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Abstract. We consider the probabilistic contract signing protocol of
Ben-Or, Goldreich, Micali, and Rivest as a case study in formal verifi-
cation of probabilistic security protocols. Using the probabilistic model
checker PRISM, we analyse the probabilistic fairness guarantees the pro-
tocol is intended to provide. Our study demonstrates the difficulty of
combining fairness with timeliness in the context of probabilistic contract
signing. If, as required by timeliness, the judge responds to participants’
messages immediately upon receiving them, then there exists a strategy
for a misbehaving participant that brings the protocol to an unfair state
with arbitrarily high probability, unless unusually strong assumptions
are made about the quality of the communication channels between the
judge and honest participants. We quantify the tradeoffs involved in the
attack strategy, and discuss possible modifications of the protocol that
ensure both fairness and timeliness.

1 Introduction

Consider several parties on a computer network who wish to exchange some items
of value but do not trust each other to behave honestly. Fair exchange is the
problem of exchanging data in a way that guarantees that either all participants
obtain what they want, or none do. Contract signing is a particular form of fair
exchange, in which the parties exchange commitments to a contract (typically,
a text string spelling out the terms of the deal). Commitment is often identified
with the party’s digital signature on the contract. In commercial transactions
conducted in a distributed environment such as the Internet, it is sometimes
difficult to assess a counterparty’s trustworthiness. Contract signing protocols
are, therefore, an essential piece of the e-commerce infrastructure.

Contract signing protocols. The main property a contract signing protocol should
guarantee is fairness. Informally, a protocol between A and B is fair for A if,
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in any situation where B has obtained A’s commitment, A can obtain B’s com-
mitment regardless of B’s actions. Ideally, fairness would be guaranteed by the
simultaneous execution of commitments by the parties. In a distributed environ-
ment, however, simultaneity cannot be assured unless a trusted third party is
involved in every communication. Protocols for contract signing are inherently
asymmetric, requiring one of the parties to make the first move and thus put
itself at a potential disadvantage in cases where the other party misbehaves.

Another important property of contract signing protocols is timeliness, or
timely termination [4]. Timeliness ensures, roughly, that the protocol does not
leave any participant “hanging” in an indeterminate state, not knowing whether
the exchange of commitments has been successful. In a timely protocol, each
participant can terminate the protocol timely and unilaterally, e.g., by contacting
a trusted third party and receiving a response that determines the status of the
exchange.

Research on fair contract signing protocols dates to the early work by Even
and Yacobi [17] who proved that fairness is impossible in a deterministic 2-
party contract signing protocol. Since then, there have been proposed random-
ized contract signing protocols based on a computational definition of fairness
[15,16], protocols based on gradual release of commitments [12,8], as well as non-
probabilistic contract signing protocols that make optimistic use of the trusted
third party (a.k.a. judge). In an optimistic protocol, the trusted third party is
invoked only if one of the participants misbehaves [4,18]. In this paper, we fo-
cus on probabilistic contract signing, exemplified by the probabilistic contract
signing protocol of Ben-Or, Goldreich, Micali, and Rivest [6] (henceforth, the
BGMR protocol).

Analysis technique. Our main contribution is a demonstration of how probabilis-
tic verification techniques can be applied to the analysis of fairness properties of
security protocols. While formal analysis of fair exchange is a very active area
of research (see the related work section below), formalization and verification
of fairness in a probabilistic setting is quite subtle.

We are interested in verifying fairness guarantees provided by the protocol
against an arbitrarily misbehaving participant. Therefore, we endow that partic-
ipant with nondeterministic attacker operations in addition to the probabilistic
behaviour prescribed by the protocol specification. The resulting model for the
protocol combines nondeterminism and probability, giving rise to a Markov deci-
sion process. We discretize the probability space of the model and analyse chosen
finite configurations using PRISM, a probabilistic finite-state model checker.

Timeliness and fairness in the BGMR protocol. The original BGMR protocol
as specified in [6] consists of two phases: the “negotiation” phase of pre-agreed
duration, in which participants exchange their partial commitments to the con-
tract, and the “resolution” phase, in which the judge issues decisions in case
one or both of the participants contacted him during the negotiation phase. The
BGMR protocol does not guarantee timeliness. On the one hand, the negotiation
phase should be sufficiently long to enable two honest participants to complete



the exchange of commitments without involving the judge. On the other hand,
if something goes wrong (e.g., a dishonest party stops responding), the honest
party may contact the judge, but then has to wait until the entire period allotted
for the negotiation phase is over before he receives the judge’s verdict and learns
whether the contract is binding on him or not.

We study a variant of the BGMR protocol that attempts to combine fair-
ness with timeliness by having the judge respond immediately to participants’
messages, in the manner similar to state-of-the-art non-probabilistic contract
signing protocols such as the optimistic protocols of Asokan et al. [4] and Garay
et al. [18]. Our analysis uncovers that, for this variant of the BGMR protocol,
fairness is guaranteed only if the judge can establish a communication channel
with A, the initiator of the protocol, and deliver his messages faster than A
and B are communicating with each other. If the channel from the judge to A
provides no timing guarantees, or the misbehaving B controls the network and
(passively) delays the judge’s messages, or it simply takes a while for the judge
to locate A (the judge knows A’s identity, but they may have never communi-
cated before), then B can exploit the fact that the judge does not remember his
previous verdicts and bring the protocol to an unfair state with arbitrarily high
probability.

We quantify the tradeoff between the magnitude of this probability and the
expected number of message exchanges between A and B before the protocol
reaches a state which is unfair to A. Informally, the longer B is able to delay the
judge’s messages (and thus continue communicating with A, who is unaware of
the judge’s attempts to contact him), the higher the probability that B will be
able to cheat A.

Related work. A variety of formal methods have been successfully applied to
the study of nondeterministic contract signing protocols, including finite-state
model checking [29], alternating transition systems [22,23], and game-theoretic
approaches [9,11,10]. None of these techniques, however, are applicable to con-
tract signing in a probabilistic setting. Since fairness in protocols like BGMR is a
fundamentally probabilistic property, these protocols can only be modelled with
a probabilistic formalism such as Markov decision processes and verified only
with probabilistic verification tools. Recently, Aldini and Gorrieri [1] used a
probabilistic process algebra to analyse the fairness guarantees of the probabilis-
tic non-repudiation protocol of Markowitch and Roggeman [26] (non-repudiation
is a restricted case of contract signing).

Even for non-fairness properties such as secrecy, authentication, anonymity,
etc., formal techniques for the analysis of security protocols have focused almost
exclusively on nondeterministic attacker models. Attempts to incorporate prob-
ability into formal models have been limited to probabilistic characterization of
non-interference [20,30,31], and process formalisms that aim to represent prob-
abilistic properties of cryptographic primitives [25]. This paper is an attempt to
demonstrate how fully automated probabilistic analysis techniques can be used
to give a quantitative characterization of probability-based security properties.



2 Probabilistic Model Checking

Probability is widely used in the design and analysis of software and hardware
systems: as a means to derive efficient algorithms (e.g., the use of electronic
coin flipping in decision making); as a model for unreliable or unpredictable
behaviour (e.g., fault-tolerant systems, computer networks); and as a tool to
analyse system performance (e.g., the use of steady-state probabilities in the
calculation of throughput and mean waiting time). Probabilistic model checking
refers to a range of techniques for calculating the likelihood of the occurrence of
certain events during the execution of such system, and can be useful to establish
performance measures such as “shutdown occurs with probability at most 0.01”
and “the video frame will be delivered within 5ms with probability at least
0.97”. The system is usually specified as state transition system, with probability
measures on the rate of transitions, and a probabilistic model checker applies
algorithmic techniques to analyse the state space and calculate performance
measures.

In the distributed scenario, in which concurrently active processors handle
a great deal of unspecified nondeterministic behaviour exhibited by their envi-
ronment, the state transition systems must include both probabilistic and non-
deterministic behaviour. A standard model of such systems are Markov decision
processes (MDPs) [13]. Properties of MDPs can be specified in the probabilistic
branching-time temporal logic PCTL [21,7] which allows one to express proper-
ties such as “under any scheduling of nondeterministic choices, the probability
of φ holding until ψ is true is at least 0.78/at most 0.04”.

2.1 PRISM model checker

We use PRISM [24,28], a probabilistic model checker developed at the University
of Birmingham. The current implementation of PRISM supports the analysis
of finite-state probabilistic models of the following three types: discrete-time
Markov chains, continuous-time Markov chains and Markov decision processes.
These models are described in a high-level language, a variant of reactive modules
[2] based on guarded commands. The basic components of the language are
modules and variables. A system is constructed as a number of modules which
can interact with each other. A module contains a number of variables which
express the state of the module, and its behaviour is given by a set of guarded
commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and the command de-
scribes a transition which the module can make if the guard is true (using primed
variables to denote the next values of variables). If a transition is probabilistic,
then the command is specified as:

<prob> : <command> + · · ·+ <prob> : <command>



PRISM accepts specifications in either PCTL, or CSL logic depending on the
model type. This allows us to express various probabilistic properties such as
“some event happens with probability 1”, and “the probability of cost exceeding
C is 95%”. The model checker then analyses the model and checks if the property
holds in each state. In the case of MDPs, specifications are written in the logic
PCTL, and for the analysis PRISM implements the algorithms of [21,7,5].

3 BGMR Protocol

The objective of the probabilistic contract signing protocol of Ben-Or, Goldreich,
Micali, and Rivest [6] (the BGMR protocol) is to enable two parties, A and B,
to exchange their commitments to a pre-defined contract C. It is assumed that
there exists a third party, called the judge, who is trusted by both A and B. The
protocol is optimistic, i.e., an honest participant following the protocol specifi-
cation only has to invoke the judge if something goes wrong, e.g., if the other
party stops before the exchange of commitments is complete (a similar property
is called viability in [6]). Optimism is a popular feature of fair exchange proto-
cols [27,3,4]. In cases where both signers are honest, it enables contract signing
to proceed without participation of a third party, and thus avoids communica-
tion bottlenecks inherent in protocols that involve a trusted authority in every
instance.

3.1 Privilege and fairness

In the BGMR protocol, it can never be the case that the contract is binding on
one party, but not the other. Whenever the judge declares a contract binding,
the verdict always applies to both parties. For brevity, we will refer to the judge’s
ruling on the contract as resolving the contract.

Privilege is a fundamental notion in the BGMR protocol. A party is privileged
if it has the power to cause the judge to rule that the contract is binding. The
protocol is unfair if it reaches a state where one party is privileged (i.e., it can
cause the judge to declare the contract binding), and the other is not.

Definition 1 (Probabilistic fairness).
A contract signing protocol is (v, ε)−fair for A if, for any contract C, if A

follows the protocol, then at any step of the protocol in which the probability
that B is privileged is greater than v, the conditional probability that A is not
privileged given that B is privileged is at most ε.

The fairness condition for B is symmetric.
Probabilistic fairness implies that at any step of the protocol where one of

the parties has acquired the evidence that will cause the judge to declare the
contract binding with probability x, the other party should possess the evidence
that will cause the judge to issue the same ruling with probability of no less than
x− ε. Informally, ε can be interpreted as the maximum fairness gap between A
and B permitted at any step of the protocol.



3.2 Main protocol

Prior to initiating the protocol, A chooses a probability v which is sufficiently
small so that A is willing to accept a chance of v that B is privileged while A is
not.

A also chooses a value α > 1 which quantifies the “fairness gap” (see sec-
tion 3.1) as follows: at each step of the protocol the conditional probability that
A is privileged given that B is privileged should be at least 1

α , unless the proba-
bility that B is privileged is under v. B also chooses a value β > 1 such that at
any step where A is privileged, the conditional probability that B is privileged
should be at least 1

β . Both parties maintain counters, λa and λb, initialized to 0.
A’s commitment to C has the form “sigA(With probability 1, the contract C

shall be valid)”. B’s commitment is symmetric. It is assumed that the protocol
employs an unforgeable digital signature scheme.

All messages sent by A in the main protocol have the form “sigA(With prob-
ability p, the contract C shall be valid)”. Messages sent by B have the same form
and are signed by B. If both A and B behave correctly, at the end of the main
protocol A obtains B’s commitment to C, and vice versa. At the abstract level,
the main flow of the BGMR protocol is as follows:

A→ B sigA(With prob. pa
1, the contract C shall be valid) = ma

1

A← B sigB(With prob. pb
1, the contract C shall be valid) = mb

1
...

A→ B sigA(With prob. pa
i , the contract C shall be valid) = ma

i
...

A→ B sigA(With prob. 1, the contract C shall be valid) = ma
n

A← B sigB(With prob. 1, the contract C shall be valid) = mb
n

In its first message ma
1 , A sets pa

1 = v.
Consider the ith round of the protocol. After receiving message sigA(With

prob. pa
i , the contract C shall be valid) from A, honest B checks whether pa

i ≥ λb.
If not, B considers A to have stopped early, and contacts the judge for resolution
of the contract as described in section 3.3. If the condition holds, B computes
λb = min(1, pa

i · β), sets pb
i = λb and sends message sigB(With prob. pb

i , the
contract C shall be valid) to A.

The specification for A is similar. Upon receiving B’s message with probabil-
ity pb

i in it, A checks whether pb
i ≥ λa. If not, A contacts the judge, otherwise he

updates λa = max(v,min(1, pb
i ·α)), sets pa

i+1 = λa and sends message sigA(With
prob. pa

i+1, the contract C shall be valid), initiating a new round of the protocol.
The main protocol is optimistic. If followed by both participants, it termi-

nates with both parties committed to the contract.

3.3 The judge

Specification of the BGMR protocol assumes that the contract C defines a cutoff
date D. When the judge is invoked, he does nothing until D has passed, then ex-



amines the message of the form sigX(With prob. p, the contract C shall be valid)
supplied by the party that invoked it and checks the validity of the signature.

If the judge has not resolved contract C before, he flips a coin, i.e., chooses
a random value ρC from a uniform distribution over the interval [0, 1]. If the
contract has been resolved already, the judge retrieves the previously computed
value of ρC . In either case, the judge declares the contract binding if p ≥ ρC

and cancelled if p < ρC , and sends his verdict to the participants. To make the
protocol more efficient, ρC can be computed as fr(C), where r is the judge’s
secret input, selected once and for all, and fr is the corresponding member of
a family of pseudo-random functions [19]. This enables the judge to produce
the same value of ρC each time contract C is submitted without the need to
remember his past flips. The judge’s procedure can thus be implemented in
constant memory.

Observe that even though the judge produces the same value of ρC each time
C is submitted, the judge’s verdict depends also on the value of p in the message
submitted by the invoking party and, therefore, may be different each time. If the
judge is optimized using a pseudo-random function with a secret input to work
in constant memory as described above, it is impossible to guarantee that he will
produce the same verdict each time. To do so, the judge needs to remember the
first verdict for each contract ever submitted to him, and, unlike ρC , the value
of this verdict cannot be reconstructed from subsequent messages related to the
same contract.

3.4 Timely BGMR

Asokan et al. [4] define timeliness as “one player cannot force the other to wait
for any length of time—a fair and timely termination can be forced by contacting
the third party.” The BGMR protocol as specified in sections 3.2 and 3.3 does not
guarantee timeliness in this sense. To accommodate delays and communication
failures on a public network such as the Internet, the duration of the negotiation
phase D should be long. Otherwise, many exchanges between honest parties will
not terminate in time and will require involvement of the judge, making the judge
a communication bottleneck and providing no improvement over a protocol that
simply channels all communication through a trusted central server.

If D is long, then an honest participant in the BGMR protocol can be left
“hanging” for a long time. Suppose the other party in the protocol stops commu-
nicating. The honest participant may contact the judge, of course, but since the
judge in the original BGMR protocol does not flip his coin until D has passed,
this means that the honest party must wait the entire period allotted for ne-
gotiation before he learns whether the contract will be binding on him or not.
This lack of timeliness is inconvenient and potentially problematic if the contract
requires resource commitment from the participants or relies on time-sensitive
data.

In this paper, we investigate a variant of BGMR that we call TBGMR (for
“Timely BGMR”). The only difference between BGMR and TBGMR is that, in
TBGMR, the judge makes his decision immediately when invoked by one of the



protocol participants. Once the verdict is announced and reaches an honest par-
ticipant, the latter stops communicating. The rest of the protocol is as specified
in sections 3.2 and 3.3. TBGMR protocol is timely. Any party can terminate it
unilaterally and obtain a binding verdict at any point in the protocol without
having to wait for a long time.

4 Model

We formalize both the BGMR and TBGMR protocols as Markov decision pro-
cesses. We then use PRISM on a discretized model to determine if TBGMR is
fair.

4.1 Overview of the model

First, we model the normal behaviour of protocol participants and the judge
according to the BGMR protocol specification, except that the judge makes
his coin flip and responds with a verdict immediately. A dishonest participant
might be willing to deviate from the protocol in an attempt to cheat the honest
participant. We assume that B is the dishonest participant and A the honest one.
We equip B with an additional set of dishonest actions, any of which he can take
nondeterministically at any point in the protocol. To obtain a finite probabilistic
model, we fix the parameters chosen by the participants (see section 3.2), and
discretize the probability space of the judge’s coin flips.

Modelling the dishonest participant. Conventional formal analysis of security
protocols is mainly concerned with security against the so called Dolev-Yao at-
tacker, following [14]. A Dolev-Yao attacker is a nondeterministic process that
has complete control over the communication network and can perform any com-
bination of a given set of attacker operations, such as intercepting any message,
splitting messages into parts, decrypting if he knows the correct decryption key,
assembling fragments of messages into new messages and replaying them out of
context, etc.

We assume that the digital signature scheme employed by the protocol to
authenticate messages between participants is secure. Therefore, it is impossible
for the misbehaving participant to forge messages from the honest participant
or modify their content. We will also assume that the channels between the
participants and the judge are resilient : it is possible for the attacker to delay
messages and schedule them out of order, but he must eventually deliver every
message to its intended recipient.

Dishonest actions available to a misbehaving participant are thus limited to
i) invoking the judge even though the honest party has not stopped communi-
cating in the main flow of the protocol, and ii) delaying and re-ordering messages
between the judge and the honest party. The misbehaving participant can non-
deterministically attempt any of these actions at any point in the protocol. When
combined with the probabilistic behaviour of the judge, the nondeterminism of
the dishonest participant gives rise to a Markov decision process.



Modelling fairness. To model fairness, we compute the maximum probability
of reaching a state where the dishonest participant is privileged and the honest
one is not. Note that this probability is not conditional on the judge’s coin
not having been flipped yet, because the dishonest participant may choose to
contact the judge even after the coin has been flipped, ρC computed and verdict
rendered. In contrast, the proof of fairness in [6] calculates this probability under
the assumption that the coin has not been flipped yet.

4.2 Analysis technique

We now describe our method for modelling the protocol in PRISM’s input de-
scription language. Since PRISM is currently only applicable to finite configura-
tions and the input language allows only integer valued variables, to model the
protocol there are two simplifications we need to make.

First, we must discretize the judge’s coin by fixing someN ∈ N and supposing
that when the judge flips the coin, it takes the value i/N for i = 1, . . . , N with
probability 1/N . Second, we must fix the parameters of the parties, namely v,
α and β.

Once the parameters v, α and β are fixed, the possible messages that can be
sent between the parties and the ordering of the messages are predetermined.
More precisely, as shown in fig. 1, the probability values included in the messages
between the parties are known. Note that, for v, α, β > 0, these values converge
to 1 and there are only finitely many distinct values. Therefore, with a simple
script, we can calculate all the probability values included in the messages of the
two parties. Now, to model the parties in PRISM, we encode the state of each
party as the probability value included in the last message the party sent to the
other party, i.e., the states of A and B are identified by the current values of λa

and λb respectively. Formally, the states of each party range from 0 up to k, for
some k such that pa

i , p
b
i = 1 for all i ≥ k, where A is in state 0 when A has sent

no messages to B, and in state i ∈ {1, . . . , k} when the last message A sent to
B included the probability value min(1, v · αi−1 · βi−1). Similarly, B is in state
0 when B has not sent any messages to A, and in state i ∈ {1, . . . , k} when the
last message B sent to A included the probability value min(1, v · αi−1 · βi).

B

A

pb
1=v·β pb

2=v·β2·α pb
i=v·(β·α)i−1·β

pa
1=v pa

2=v·β·α pa
i =v·(β·α)i−1

Fig. 1. Probability values included in the messages sent between the parties.

Following this construction process, in the case when N = 100, the specifi-
cation of the BGMR protocol used as input into PRISM is given in fig. 2. Note
that there is a nondeterministic choice as to when the judge’s coin is flipped,



module

lambdaA : [0..k]; // probability value in the last message A sent to B
lambdaB : [0..k]; // probability value in the last message B sent to A
turn : [0..1]; // which party sends message next (0 – party A and 1 – party B)
c : [0..1]; // status of the coin (0 – not flipped and 1 – flipped)
rho : [0..100]; // value of the coin (rho=x and c=1 means its value is x/100)

// parties alternately send messages and stop when the coin has been flipped
[] turn=0 ∧ c=0 → lambdaA′=min(k, lambdaA + 1) ∧ turn ′=1;
[] turn=1 ∧ c=0 → lambdaB ′=min(k, lambdaB + 1) ∧ turn ′=0;
// flip coin any time after a message has been sent
[] c=0 ∧ (lambdaA>0 ∨ lambdaB>0) → 1/100 : (c′=1) ∧ (rho′=1)

+1/100 : (c′=1) ∧ (rho′=2)
...

+1/100 : (c′=1) ∧ (rho′=100);

endmodule

Fig. 2. Prism code for BGMR protocol.

i.e., when a party first sends a message to the judge asking for a verdict. Fur-
thermore, once the coin is flipped, the parties cannot send any messages to each
other, that is, this model corresponds to the original protocol.

In the timely variant of the protocol (TBGMR), if the misbehaving par-
ticipant is capable of delaying messages from the judge, then the parties may
continue sending messages to each other even after the coin has been flipped.
To model this, the two lines corresponding to the parties sending messages are
replaced with:

// parties can continue sending messages after the coin has been flipped
[] turn=0 → lambdaA′=min(k, lambdaA + 1) ∧ turn ′=1;
[] turn=1 → lambdaB ′=min(k, lambdaB + 1) ∧ turn ′=0;

Recall, if the coin has been flipped and the last messages sent by parties A and
B include the probability values pa and pb respectively, then in the current state
of the protocol B is privileged and A is not if and only if the value of the coin
is in the interval (pb, pa]. Therefore, in the PRISM model we can specify the set
of states where B is privileged and A is not. Let’s call this set of states unfair.
We then use PRISM to calculate the maximum probability , from the initial state
(where no messages have been sent and the coin has not been flipped), of reaching
a state in unfair. Table 1 gives the summary of the results obtained using
PRISM when considering a number of different parameters for both the BGMR
and TBGMR versions of the protocol.



number maximum probability of reaching
v α β N of a state where only B is privileged

states BGMR TBGMR

10 408 0.1000 0.8000
0.1 1.1 1.05 100 3,738 0.1000 0.7000

1,000 37,038 0.1000 0.7080

10 518 0.1000 0.9000
0.1 1.1 1.01 100 4,748 0.1000 0.9000

1,000 47,048 0.1000 0.9180

10 6,832 0.1000 0.6000
0.01 1.01 1.005 100 62,722 0.0100 0.6600

1,000 621,622 0.0100 0.6580

10 9,296 0.1000 1.0000
0.01 1.01 1.001 100 85,346 0.0100 0.9400

1,000 845,846 0.0100 0.9070

10 101,410 0.1000 0.6000
0.001 1.001 1.0005 100 931,120 0.0100 0.7200

1,000 9,228,220 0.0010 0.6840

10 138,260 0.1000 0.9000
0.001 1.001 1.0001 100 1,269,470 0.0100 0.8700

1,000 12,581,570 0.0010 0.9010

Table 1. Model checking results obtained with PRISM

5 Analysis Results

The probability of reaching a state in unfair is maximized, over all nondeter-
ministic choices that can be made by a misbehaving B, by the following strategy.
As soon as B receives the first message from A, he invokes the judge, pretending
that A has stopped communicating and presenting A’s message to the judge. In
TBGMR, this will cause the judge to flip the coin and announce a verdict imme-
diately. B delays the judge’s announcement message to A, and keeps exchanging
messages with A in the main flow of the protocol. After each message from A,
B invokes the judge and presents A’s latest message, until one of them results
in a positive verdict. Depending on his choice of β, B can steer the protocol to
a state unfair to A with arbitrarily high probability.

Table 1 lists the maximum probabilities that can be achieved by this strategy
in the TBGMR protocol. Recall that the results obtained with PRISM are for a
simplified model, where the coin is discretized. Nevertheless, due to the simplicity
of this strategy, we were able to write a simple Matlab script which calculated
the probability of reaching a state which is unfair to A under this strategy for a
general coin, that is, a coin whose flips take a value uniformly chosen from the
[0, 1] interval.

Fig. 3 (left chart) shows the probability, for various choices of parameters, of
reaching a state in which B is privileged and A is not. Note that B can bring
this probability arbitrarily close to 1 by choosing a small β. We assume that the
value of β is constant and chosen by B beforehand. In practice, B can decrease
his β adaptively. A may respond in kind, of course, but then the protocol will
crawl to a halt even if B is not cheating.
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Fig. 3. Probability and Expected time of B’s win, depending on β

This attack on TBGMR is feasible because the judge remembers (or recon-
structs, using a pseudo-random function with a secret input—see section 3.3)
only the value of his coin flip, ρC , and not his previous verdicts. Therefore, B
induces the coin flip as soon as possible, and then gets the judge to produce
verdict after verdict until the probability value contained in A’s message is high
enough to result in a positive verdict.

Accountability of the judge. Under the assumption that the channels are re-
silient (i.e., eventual delivery is guaranteed), at some point A will receive all
of the judge’s verdicts that have been delayed by B. Since these verdicts are
contradictory (some declare the contract binding, and some do not), A may be
able to argue that somebody—either B, or the judge, or both—misbehaved in
the protocol. Note, however, that the protocol specification does not require the
judge to produce consistent verdicts, only consistent values of ρC .

To repair this, the protocol may be augmented with “rules of evidence” spec-
ifying what constitutes a violation (see also the discussion in section 6). Such
rules are not mentioned in [6] and appear to be non-trivial. A discussion of what
they might look like is beyond the scope of this paper.

5.1 Attacker’s tradeoff

Although a Dolev-Yao attacker is assumed to be capable of delaying messages on
public communication channels, in practice this might be difficult, especially if
long delays are needed to achieve the attacker’s goal. Therefore, it is important
to quantify the relationship between B’s probability of winning (bringing the
protocol into a state that’s unfair to A), and how long B needs to delay the
judge’s messages to A. As a rough measure of time, we take the expected number
of message exchanges between A and B. The greater the number of messages A
has to send before B reaches a privileged state, the longer the delay.

We wrote a Matlab script to calculate the expected number of messages sent
before a party becomes privileged. The results are shown in fig. 3 (right chart)



for various values of v and α as β varies. As expected, the lower β, the greater
the number of messages that the parties have to exchange before B becomes
privileged. Recall, however, that lower values of β result in higher probability
that B eventually wins (left chart on fig. 3).
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Fig. 4. Expected time to B’s win vs. probability of B’s win

The misbehaving participant thus faces a tradeoff. The higher the probability
of winning, the longer the judge’s messages to the honest participant must be
delayed. This tradeoff is quantified by the chart in fig. 4. As the chart demon-
strates, there is a linear tradeoff for a misbehaving B between the expected time
to win and the probability of winning. If B is not confident in his ability to delay
the judge’s messages to A and/or exchange messages with A fast enough (before
the judge’s verdict reaches A), B can choose a large value of β and settle for a
shorter delay and thus lower probability of steering the protocol into an unfair
state.

6 Making BGMR Protocol Timely

As demonstrated in section 5, the BGMR protocol cannot be made timely by
simply having the judge flip his coin immediately after he is invoked, because
then fairness is lost. In this section, we discuss modifications to the protocol that
may enable it to provide both timeliness and fairness.

Fast and secure communication channels. The attack described in section 5 can
be prevented if the protocol requires the communication channel between the
judge and the honest participant to be of very high quality. More precisely, both
fairness and timeliness will be guaranteed if B is prevented from delaying the
judge’s messages to A. Also, the judge’s channel to A must be faster than the



channel between A and B. This ensures that A will be notified of the judge’s
verdict immediately after the judge flips his coin and will stop communicating
with B.

While a high-quality channel from A to the judge might be feasible, it is
significantly more difficult to ensure that the channel from the judge to A is
faster than the channel between A and B. The judge is necessarily part of the
infrastructure in which the protocol operates, servicing multiple instances of the
protocol at the same time. Therefore, it is reasonable to presume that the judge
is always available and responsive. On the other hand, A is simply one of many
participants using the protocol, may not be easy to locate on a short notice, may
not be expecting a message from the judge before the cutoff date D, etc. On a
public network, it is usually much easier for a user to contact the authorities
than for the authorities to locate and contact the user.

Judge with unbounded memory. The attack also succeeds because the judge
does not remember his past verdicts, only the value of his coin flip ρC . If the
judge is made to remember his first verdict, and simply repeat it in response
to all subsequent invocations regarding the same contract, the attack will be
prevented. Note, however, that such a judge will require unbounded memory,
because, unlike ρC , the value of the first verdict cannot be reconstructed from
subsequent evidence using a pseudo-random function. Therefore, the judge will
need to store the verdict he made for every instance of the protocol he has ever
been asked to resolve in case he is invoked again regarding the same instance.

A possible optimization of this approach is to expunge all verdicts regarding
a particular contract from the judge’s memory once the cutoff date for that
contract has passed. This introduces additional complications, however, since
participants are permitted to ask the judge for a verdict even after the cutoff
date. If the verdict in this case is constructed from ρC and the newly presented
evidence, it may be inconsistent with the verdicts the judge previously announced
regarding the same contract. To avoid this, the old verdicts must be stored
forever and the judge’s memory must be infinite, regardless of the quality of the
communication channels between the parties and the judge.

Signed messages to the judge. If all invocations of the judge are signed by the re-
questing party, and that signature is included in the judge’s verdict, then A will
be able to prove B’s misbehaviour (that B invoked the judge more than once)
when all of the judge’s verdicts finally reach him after having been delayed by
B. If invoking the judge more than once is construed as a violation, however,
the protocol might be problematic for an honest B in case there is a genuine
delay on the channel between A and B. Such a delay may cause an honest B to
time out, invoke the judge, and then, after A’s message with a new probability
value finally arrives, invoke the judge again, which would be interpreted as an
attempt to cheat.

Combining fairness with timeliness seems inherently difficult in the case of proba-
bilistic contract signing. The approaches outlined above demand either extremely



stringent requirements on the communication channels, which would limit ap-
plicability of the protocol, or introduction of the additional “rules of evidence”
that define what is and what is not a violation. Such rules are not included in
the protocol specification [6] and would have to be designed from scratch. De-
signing an appropriate set of rules appears difficult, as they should accommodate
legitimate scenarios (a participant should be permitted to request a verdict from
the judge more than once, because the judge’s messages might have been lost or
corrupted in transmission), while preventing a malicious party from repeatedly
contacting the judge until the desired verdict is obtained.

7 Conclusions

We presented a case study, demonstrating how formal analysis techniques can be
used to verify properties of probabilistic security protocols. We analysed a timely
variant of the probabilistic contract signing of Ben-Or, Goldreich, Micali, and
Rivest using PRISM, a probabilistic model checker, and showed that there exists
an attack strategy for a misbehaving participant that brings the protocol into an
unfair state with arbitrarily high probability. We also quantified the attacker’s
tradeoff between the probability of winning and the need to delay messages
from the judge to the honest participant. Designing a probabilistic contract
signing protocol that is both timely and fair is a challenging task. Our case
study, in addition to demonstrating feasibility of probabilistic model checking as
an analysis technique for security protocols, is a step in this direction.
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