environment the menu of actions a1, . . . , am, and
after ai for some 1 ≤ i ≤ m has been selected, the process continues accord-
ing to the distribution πi, that is, the probability of behaving as F is given
by πi(F ). Uniqueness of this distribution is guaranteed by the reactiveness
condition. The case when S = ∅, the inactive process, is allowed. These
‘deterministic’ probabilistic processes are, in fact, equivalent to Larsen and
Skou’s probabilistic transition systems [19]; using their terminology, for any
S ∈ Pfr(Act × µ(R)):

S
a−→λ F if and only if (a, π) ∈ S for some π ∈ µ(R) and π(F ) = λ.

Non-determinism is introduced by allowing a choice between deterministic
processes: for any E ∈ R and distinct S1, S2 ∈ Pfr(Act × µ(R)), if E → S1

and E → S2, then E makes a non-deterministic choice between continuing as
the process S1 or S2. The class of all reactive systems thus exhibits (internal
action-guarded) probabilistic, deterministic and non-deterministic choice.

2.2 Testing Reactive Probabilistic Processes

We develop an operational preorder on reactive probabilistic transition sys-
tems with the help of the testing language T which we now introduce. The
testing scenario is based on Milner’s button-pushing experiments on transi-
tion systems [21], where we suppose we have a series of buttons, one for every
action (a ∈ Act), which an experimenter can press one at a time. The pro-
cess will remain in rest if no buttons are pressed (we denote this experiment
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by ω), and otherwise it will react by performing the corresponding action, in
which case the button will go down and the experiment succeeds, or refusing
to perform the action, in which case the button will not go down and the
experiment fails. This scenario is extended to handle random experiments as
follows. First we define two experiments ti and tj to be independent if the first
steps of the experiments are associated with pressing different buttons.

Next we introduce three experiments to respectively capture the three
types of behaviour exhibited by processes of a reactive probabilistic transition
system (probabilistic, non-deterministic and external).

(i) a.t, where a ∈ Act : this experiment corresponds to pushing the a-button
and then, if the button goes down, performing the experiment t.

(ii) (|t|): this experiment corresponds to making sufficiently many copies of
the process being tested, so that any non-deterministic choice the pro-
cess can make will occur on at least one of the copies made, and then
performing the experiment t on each of the copies.

(iii) ((|t1|), . . . , (|tm|)) and [a1.t1, . . . , am.tm], where for all 1 ≤ i 6= j ≤ m
the experiments (|ti|) and (|tj|), and the experiments ai.ti and aj.tj, are
independent: the experiment ((|t1|), . . . , (|tm|)) corresponds to making m
copies of the process being tested and then performing the experiment
(|ti|) on one of the copies for all 1 ≤ i ≤ m ([a1.t1, . . . , am.tm] is similar).

Intuitively, the success or failure of a process passing an experiment corre-
sponds to the success or failure of one run (or execution) of the process being
experimented on, under different conditions. This motivates the construction
(|t|) and also the constructions ((|t1|), . . . , (|tm|)) and [a1.t1, . . . , am.tm] (and the
restrictions of independence we have imposed on them). First, (|t|) corresponds
to the changes the demons introduce to influence the non-deterministic choices
that processes make. We note that through the construct (|t|) we require
that the demons must make all non-deterministic choices that a process can
make possible within a finite period. Second, ((|t1|), . . . , (|tm|)) (similarly for
[a1.t1, . . . , am.tm]) corresponds to changes in the environment, that is, changes
in the actions the processes are allowed to perform, which we accomplish by
making copies of processes and then pressing different buttons on each of
these copies. To ease notation, when forming the test ((|t1|), . . . , (|tm|)) (simi-
larly for [a1.t1, . . . , am.tm]) we require that (|ti|) and (|tj|) are independent for
all 1 ≤ i 6= j ≤ m. We note that copying was first introduced by Abramsky [1]
for non-probabilistic processes, and by Larsen and Skou [19] for probabilistic
processes.

If we now perform these tests on processes of a reactive probabilistic tran-
sition system (R,Act ,→), we will be performing random experiments , since
for any E ∈ R the success of the experiment will depend on the probabilis-
tic choices within the process. Moreover, the test (|r|) will, in fact, give rise
to a set of probabilities, each one corresponding to the probability of the E
passing the test r when one of its possible non-deterministic choices is made.
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As a result, we will be unable to calculate the exact probability of processes
passing tests and instead we will only calculate the greatest lower bound and
the least upper bound on the probability of E passing r. These are the only
two realistic options, as there is no way of calculating any meaningful average,
since the choices are non-deterministic and so we are unable to estimate the
frequency of each such choice being made.

The syntax of our testing language Tω is as follows.

Definition 2.2 Let T and Tω, with elements t and T respectively, be the
testing languages defined inductively as follows:

r ::= ω | [a.T, . . . , a.T ]

t ::= (|r|)

T ::= (t, . . . , t)

where a ∈ Act .

To capture the outcome of random experiments as described above we
define the maps Rglb and Rlub from R and Tω to the unit interval which, for
any process E ∈ R and test (|r|) ∈ T, yield the greatest lower bound and the
least upper bound on the probability of E passing the test r respectively. We
mention that intervals were also used in [27].

Definition 2.3 Let Rglb,Rlub : R −→ (Tω −→ [0, 1]) be the maps defined
inductively on Tω where R∗ stands for either Rglb or Rlub. For any E ∈ R put:

Rglb(E)((|r|)) = min
E→S

Rglb(S)(r), Rlub(E)((|r|)) = max
E→S

Rlub(S)(r)

and R∗(E)((t1, . . . , tm)) =
m∏
j=1

R∗(E)(tj)

where for any S ∈ Pfr(Act × µ(R)) and 1 ≤ i ≤ m put:

R∗(S)(ω) = 1, R∗(S)([a1.T1, . . . , am.Tm]) =
m∏
i=1

R∗(S)(ai.Ti) and

R∗(S)(a.T ) =


∑
F∈R

π(F ) · R∗(F )(T ) if (a, π) ∈ S for some π ∈ µ(R)

0 otherwise.

The intuition for how the values of Rglb(E)((|r|)) and Rlub((|r|)) are calcu-
lated should be clear from the discussion above and the finiteness assumptions.
Next, R∗(S)(ω) calculates the probability of S passing the test ω, and since any
process can pass ω (as no buttons are pressed) we set this value to 1. In the case
for R∗(E)((t1, . . . , tm)) we want to calculate the probability of E or S passing
all the tests t1, . . . , tm, which we achieve by multiplying the probabilities of
E or S passing each test ti. Multiplication can be used since by construction,
for any 1 ≤ j 6= k ≤ m and for any 1 ≤ i 6= j ≤ m, the tests tj and tk cor-
respond to pressing different buttons at their first stage, hence corresponding
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to different probability distributions, and therefore the probabilities of these
tests being passed are independent . The case of R∗(S)([a1.T1, . . . , am.Tm]) is
similar. Finally, R∗(S)(a.T ) calculates the probability of the ‘deterministic’
probabilistic process S performing paths which have the initial action a and
then pass the test T : we set R∗(S)(a.T ) = 0 if S cannot perform the action a,
that is (a, π) 6∈ S for any π ∈ µ(R), and to the weighted sum of π(F )·R∗(F )(T )
over all F ∈ R otherwise.

Since by definition Rglb(E)(((|ω|))) = Rlub(E)(((|ω|))) = 1 for all reactive
probabilistic transition systems (R,Act ,→) and E ∈ R, to simplify the no-
tation we will denote any occurrence of the test ((|ω|)) by ω.

With the help of the above maps, we are now in a position to define
our operational order and subsequent equivalence on all reactive probabilistic
transition systems. We simply require that the process higher up the order
must pass all tests with probability at least as high as those below.

Definition 2.4 For any E,F ∈ R, E vglbF if Rglb(E)(T ) ≤ Rglb(F )(T ) and
E vlub F if Rlub(E)(T ) ≤ Rlub(F )(T ) for all T ∈ Tω respectively. Moreover,
for any E,F ∈ R, E vRF if E vglbF and E vlubF , and E

R∼F if E vRF and
F vRE.

The following lemma illustrates why we need only consider the tests T as
opposed to the (larger) set of tests Tω.

Lemma 2.5 For any E,F ∈ R:

(i) E vglbF if and only if Rglb(E)(t) ≤ Rglb(F )(t) for all t ∈ T.

(ii) E vlubF if and only if Rlub(E)(t) ≤ Rlub(F )(t) for all t ∈ T.

We note that our testing scenario differs from that of Larsen and Skou’s in
that their testing scenario removes the syntactic restriction of independence
we impose on the construct (t, . . . , t). As a result, the two approaches attach
a different meaning to the phrase “the probability of a process passing a test”.
In our approach, the probability of a process passing a test corresponds to
the probability of one run (or execution) of the process passing a test, with
the addition that we allow the value to correspond to the probability of the
same run of a process passing a test under different conditions, for example
due to changes in the behaviour of the environment. Thus, in our setting, the
probability of a process passing the test (a.t, b.t) is the probability of some run
of the process passing the test a.t when the environment offers the action a,
and the same run passing the test b.t when the action b is offered. It should
therefore come as no surprise that our testing equivalence does not coincide
with the equivalence introduced in [19].

2.3 A Comparison with Alternative Equivalences on Probabilistic Processes

We now compare our operational order vR with probabilistic equivalences
known from the literature. One such equivalence is Larsen and Skou’s prob-
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abilistic bisimulation [19], which turns out to be finer than our equivalence.
To see this, consider again the processes in Figure 1, which are distinguished
by probabilistic bisimulation. Analysing the values of maps Rglb(E), Rlub(E),
Rglb(F ) and Rlub(F ) over all tests T, we see that the maps agree. The result
is summarised in the table below, with the zero values omitted:

[a.ω] [a.((|[b.ω]|))] [a.((|[b.((|[c.ω]|))]|))] [a.((|[b.((|[d.ω]|))]|))]

1 1 1/2 1/2

Thus, the order vR will not distinguish between the processes E and F , and
hence E

R∼F .

Other equivalences that are finer than vR and also distinguish the pro-
cesses given in Figure 1, and which we therefore view as too fine, include:
Hansson’s extension of probabilistic bisimulation to a model allowing non-
determinism [12], Segala and Lynch’s probabilistic simulation [25] and Wang
Yi and Larsen’s testing equivalence [27]. Nevertheless, when considering mod-
els with external probabilistic choice, the probabilistic branching structure
may become important, since the probabilistic choices the processes make will
depend on the choices made by the environment.

Of equivalences coarser than
R∼ , which would therefore identify any two

processes that
R∼ finds equivalent, and in particular could not distinguish be-

tween the processes of Figure 1, there are several based on extending traces,
failures and readies [7]. Such extensions are based on incorporating the proba-
bilities of processes performing a trace, and then refusing or accepting to then
perform a certain set of actions, and include equivalences formulated by Seidel
[26], Lowe [20] and Jou and Smolka [17]. In our reactive setting, these equiva-
lences are too coarse: although they do capture the probabilistic behaviour of
processes, they are linear-time based equivalences [10], and therefore do not
capture the branching behaviour associated with choices other than probabilis-
tic, such as deterministic choice which reactive systems admit. To illustrate
this consider the processes in Figure 2 below which are distinguished by our
equivalence

R∼ (and hence probabilistic bisimulation) but are equivalent under
probabilistic extensions of trace, failure and ready equivalences.

E1r
�

�
�

�=

Z
Z

Z
Z~

a
1
2

1
2

a rr







�

J
J

JĴ
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Fig. 2. Trace, failure and ready equivalence are too coarse.

Observe that E1 can reach an intermediate state (after performing the action
a with probability 1

2
) where there is an external choice between performing a
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b transition followed by a d transition, and performing a c transition followed
by an e transition. In contrast, E2 cannot reach such a state.

The final equivalence we mention, neither finer nor coarser than
R∼ , is that

introduced by Morgan et al. [22]. Although, similarly to [20], the equivalence
of [22] is based on the failures model of CSP, it is essentially different in that
it is instead based on how processes “make decisions”, and more precisely on
what the process “is”. The latter is achieved by intuitively considering “the
probability that probabilistic processes are standard CSP processes”. We feel
that their equivalence is too fine in certain cases. As an example consider the
processes E3 and E4 given in Figure 3 below.
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Fig. 3. Morgan et al.’s equivalence is too fine.

First, observe that E3 can either perform the trace ab or the trace ac, both
with probability 1

2
. Moreover, no matter which internal choice E4 can make,

the outcome will match the behaviour of E3. Therefore, these processes should
be observationally equivalent. However, in the approach of Morgan et al. [22],
the processes are distinguished: for example, the probability that E3 is the
CSP process a→ (b→ 0) is 1

2
, whereas the probability that E4 is the process

a→ (b→ 0) is 1
4

since E4 only becomes the process a→ (b→ 0) when both
instances of E3 in E4 choose to perform the trace ab.

We end this section by giving examples of reactive probabilistic processes
which illustrates that the order vR is non-probabilistic branching time.
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Fig. 4. vR is non-probabilistic branching time (E4 vR ( 6 R∼ )E5 vR ( 6 R∼ )E3).

3 Logical Semantics

In this section we give a logical semantics to reactive probabilistic transition
systems using Hennessy-Milner Logic (HML) [13]. We adapt and extend Huth
and Kwiatkowska’s non-standard interpretation [14] for HML over processes of
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Larsen and Skou’s probabilistic transition systems [19] to our reactive proba-
bilistic transition systems.

We begin by recalling the logic HML (with finite conjunctions) together
with the non-standard interpretation of Huth and Kwiatkowska [14] originally
introduced for Larsen and Skou’s probabilistic transition systems. We omit
additional binary operators considered in [14], for example disjunction (∨),
and fixed point operators.

Definition 3.1 (Hennessy-Milner Logic [13]) The logic HML is defined
inductively on the syntax:

φ ::= true | 〈a〉φ | ¬φ | φ ∧ φ

where a ranges over a set of actions Act .

Definition 3.2 (c.f. [14]) Let [[.]] : HML −→ (P −→ [0, 1]) be the map
defined inductively on formulae of HML for any process E of Larsen and Skou’s
probabilistic transition systems [19] as follows:

[[true]]E = 1

[[〈a〉φ]]E =
∑

E
a−→λF

λ · [[ψ]]F

[[¬φ]]E = 1− [[φ]]E

[[φ1 ∧ φ2]]E = [[φ1]]E · [[φ2]]E.

Observe that conjunctions are interpreted as multiplication, and thus we
must impose independence of the corresponding events to ensure probabilistic
soundness. We achieve this through a syntactic restriction of disjointness of
the initial actions of the conjuncts (see the mapping act below). This can be
extended to the full HML with the help of conditional probabilities.

Definition 3.3 Let act : HML −→ Pf(Act) be the mapping defined inductively
on the syntax of HML as follows:

act(true) = ∅

act(〈a〉φ) = {a}

act(¬φ) = act(φ)

act(φ1 ∧ φ2) = act(φ1) ∪ act(φ2).

Since the interpretation [[·]] of HML (see Definition 3.2) is given for processes
of Larsen and Skou’s systems which, as mentioned earlier, are equivalent to
the deterministic components of processes of a reactive probabilistic transition
system (R,Act ,→), that is, elements of Pfr(Act×µ(R)), we can simply adapt
Definition 3.2 to our reactive setting as follows. Let S ∈ Pfr(Act × µ(R)); we

10



Kwiatkowska and Norman

need to replace the clause for 〈a〉φ in Definition 3.2 by:

[[〈a〉φ]]S
def
=


∑
F∈R

π(F ) · [[φ]]F if (a, π) ∈ S for some π ∈ µ(R)

0 otherwise.

Next, to extend this interpretation of HML to all the processes of (R,Act ,→),
we need to incorporate the non-deterministic behaviour. Similarly to the non-
probabilistic case, where non-deterministic behaviour is often represented by
processes being able to perform hidden (τ) actions (for example, when giving
a logical characterisation of weak bisimulation [21]), we add an operator of
the form 〈ε〉φ to the syntax of HML, where for any labelled transition system
and process P of the system, 〈ε〉φ is interpreted as follows:

[[〈ε〉φ]]P
def
= max{[[φ]]Q |P ⇒ Q}.

Here P ⇒ Q holds if there exists a path from P to Q consisting of an arbitrary
number (≥ 0) of τ -steps. Intuitively, a process P satisfies the formula 〈ε〉φ,
that is, [[〈ε〉φ]]P = 1, if P can make a non-deterministic choice to evolve as
a process which will satisfy φ. Adapting this to (R,Act ,→), we have the
following interpretation of 〈ε〉φ for any E ∈ R:

[[〈ε〉φ]]E
def
= max{[[φ]]S |E → S}

since E makes a non-deterministic choice between behaving as any S ∈ Pfr(Act×
µ(R)) such that E → S (the reader should note the resemblance to our tests).

We also add the dual of 〈ε〉φ, namely [ε]φ, where, intuitively, a (non-
probabilistic) process P satisfies the formula [ε]φ if all the processes that
P can evolve to by making a non-deterministic choice satisfy φ. Since by
definition of HML [.] = ¬〈.〉¬, using Definition 3.2 we define the interpretation
of [ε]φ by: for any E ∈ R:

[[[ε]φ]]E
def
= min{[[φ]]S |E → S}.

Furthermore, since any S ∈ Pfr(Act × µ(R)) is a deterministic probabilistic
process, we set:

[[〈ε〉φ]]S
def
= [[φ]]S and [[[ε]φ]]S

def
= [[φ]]S.

We identify the following two subsets of HML, denoted HML〈ε〉
r and HML[ε]

r , where
the intuitive meaning of HML〈ε〉

r and HML[ε]
r is that processes may or must validate

formulae respectively – in the probabilistic sense of course – where the map
act(·) is extended by: act(〈ε〉φ)

def
= act(φ).

Definition 3.4 The sublanguage HML〈ε〉
r of HML is the language defined induc-

tively on the syntax:

φ ::= true | 〈ε〉〈a〉φ | φ ∧ φ | 〈ε〉(φ ∧ φ)

where, for any φ1 and φ2 ∈ HML〈ε〉
r , φ1 ∧ φ2 and 〈ε〉(φ1 ∧ φ2) exists in HML〈ε〉

r if
and only if act(φ1) ∩ act(φ2) = ∅.

11
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Definition 3.5 The sublanguage HML[ε]
r of HML is the language defined induc-

tively on the syntax:

ψ ::= true | [ε]〈a〉ψ | ψ ∧ ψ | [ε](ψ ∧ ψ)

where, for any ψ1 and ψ2 ∈ HML[ε]
r , ψ1 ∧ ψ2 and [ε](ψ1 ∧ ψ2) exists in HML[ε]

r if
and only if act(ψ1) ∩ act(ψ2) = ∅.

It should be clear that the syntactic restrictions we have imposed on the
logics ensure that our interpretation is probabilistically sound, since the prob-
abilities corresponding to [[φ1]]E and [[φ2]]E are independent for any E ∈ R
and φ1 ∧ φ2 ∈ HML〈ε〉

r ∪ HML[ε]
r .

We now establish connections between HML〈ε〉
r and HML[ε]

r and our testing
preorder, for which the following lemmas and definitions are required. For
the remainder of this section we only give the proofs relating to HML〈ε〉

r , as the
cases for HML[ε]

r follow similarly.

Lemma 3.6 For any {φ1, . . . , φm} ⊆ HML〈ε〉
r , if act(φi) ∩ act(φj) = ∅ for all

1 ≤ i 6= j ≤ m then there exists φ ∈ HML〈ε〉
r such that

act(φ) =
m⋃
i=1

act(φi), [[φ]]E =

[[
〈ε〉

(
m

∧
i=1
φi

)]]
E and [[φ]]S =

[[
m

∧
i=1
φi

]]
S

for all E ∈ R and S ∈ Pfr(Act × µ(R)).

Proof. The proof is by induction on m ∈ N. 2

Lemma 3.7 For any {ψ1, . . . , ψm} ⊆ HML[ε]
r , if act(ψi) ∩ act(ψj) = ∅ for all

1 ≤ i 6= j ≤ m then there exists ψ ∈ HML[ε]
r such that

act(ψ) =
m⋃
i=1

act(ψi), [[ψ]]E =

[[
[ε]

(
m

∧
i=1
ψi

)]]
E and [[ψ]]S =

[[
m

∧
i=1
ψi

]]
S

for all E ∈ R and S ∈ Pfr(Act × µ(R)).

Definition 3.8 If (|r|) ∈ T, put r ‖⊥ = ω ‖ r = r, and if (|r1|), (|r2|) ∈ T are
such that r1 = [a1.T1, . . . , am.Tm], r2 = [a′1.T

′
1, . . . , a

′
m.T

′
m′ ], and r1 and r2 are

independent, put: r1 ‖ r2 = [a1.T1, . . . , am.Tm, a
′
1.T

′
1, . . . , a

′
m.T

′
m′ ].

Furthermore, if T1 = (t1, . . . , tm) ∈ Tω and T2 = (t′1, . . . , t
′
m′) ∈ Tω such

that T1 and T2 are independent, put: T1 ‖T2 = (t1, . . . , tm, t
′
1, . . . , t

′
m′).

Lemma 3.9 If (|r1|), (|r2|) ∈ T and r1 ‖ r2 is defined, then (|r1 ‖ r2|) ∈ T and for
all S ∈ Pfr(Act × µ(R)): R∗(S)(r1 ‖ r2) = R∗(S)(r1) · R∗(S)(r2).

Lemma 3.10 If T1, T2 ∈ Tω and T1 ‖T2 is defined, then T1 ‖T2 ∈ Tω and for
all E ∈ R: R∗(E)(T1 ‖T2) = R∗(E)(T1) · R∗(E)(T2).

We are now able to state a fundamental connection between our testing
scenario and the quantitative interpretation of HML: there is a bijective corre-
spondence between the tests and formulae of HML〈ε〉

r (respectively HML[ε]
r ) such

that, for every process, the probabilities assigned to the tests via the map Rglb

(outcomes of random experiments) agree with the probabilities assigned to
the formulae of HML〈ε〉

r (respectively HML[ε]
r ) via our interpretation.

12
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Proposition 3.11 For all t ∈ T there exists φt ∈ HML〈ε〉
r such that for all

E ∈ R, [[φt]]E = Rlub(E)(t).

Proof. The proposition is proved by induction on t ∈ T.

If t = (|ω|), then we set φ(|t|) = true, and the proposition holds by definition
of Rlub and [[·]].

If t = (|[a1.T1, . . . , am.Tm]|), then Ti is of the form (ti1, . . . , t
i
mi

) for all 1 ≤
i ≤ m and in this case using Lemma 3.6 we set φt to the formula of HML〈ε〉

r

such that:

[[φt]]E =

[[
〈ε〉

(
m

∧
i=1

(〈ai〉φTi
)

)]]
E

for all E ∈ R, and φTi
=

mi

∧
j=1
φtij for all 1 ≤ i ≤ m. Now, for any F ∈ R and

1 ≤ i ≤ m by definition of [[·]] and φTi
:

[[φTi
]]F =

mi∏
j=1

[[φtij ]]F

=
mi∏
j=1

Rlub(F )(tij) by induction

= Rlub(F )(Ti) by definition of Rlub.

Next, for any S ∈ Pfr(Act × µ(R)) by definition of [[·]]:

[[〈ai〉φTi
]]S =


∑
F∈R

π(F ) · [[φTi
]]F if (ai, π) ∈ S for some π ∈ µ(R)

0 otherwise

=


∑
F∈R

π(F ) · Rlub(F )(Ti) if (ai, π) ∈ S for some π ∈ µ(R)

0 otherwise

from above

= Rlub(S)(ai.Ti) by definition of Rlub.

Finally, by construction of φt for any E ∈ R:

[[φt]]E =

[[
〈ε〉

(
m

∧
i=1

(〈ai〉φTi
)

)]]
E

= max
E→S

m∏
i=1

[[〈ai〉φTi
]]S by definition of [[·]]

= max
E→S

m∏
i=1

Rlub(S)(ai.Ti) from above

= max
E→S

Rlub(S)([a1.T1, . . . , am.Tm]) by definition of Rlub

= Rlub(E)(t) by definition of Rlub

as required. 2

Proposition 3.12 For all t ∈ T there exists ψt ∈ HML[ε]
r such that for all

E ∈ R, [[ψt]]E = Rglb(E)(t).

13
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Proposition 3.13 For all φ ∈ HML〈ε〉
r there exists (|rφ|) ∈ T and Tφ ∈ Tω such

that [[φ]]S = Rlub(S)(rφ) for all S ∈ Pfr(Act × µ(R)), and [[φ]]E = Rlub(E)(Tφ)
for all E ∈ R.

Proof. The proof follows by induction on φ ∈ HML〈ε〉
r , by putting:

rφ =



ω if φ = true

[a.Tφ′ ] if φ = 〈ε〉〈a〉φ′

rφ1 ‖ rφ2 if φ = φ1 ∧ φ2

rφ1 ‖ rφ2 if φ = 〈ε〉(φ1 ∧ φ2)

and

Tφ =



((|ω|)) if φ = true

((|[a.Tφ′ ]|)) if φ = 〈ε〉〈a〉φ′

Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2

((|rφ1 ‖ rφ2|)) if φ = 〈ε〉(φ1 ∧ φ2).
2

Proposition 3.14 For all ψ ∈ HML[ε]
r there exists (|rψ|) ∈ T and Tψ ∈ Tω such

that [[ψ]]S = Rglb(S)(rψ) for all S ∈ Pfr(Act×µ(R)), and [[ψ]]E = Rglb(E)(Tψ)
for all E ∈ R.

Finally, using Proposition 3.11, Proposition 3.12, Proposition 3.13 and
Proposition 3.14, we prove the central theorem connecting HML〈ε〉

r ∪ HML[ε]
r and

vR missing from [14].

Theorem 3.15 For all E, F ∈ R, E vR F if and only if [[φ]]E ≤ [[φ]]F for
all φ ∈ HML〈ε〉

r and [[ψ]]E ≤ [[ψ]]F for all ψ ∈ HML[ε]
r .

We point out that adding negation to the quantitative HML is rather deli-
cate, and refer the interested reader to [15,16]. However, if we restrict ourselves
to deterministic probabilistic transition systems then adding negation to the
logic HML does not influence the equivalence induced from the logic, in the
sense that thus obtained equivalence will still correspond to the restriction of
the equivalence

R∼ to the deterministic probabilistic transition systems [23].

4 Adding Fixed Point Operators to HML

In this section we add a fixed point operator to the logics HML〈ε〉
r and HML[ε]

r and
compare the results with our maps Rlub and Rglb respectively. This provides
the probabilistic justification for the quantitative interpretation of the modal
mu-calculus missing from [14]. We note that we only prove results relating to
HML〈ε〉

r and Rlub, as the results for HML[ε]
r and Rglb are dual.

To add a fixed point operator to our logic we must first add variables
(ranged over by Var) to the syntax of HML〈ε〉

r to form HML〈ε〉
rv . As usual we then

14
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extend the maps [[·]] and Rlub by means of environments ρ : Var −→ (R −→
[0, 1]) so that [[φ]]ρ : R −→ [0, 1] for any φ ∈ HML〈ε〉

rv , and likewise for Rlub. We
omit the environments to simplify the notation. To compare the tests of T to
fixed point operators of HML〈ε〉

rv , we construct unfoldings of formulae, and using
the map between formulae of HML〈ε〉

rv and T given in Proposition 3.13 we then
consider these unfoldings as elements of our testing language. Formally, we
have the following definitions.

Definition 4.1 For all φ ∈ HML〈ε〉
rv and x ∈ Var, we define φnx by induction on

n ∈ N as follows: φ0
x = true and φn+1

x = φ{φnx/x}.

Definition 4.2 For any φ ∈ HML〈ε〉
rv , let (|rφ|) ∈ T and Tφ ∈ Tω be the tests

defined by induction on φ ∈ HML〈ε〉
rv as follows:

rφ =



φ if φ ∈ Var

ω if φ = true

[a.Tφ′ ] if φ = 〈ε〉〈a〉φ′

rφ1 ‖ rφ2 if φ = φ1 ∧ φ2 or φ = 〈ε〉(φ1 ∧ φ2)

and Tφ =



φ if φ ∈ Var

((|ω|)) if φ = true

((|[a.Tφ′ ]|)) if φ = 〈ε〉〈a〉φ′

Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2

((|rφ1 ‖ rφ2|)) if φ = 〈ε〉(φ1 ∧ φ2)

where for any S ∈ Pfr(Act ×µ(R)), E ∈ R and x ∈ Var let Rlub(S)(x) = ρ(S)
and Rlub(E)(x) = ρ(E).

Then, similarly to Proposition 3.13, we have the following proposition.

Proposition 4.3 For all φ ∈ HML〈ε〉
rv , there exists (|rφ|) ∈ T and Tφ ∈ Tω

such that [[φ]]ρS = Rlub(S)(rφ) for all S ∈ Pfr(Act × µ(R)), and [[φ]]ρE =
Rlub(E)(Tφ) for all E ∈ R.

The sequence of formulae given in Definition 4.1 (fixed point unfoldings)
gives rise, via the map between formulae and tests given in Definition 4.2, to
the sequences of tests 〈rnφx

〉n∈N, 〈T nφx
〉n∈N. The following lemma and propo-

sition demonstrate that successive unfoldings improve the probability upper
bound obtained with the help of the map Rlub.

Lemma 4.4 If φ, θ1, θ2 ∈ HML〈ε〉
rv and x ∈ Var such that

Rlub(S)(rθ1) ≤ Rlub(S)(rθ2) and Rlub(E)(Tθ1) ≤ Rlub(E)(Tθ2)

15
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for all S ∈ Pfr(Act × µ(R)) and E ∈ R, then

(i) Rlub(S)(rφ{θ1/x}) ≤ Rlub(S)(rφ{θ2/x}) for all S ∈ Pfr(Act × µ(R))

(ii) Rlub(E)(Tφ{θ1/x}) ≤ Rlub(E)(Tφ{θ2/x}) for all E ∈ R.

Proof. The proof follows by induction on φ ∈ HML〈ε〉
rv . 2

Proposition 4.5 For all S ∈ Pfr(Act × µ(R)), E ∈ R, φ, θ ∈ HML〈ε〉
rv and

x ∈ Var: Rlub(S)(rθ{φn+1
x /x}) ≤ Rlub(S)(rθ{φn

x/x}) and Rlub(E)(Tθ{φn+1
x /x}) ≤

Rlub(E)(Tθ{φn
x/x}).

Proof. The proof is by induction on θ ∈ HML〈ε〉
rv . 2

Corollary 4.6 For all φ ∈ HML〈ε〉
rv , x ∈ Var and E ∈ R, the limit

lim
n→∞

Rlub(E)(T nφx
)

exists and is in the interval [0, 1].

Proof. If we consider any φ ∈ HML〈ε〉
rv , then using Proposition 4.5 and letting

θ = φ we have 〈Rlub(E)(T nφx
)〉n∈N is a decreasing sequence in the interval [0, 1],

and hence the (unique) limit exists and is in the interval [0, 1]. 2

From Corollary 4.6 we know that the limit of probability upper bounds for
successive unfoldings exists. This limit limn→∞ Rlub(E)(T nφx

) is in fact the value
of the greatest fixed point νx.φ in Huth and Kwiatkowska’s interpretation of
the modal mu-calculus (which does not deal with non-determinism). For any
φ ∈ HML〈ε〉

rv and E ∈ R we have:

[[νx.φ]]E = lim
n→∞

Rlub(E)(T nφx
).

The connection with the greatest, as opposed to the least, fixed point operator
arises from the fact that there is no test representing false in our testing
language T, and hence we must begin all iterations from true (that is, (|ω|)),
and since Rlub(E)(T ) ≤ 1 for all E ∈ R and T ∈ Tω, any monotone sequence
we construct will either be constant at 1 or decreasing. Hence, the limit
corresponds with the greatest fixed point. In general, the values of the greatest
fixed point operator with respect to the formulae of HML〈ε〉

rv and HML[ε]
r may differ

if processes are non-deterministic. Intuitively, the pair of values

[[[νx.[ε]〈a〉]]E, [[νx.〈ε〉〈a〉]]E]

corresponds to the interval containing the probability that Ẽ will perform an
infinite path of a actions.

5 Conclusions

We have formulated a testing equivalence on reactive probabilistic processes
which exhibit three kinds of choice: action-guarded probabilistic, external and
internal. The equivalence is non-probabilistically branching time, but, unlike
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probabilistic bisimulation, does not make distinctions according to when the
probabilistic choices are made. Such situations arise when actions executed
by the process have no effect on random choices, for example when selecting
an option from a menu will not influence the outcome of a coin toss.

The derived equivalence is a congruence for a subcalculus of CSP includ-
ing internal, external and probabilistic choice as well as synchronous parallel
(for details see [18,23], where also fully abstract denotational semantics is pre-
sented), but not for hiding and asynchronous parallel. Asynchronous parallel
is important in the compositional specification and verification of probabilis-
tic protocols consisting of independently acting components. Hiding is relied
upon when verifying CSP processes against specifications by means of fdr2.
In such situations, and also when probabilities are affected by external actions,
our equivalence is not appropriate. A potential solution to this problem, pro-
posed in [23], is to first consider a transition system model where processes
perform internal probabilistic choices of the kind E p uq F , where p + q = 1,
meaning E p uq F will act as the process E with probability p and F with
probability q, as opposed to action-guarded internal probabilistic choices as
presented here. The hope is that such a model would admit the full calculus of
CSP [7] extended with an internal probabilistic choice operator without losing
the congruence property of the equivalence.

We have also given a logical characterization of the equivalence in terms of
the quantitative version of HML of [14] extended with silent actions, and have
established its probabilistic soundness not dealt with in [14], albeit under
syntactic restrictions that impose independence. These could be removed at
a cost of introducing conditional probabilities. The parallels between our
approach and that of [5], particularly as far as the computing the least upper
bounds (and their duals) on probabilities are concerned, mean that the model
checking algorithm of [5] should apply to our case also. Adding negation to our
setting is more difficult since negating a lower bound yields an upper bound,
and vice versa [16]; a suitable framework is proposed in [15].
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