
Under consideration for publication in Formal Aspects of Computing

Probabilistic Model Checking of
Deadline Properties in the IEEE 1394
FireWire Root Contention Protocol 1

Marta Kwiatkowskaa, Gethin Normana, and Jeremy Sprostonb

aSchool of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
bDipartimento di Informatica, Università di Torino, 10149 Torino, Italy

Abstract. The interplay of real-time and probability is crucial to the correctness of the IEEE 1394 FireWire
root contention protocol. We present a formal verification of the protocol using probabilistic model checking.
Rather than analyze the functional aspects of the protocol, by asking such questions as “will a leader be
elected?”, we focus on the protocol’s performance, by asking the question “how certain are we that a leader
will be elected sufficiently quickly?” Probabilistic timed automata are used to formally model and verify the
protocol against properties which require that a leader is elected before a deadline with a certain probability.
We use techniques such as abstraction, reachability analysis, and integer-time semantics to aid the model-
checking process, and the efficacy of these techniques is compared.

Keywords: Probabilistic model checking, timed automata, IEEE standard, FireWire.

1. Introduction

The increasing dependence of businesses on distributed architectures and computer networking places heavy
demands on the speed and reliability of data exchange, leading to the emergence of sophisticated protocols
which involve both real-time and randomization, for example those used in the FireWire IEEE 1394 standard.
This paper considers an application of model-checking techniques to the FireWire IEEE 1394 root contention
protocol, in which the interplay of timed and probabilistic aspects is used to break the symmetry which may
arise during the leader election process. Here, we are interested in establishing properties concerning the
election of a leader within a certain deadline, and with a certain probability or greater.

Automatic verification techniques, including model checking, have been adapted to probabilistic timed
systems in [ACD91, dA98, BKH99, KNSS02]. In order to model the FireWire IEEE 1394 root contention

1 Supported in part by the EPSRC grants GR/M04617 and GR/N22960, and by the EU within the DepAuDE project IST-
2001-25434.
Correspondence and offprint requests to: Marta Kwiatkowska, School of Computer Science, University of Birmingham, Birm-
ingham B15 2TT, United Kingdom. E-mail: M.Z.Kwiatkowska@cs.bham.ac.uk

2 M. Kwiatkowska, G. Norman and J. Sproston

protocol, we use the specification formalism of probabilistic timed automata [KNSS02], a variant of timed
automata [AD94] extended with discrete probability distributions. The formalism is both sufficiently expres-
sive to describe formally both the timed and probabilistic aspects of the protocol, and is amenable to model
checking against probabilistic timed temporal logic properties. In contrast to the models based on stochastic
processes of [ACD91, BKH99], probabilistic timed automata exhibit nondeterminism, which can be used to
represent the unknown timing delays of the protocol. Furthermore, unlike the model of [dA98], probabilistic
timed automata can be verified against deadline properties.

A probabilistic timed automaton comprises a finitary, probabilistic transition system equipped with
a finite set of real-valued variables which increase at the same rate as real-time. The presence of such
clock variables means that, in a continuous-time semantic interpretation, the underlying state space of a
probabilistic timed automaton is infinite. Hence, approaches for obtaining finite-state representations of
such models which are faithful with respect to the validity of a class of properties are necessary. We make
use of three such approaches in the context of verifying the IEEE 1394 root contention protocol against
deadline properties: the first uses an algorithm to conduct a forward search through the state space of the
probabilistic timed automaton, the second employs “region equivalence” [AD94] to partition the state space,
and the third uses an integer-time semantic interpretation of the model. In each of the three cases, we use
the probabilistic model-checking tool PRISM [KNP02, Pri] in the final step of establishing or refuting the
relevant probabilistic deadline property.

Related work. Formal verification of the IEEE 1394 root contention protocol has been performed in
a number of previous works. A probabilistic guarded command language is used in [FS01] to model the
protocol, following which manual proof methods are used to obtain a relationship between the number
of attempts to resolve root contention and the probability of successful leader election. The approach of
[SV99] is to consider a probabilistic timed model of the protocol, which is then verified manually through a
process of stepwise abstraction. Such a refinement process is repeated in [SS01], in which the model takes
the form of a non-probabilistic timed automaton, with the real-time model checker Uppaal [LPY97] being
used to establish automatically abstraction/refinement relations. Parametric real-time model checking is
performed in [HRSV01, CS01], and also by [BST00], in which probabilistic behaviour is modelled by fairness
requirements. Our aims are different to these case studies: they do not consider deadline properties, with their
emphasis concerning traditional temporal logic properties rather than probabilistic properties. In this sense,
our approach has more in common with the discrete-event simulation performed on a stochastic process
algebra model of the protocol in [D’A99].

All three verification techniques featured in this paper have precedents from the field of non-probabilistic
timed automata. The first decidability results for timed automata were obtained using region equivalence
[AD94], which we also use in this paper. Forward reachability algorithms for the verification of timed au-
tomata are implemented in the tools Uppaal [LPY97] and Kronos [DOTY96, DT98]. Furthermore, building
on the theoretical basis of [HMP92, AMP98], several case studies have been successfully verified using integer
semantics [BMT99, Bey01].

Plan of the paper. In Section 2, we introduce probabilistic timed automata, and show how this formalism
can be used to model the root contention protocol in Section 3. Section 4 presents a number of methods to
verify the protocol, and Section 5 summarizes the results and offers some directions for future research.

2. Probabilistic Timed Automata

In this section, we introduce probabilistic timed automata [KNSS02] as our model for the IEEE 1394 root
contention protocol. Probabilistic timed automata are an extension of timed automata [AD94] (henceforth
referred to as classical timed automata) with the ability to express relative likelihoods of state transitions.
A classical timed automaton consists of a finitary directed control graph, the nodes of which are called
locations, equipped with a finite set of real-valued variables called clocks, which are interpreted as increasing
at the same rate as real-time. The edges of the control graph are enabled or forced to be taken depending on
whether certain constraints on the clocks are satisfied. Furthermore, a set of clocks may be reset when an edge
is executed. Probabilistic timed automata are timed automata for which discrete probability distributions
range over the edges of the control graph.

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 3

2.1. Syntax of probabilistic timed automata

Time, clocks and zones. Let T ∈ {R, N} be the time domain of either the non-negative reals R or the
naturals N. Let X be a finite set of variables called clocks which take values from the time domain T. A point
v ∈ T|X | is referred to as a clock valuation. We use 0 ∈ T|X | to denote the clock valuation which assigns 0 to
all clocks in X . Let v ∈ T|X | be a clock valuation, and let t ∈ T be a time duration; then the clock valuation
v ⊕ t denotes the time increment for v and t (we present two alternatives for ⊕ in Section 2.2, one of which
is standard addition +). We use v[X := 0] to denote the clock valuation obtained from the clock valuation
v ∈ T|X | by resetting all of the clocks in X ⊆ X to 0, and leaving the values of all other clocks unchanged.

Let Zones(X) be the set of zones over X , which are conjunctions of atomic constraints of the form x ∼ c
and x − y ∼ c, for clocks x, y ∈ X , comparison operator ∼ ∈ {<,≤,≥, >}, and naturals c ∈ N. A zone ζ is
diagonal-free if it does not feature a conjunct of the form x − y ∼ c, and is closed if it does not feature a
conjunct of the form x− y ∼ c or x ∼ c for ∼ ∈ {<,>}. The clock valuation v satisfies the zone ζ, written
v / ζ, if and only if ζ resolves to true after replacing each clock x ∈ X with the corresponding clock value vx

from v.

Probability distributions. A discrete probability distribution over a countable set Q is a function µ : Q →
[0, 1] such that

∑
q∈Q µ(q) = 1. For a possibly uncountable set Q′, let Dist(Q′) be the set of distributions

over countable subsets of Q′. For any element q ∈ Q, let µq ∈ Dist(Q) be the distribution which assigns
probability 1 to q.

Definition 2.1. (Probabilistic timed automata.) A probabilistic timed automaton is a tuple PTA =
(L,X ,Σ, inv , prob) where:

• L is a finite set of locations;
• Σ is a finite set of events;
• the function inv : L → Zones(X) is the invariant condition;
• the finite set prob ⊆ L× Zones(X)× Σ× Dist(2X × L) is the probabilistic edge relation. A probabilistic

edge takes the form of a tuple (l, g, σ, p) ∈ prob, where l is the source location of the probabilistic edge,
g is its enabling condition, σ is its event, and p ∈ Dist(2X × L) is its edge distribution.

A probabilistic timed automaton is diagonal-free (closed) if all the zones used in its description are diagonal-
free (closed).

A state of a probabilistic timed automaton PTA is a pair (l, v) where l ∈ L and v ∈ T|X | such that v/inv(l).
If the current state is (l, v), there is a nondeterministic choice of either letting time pass while satisfying
continuously the invariant condition inv(l), or making a discrete transition according to any probabilistic
edge in prob with source location l and whose enabling condition g is satisfied by the current clock valuation
v. If the probabilistic edge (l, g, σ, p) is chosen, then the probability of moving to the location l′ and resetting
all of the clocks in the set X to 0 is given by p(X, l′). The semantics of probabilistic timed automata are
presented formally in the next section.

Note that we sometimes identify a designated initial location l̄ ∈ L, with the intuition that the behaviour
of the model commences in l̄ with all clocks set to 0. The initial state (l̄,0), in which the value of all of the
clocks is 0, can then be used when considering reachability properties, for example “is the probability of
reaching a certain set of states from the initial state greater than λ?”

Higher-level modelling. To aid higher-level modelling, we can designate certain locations as being urgent;
once an urgent location is entered, it must be left immediately, without time passing. The notion of urgency
for locations is closely related to the concept of urgent transitions [HHWT95, DY95] (an urgent location
is a location for which all outgoing discrete transitions are urgent). Urgent locations can be represented
syntactically using the framework given in Definition 2.1 using an additional clock, combined with altered
clock resets and invariant conditions.

It is often convenient to define systems as the parallel composition of a number of interacting sub-
components. For example, in the case of the IEEE 1394 root contention protocol, it suffices to construct
models for each of the two contending nodes, and for the two wires along which they communicate, given that
the manner in which they interact is defined explicitly. Using ideas from the theory of (untimed) probabilistic
systems [SL95] and classical timed automata [AD94], the parallel composition of two probabilistic timed

4 M. Kwiatkowska, G. Norman and J. Sproston

0.5

0.5

0.5

0.5

root
root

contentionroot i
snd idle i

snd req i

rec ack i child i
childsnd idle i

rec idle i

rec req i

rec req i

rec idle i

rec req i

rec idle i

rec idle

snd ack i

snd ack i

xi ≥ 760

xi ≥ 1590

xi ≥ 760

snd req i

xi ≥ 1590

xi := 0

xi := 0

xi := 0

xi := 0

rec req i

xi≤850 xi≤850

xi≤1670 xi≤1670

rec req fast

rec req slow

Fig. 1. The probabilistic timed automaton Nodepi .

automata, which interact by synchronizing on common events, is defined in the following way. Let PTAi =
(Li,Xi,Σi, inv i, probi) for i ∈ {1, 2}.
Definition 2.2. The parallel composition of two probabilistic timed automata PTA1 and PTA2, where X1 ∩
X2 = ∅, is the probabilistic timed automaton PTA1‖PTA2 = (L1 × L2,X1 ∪ X2,Σ1 ∪ Σ2, inv , prob) where
inv(l, l′) = inv1(l) ∧ inv2(l′) for all (l, l′) ∈ L1 × L2 and ((l1, l2), g, σ, p) ∈ prob if and only if one of the
following conditions holds:

• σ ∈ Σ1 \ Σ2 and there exists (l1, g, σ, p1) ∈ prob1 such that p = p1⊗µ(∅,l2);
• σ ∈ Σ2 \ Σ1 and there exists (l2, g, σ, p2) ∈ prob2 such that p = µ(∅,l1)⊗p2;
• σ ∈ Σ1 ∩ Σ2 and there exists (l1, g1, σ, p1) ∈ prob1 and (l2, g2, σ, p2) ∈ prob2 such that g = g1 ∧ g2 and

p = p1⊗p2

where for any l1 ∈ L1, l2 ∈ L2, X1 ⊆ X1 and X2 ⊆ X2, we let p1⊗p2(X1∪X2, (l1, l2)) = p1(X1, l1) ·p2(X2, l2).

Given the initial locations l̄i ∈ Li of PTAi, for i ∈ {1, 2}, we let (l̄1, l̄2) be the initial location of PTA1‖PTA2.

Example. Figure 1 shows the probabilistic timed automaton Nodepi for a contending node of the network
involved in the IEEE 1394 FireWire root contention protocol. The model Nodepi is a minor, probabilistic
extension of the classical timed automaton node model from [SS01]. The usual conventions for the graphical
representation of classical timed automata are used (note that we omit invariant conditions or guards of
the form true, and some location names, for simplicity). Figure 1 also features bifurcating edges leaving
the locations root contention (the initial location, as denoted by the bold node) and rec idle, which corre-
spond to probabilistic transitions. For example, the left-hand edges leaving root contention correspond to a
probabilistic choice of taking a transition to either of the target locations, rec req fast and rec req slow, each
with probability 0.5 (while resetting the clock xi). For simplicity, we omit the probability labels from edges
corresponding to probability 1. Urgent locations are indicated by the dashed locations.

The behaviour of the model commences in location root contention, which models the situation in which
the node has detected root contention. Because the location root contention is urgent, Nodepi is forced to select
an outgoing probabilistic edge instantly. Consider the bifurcating probabilistic edge labelled by snd idle i,
which corresponds to the node flipping a coin in order to determine whether it should wait for a short or long
time. The snd idle i event is sent by Nodepi to its communication medium, referring to a transmission of an
idle signal across the node’s wire to the other node. In both of the two locations rec req fast and rec req slow
which may be reached after taking the probabilistic edge, the passage of time may mean that the value of
the clock xi can reach a value enabling the left-pointing edges, in turn meaning that an acknowledgement
is sent (event snd ack i), and the node then declares itself to be leader (the event root i which labels the
subsequent left-pointing edge to the location root). In contrast, if the node receives an idle signal from the
other contending node (event rec idle i) before sending an acknowledgement, it is forced to move to the
right via an edge labelled with the event rec idle i. In this case, after a certain amount of time elapses,

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 5

Nodepi can send a request to the other node to be its parent by sending the event snd req i to its wire. If
the node then subsequently detects a parent request from the other node (event rec req i), it returns to the
location root contention, and restarts the root contention process. If, on the other hand, the node detects an
acknowledgement from the other node (event rec ack i), it proceeds to declare itself as the child by sending
a child i event.

2.2. Semantics of probabilistic timed automata

2.2.1. Probabilistic systems

The semantics of probabilistic timed automata is defined in terms of transition systems exhibiting both
nondeterministic and probabilistic choice. We call such models probabilistic systems, noting that they are
essentially equivalent to Markov decision processes [Der70], the simple probabilistic automata of [SL95], and
the probabilistic-nondeterministic systems of [BdA95].

Definition 2.3. (Probabilistic systems.) A probabilistic system PS = (S,Act ,Steps) consists of a set S
of states, a set Act of actions, and a probabilistic transition relation Steps ⊆ S ×Act × Dist(S).

A probabilistic transition s
a,µ−−→ s′ is made from a state s ∈ S by first nondeterministically selecting an

action-distribution pair (a, µ) such that (s, a, µ) ∈ Steps, and second by making a probabilistic choice of
target state s′ according to µ, such that µ(s′) > 0. In the sequel, probabilistic systems may be infinite-state.

We now give the semantics of probabilistic timed automata defined in terms of probabilistic systems.
As with classical timed automata, transitions consist of two types: time transitions, which correspond to
the passage of time while the current location remains constant, and discrete transitions, which correspond
to a probabilistic edge being taken. The definition is parameterized both by a time domain T and a time
increment ⊕.

Definition 2.4. (Semantics of probabilistic timed automata.) The semantics of a probabilistic timed
automaton PTA = (L,X ,Σ, inv , prob) with respect to the time domain T and the time increment ⊕ is the
probabilistic system [[PTA]]⊕T = (S,Act ,Steps) defined by the following.

States. Let S ⊆ L× T|X | such that (l, v) ∈ S if and only if v / inv(l).
Actions. Let Act = T ∪ Σ.
Probabilistic transitions. Let Steps be the least set of probabilistic transitions defined as follows. For

each state (l, v) ∈ S:

• Time transitions. For each duration t ∈ T, let ((l, v), t, µ) ∈ Steps if and only if (1) v ⊕ t′ / inv(l) for
each 0 ≤ t′ ≤ t, and (2) µ(l, v ⊕ t) = 1.

• Discrete transitions. For each probabilistic edge (l, g, σ, p) ∈ prob, let ((l, v), σ, µ) ∈ Steps if and only
if v / g, for each state (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X & v′=v[X:=0]

p(X, l′) ,

and for each (X, l′) ∈ 2X × L such that p(X, l′) > 0, we have v[X := 0] / inv(l′).

The summation in the definition of discrete transitions is required for the cases in which multiple clock resets
result in the same target state (l′, v′). Furthermore, the final clause is required to preclude the pathological
situation in which an invariant of a location is not satisfied directly after a probabilistic transition.

The semantics falls into two classes, depending on whether the underlying model of time is the positive
reals or the naturals. In the sequel, we always let ⊕ equal + if T = R. We refer to [[PTA]]+R as the continuous
semantics of the probabilistic timed automaton PTA. In contrast, if T = N, we always let ⊕ equal ⊕N,
which is defined as follows. Let PTA be a probabilistic automaton; for any x ∈ X , let kx denote the greatest
constant the clock x is compared to in the zones of PTA. Then, for any clock valuation v ∈ N|X | and time
duration t ∈ N, let v⊕Nt be the clock valuation of X which assigns the value min{vx + t,kx + 1} to all
clocks x ∈ X (although the operator ⊕N is dependent on PTA, we elide a sub- or superscript indicating this
for clarity). Then we refer to [[PTA]]⊕N

N as the integer semantics of PTA. The definition of integer semantics

6 M. Kwiatkowska, G. Norman and J. Sproston

for probabilistic timed automata is a generalization of the analogous definition for the classical model in
[Bey01], which in turn follows the methodology of [HMP92, AMP98, BMT99]. As we always use the same
definition of time increment for a particular choice of time domain, we omit the + and ⊕N superscripts from
the notation for the continuous and discrete semantics for simplicity.

Note that the fact that the integer semantics of a probabilistic timed automaton is finite, and the con-
tinuous semantics of probabilistic timed automaton is generally infinite, can be derived from the definitions.
In both cases, all states have at least one available transition (namely, the time transition (s, 0, µs)).

It is not difficult to check that the semantics of the parallel composition of two probabilistic timed au-
tomata corresponds to the semantics of the parallel composition of their individual semantic probabilistic
systems. Formally, we overload the parallel composition operator ‖ such that PS1‖PS2 denotes the probabilis-
tic system obtained from the parallel composition of the probabilistic systems PS1 and PS2 in the standard
manner [SL95]. Two probabilistic systems PS1 = (S1,Act ,Steps1) and PS2 = (S2,Act ,Steps2) are isomor-
phic if there exists a bijection f : S1 → S2 such that (s1, a, µ) ∈ Steps1 if and only if (f(s1), a, f(µ)) ∈ Steps2,
where f(µ) ∈ Dist(S2) is the distribution defined by f(µ)(s2) = µ(f−1(s2)) for each s2 ∈ S2. For the proba-
bilistic timed automata PTA1 and PTA2 with disjoint clock sets, [[PTA1‖PTA2]]T and [[PTA1]]T‖[[PTA2]]T are
isomorphic, both for the continuous and integer semantics.

2.2.2. Behaviour of probabilistic timed automata

The behaviour of a probabilistic timed automaton is described in terms of the behaviour of its (continuous or
integer) semantic probabilistic system. We consider two ways in which a probabilistic system’s computation
may be represented, followed by definitions of probability measures of interest.

Paths. A path represents a particular resolution of both nondeterminism and probability of a probabilistic
system. Formally, a path of a probabilistic system PS = (S,Act ,Steps) is a non-empty finite or infinite
sequence of transitions ω = s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · . We use PathPS

fin to denote the set of finite paths of PS,
and PathPS

ful the set of infinite paths of PS.
For a path ω and i ∈ N, we denote by ω(i) the (i+1)th state of ω; if ω is finite, we denote by last(ω) the

last state of ω. We abuse notation by letting a state s ∈ S to denote a path consisting of no transitions, and
by using ω

a,µ−−→ s to refer to a path comprising the sequence of transitions of ω followed by the transition
last(ω)

a,µ−−→ s.

Adversaries. An adversary represents a particular resolution of nondeterminism only. Formally, an ad-
versary of a probabilistic system PS is a function A mapping every finite path ω ∈ PathPS

fin to a pair
(a, µ) ∈ Act × Dist(S) such that (last(ω), a, µ) ∈ Steps [Var85]. Let AdvPS be the set of adversaries of PS.

Probability measures. For any adversary A ∈ AdvPS, let PathA
fin and PathA

ful denote the set of finite and
infinite paths associated with A (more precisely, the paths resulting from the choices of action-distribution
pairs of A). Then we define the probability measure ProbA over PathA

ful in the following, standard way
[KSK76]. First we define the function A : PathA

fin × PathA
fin → [0, 1], such that:

A(ω, ω′) =
{

µ(s) if A(ω) = (last(ω), a, µ) for some a ∈ Act , and ω′ = ω
a,µ−−→ s

0 otherwise.

Intuitively, A(ω, ω′) refers to the probability of obtaining the finite path ω′ when extending the finite path
ω with one transition under the control of the adversary A. Next, the function ProbA

fin : PathA
fin → [0, 1] is

defined inductively along the length of finite paths of A as follows:

• let ProbA
fin(s) = 1 for all states s ∈ S (paths of length 0);

• if (ω
a,µ−−→ s) ∈ PathA

fin , then ProbA
fin(ω

a,µ−−→ s) = ProbA
fin(ω) · A(ω, ω

a,µ−−→ s).

For a finite path ω ∈ PathA
fin , let Cone(ω) be the cone generated by ω, defined as the set Cone(ω) = {ω′ ∈

PathA
ful | ω is a prefix of ω′} of infinite paths. We then define ProbA by ProbA(Cone(ω)) = ProbA

fin(ω), which

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 7

can then be uniquely extended to a probability measure on the sigma-algebra generated by the cones of A.

Reachability probabilities. The maximal (minimal) reachability probability is the maximum (minimum)
probability with which a given set of states of a probabilistic system can be reached from a particular state.
Formally, for the probabilistic system PS = (S,Act ,Steps), state s ∈ S, set F ⊆ S of target states, and
adversary A ∈ AdvPS, the probability of reaching F from s under adversary A is given by:

ProbReachA(s, F) def= ProbA{ω ∈ PathA
ful | ω(0) = s & ∃i ∈ N . ω(i) ∈ F} .

Then the maximal and minimal reachability probabilities MaxProbReachPS(s, F) and MinProbReachPS(s, F)
are defined as:

MaxProbReachPS(s, F) def= sup
A∈AdvPS

ProbReachA(s, F) , MinProbReachPS(s, F) def= inf
A∈AdvPS

ProbReachA(s, F) .

The following theorem is key to establishing the correctness of the integer semantics with regard to the prob-
ability of reaching a certain set of target locations of a closed, diagonal-free probabilistic timed automaton.
The theorem states that both the maximal and minimal probabilities of reaching a target location are equal in
the continuous and integer semantics for this class of model, and is a probabilistic extension of a similar result
established in [Bey01]. Let L′ ⊆ L be a set of target locations of a probabilistic timed automaton PTA, and let
the set of all states corresponding to locations in L′ be denoted by FL′

T = {(l, v) | l ∈ L′, v ∈ T|X | & v/inv(l)}.

Theorem 2.5. For every closed, diagonal-free probabilistic timed automata PTA = (L,X ,Σ, inv , prob),
initial location l̄ ∈ L, and target set L′ ⊆ L of locations:

MaxProbReach [[PTA]]R
((l̄,0), FL′

R) = MaxProbReach [[PTA]]N
((l̄,0), FL′

N)

MinProbReach [[PTA]]R
((l̄,0), FL′

R) = MinProbReach [[PTA]]N
((l̄,0), FL′

N).

Proof. See Appendix A.

2.3. Time-progress in probabilistic timed automata

As with the case of classical timed automata [AD94], some paths of a probabilistic timed automaton may
correspond to pathological situations in which time does not progress beyond some bound; therefore, such
computations will not be exhibited by any real-life system. The solution for classical timed automata is to
design model-checking methods which disregard such Zeno paths. Following precedents from the probabilistic
real-time systems literature [dA97, Seg95], the lifting of the concept of time progress from classical to
probabilistic timed automata involves characterizing adversaries, rather than paths, which exhibit “non-
Zenoness”, and consequently disregarding all other adversaries during model checking [KNSS02].

Definition 2.6. (Non-Zenoness.) Let PTA be a probabilistic timed automaton with time domain T, and
let ω = (l0, v0)

a0,µ0−−−→ (l1, v1)
a1,µ1−−−→ · · · be a path of [[PTA]]T. The elapsed time along ω at step i ∈ N is the

sum of the durations of the time transitions of ω taken before the ith transition, and is formally defined as:

time(ω, i) =
∑

{aj | 0 ≤ j < i and aj ∈ T} .

A path ω of [[PTA]]T is non-Zeno if and only if, for all t ∈ T, there exists i ∈ N such that time(ω, i) > t. An
adversary A of [[PTA]]T is non-Zeno if and only if ProbA{ω ∈ PathA

ful | ω is non-Zeno } = 1.

For convenience, we also refer to paths and adversaries which are not non-Zeno as Zeno.

3. Modelling the Root Contention Protocol

3.1. The probabilistic timed automaton models

We now explain how the IEEE 1394 root contention protocol can be specified and verified formally within the
framework of probabilistic timed automata. The classical timed automaton models of [SS01] are taken as the

8 M. Kwiatkowska, G. Norman and J. Sproston

basis for the probabilistic models introduced here. As we have seen in Section 2.1, the model Nodepi , i ∈ {1, 2},
of the ith node of the protocol can be extended with probability in a straightforward manner; simply let
the two edges corresponding to the outcome of a coin flip each be assigned probability 0.5 by a distribution.
All other edges in the node model are taken with probability 1. The communication medium between
the nodes, which assumes that signals are driven continuously across wires which comprise of two-place
buffers, is then represented by the models Wirei, for i ∈ {1, 2}. The classical timed automaton models
for the wires in [SS01] are adopted directly (the interested reader is invited to refer to [SS01]), with the
interpretation that all transitions of the wire models are made with probability 1. The parallel composition
Implp = Nodep1‖Wire1‖Wire2‖Nodep2 of the resulting probabilistic timed automata is then defined using
Definition 2.2.

As will be explained in Section 4, during initial verification experiments, it became clear that analysis
of a model as complex as the composed probabilistic timed automaton is not feasible given our current
implementation of the forward reachability algorithm of [KNSS02]. Therefore, we also study the smaller,
more abstract, probabilistic timed automaton Ip1 of the root contention protocol. The model for Ip1 is shown in
Figure 2, and is a probabilistic extension of the classical timed automaton I1 used in the stepwise refinement
process of [SS01]. The constants used in the enabling and invariant conditions are derived from those given
in the IEEE 1394a standard when the communication delay between the nodes is taken to be 360 ns. Each
instance of bifurcating edges corresponds to a coin being flipped; for example, in the location start start,
there is a nondeterministic choice between node 1 (re)starting the root contention protocol and flipping its
coin, leading with probability 0.5 to each of slow start and fast start (we omit all probability labels from the
diagram for simplicity), and node 2 restarting the protocol and flipping its coin. The location done represents
the election of a leader. Although it is possible for a leader to be elected regardless of the outcome of the
probabilistic choices, as there are edges from each of the locations fast fast, fast slow, slow fast and slow slow
to the location done, note that it is also possible to return to start start, corresponding to protocol restart,
from the locations fast fast and slow slow, in which the nodes coin flips are identical. Note that the timing
constant for the enabling condition of the edge from fast fast to done is obtained from 760 ns, the minimal
waiting time if the “fast” side of the coin is obtained, minus 360 ns, the wire propagation delay; similarly,
the enabling conditions of the other edges to done are obtained from 1590 ns, the minimal waiting time if
the “slow” side of the coin is obtained, minus 360 ns.

The timing constraints used in Ip1 correspond to those specified in the updated standard IEEE 1394a. In
the figure, the maximum transmission delay equals 360 nanoseconds (ns), which represents the assumption
that the contending nodes are separated by a distance close to the maximum required for the correctness of
the protocol (from the analysis of [SS01]). However, it is straightforward to change this value and re-run the
experiments, if required; we also consider a delay of 30 ns, which corresponds more closely to the maximum
separation of nodes specified in the IEEE 1394a standard. This maximum separation results in a maximum
transmission delay of 22.725ns, and hence the choice of 30ns is an overapproximation of the delay, which
results in upper bounds on the clock x being higher in our model (for example, we have invariant conditions
of the form x ≤ 30 rather than x ≤ 22.725). Dually, lower bounds are lower in our model (for example, we
have enabling conditions of the form x ≥ 1560 rather than x ≥ 1567.275) than in a faithful representation of
the standard. The choice of a transmission delay of 30ns is made for efficiency reasons, as it allows us to use
a time granularity of 10ns when we consider probabilistic model checking based on the region graph and on
integer semantics in Section 4. Finally, to measure the time elapsed since the start of system execution, we
augment the probabilistic timed automaton Ip1 with an additional clock y, which can be referred to in the
formalization of our deadline property.

The model Ip1 represents an abstraction of the root contention protocol, in the sense that it may exhibit
a superset of adversaries of a more refined protocol model, such as Implp. In addition, the raising of upper
bounds and the decreasing of lower bounds on clocks described in the previous paragraph is another source
of abstraction of this form; for more information we refer the reader to [AIKY95, KNS02]. This means that
the most unfavourable adversary with respect to the satisfaction of a property of the protocol must also be
exhibited by Ip1. Hence, as the property of interest concerns whether a leader will be elected with a certain
probability or greater, for all adversaries, the minimal probability of property satisfaction that is computed
for Ip1 will form a lower bound on the probability in the protocol model Implp. However, as will be seen in
Section 4, the probabilities computed for the verification of the abstract model Ip1 and the full model Implp
for a number of deadlines agree, suggesting (but not confirming) that Ip1 does not abstract from information
of Implp relevant to the probabilistic deadline property.

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 9

x ≥ 760
x := 0

done

fast start start fast start slow slow start

fast fast fast slow slow fast slow slow

x := 0
x ≥ 1590

x := 0
x := 0

x ≤ 360 x ≤ 360 x ≤ 360 x ≤ 360

x ≤ 850 x≤1670 x≤1670 x≤1670

x := 0

x := 0
x := 0

x := 0
x := 0

x := 0

x ≤ 360
start start

x ≥ 1230x ≥ 400

root 1 root 2root 2 root 2 root 1

x ≥ 1230

root 1

x ≥ 1230x ≥ 400 x ≥ 1230

Fig. 2. The probabilistic timed automaton Ip1.

3.2. Establishing the abstraction

We now describe the method which is used to verify that Ip1 is indeed a probabilistic, timed abstraction of
the probabilistic timed automaton Implp using “trace refinement” or “language containment” verification on
non-probabilistic structures. This class of verification method establishes that a non-probabilistic transition
system TS1 is an abstraction of another transition system TS2 (dually, that TS2 refines TS1) if every linear
sequence of actions of TS2 is also exhibited by TS1. This technique is used to prove abstraction relations
between the classical timed automata modelling the root contention protocol in [SS01]. We now sketch how
trace refinement verification on non-probabilistic, classical timed automata versions TAImplp and TAI

p
1

of
Implp and Ip1 respectively (which broadly correspond to the classical timed automata models of [SS01]) can
be used to infer probabilistic refinement between Implp and Ip1. This is achieved by using traces of the non-
probabilistic models to reconstruct paths of the probabilistic models. A more formal description of a similar
procedure is given in [KNS02].

The method is crucially reliant on how much information from the probabilistic timed automata is
encoded in the actions of the classical timed automata TAImplp and TAI

p
1

(the location set and invariant
conditions of the classical model equal those of the probabilistic one). An extreme case is that in which each
transition s

a,µ−−→ s′ of the (continuous semantics) probabilistic system [[Implp]]R is encoded by a transition

s
〈〈s,a,µ,s′〉〉−−−−−−→ s′ of the (continuous semantics) transition system [[TAImplp]]R, thus inducing a natural one-to-

one relationship between the sequence of actions (trace) 〈〈s0, a0, µ0, s1〉〉〈〈s1, a1, µ1, s2〉〉 · · · of the transition
system and the path s0

a0,µ0−−−→ s1
a1,µ1−−−→ s2 · · · of the probabilistic system. We then perform a similar

construction for [[Ip1]]R and [[TAI
p
1
]]
R

which differs from the one given above in the sense that the labels
include information about the states of [[Implp]]R and [[TAImplp]]R. This is necessary to establish a meaningful
notion of trace refinement in our context; otherwise we would be unable to match any action of [[TAImplp]]R
with any action of [[TAI

p
1
]]
R
, and therefore we would also be unable to match traces of [[TAImplp]]R and [[TAI

p
1
]]
R
.

Technically, this is achieved using a step refinement function f [SV99, SS01], which associates each state of
[[TAI

p
1
]]
R

with a state of [[TAImplp]]R, and which is defined manually using knowledge concerning the way in
which Ip1 is an abstraction of Implp. For example, the states with the location component start start of Ip1
could be expected to correspond to the states of Implp with the location components root contention and
rec idle; therefore, these states can be associated using a step refinement function.

However, as we describe systems at the level of probabilistic and classical timed automata, we can-
not implement such action-renaming strategies at the level of their (infinite-state) semantic transition sys-
tems. Therefore, we choose an encoding which involves the renaming of the events labelling the proba-
bilistic edges of the probabilistic timed automata models. For example, we replace the probabilistic, bi-

10 M. Kwiatkowska, G. Norman and J. Sproston

furcating edge (root contention, true, snd idle i, p) of Nodepi with two edges, one labelled with the event
〈〈root contention, snd idle i, p, rec req fast〉〉, the other with 〈〈root contention, snd idle i, p, rec req slow〉〉. These
events record the actual distribution used to make the transition (p) and its outcome (rec req fast or
rec req slow). This process is also repeated in the abstract model Ip1, given that each location of Ip1 is
associated with certain locations of Implp via a step refinement function. That this encoding of events suf-
fices follows from the fact that the model TAImplp has the following property: given a source state and an
action, the target state is uniquely or probabilistically determined, implying that, for a given initial state of
the continuous semantics [[TAImplp]]R and a finite sequence of actions of [[TAImplp]]R, the state reached after
executing actions in the sequence is unique. This property induces a one-to-one relationship between traces
of [[TAImplp]]R and paths of [[Implp]]R, as required.

Hence, if [[TAI
p
1
]]
R

is proved to be an abstraction of [[TAImplp]]R via trace refinement, then we know that
every path of [[Ip1]]R can be matched, modulo the step refinement function f , with a path of [[Implp]]R.
Now note that, in the construction of [[TAI

p
1
]]
R

and [[TAImplp]]R, we replaced probabilistic branching with
nondeterministic branching; more precisely, the alternatives available through probabilistic choice in any
given state of the probabilistic system are available through nondeterministic choice in the corresponding
state of the transition system. This permits us to reconstruct probabilistic branching in the following way:
if, in a state s of the transition system, there are the actions 〈〈s a,µ−−→ s′〉〉 and 〈〈s a,µ−−→ s′′〉〉 available, then we
know that we can reconstruct the transitions s

a,µ−−→ s′ and s
a,µ−−→ s′′ of the probabilistic system, and that

the probability of the first transition is µ(s′), while the probability of the second transition is µ(s′′). This
permits us to construct adversaries of [[Implp]]R and [[Ip1]]R from sets of traces of [[TAImplp]]R and [[TAI

p
1
]]
R
,

along with their associated probability measures. Then, again modulo the step refinement function f , we
can identify adversaries of [[Implp]]R and [[Ip1]]R with one another. Indeed, if [[TAI

p
1
]]
R

is an abstraction of
[[TAImplp]]R, every adversary of [[Implp]]R can be matched via f with an adversary of [[Ip1]]R (for those familiar
with Segala’s theory of probabilistic systems, such adversaries will have the same trace distributions [Seg95]).
Such matching allows us to reason about properties referring to the probability of observing sequences of
actions, including our deadline property. More precisely, for every adversary of [[Implp]]R, there exists an
adversary of [[Ip1]]R for which the probability of a root i event occurring within deadline time units is the
same. As the converse does not necessarily hold, we can conclude that the minimal and maximal probabilities
of electing a leader within the deadline obtained by analysis of Ip1 form lower and upper bounds, respectively,
on the probabilities of electing a leader within the deadline for Implp.

After constructing the classical timed automata TAImplp and TAI
p
1

from Implp and Ip1, we then used the
methodology of [SS01] to test that TAImplp trace refines TAI

p
1
. This result was established by automating the

refinement proof using the classical timed automaton model-checking tool Uppaal. Hence, we conclude that
every adversary of Implp can be matched via f with an adversary of Ip1, and that the minimum and maximum
probabilities of satisfying the deadline property in Ip1 form bounds on the corresponding probabilities obtained
from Implp.

4. Verification and Analysis

Model-checking strategies for classical and probabilistic timed automata are crucially reliant on assumptions
concerning the underlying model of time. Traditionally, timed automata are presented as a dense-time
model (for example, with T = R), in which case the set of possible values that clocks take is infinite,
and therefore the semantic probabilistic system is infinite-state. However, for a rich class of properties,
including the reachability properties that we consider in this paper, a finite-state transition system to be
model checked can be derived. A number of methods for obtaining such a finite-state system from a timed
automaton operating in continuous time exist: one concerns partitioning the state space according to the
well-established region equivalence [AD94]; another concerns the verification of timed reachability properties
by forward exploration through the state space by iterating successively transition successor relations from
state sets [YPD94, DOTY96]. Another alternative, in which the integer semantics of the model is verified,
is also available, given the stronger assumption that the timed automaton is closed and diagonal-free.

We consider adaptations of all three methods to probabilistic timed automata. The rest of this section
is divided into three parts: the first explores the verification of the abstract probabilistic timed automaton
model Ip1 shown in Figure 2 using all three methods mentioned in the previous paragraph, whereas the

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 11

second part considers the verification of the integer semantics of the full protocol model Implp. Finally, the
statistics obtained from the probabilistic model-checking tool PRISM are presented.

In order to establish a technical basis for the following results, we use the probabilistic temporal logic
PCTL [HJ94, BdA95] as a formal language for the deadline property. This logic is obtained from the standard
temporal logic CTL [CE81] by replacing the standard path quantifiers ∀ and ∃ by a probabilistic quantifier
Pr. For example, the PCTL formula Pr≥λ(♦Φ) is true in a state of a probabilistic system if all adversaries
assign probability of at least λ to paths which reach a state in the future for which the subformula Φ is
true. Formally, the semantics of PCTL formulae with a ♦ modality can be expressed using the maximal and
minimal reachability probability notation in the following way. We defined the satisfaction relation of PCTL
with respect to a certain subset A ⊆ Adv of adversaries in the manner of [BK98]. Let s ∈ S be a state of a
probabilistic system PS, w∈ {≥, >}, v∈ {≤, <}, λ ∈ [0, 1], and [[Φ]]A be the set of states of PS that satisfy
the PCTL formula Φ when the satisfaction relation is defined with respect to the set A of adversaries. Then
the satisfaction relation |=A for PCTL formulae with a ♦ modality, with respect to the set of adversaries
A ⊆ Adv , is defined by:

s |=A Prwλ(♦Φ) ⇔ MinProbReachPS(s, [[Φ]]A) w λ , s |=A Prvλ(♦Φ) ⇔ MaxProbReachPS(s, [[Φ]]A) v λ .

Note that we use location names such as done, and constraints on clocks, such as y ≤ deadline, as “atomic
propositions” that are true or false in a state of a probabilistic system. For a more formal description of
PCTL, refer to [HJ94, BdA95, BK98].

4.1. Abstract model

4.1.1. Forward reachability and symbolic states

The forward exploration method for the verification of probabilistic timed automata proceeds by a graph-
theoretic search through the location space of the model, using edges, zones (of the enabling and invariant
conditions) and clock resets to compute sets of reachable states of the continuous semantics. A set of states
computed at any point during the algorithm is a pair comprising of location and a zone, called a symbolic
state; for any classical or probabilistic timed automaton, the number of symbolic states is finite [DT98].
Probabilistic timed reachability properties, such as “with probability 0.99 or greater, the system reaches a
leader-elected state within 100,000 ns”, can be verified by defining a “symbolic state probabilistic system”,
the states of which are the generated symbolic states, and the transitions of which are derived from the
probabilistic timed automaton’s distributions and edges [KNSS02].

We now report on the forward reachability model construction and verification of a probabilistic deadline
property of the root contention protocol within a continuous time semantics, using the probabilistic model-
checking tool PRISM in conjunction with the tool HyTech [HHWT97]. The system model is taken to be the
probabilistic timed automaton Ip1 introduced in the previous section. We proceed according to the following
two steps: first we describe how the automaton Ip1 is decorated with additional locations and transitions to
result in a new probabilistic timed automaton Ip+1 for which the deadline property on Ip1 is reduced to a
probabilistic reachability property on Ip+1 . Secondly, we briefly describe the state-space analysis algorithm
of [KNSS02], which establishes probabilistic reachability properties of probabilistic timed automata. We also
describe its implementation in the scripting language of the tool HyTech, its application to the probabilistic
timed automaton obtained in the first step, and the way in which the results obtained are subsequently used
as input to PRISM.

Step 1: Decorating the probabilistic timed automaton. The property of interest requires that the
system elect a leader before a certain deadline with a certain probability or greater, for all adversaries. In
contrast, the forward reachability procedure of [KNSS02] analyzes properties considering the existence of
an adversary in which a certain location is reached with a given probability or greater. The former type of
property can be represented in terms of the latter given adjustments to the structure of the model Ip1 (fol-
lowing precedents for classical timed automata such as [LPY98]). We add the new location deadline exceeded
(which has no outgoing edges), and, from all locations apart from done, we add a distribution over a single
edge with the target location deadline exceeded. Recall that y is the clock of Ip1 which measures the time
elapsed since the start of system execution. The enabling condition of each edge takes the form y ≥ deadline,

12 M. Kwiatkowska, G. Norman and J. Sproston

where deadline refers to the value of the time bound considered, and the invariant condition of every location
except deadline exceeded and done is taken in conjunction with the constraint y ≤ deadline. The result of
these changes is that, if the value of y reached deadline in a location other than done, then the model must
make a transition to deadline exceeded (or done, if an enabling condition of an edge to done is satisfied)
before letting time pass. We denote the new probabilistic timed automaton resulting from these changes by
Ip+1 . Then the target location of the forward reachability property is taken to be deadline exceeded. If the
maximal probability with which deadline exceeded can possibly (existentially) be reached is λ, then 1−λ will
be the maximal probability with which deadline exceeded will inevitably (universally) be avoided.

We now establish the correctness of this transformation by formalizing the concepts using PCTL. Note
that the forward reachability procedure can verify generic PCTL properties of the form Prvλ(♦Φ) (or
¬Prvλ(♦Φ)), where v ∈ {<,≤}, λ ∈ [0, 1], and Φ is a PCTL formula which does not have a subformula
featuring a probabilistic quantifier Pr. We can represent the universal and existential properties described
above in the syntax of PCTL: the property “for all adversaries, the probability of reaching the location
done within deadline nanoseconds is λ1 or greater” is written as the PCTL formula Pr≥λ1(♦(done ∧ y ≤
deadline)). Similarly, the property “there exists an adversary such that the probability of reaching the
location deadline exceeded is λ2 or greater” is written as ¬Pr<λ2(♦deadline exceeded) (paraphrased as “it is
not true that all adversaries reach deadline exceeded with probability strictly less than λ2”).

For an arbitrary PCTL formula Φ and λ ∈ [0, 1], we have Pr≥λ(♦Φ) ≡ ¬Pr<1−λ(�¬Φ) [BK98]. Applied
to the first PCTL formula given in the previous paragraph, this gives us the equivalence:

Pr≥λ1(♦(done ∧ y ≤ deadline)) ≡ ¬Pr<1−λ1(�¬(done ∧ y ≤ deadline)) .

Although the probabilistic quantifier Pr<1−λ1 is of the correct form for our probabilistic timed automata
verification approach, the path formula which it quantifies over uses a � temporal modality, rather than a
♦ modality, as required. However, on non-Zeno paths of Ip+1 , the formulas �¬(done ∧ y ≤ deadline) and
♦deadline exceeded are equivalent.

Lemma 4.1. Let ω be a non-Zeno path of [[Ip+1]]R, and let A ⊆ Adv . Then ω |=A �¬(done ∧ y ≤ deadline)
if and only if ω |=A ♦deadline exceeded.

Proof. See Appendix B.

Corollary 4.2. Let AnZ ⊆ Adv be the set of non-Zeno adversaries of [[Ip+1]]R. Then (start start,0) |=AnZ

Pr<1−λ1(�¬(done ∧ y ≤ deadline)) if and only if (start start,0) |=AnZ
Pr<1−λ1(♦deadline exceeded).

The corollary follows because, although a non-Zeno adversary may exhibit Zeno paths (for which the
equivalence of Lemma 4.1 does not hold), the probability measure of such paths must be 0. Hence, we have
reduced the PCTL formula Pr≥λ1(♦(done∧y ≤ deadline)) to ¬Pr<1−λ1(♦deadline exceeded) on the non-Zeno
adversaries of Ip+1 . That is, we have converted a formula concerning the reachability of a certain set of states
with a certain probability or greater into a formula concerning the reachability of a different set of states
with a certain probability or less.

Not all adversaries of Ip+1 (and indeed Ip1) are non-Zeno, because an adversary may choose to advance time
in a Zeno, or convergent manner (for example, letting 0 nanoseconds elapse in all time transitions performed
from some point onwards). This would be problematic for our analysis if the set of adversaries which reach
the target location deadline exceeded with the maximal probability are all Zeno. The following lemma shows
that this is not the case: more precisely, we show that, for any Zeno adversary of Ip+1 , there exists a non-Zeno
adversary which can reach the location deadline exceeded with an equal or greater probability.

Lemma 4.3. Let A be a Zeno adversary of [[Ip+1]]R. Then there exists a non-Zeno adversary AnZ of [[Ip+1]]R
such that:

ProbReachAnZ ((start start,0), deadline exceeded) ≥ ProbReachA((start start,0), deadline exceeded) .

Proof. See Appendix C.

Step 2: Applying forward reachability to probabilistic timed automata. The second step involves
the computation of the relevant symbolic states, together with information concerning transitions made be-
tween such symbolic states, using the tool HyTech. As this tool is equipped with a simple programming

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 13

language in which the symbolic states of a classical timed automaton serve as the basic data structure, it
permits us to implement the forward reachability algorithm of [KNSS02], given that a number of auxiliary,
discrete, integer-valued variables are added to a classical timed automaton representation of Ip+1 so that
sufficient information concerning the probabilistic transition relation between the symbolic states is main-
tained. Firstly, the additional variable edge is used to record the edge of the classical timed automaton that
was last traversed; this is achieved by assigning to each edge of the model a different value, and then setting
the variable edge to this value upon traversal of the relevant edge. Secondly, the variable number is used to
uniquely number the symbolic states that are generated by the program; this is to distinguish sets of states
which may have the same location, but, because they belong to different symbolic states, may correspond to
different probabilities of reaching the target location deadline exceeded. Finally, when a new symbolic state is
generated (recall that this occurs when the effect of a discrete transition is applied to a previously generated
symbolic state), the variable source is set to the value of number corresponding to the source symbolic state.
Note that a symbolic state may have more than one value of source, meaning that it may be reached from
more than one symbolic state in a single discrete transition.

We then perform probabilistic model checking on the resulting “symbolic state probabilistic system”, the
states of which correspond to the symbolic states generated by the previous step, and the transitions of which
are derived from the values of edge and source in each symbolic state, against a PCTL property which refers
to the maximum probability of reaching any symbolic state with the location component deadline exceeded.

Although it is established in [KNSS02] that, in general, the forward reachability process described above
is only guaranteed to compute an upper bound on the reachability probability in the probabilistic timed
automaton, for certain classes of systems, the technique will result in the computation of the exact probability;
indeed, the probabilistic timed automaton Ip+1 falls into this class. Rather than present a formal proof, we
provide an experimental validation of this result by verifying that the probabilities obtained using the forward
reachability method agree with those obtained on the region graph and the probabilistic timed automaton
with integer semantics.

4.1.2. Region graph

The second approach taken for the verification of the abstract probabilistic timed automaton model Ip1
involves the definition of a finite state region graph. Such a graph is obtained from a finite partition of the
clock valuation space first defined in the context of classical timed automata in [AD94]. The region graph is
defined using the combination of this partition with the locations and transitions of the model. It is shown in
[KNSS02] that the region graph of a probabilistic timed automaton takes the form of a probabilistic system
which can be used to verify PCTL properties. Hence, we can use the region graph of Ip1 for probabilistic
model checking of the property Pr≥λ1(♦(done∧ y ≤ deadline)) directly. For efficiency, we combine all states
corresponding to the bound deadline being exceeded by the clock y into a single state.

This region graph is then encoded directly into the system description language of PRISM in anticipation
of probabilistic model checking. The description language is state-based, where a state of the model corre-
sponds to a valuation of a finite set of finite-domain variables, and where the state transitions are obtained
by guarded commands which establish a relationship between the values of the state variables before and
after a transition. We use six variables to encode the region graph: one for the location component of the
region, two for the integer values of each of the clocks x and y, two to record whether the fractional part of
the clocks is 0 or not, and one to record the order on the fractional parts of the two clocks.

4.1.3. Integer semantics

The final technique for the verification of the abstract probabilistic timed automaton Ip1 concerns the use
of its integer semantics, defined in Definition 2.4. As in the previous two subsections, we obtain a finite
state probabilistic system which can be model checked using PRISM. The encoding of the integer-semantics
probabilistic system into the system description language of PRISM involves the use of three variables: one
to denote the location component of the state, and two to denote the integer values of the clocks.

As the probabilistic timed automaton Ip1 is closed and diagonal-free, Theorem 2.5 holds, and therefore
the minimum probability of reaching a state with location component done before the deadline is the same
in the continuous and integer semantics.

14 M. Kwiatkowska, G. Norman and J. Sproston

Table 1. Verification results for the abstract model Ip1 with the wire delay set to 360 ns.
deadline (ns) forward reachability region graph integer semantics probability

states iters. time (s) states iters. time (s) states iters. time (s)
2,000 48 13 0.06 423,016 670 13.2 68,185 169 1.31 0
2,500 68 26 0.07 652,890 743 18.9 104,333 207 4.08 0.5
3,000 72 26 0.09 900,390 1,157 50.2 143,133 293 3.86 0.5
3,500 103 31 0.11 1,147,890 1,230 68.2 181,933 331 5.43 0.625
4,000 137 33 0.13 1,395,390 1,485 119 220,733 375 7.72 0.625
4,500 142 38 0.16 1,642,890 1,717 139 259,533 455 11.7 0.78125
5,000 183 38 0.19 1,890,390 1,972 175 298,333 499 16.1 0.78125
5,500 218 40 0.22 2,137,890 2,131 228 337,133 541 24.9 0.84375
6,000 234 45 0.24 2,385,390 2,300 265 375,933 581 22.5 0.851562
7,000 – – – 2,880,390 2,787 374 453,533 705 29.8 0.908203
8,000 – – – 3,375,390 3,115 519 531,133 789 39.6 0.939453
9,000 – – – 3,870,390 3,602 659 608,733 913 51.5 0.961914
10,000 – – – 4,365,390 3,930 843 686,333 995 62.1 0.974731
100,000 – – – 48,915,390 12,229 6,007 7,670,333 3,097 599 0.999996

1,000,000 – – – – – – 77,510,333 3,097 589 0.999996
∞ – – – 1,542 1,492 1.25 776 752 0.51 1

Table 2. Verification results for the abstract model Ip1 with the wire delay set to 30 ns.
deadline (ns) forwards reachability region graph integer semantics probability

states iters. time (s) states iters. time (s) states iters. time (s)
1,500 32 8 0.02 57,903 1 0.04 7,235 1 0.02 0
2,000 51 11 0.04 85,638 677 2.31 14,868 174 0.36 0.5
2,500 71 11 0.05 144,450 684 5.09 24,389 174 0.81 0.5
3,000 71 14 0.07 222,090 1,032 9.94 36,410 265 0.94 0.625
3,500 101 14 0.11 319,852 1,387 29.8 52,108 356 4.09 0.78125
4,000 131 17 0.15 433,018 1,387 35.2 69,791 356 4.69 0.78125
4,500 131 20 0.16 563,570 1,742 67.8 90,212 447 8.80 0.851563
5,000 171 20 0.17 715,390 1,742 92.5 114,001 447 12.3 0.851563
5,500 202 23 0.19 880,754 2,097 122 139,817 538 22.0 0.908203
6,000 211 23 0.21 1,065,154 2,398 193 168,567 611 27.2 0.931641
7,000 – – – 1,455,737 2,807 248 229,085 720 40.6 0.962036
8,000 – – – 1,851,737 3,162 293 290,185 811 56.8 0.975494
9,000 – – – 2,247,737 3,517 439 351,285 902 76.7 0.984383
10,000 – – – 2,643,737 3,872 612 412,385 993 103 0.989970
100,000 – – – 38,283,737 9,985 1,059 5,911,385 2,536 736 0.999996

1,000,000 – – – – – – 60,901,385 2,536 757 0.999996
∞ – – – 1,212 1,360 1.11 611 686 0.52 1

4.1.4. Results

The results obtained from verifying the abstract model are shown in Tables 1 and 2. We include the verifica-
tion results for the case in which the communication delay along the wires between the two nodes is 360 ns in
Table 1, and 30 ns in Table 2. In both tables, the left-most column shows the deadline used in the property,
and the right-most column shows the minimum probability with which the system reaches a leader-elected
state before the deadline (the same probability was computed by all three methods). The results reflect the
obvious fact that increasing the value of the deadline has the effect of increasing the probability of a timely
leader election; intuitively, the greater the deadline, the “more chances” the system has of flipping different
results for each node (therefore electing a leader). Observe that the rate of increase both in the number of
computed symbolic states and the probability proceeds in “jumps” as the deadline increases. In particular,
the probability of satisfying the required property is dependent on how many protocol restarts (and therefore
coin flips) the system can perform before expiration of the deadline. Although the generation of probabilities
for low values of the deadline (particularly 3,000 or less) is trivial, the probability computation becomes
more involved for greater deadlines.

For all three techniques (forward reachability, region graph, and integer semantics), the sub-columns
marked “states” give the number of states of the probabilistic system which is taken as input to PRISM,
the sub-columns marked “iters.” give the number of iterations taken by PRISM to compute the probability,
and the sub-columns marked “time” give the time in seconds taken by PRISM for the computation. Observe
that the probability shown in the right-most column of the table is actually one minus the maximum of the
existential reachability property computed by PRISM using the forward reachability method (as we verify

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 15

the dual of the actual formula we are interested in). As expected, the probabilities computed for all three
methods agree. A dash − denotes that verification was not attempted.

The symbolic states generated by the forward reachability algorithm, as implemented in HyTech, form
the states of the probabilistic system taken as input to PRISM. We do not include time and memory statistics
for HyTech as, in general, the execution of the forward reachability algorithm implementation periodically
required termination and subsequent re-execution in order to avoid excessive memory consumption (for
higher deadlines, this was achieved using a shell script). As a guide, the symbolic states for the deadline of
6,000 ns took approximately 24 hours to obtain. This performance bottleneck made the verification of greater
deadlines impractical. In contrast to this poor performance, observe that the state spaces which are generated
by the forward reachability method are significantly smaller (by an order of magnitude of 104 compared to
the region graph technique, and by an order of 103 compared to the integer semantics technique). Deadlines
of up to 100,000 ns and 1,000,000 ns are within reach of the capabilities of PRISM using the region graph
and the integer semantics, respectively, although it should be noted that PRISM is designed to handle large
state spaces using efficient data structures such as Multi-Terminal Binary Decision Diagrams (MTBDDs)
[CFM+93]. Using the integer semantics of Ip1 results in performance gains over the region-based approach
(the state spaces generated are just over 6 times smaller than those obtained from the region graph), which
is explained by observing that the information encoded into the integer semantics is a strict subset of that
encoded into the region graph.

In addition to the verification times given above, the tool PRISM also involves a model construction phase,
during which the system description is parsed, converted into an MTBDD representation, and subjected to an
efficient, BDD-based state-space exploration procedure to find the reachable states of the system [dAKN+00].
As a guide, for a deadline of 100,000, the model construction time for the region graph is approximately 20
minutes, compared to 14 minutes for the integer semantics model. For more information, including model
construction times for all deadlines, see the web-site [Pri].

As PRISM computes the probability of property satisfaction using an iterative technique, a termination
criterion is given by a sufficiently small ε, where the iteration terminates if the relative difference of suc-
cessively computed probabilities is less than ε. For this case study, we set ε = 10−6. Hence, although the
probabilities computed using the integer semantics for deadlines of 100,000 and 1,000,000 ns are identical, this
should not be interpreted as indicating that the probabilities have converged. Indeed, the final row of the table
gives the performance statistics of the verification of the property Pr≥λ3(♦(done)∧y ≤ ∞) ≡ Pr≥λ3(♦(done))
on the region graph and integer semantics (such a property is out of the scope of the forward reachability
procedure). We perform verification on a simplified model in which the clock y, used to measure global time,
is not represented. Use of PRISM establishes that this property is satisfied even for λ3 = 1, and therefore
we conclude that the probability of electing a leader converges to 1 as the deadline approaches ∞. The
efficiency of PRISM for this property is due to the fact that a graph-theoretic pre-computation procedure
which calculates the states satisfying formulae with probability 1, is used in the model-checking phase.

4.2. Full model

In this section, we report on the application of the most efficient verification method employed in the
previous section, that concerning integer semantics, to the full probabilistic timed automaton Implp of the
root contention protocol. As with the case of Ip1 in the previous section, verification on the integer semantics
is sufficient because Implp is a closed, diagonal-free probabilistic timed automaton, and, by Theorem 2.5,
the minimum probability of reaching a state with a leader-elected location before the deadline is the same
for the continuous and integer semantics of Implp. We do not attempt the region graph technique, as the
state space generated by this method is strictly greater than that for the integer semantics.

Rather than construct the integer semantics [[Implp]]N of the composed probabilistic timed automaton
Implp = Nodep1‖Wire1‖Wire2‖Nodep2, we elected to define the integer semantics of each of the four components
of Implp, and then use the parallel composition facility of PRISM to generate the probabilistic system

[[Nodep1]]N‖[[Wire1]]N‖[[Wire2]]N‖[[Node
p
2]]N .

As it was established that [[Implp]]N is isomorphic to [[Nodep1]]N‖[[Wire1]]N‖[[Wire2]]N‖[[Node
p
2]]N in Section 2.2.1,

and as isomorphism is stronger than (probabilistic) bisimulation, which preserves all PCTL formulae on
probabilistic systems [SL95], we conclude that the two systems satisfy the same PCTL formulae, including
the formula Pr≥λ(♦(done ∧ y ≤ deadline)) requiring that “for all adversaries, the probability of electing a

16 M. Kwiatkowska, G. Norman and J. Sproston

Table 3. Verification results for the full model Implp.
deadline (ns) wire delay of 360 ns wire delay of 30 ns

states iters. time (s) probability states iters. time (s) probability
1,500 2,426,116 48 6.34 0 29,631 15 0.35 0
2,000 6,719,773 50 20.2 0 80,980 179 4.23 0.5
2,500 14,089,691 212 51.7 0.5 143,394 185 7.58 0.5
3,000 23,319,148 213 287 0.5 213,805 275 12.9 0.625
3,500 33,789,641 341 621 0.625 328,547 371 22.8 0.78125
4,000 44,366,235 341 7,325 0.625 434,364 371 29.3 0.78125
4,500 54,973,279 470 11,338 0.78125 572,437 467 40.7 0.851563
5,000 65,586,679 470 24,556 0.78125 731,109 467 61.7 0.851563
5,500 76,200,079 552 23,229 0.84375 899,798 563 71.5 0.908203
6,000 86,813,479 599 35,293 0.851562 1,093,658 631 114 0.931641
7,000 108,040,279 728 51,028 0.908203 1,499,591 755 132 0.962036
8,000 129,267,079 810 58,504 0.939453 1,915,291 851 209 0.975494
9,000 150,493,879 939 73,829 0.961914 2,330,991 947 253 0.984383
10,000 171,720,679 1,021 95,000 0.974731 2,746,691 1,043 296 0.989970
∞ 212,268 844 336 1 4,157 712 36.2 1

leader before the deadline is greater than λ”. Each of the probabilistic systems [[Nodep1]]N, [[Wire1]]N, [[Wire2]]N,
and [[Nodep2]]N is encoded as a separate “module”, with its own state variables, within the language of PRISM.
For example, the module for [[Nodep1]]N features two variables, one corresponding to the location component
of the state, and the other recording the current value of the clock of Nodep1. Finally, we also include a module
recording global time using a single variable.

The results obtained from generating the integer semantics of the full model are given in Table 3, both
for a communication delay of 360 ns and for 30 ns. Note that the automatic model construction process
generally took a small number of minutes, in addition to the computation time given in the table (see the
web-page [Pri] for full details). We observe that the ratio of the number of states obtained from this method
to the number of states obtained from the integer semantics of the abstract model Ip1 increases as the deadline
increases (from a ratio of approximately 100 for the deadline 2,000 ns, to approximately 250 for the deadline
10,000 ns), although at a decreasing rate; therefore, the abstract model Ip1 scales better with regard to the
largest numerical constant of the system. Note also that the probabilities obtained using the full model agree
with those obtained from verification on the abstract model.

Although the utility of integer semantics is limited to closed, diagonal-free classical and probabilistic
timed automata, in this case such semantics have allowed us to verify high deadlines without the need for
abstraction. We envisage that the combination of integer semantics and abstraction may lead to successful
verification of more complex probabilistic real-time systems.

5. Conclusions

We have considered an approach to the formal specification of both timed and probabilistic aspects of the
root contention protocol of IEEE 1394 using probabilistic timed automata, and have investigated the way
in which the tools PRISM and HyTech may be used to automatically verify the resulting model against
deadline properties. The properties that we consider are closely related to the property “a leader is eventually
chosen”, whereas we do not consider safety properties such as “only one leader is chosen”. The verification
used a variety of techniques, including high-level abstraction and methods for the construction of finite-state
probabilistic systems using explorative algorithms, region equivalence, and non-standard integer semantics.
The abstraction method considered was originally developed in [SV99] as one step of a manual proof; we
envisage that automatic, probabilistic abstraction methods, for example [DJJL01], could also be applied to
improve the efficiency of probabilistic timed automata model checking.

We consider probabilistic timed automata to be particularly appropriate for the specification of the
nodes involved in the root contention protocol, together with their communication media. Probabilistic
timed automata can express a variety of notions which are important in representing the nodes and wires,
such as the probabilistic coin-flip, the communication between the components, and the nondeterministic
choice of time delays (within given short or long waiting intervals) in a formal yet concise way. The timing
parameters from the updated IEEE 1394a standard were used in the models, although observe that it is
straightforward to change the values of the parameters and re-run the experiments, as we did for the wire
propagation delay. Such a change of parameters results in the loss of the work performed in previous analyses,

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 17

although, because the analysis procedure is automatic, this involves no significant manual effort. We consider
probabilistic model checking to be an appropriate technique for the analysis of the root contention protocol,
as manual analysis is notoriously prone to human error, even for simple systems.

When evaluating the total time taken to obtain a solution via our analysis, we should consider that both
the modelling and analysis of [SS01] required approximately two person months. As we use the classical timed
automata models (and some of the results) of [SS01] as a basis for our probabilistic models, we should regard
this as the time taken to also derive our models. Subsequent translation of these models into the HyTech
and PRISM description languages required a small number of hours (with the region graph models being
the most difficult to encode, as detailed understanding of its partitioning method is necessary). We note
that, given knowledge of probabilistic systems and classical timed automata, the textual system description
languages of PRISM and HyTech are easy to learn, requiring only a number of hours of effort. For an
average programmer, or a person not literate in formal methods, the task of obtaining sufficient knowledge
of the formalisms may be more challenging, but we nevertheless estimate this to be possible within in a week.
In terms of analysis, as noted in Section 4, the forward reachability constructions implemented in HyTech
took approximately 24 hours for the higher values of the deadline considered, whereas model checking the
resulting probabilistic systems using PRISM required seconds; similarly, model checking using PRISM alone
on the region graph and the integer semantics required at most 27 hours for the full model Implp. Finally,
the proofs of correctness for the minimal and maximal reachability probabilities obtained via the integer
semantics, and the results concerning non-Zenoness for the forward reachability analysis, each took a small
number of days.

In terms of future work, our models could be used as a basis for the automatic computation of the
expected time to leader election; it would therefore be of interest to formalize such a notion in the context
of probabilistic timed automata, and to relate it to other precedents in the probabilistic model checking
literature, for example [dA97]. One aspect that is missing from the forward reachability approach is an
automatic method for verifying that the probability of the system electing a leader within a deadline of
infinity is 1. This requires a thorough investigation into such a class of probabilistic “liveness” properties,
which cannot be analyzed by use of the reachability algorithm of [KNSS02]. Although manual proof methods
dealing with such expected-time and probabilistic liveness properties have been known for some time, in
[Koz81] and [HSP83] respectively, we reiterate that such proof methods are prone to error, and that there is
a chronic need for automatic, model-checking methods for such properties.

The verification of the root contention protocol was carried out as part of an ongoing activity concern-
ing the practical implementation of model-checking methods for probabilistic timed automata. One lesson
learned was that, although the size of the generated state spaces can be handled easily by the tool PRISM,
the high memory usage of our algorithm implementation in HyTech proved to be the bottleneck of the
analysis, and meant that we were able to perform verification of only short deadlines. This is to be expected,
as HyTech is a flexible tool which can be applied to a superclass of timed automata, including hybrid
automata and parameterized systems, and for which efficient data structures have not been implemented; in
contrast, PRISM uses the compact data structure of MTBDDs to represent probabilistic systems. Indeed, the
forward reachability algorithm has been implemented recently in the classical timed automata tool Kronos
[DOTY96], for which efficient data structures to represent symbolic states have been developed, with results
that far surpass those obtained with HyTech [DKN02].

References

[ACD91] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for probabilistic real-time systems. In J. Leach Albert,
B. Monien, and M. Artalejo Rodŕıguez, editors, Proceedings of the 18th International Conference on Automata,
Languages and Programming (ICALP’91), volume 510 of LNCS, pages 115–136. Springer-Verlag, 1991.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.
[AIKY95] R. Alur, A. Itai, R. Kurshan, and M. Yannakakis. Timing verification by successive approximation. Information

and Computation, 18(1):142–157, 1995.
[AMP98] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata and digital circuits. In Sangiorgi

and de Simone [SdS98], pages 470–484.
[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In P. S. Thiagarajan,

editor, Proceedings of the International Conference on the Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer-Verlag, 1995.

[Bey01] D. Beyer. Improvements in BDD-based reachability analysis of timed automata. In J. N. Oliveira and P. Zave,

18 M. Kwiatkowska, G. Norman and J. Sproston

editors, Proceedings of the 10th International Symposium of Formal Methods Europe (FME 2001), volume 2021
of LNCS, pages 318–343. Springer-Verlag, 2001.

[BK98] C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching time logic with fairness. Distributed
Computing, 11(3):125–155, 1998.

[BKH99] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of continuous-time Markov
chains. In J. Baeten and S. Mauw, editors, Proceedings of the 10th International Conference on Concurrency
Theory (CONCUR’99), volume 1664 of LNCS, pages 142–162. Springer-Verlag, 1999.

[BMT99] M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata using dense and discrete time
semantics. In L. Pierre and T. Kropf, editors, Proceedings of the 11th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME’99), volume 1703 of LNCS, pages 125–141.
Springer-Verlag, 1999.

[BST00] G. Bandini, R. L. Spelberg, and W. J. Toetenel. Parametric verification of the IEEE 1394a root contention
protocol using LPMC. In Proceedings of the 7th International Conference on Real-Time Computing Systems and
Applications (RTCSA 2000), pages 207–214. IEEE Computer Society Press, 2000.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching time temporal
logic. In D. Kozen, editor, Proceedings of the Workshop on Logics of Programs, volume 131 of LNCS, pages 52–71.
Springer-Verlag, 1981.

[CFM+93] E. M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-Terminal Binary Decision Diagrams:
An efficient data structure for matrix representation. In Proceedings of the International Workshop on Logic
Synthesis (IWLS’93), pages 6a:1–15, 1993. Also available in Formal Methods in System Design, 10(2/3):149–169,
1997.

[CS01] A. Collomb-Annichini and M. Sighireanu. Parameterized reachability analysis of the IEEE 1394 root contention
protocol using TReX. In P. Pettersson and S. Yovine, editors, Proceedings of the Workshop on Real-Time Tools
(RT-TOOLS 2001), 2001.

[dA97] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, 1997.
[dA98] L. de Alfaro. Stochastic transition systems. In Sangiorgi and de Simone [SdS98], pages 423–438.
[D’A99] P. R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD thesis, Department of Computer

Science, University of Twente, 1999.
[dAKN+00] L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model checking of concurrent

probabilistic processes using MTBDDs and the Kronecker representation. In S. Graf and M. Schwartzbach, editors,
Proceedings of the 6th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2000), volume 1785 of LNCS, pages 395–410. Springer-Verlag, 2000.

[Der70] C. Derman. Finite-State Markovian Decision Processes. Academic Press, 1970.
[DJJL01] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reachability analysis of probabilistic systems by

successive refinements. In L. de Alfaro and S. Gilmore, editors, Proceedings of the Joint PAPM-PROBMIV 2001
Workshop, volume 2165 of LNCS, pages 39–56. Springer-Verlag, 2001.

[DKN02] C. Daws, M. Z. Kwiatkowska, and G. Norman. Automatic verification of IEEE 1394 root contention protocol with
kronos and PRISM. In R. Cleaveland and H. Garavel, editors, Proceedings of the 7th International Workshop
on Formal Methods for Industrial Critical Systems (FMICS 2002), pages 107–122, 2002. To appear in Electronic
Notes in Theoretical Computer Science.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur, T. A. Henzinger, and E. D. Sontag,
editors, Hybrid Systems III: Verification and Control, volume 1066 of LNCS, pages 208–219. Springer-Verlag, 1996.

[DT98] C. Daws and S. Tripakis. Model–checking of real–time reachability properties using abstractions. In Steffen [Ste98],
pages 313–329.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with Kronos. In A. Burns, Y.-
H. Lee, and K. Ramamritham, editors, Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS’95),
pages 66–75. IEEE Computer Society Press, 1995.

[FS01] C. Fidge and C. Shankland. But what if I don’t want to wait forever? In S. Maharaj, J. Romijn, and C. Shankland,
editors, Proceedings of the International Workshop on Application of Formal Methods to IEEE 1394 Standard,
2001.

[HHWT95] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In E. Brinksma, W. R. Cleaveland,
K. G. Larsen, T. Margaria, and B. Steffen, editors, Proceedings of the 1st International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’95), volume 1019 of LNCS, pages 41–71.
Springer-Verlag, 1995.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model checker for hybrid systems. Software Tools for
Technology Transfer, 1(1+2):110–122, 1997.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing,
6(5):512–535, 1994.

[HMP92] T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In W. Kuich, editor, Proceedings of the
19th International Colloquium on Automata, Languages, and Programming (ICALP’92), volume 623 of LNCS,
pages 545–558. Springer-Verlag, 1992.

[HRSV01] T. S. Hune, J. M. T. Romijn, M. I. A. Stoelinga, and F. W. Vaandrager. Linear parametric model checking of timed
automata. In T. Margaria and W. Yi, editors, Proceedings of the 7th Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages 189–203. Springer-Verlag,
2001.

[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent programs. ACM Transactions on
Programming Languages and Systems, 5(3):356–380, 1983.

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 19

[KNP02] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. In T. Field,
P. G. Harrison, J. Bradley, and U. Harder, editors, Proceedings of the 12th International Conference on Computer
Performance Evaluation, Modelling Techniques and Tools (TOOLS 2002), volume 2324 of LNCS, pages 200–204.
Springer-Verlag, 2002.

[KNS02] M. Z. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE 802.11 wireless local
area network protocol. In H. Hermanns and R. Segala, editors, Proceedings of the Joint PAPM-PROBMIV 2002
Workshop, volume 2399 of LNCS, pages 169–187. Springer-Verlag, 2002.

[KNSS02] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time systems with
discrete probability distributions. Theoretical Computer Science, 282(1):101–150, 2002. A preliminary version of
this paper appeared in Katoen [?], pages 75–95.

[Koz81] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences, 22(3):328–350, 1981.
[KSK76] J. G. Kemeny, J. L. Snell, and A. W Knapp. Denumerable Markov Chains. Graduate Texts in Mathematics.

Springer, 2nd edition, 1976.
[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology Transfer, 1(1+2):134–

152, 1997.
[LPY98] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear-box controller. In Steffen [Ste98],

pages 281–297.
[Pri] PRISM webpage: http : //www.cs.bham.ac.uk/∼dxp/prism/.
[SdS98] D. Sangiorgi and R. de Simone, editors. Proceedings of the 9th International Conference on Concurrency Theory

(CONCUR’98), volume 1466 of LNCS. Springer-Verlag, 1998.
[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT, Dept. of

Electrical Engineering and Computer Science, 1995.
[SL95] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Computing,

2(2):250–273, 1995.
[SS01] D. P. L. Simons and M. I. A. Stoelinga. Mechanical verification of the IEEE 1394a root contention protocol using

Uppaal2k. Software Tools for Technology Transfer, 3(4):469–485, 2001.
[Ste98] B. Steffen, editor. Proceedings of the 4th Workshop on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’98), volume 1384 of LNCS. Springer-Verlag, 1998.
[SV99] M. I. A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. volume 1601 of LNCS, pages 53–74.

Springer-Verlag, 1999.
[Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proceedings of the 26th

IEEE Symposium on Foundations of Computer Science (FOCS’85), pages 327–338. IEEE Computer Society Press,
1985.

[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time communicating systems by constraint-
solving. In D. Hogrefe and S. Leue, editors, Proceedings of the 7th International Conference on Formal Description
Techniques (FORTE’94), pages 223–238. North–Holland, 1994.

A. Proof of Theorem 2.5

Before we can prove Theorem 2.5 we require the following definitions and lemmas. In the following, we
suppose that the closed, diagonal-free probabilistic timed automaton PTA = (L,X ,Σ, inv , prob) is fixed.
First, we introduce the relation �⊆ R|X | × N|X | first presented in [Bey01], which associates with every
real-valued clock valuation the set of its possible integer representatives. Recall that kx denotes the greatest
constant that the clock x is compared to in the zones of PTA.

Definition A.1. For v ∈ R|X | and v′ ∈ N|X |, v � v′ holds if and only if there exists t ∈ [0, 1) such that for
all x ∈ X one of the following conditions holds:

• v′(x)− 1 + t < v(x) ≤ v′(x) + t

• v′(x)− 1 + t < v(x) and v′(x) = kx + 1.

The following lemma is immediate.

Lemma A.2. For any zone ζ of PTA and clock valuations v ∈ R|X |, v′ ∈ N|X | such that v � v′, if v / ζ then
v′ / ζ.

In particular, the lemma means that, for any state (l, v) ∈ SR of the continuous semantics [[PTA]]R, then, for
any v′ ∈ N|X | such that v � v′, the pair (l, v′) is a state of the integer semantics [[PTA]]N (that is, (l, v′) ∈ SN),
because v / inv(l) implies v′ / inv(l).

Next, for the probabilistic system [[PTA]]T = (S,Act ,Steps) and any adversary C ∈ Adv [[PTA]]T
, we define

a sequence of functions (PC
n)n∈N. Intuitively, for any finite path ω ∈ PathC

fin and set of locations L′ ⊆ L,
PC

n (ω, L′) equals the probability, according to the adversary C, of reaching a state in F T
L′ in at most n

transitions after performing the path ω. Formally we have the following definition.

20 M. Kwiatkowska, G. Norman and J. Sproston

Definition A.3. If [[PTA]]T = (S,Act ,Steps), then for any adversary C ∈ Adv [[PTA]]T
, L′ ⊆ L and finite path

ω ∈ PathC
fin , let:

PC
0 (ω, L′) =

{
1 if last(ω) ∈ F T

L′

0 otherwise,

and for any n ∈ N, ω ∈ PathC
fin , if C(ω) = (a, µ) then:

PC
n+1(ω, L′) =

 1 if last(ω) ∈ F T
L′∑

s′∈S

µ(s′) ·PC
n (ω

a,µ−−→ s′, L′) otherwise.

We now give Lemma A.4, which follows from classical probabilistic reachability. We abuse notation by
regarding a single state s ∈ S as a path of length 0 (that is, a path without any transitions).

Lemma A.4. If [[PTA]]T = (S,Act ,Steps), then for any state s ∈ S and L′ ⊆ L, we have:

MaxProbReach [[PTA]]T
(s, F T

L′)
def= sup

C∈Adv [[PTA]]T

lim
n→∞

PC
n (s, L′)

MinProbReach [[PTA]]T
(s, F T

L′)
def= inf

C∈Adv [[PTA]]T

lim
n→∞

PC
n (s, L′).

Finally, we require the following lemma.

Lemma A.5. Let PTA = (L,X ,Σ, inv , prob) be a closed, diagonal-free probabilistic timed automaton, with
continuous semantics [[PTA]]R = (SR, R ∪ Σ,StepsR) and integer semantics [[PTA]]N = (SN, N ∪ Σ,StepsN).
For all L′ ⊆ L, n ∈ N, (l, v) ∈ SR, A ∈ Adv [[PTA]]R

and v′ ∈ N|X | such that v � v′, there exist adversaries
B1, B2 ∈ Adv [[PTA]]N

such that:

PB1
n ((l, v′), L′) ≤ PA

n ((l, v), L′) ≤ PB2
n ((l, v′), L′).

Proof. If l ∈ L′ then, by Definition A.3, for any adversary B ∈ Adv [[PTA]]N
and n ∈ N, we have PA

n ((l, v), L′) =
PB

n ((l, v′), L′) = 1, and hence the lemma holds in this case.
We are left to consider the case when l 6∈ L′. We proceed by induction on n ∈ N. For n = 0, the result

follows from the fact that for any adversary B ∈ Adv [[PTA]]N
:

PA
0 ((l, v), L′) = PB

0 ((l, v′), L′) = 0.

Now suppose that the lemma holds for some n ∈ N. By Definition 2.4, we have the following two cases to
consider:

Time transitions. A(l, v) = (t, µ) for some t ∈ R such that v+ t̃ / inv(l) for all 0 ≤ t̃ ≤ t and µ(l, v+ t) = 1.
In this case, for any (l, v′) ∈ SN, if v � v′, then from Lemma 1 of [Bey01] there exists t′ ∈ N such that:

v′ ⊕N t′ / inv(l) and v + t � v′ ⊕N t′. (1)

Let AnZ ∈ Adv [[PTA]]R
be an adversary such that AnZ (ω) = A((l, v)

t,µ−−→ ω). Then, by Definition A.3 and
the fact that µ(l, v + t) = 1, we have PA

n+1((l, v), L′) = PAnZ
n ((l, v + t), L′), and, by induction and (1),

there exist B′
1, B

′
2 ∈ Adv [[PTA]]N

such that:

PB′
1

n ((l, v′ ⊕N t′), L′) ≤ PAnZ
n ((l, v + t), L′) ≤ PB′

2
n ((l, v′ ⊕N t′), L′). (2)

Furthermore, by (1) and Definition 2.4, there exists ((l, v), t′, µ′) ∈ StepsN with µ′(l, v′ ⊕N t′) = 1.
Therefore, letting B1 and B2 be the adversaries which choose the transition (t′, µ′) in (l, v′) and then
behave like B′

1 and B′
2 respectively, by Definition A.3 we have PB1

n+1((l, v), L′) = PB′
1

n ((l, v′⊕N t′), L′) and

PB2
n+1((l, v

′), L′) = PB′
2

n ((l, v′ ⊕N t′), L′). The required result then follows from (2).
Discrete transitions. A(l, v) = (σ, µ) for some σ ∈ Σ such that there exists (l, g, σ, p) ∈ prob with v / g

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 21

and for all (l′, w) ∈ SR:

µ(l′, w) =
∑

X⊆X & w=v[X:=0]

p(X, l′) . (3)

In this case, for any (l, v′) ∈ SN such that v � v′, it follows from Lemma A.2 and the definition of � that
v′ / g. Now by Definition 2.4 there exists ((l, v′), σ, µ′) ∈ StepsN such that, for all (l′, w′) ∈ SN:

µ′(l′, w′) =
∑

X⊆X & w′=v′[X:=0]

p(X, l′) . (4)

Consider any (l′, X) ∈ L × 2X such that p(l′, X) > 0. Let Al′,v[X:=0] be the adversary such that
Al′,v[X:=0](ω) = A((l, v)

σ,µ−−→ ω) for any finite path ω such that ω(0) = (l′, v[X := 0]). Then by Defini-
tion A.3 we have:

PA
n+1((l, v), L′) =

∑
(l′,w)∈SR

µ(l′, w) ·PA
n ((l, v)

σ,µ−−→ (l′, w), L′)

=
∑

(l′,w)∈SR

(∑
X⊆X & w=v[X:=0]

p(X, l′)

)
·PA

n ((l, v′)
σ,µ−−→ (l′, w), L′) by (3)

=
∑

l′∈L & X⊆X
p(X, l′) ·PA

n ((l, v)
σ,µ′−−→ (l′, v[X := 0]), L′) rearranging

=
∑

l′∈L & X⊆X
p(X, l′) ·PAl′,v[X:=0]

n ((l′, v[X := 0]), L′) by construction.

Now, from Lemma 1 of [Bey01], since v � v′, for any X ⊆ X we have v[X := 0] � v′[X := 0], and hence
by induction there exists B

l′,v[X:=0]
1 ∈ Adv [[PTA]]N

such that:

PB
l′,v[X:=0]
1

n ((l′, v′[X := 0]), L′) ≤ PAl′,v[X:=0]

n ((l′, v[X := 0]), L′). (5)

For any X ⊆ X , let B
l′,v′[X:=0]
1 be the adversary from the set

{Bl′,v[X′:=0]
1 |X ′ ⊆ X ∧ v′[X := 0] = v′[X ′ := 0]}

which minimizes the value of PB
l′,v[X:=0]
1

n ((l′, v′[X := 0]), L′). Finally, letting B1 be the adversary that
chooses the transition (σ, µ′) in (l, v′) and then behaves like B

l′,v′[X:=0]
1 in the state (l′, v′[X := 0]), using

Definition A.3 and (4) it follows that:

PB1
n+1((l, v

′), L′) =
∑

l′∈L & X⊆X
p(X, l′) ·PB

l′,v′[X:=0]
1

n ((l′, v′[X := 0]), L′)

≤
∑

l′∈L & X⊆X
p(X, l′) ·PBl′,v[X:=0]

n ((l′, v′[X := 0]), L′) by construction

≤
∑

l′∈L & X⊆X
p(X, l′) ·PAl′,v[X:=0]

n ((l′, v[X := 0]), L′) by (5)

= PA
n+1((l

′, v[X := 0]), L′) from above.

Showing that PA
n+1((l, v), L′) ≤ PB2

n+1((l, v
′), L′) for some B2 ∈ Adv [[PTA]]N

follows similarly. �

We now give the proof of Theorem 2.5, that is, for every closed, diagonal-free probabilistic timed automata
PTA = (L,X ,Σ, inv , prob), initial location l̄ ∈ L, and target locations L′ ⊆ L:

MaxProbReach [[PTA]]R
((l̄,0), FL′

R) = MaxProbReach [[PTA]]N
((l̄,0), FL′

N)

MinProbReach [[PTA]]R
((l̄,0), FL′

R) = MinProbReach [[PTA]]N
((l̄,0), FL′

N).

22 M. Kwiatkowska, G. Norman and J. Sproston

Proof of Theorem 2.5 Since (l̄,0) � (l̄,0), by Lemma A.5 and Lemma A.4 if follows that:

MaxProbReach [[PTA]]R
((l̄,0), FL′

R) ≤ MaxProbReach [[PTA]]N
((l̄,0), FL′

N)

MinProbReach [[PTA]]R
((l̄,0), FL′

R) ≥ MinProbReach [[PTA]]N
((l̄,0), FL′

N).

On the other hand, by definition of the continuous and integer semantics of PTA for any adversary B ∈
Adv [[PTA]]N

there exists an adversary A ∈ Adv [[PTA]]R
such that:

PA
n ((l̄,0), L′) = PB

n ((l̄,0), L′)

for all n ∈ N. Intuitively, the adversary A behaves like an integer semantics adversary; that is, it chooses to
make timed transitions of only integer duration. Since this was for an arbitrary B ∈ Adv [[PTA]]N

, it follows
that:

MaxProbReach [[PTA]]R
((l̄,0), FL′

R) ≥ MaxProbReach [[PTA]]N
((l̄,0), FL′

N)

MinProbReach [[PTA]]R
((l̄,0), FL′

R) ≤ MinProbReach [[PTA]]N
((l̄,0), FL′

N).

Putting the above together we have

MaxProbReach [[PTA]]R
((l̄,0), FL′

R) = MaxProbReach [[PTA]]N
((l̄,0), FL′

N)

MinProbReach [[PTA]]R
((l̄,0), FL′

R) = MinProbReach [[PTA]]N
((l̄,0), FL′

N)

as required.

B. Proof of Lemma 4.1

Proof. Consider the path formula �¬(done∧ y ≤ deadline). By the distributivity of conjunction, �¬(done∧
y ≤ deadline) ≡ �((¬done)∨ y > deadline). We now show that ω |=A �((¬done)∨ y > deadline) if and only
if ω |=A ♦deadline exceeded.

(⇒) From ω |=A �((¬done) ∨ y > deadline), we have (¬done) continuously for all states corresponding
to times in the interval [0, deadline]. Consider the final transition made from a state at a time in the
interval [0, deadline]. Firstly, note that this transition exists, because the path is non-Zeno and y is never
reset; secondly, observe that it must be a continuous transition, as discrete transitions are instantaneous.
The location of both the source and target state of this transition must be other than done, because time
transitions must have the same location in both their source and target state. From inspection of Ip+1 , we
have y ≤ deadline in all locations apart from done and deadline exceeded. Hence, the source and target
location of the transition must be deadline exceeded, and therefore ♦deadline exceeded holds for this path.

(⇐) From inspection of Ip+1 , we have ω |=A ♦deadline exceeded implies ω |=A �(¬done), as it is impossible
to reach deadline exceeded from done, and vice versa. Then clearly �(¬done) implies �((¬done) ∨ y >
deadline).

C. Proof of Lemma 4.3

Before giving the proof of Lemma 4.3, we present two auxiliary lemmas. The following lemma establishes
that there does not exist a state of Ip+1 from which it is impossible for some adversary to let time advance
unboundedly with probability 1.

Lemma C.1. For all states s ∈ S of [[Ip+1]]R, there exists an adversary A of [[Ip+1]]R such that:

ProbA{ω ∈ PathA
ful | ω(0) = s & ω is non-Zeno } = 1 .

Proof. We proceed by contradiction: assume that there exists a state of [[Ip+1]]R such that there does not
exist a “non-Zeno” adversary which meets the criteria given in the lemma. A necessary (but not sufficient)
condition for the existence of such a state is that either (1) an invariant of a location imposes an upper
bound on at least one clock which is greater than the upper bound on the same clock included in the

Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol 23

enabling conditions for all of the location’s outgoing edges, or (2) a loop in the graph derived from Ip+1
features locations whose invariants impose an upper bound on at least one clock which is not reset within
the loop. Neither of these conditions is satisfied in Ip+1 , and therefore a state from which there does not exist
a “non-Zeno” adversary is not possible.

We now examine the Zeno paths of the probabilistic timed automaton Ip+1 . The following lemma expresses
the fact that the location of Ip+1 cannot change infinitely often in a finite amount of time.

Lemma C.2. Let ω be a Zeno path of [[Ip+1]]R. Then there exists an infinite suffix ωsuf of ω such that all of
its states feature the same location.

Proof. Each loop of the graph given by the locations and edges of Ip+1 features (1) an enabling condition
of the form x ≥ c for some c > 0, and (2) a clock reset of x. Hence, if a path exhibits infinitely many edge
traversals, then it must be non-Zeno.

For any finite path ω and infinite path ω′ such that last(ω) = ω′(0) (i.e. the last state of ω equals the first
state of ω′), let ωω′ denote the infinite path obtained by concatenating ω and ω′. Moreover, for any infinite
path ω, let ω(i) denote the ith prefix of ω. We now proceed to the proof of the main lemma.

Proof of Lemma 4.3. Consider the following adversary AnZ of [[Ip+1]]R, defined as behaving in the same
manner as A on all finite prefixes of non-Zeno paths, and as behaving in a non-Zeno manner after some
sufficiently long finite prefix of any Zeno path. Formally, let j ∈ N be some index such that the location
component after the jth state of all Zeno paths of A is constant. Such an index exists by Lemma C.2. We
then define the adversary AnZ in the following manner:

• for any non-Zeno path ω of the adversary A, let AnZ (ω(i)) = A(ω(i)) for all i ∈ N;
• for any Zeno path ω of A, let Ã be an adversary of [[Ip+1]]R such that:

ProbÃ{ω̃ ∈ PathÃ
ful | ω̃(0) = ω(j) & ω̃ is non-Zeno } = 1 .

Such an adversary exists by Lemma C.1. Then let AnZ (ω(i)) = A(ω(i)) for all 0 ≤ i ≤ j, and let
AnZ (ω(j)ω̃) = Ã(ω̃) for all finite paths ω̃ of Ã such that ω̃(0) = ω(j).

It follows that AnZ is a non-Zeno adversary of [[Ip+1]]R.
The inequality of Lemma 4.3 holds for the following reasons. It suffices to consider the cones generated

by all finite paths of A of length j. We consider two cases, depending on whether a cone corresponds to
possibly many non-Zeno paths or to a single Zeno path.

Case: non-zeno paths. By the definition of AnZ , the adversaries A and AnZ agree along both the finite
path generating the cone and along all of the non-Zeno paths included in the cone. Hence, the cone of A
and the corresponding cone of AnZ have the same probability of reaching deadline exceeded.

Case: Zeno paths. Recall that, by Lemma C.2, after the jth state, the cone of A comprising a single
infinite, Zeno path remains within the same location. We consider the following sub-cases depending on
the identity of this location:

Sub-case: done. As done is unreachable from deadline exceeded, and vice versa, the probability assigned
by the cones to reaching deadline exceeded is 0 in both A and AnZ .

Sub-case: deadline exceeded. The probability assigned by the cones to reaching deadline exceeded is 1
in both A and AnZ .

Sub-case: location l ∈ L \ {done, deadline exceeded}. The probability assigned to the property of reach-
ing deadline exceeded by the cone of AnZ is at least the probability assigned to the same property
by the cone of A, for the following reason. The finite path of A generates a cone comprising a single
infinite path which remains in the current location, thus reaching deadline exceeded with probability
0. Hence, the probability of reaching deadline exceeded assigned by the cone of AnZ is at least that for
the cone of A (in fact, the location invariants, combined with the property of non-Zenoness of the cone
of AnZ , will ensure progress through the location of Ip+1 , in turn implying that the cone will feature
probabilistic branching, and finally also implying that the probability of reaching deadline exceeded is
strictly greater than 0).

	Introduction
	Probabilistic Timed Automata
	Syntax of probabilistic timed automata
	Semantics of probabilistic timed automata
	Time-progress in probabilistic timed automata

	Modelling the Root Contention Protocol
	The probabilistic timed automaton models
	Establishing the abstraction

	Verification and Analysis
	Abstract model
	Full model

	Conclusions
	References
	Proof of Theorem 2.5
	Proof of Lemma 4.1
	Proof of Lemma 4.3

