
Verifying Randomized Byzantine Agreement?

Marta Kwiatkowska and Gethin Norman??

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom

{M.Z.Kwiatkowska,G.Norman}@cs.bham.ac.uk

Abstract. Distributed systems increasingly rely on fault-tolerant and
secure authorization services. An essential primitive used to implement
such services is the Byzantine agreement protocol for achieving agree-
ment among n parties even if t parties (t < n/3) are corrupt and behave
maliciously. We describe our experience verifying the randomized pro-
tocol ABBA (Asynchronous Binary Byzantine Agreement) of Cachin,
Kursawe and Shoup [5], a practical protocol that incorporates modern
threshold-cryptographic techniques and forms a core of powerful asyn-
chronous broadcast protocols [4]. The protocol is efficient (runs in con-
stant expected time), optimal (it tolerates the maximum number of cor-
rupted parties) and provably secure (in the random oracle model). We
model the protocol in Cadence SMV, replacing the coin tosses with non-
deterministic choice, and provide a proof of the protocol correctness for
all n under the assumption that the cryptographic primitives are correct.
The proof is fully automated except for one high-level inductive argu-
ment involving probabilistic reasoning. We validate probabilistic reason-
ing through deriving abstractions for finite configurations (for n up to 20)
and model checking those with the probabilistic model checker PRISM.

Keywords: Induction and compositional model checking, probabilistic
model checking, randomized distributed algorithms.

1 Introduction

Motivation. Distributed systems, for example the Internet, rely on trusted ser-
vices such as secure directory and authorization services for protection against
malicious adversaries that can corrupt servers and control the network. Cen-
tralised trusted services are widely deployed, but they introduce a single point
of failure which has performance implications. One possible solution, proposed
by Cachin [3], is to distribute the trusted service among a number of servers
and use replication algorithms for masking the faulty ones. The main difficulty
with this approach is that existing replication methods can only tolerate benign
faults, such as stopping and omission failures, whereas distributed trusted ser-
vices must be able to handle arbitrary (Byzantine) failures. Recently, Cachin et
? Supported in part by EPSRC grants GR/M04617 and GR/N22960.

?? Contact author. Tel: +44 121 414-4789, fax: +44 121 414-4281.

D. Peled, M. Vardi (Eds.), Formal Techniques for Networked and Distributed Systems (FORTE’02),
volume 2529 of LNCS, pages 194–209, 2002..
c© Springer-Verlag Berlin Heidelberg 2002



al [4] proposed a class of reliable broadcast protocols suitable for such a setting.
An essential primitive used to implement these protocols is Byzantine agree-
ment, an algorithm for achieving agreement on a value among n parties, some of
which may be corrupted or faulty, even when the corrupted parties behave mali-
ciously. Since there is no deterministic algorithm for achieving agreement in the
asynchronous setting even against benign failures [12], known Byzantine agree-
ment algorithms either exploit additional primitives, for example authentication
in the form of unforgeable signatures [7], or use randomization [25].

The prerequisite component of the broadcast protocols presented in [4] is the
randomized protocol called ABBA (Asynchronous Binary Byzantine Agreement)
of Cachin, Kursawe and Shoup [5] which combines the use of cryptography and
randomization in the form of threshold signatures and coin-tossing schemes. The
idea of a threshold scheme [29] is to allow parties to generate shares of the se-
cret value. The value is known only after a certain threshold number of shares
have been produced, and moreover it is computationally infeasible to obtain
the secret given fewer shares. Thus, the cryptographic primitives prevent mali-
cious (corrupted) parties influencing the remaining (honest) parties by sending
forged messages or correctly predicting the values of the coins before they are
tossed. The ABBA protocol is of practical relevance (in fact it has already been
implemented in Java [6] as part of an architecture for asynchronous networks)
due to the following factors: it guarantees safety and liveness in a general asyn-
chronous model with no timing assumptions, making it very appropriate for e.g.
the Internet; it has a theoretical complexity of constant expected time; and the
cryptographic primitives are relatively efficient compared to the latencies of the
Internet. Furthermore, it is provably secure in the random oracle model. Also,
in contrast to the non-randomized approaches of [7,8], it guarantees both safety
and liveness without additional timing assumptions.

Aims. Our aim is to automate the analysis of the ABBA protocol using the
methodology introduced in our earlier paper [17] and based on [22]. In [17] we
used Cadence SMV and the probabilistic model checker PRISM [16] to verify the
simpler randomized agreement protocol of Aspnes and Herlihy [2] that tolerates
only benign stopping failures. We achieved this through a combination of me-
chanical inductive proofs (for all n for non-probabilistic properties) and checks
(for finite configurations in case of probabilistic properties) plus one high-level
manual proof. The ABBA protocol, however, presented us with a number of
difficulties not encountered earlier:

– To verify the protocol for any number, n, of parties, we have to model their
ids with the abstract data type ordset [22]. Unfortunately, the limitations of
this type (restriction to comparison with constants only) make it impossible
to identify an arbitrary static subset of t parties (t < n/3) that are corrupt.
Likewise, counting a proportion of elements of such a type is not feasible.

– The efficiency of the protocol depends on a probabilistic property which
states that the higher the round number (which is unbounded) that an honest
party has advanced to, the lower the probability of this occurring. Thus, the



model is infinite, and currently very little is known about methods for the
abstraction and verification of infinite state probabilistic systems; for papers
on these topics see e.g. [1,9,18].

– The ABBA protocol is based on the random oracle model, an idealisation
of the collision-free hash functions used in real cryptographic settings. The
random oracle model is necessary in order to prove security of the scheme,
by placing certain statistical assumptions that prevent any adversary with
realistic computing power ‘guessing’ the secret.

Contribution. We overcome the above challenges as follows. We model the full
protocol in Cadence SMV, having replaced the random outcomes with nonde-
terministic choices. The mentioned technical difficulties with the ordset data
type were resolved largely by searching for a variant of the model which pre-
serves the key property that the correctness argument relies on. Since this is
a randomized agreement protocol, a correctness argument must demonstrate
Validity, Agreement and Probabilistic Termination. The proof of Prob-
abilistic Termination reduces to a straightforward, high-level inductive argu-
ment based on a number of lemmas and cryptographic assumptions. We assume
the cryptographic properties and automate the proof of each lemma. Together
with the proofs of Validity and Agreement, which are more straightforward and
fully automated, we obtain a partially mechanised argument for the correctness
of the ABBA protocol for all n and for all rounds.

It should be emphasised that we cannot automate the final inductive argu-
ment as it is probabilistic: Cadence SMV cannot handle probabilities, whereas
PRISM currently only handles finite configurations and does not support data
reduction. Instead we additionally validate the probabilistic analysis as follows.
By observing that, for a fixed n, the problem can be reduced to model checking
a finite state abstraction of the protocol, we manually construct an abstraction
and model check it using PRISM, validating the probabilities for up to n = 20
parties. Additionally, we verify (for a finite configuration) the correctness of the
abstraction using the process algebra CSP [26] and the FDR tool [11] based on
the method in [19]; this depends on the ability to code probabilities in the action
names, and therefore precludes the use of Cadence SMV.

This paper describes our experience with verifying the ABBA protocol, fo-
cusing on the Cadence SMV proof. Full details of all models we have constructed
and their model checking can be found at the PRISM web page [24] and in [15].

2 The Protocol

Requirements for Agreement: Agreement problems arise in many distributed
domains, for example, when it is necessary to agree whether to commit or abort
a transaction in a distributed database. A distributed agreement protocol is an
algorithm for ensuring that a collection of distributed parties, which start with
some initial value (0 or 1) supplied by an environment, eventually terminate
agreeing on the same value. A randomized protocol uses random assignment, for



example electronic coin tossing, and its termination is therefore probabilistic.
The requirements for a randomized agreement protocol are:

Validity: If all parties have the same initial value, then any party that decides
must decide on this value.

Agreement: Any two parties that decide must decide on the same value.
Probabilistic Termination: Under the assumption that all messages between

non-corrupted parties eventually get delivered, with probability 1, all initial-
ized and non-corrupted parties eventually decide.

We consider the Byzantine agreement protocol of Cachin, Kursawe and Shoup
[5] which is set in a completely asynchronous environment, allows the maximum
number of corrupted parties and makes use of cryptography and randomization.
There are n parties, an adversary which is allowed to corrupt at most t of them
(where t < n/3), and a trusted dealer. The parties proceed through possibly
unboundedly many rounds: in each round, they attempt to agree by casting votes
based on the votes of other parties. In addition to Validity and Agreement,
the protocol guarantees Probabilistic Termination in a constant expected
number of rounds which is validated through the following property:

Fast Convergence The probability that an honest party advances by more
than 2r + 1 rounds is bounded above by 2−r + ε where ε is a negligible
function in the security parameter.

The Model and Cryptographic Primitives: The setting is a static corrup-
tion model: the adversary must decide whom to corrupt at the very beginning of
the execution of the protocol. Once the adversary has decided on the corrupted
parties these are then simply absorbed into the adversary. The dynamic corrup-
tion model, where the adversary can adaptively choose who to corrupt based on
the information it has accumulated, is not considered, since it would not be pos-
sible to obtain practical (provably secure) implementations of the cryptographic
primitives used in the protocol in this model.

The adversary also has complete control over the network: it can schedule
and deliver the messages that it desires. The honest parties can therefore be
considered as passive: they just respond to requests made by the adversary and
do not change state in between such requests. Thus, the adversary can delay
messages for an arbitrary length of time, except that it must eventually send
each message.

One of the cryptographic primitives the protocol uses is a threshold random-
access coin-tossing scheme. This models an unpredictable function F , of which
each party holds a share, that maps the name of a coin for each round r to its
value F (r) ∈ {0, 1}. Each party can generate a share of each coin, where n − t
shares are both necessary and sufficient to construct the value of a particular
coin. The remaining cryptographic primitives of the protocol are non-interactive
threshold signature schemes used to prevent the adversary from forging messages.
The idea is that parties hold shares of the secret key of a signature scheme, and
may generate shares of signatures on individual messages. Again, the meaning



of the threshold is that a proportion, in this case n − t, of signature shares are
necessary and sufficient to construct a signature.

It should be noted that threshold cryptography or some form of secret shar-
ing is essential to ensure both fault-tolerant and secure systems, see e.g. [7,8].
Randomization can be avoided, but at the cost of stronger model assumptions.

In [5,29] it has been shown that the non-interactive threshold signature
scheme and the random-access coin tossing scheme have efficient implementa-
tions and are proved secure in the random oracle model, in the sense of being
unforgeable and robust (see Section 3) on the assumption that the RSA and DH
problems are hard. The random oracle model is an idealised model, in which the
hash functions have been replaced with a truly random function. The parties are
computationally bounded by a polynomial in k (a security parameter, typically
the length of string). This allows one to state the infeasibility of ‘guessing’ the
value of a coin or a signature1. For this case study we consider a version of the
protocol which assumes the correctness of the cryptographic elements. In partic-
ular, this means that we can remove the possibility of the adversary modifying
or inserting fake messages.

The Protocol: The protocol is given in Figure 1. Each party’s initial value
is sent to it by a trusted dealer. The parties proceed in rounds, casting pre-votes
and main-votes. A party constructs both the signature share and justification
for each pre-vote and main-vote it casts using a threshold signature scheme. The
justification for each vote is the signature obtained by combining the signature
shares of the messages that the party used as the basis for this vote. For example,
if a party casts a main-vote for 1 in round r, then the corresponding justification
is the signature obtained through combining the signature shares present in the
n− t messages which contain pre-votes for 1 in round r that the party must have
received. For further details on these justifications see [5].

Observe that the power of the adversary is limited by the requirement that
all votes carry a signature share and a justification, and the assumption that the
threshold signature scheme is secure (the adversary cannot forge either signature
shares or signatures). The presence of the signature shares and this assumption
implies that the adversary cannot forge any messages of the honest parties, that
is, cannot send a message in which it pretends to be one of the honest parties. The
adversary can make one honest party believe that the initial vote of a corrupted
party is 0, while another honest party believe it is 1, since these messages do not
require justification. However, since all the remaining votes need justification,
the adversary cannot just make up the pre-votes and main-votes of the corrupted
parties. For example, if in round r there are at least n − t pre-votes for 0 and
between 1 and n− t− 1 pre-votes for 1 (all of which carry proper justification),
then there is justification in round r for both a main-vote for 0 and for abstain,
but not for 1. Thus, the adversary can make one honest party believe a corrupted

1 Schemes proved secure in the random oracle model retain their properties when
instantiated with concrete hash functions, although a provably negligible probability
of failure remains.



party has a main-vote for 0 in round r, while another honest party believe that
the same corrupted party has a main-vote for abstain.

2.1 Modelling the ABBA protocol in Cadence SMV

The Cadence SMV model of the ABBA protocol closely follows that given in
Figure 1, although some modifications were necessary to the original which we
outline below. For the full Cadence SMV code see [24]. We use the data type
ordset [22] to model the round numbers of the protocol, which are unbounded,
and prove the correctness of the protocol for any number of parties, or, in other
words, for all values of n and t such that n > 3t. Formally, we define the ordset
data types ROUNDS={0, 1, . . . } for round numbers and PROC={1, . . . , n− t}
for ids of honest parties.

Probabilistic choices: Since Cadence SMV cannot model probabilistic be-
haviour, we have replaced the outcome of the coin tossing protocol by a nonde-
terministic choice. The threshold coin scheme is modelled by requiring that the
coin in round r is not revealed until at least n− 2t honest parties have read the
main-votes they require in round r.

Reading of votes: Since we use the ordset data type to model the set of
honest parties, the only constants with which we can compare variables of this
type are 1 and n− t. Thus, counting votes, i.e. expressing conditions “i has read
the votes of j1, . . . , jk” for some k ≤ n − t, becomes infeasible. To overcome
this, instead of modelling a party reading individual votes, we store the total
number of votes for each choice, and base future voting decisions on these totals.
The protocol is not affected as the votes remain unchanged once they have been
made. Since corrupted parties can send different votes to different parties, we
store the totals of the honest parties and the corrupted parties separately; in
fact, we store only boolean variables denoting what votes corrupted parties can
cast and we have shown that it is sufficient to only count up to n−2t = (n−t)−t
honest party votes (by means of an ordset data type VOTES={0, . . . , n− 2t}),
with the remaining t votes coming from corrupted parties.

A further necessary change concerns when the pre-votes are cast: a party now
casts its pre-vote for round r + 1 when it has finished reading the main-votes
of the previous round (step 3.) and not at the start of round r + 1 (step 1.).
To see that this modification is sound observe that, since once these votes have
been read the pre-vote is determined, and the adversary decides which votes
a party reads, the adversary already knows what pre-vote will be cast at this
earlier time. Therefore, casting pre-votes at this earlier point does not affect
the power of the adversary. Note that, since the coin for round r might not be
revealed when a pre-vote is now cast, we require parties to cast two pre-votes:
one supposing the coin equals 0 and the other supposing the coin equals 1. The
motivation behind this change is that the proof of Fast Convergence relies on
knowing, even when the corresponding coin has not yet been revealed, what the



Protocol ABBA for party i with initial value vi.

0. Pre-Processing. Generate a signature share on the message

(pre-process, vi)

and send all parties a message of the form

(pre-process, vi, signature share).

Collect 2t + 1 pre-processing messages.

Repeat the following steps 1-4 for rounds r = 1, 2, . . .

1. Pre-Vote. If r = 1, let v be the majority of the received pre-processing votes.
Else, select n− t justified main-votes from round r − 1 and let:

v =


0 if there is a main-vote for 0
1 if there is a main-vote for 1

F (r − 1) if all main-votes are abstain.

Produce a signature share on the message (pre-vote, r, v) and the corresponding
justification, then send all parties a message of the form

(pre-vote, r, v, justification, signature share).

2. Main-Vote. Collect n− t properly justified round r pre-vote messages, and let

v =


0 if there are n− t pre-votes for 0
1 if there are n− t pre-votes for 1

abstain if there are pre-votes for 0 and 1.

Produce a signature share on the message (main-vote, r, v) and the corresponding
justification, then send all parties a message of the form

(main-vote, r, v, justification, signature share).

3. Check for Decision. Collect n− t justified main-votes of round r. If all these
are main-votes for v ∈ {0, 1}, then decide on v, and continue for one more round.
Otherwise simply proceed.

4. Coin. Generate a coin share of the coin for round r and send all parties a message
of the form

(r, coin share).

Collect n− t shares of the coin for round r and combine to get the value of
F (r) ∈ {0, 1}.

Fig. 1. Asynchronous binary Byzantine agreement protocol ABBA



pre-votes of the honest parties that have read the main-votes for the previous
round will be.

Therefore in the Cadence SMV code we define the following variables:

pre votes : array ROUNDS of array 0..1 of array 0..1 of VOTES ;
main votes : array ROUNDS of array {0, 1, abstain} of VOTES ;
corrupted pre : array ROUNDS of array 0..1 of array 0..1 of boolean;
corrupted main : array ROUNDS of array {0, 1, abstain} of boolean;

where pre votes[r][c][v] equals the current number of honest pre-votes for v in
round r supposing the coin for round r−1 equals c when revealed; main votes[r][v]
equals the number of honest main-votes for v in round r; corrupted pre[r][c][v]
is true if supposing the coin for round r− 1 equals c, a corrupted party can cast
a pre-vote for v in round r; and corrupted main[r][v] is true if a corrupted party
can cast a main-vote for v in round r.

3 Verification using Cadence SMV

Cadence SMV [21] is a proof assistant which allows the verification of large,
complex, systems by reducing the verification problem to small subproblems
that can be solved automatically by model checking. The techniques supported
are induction, circular compositional reasoning, temporal case splitting and data
type reduction.

Recall that, to verify the ABBA protocol correct, we need to establish the
properties of Validity, Agreement and Fast Convergence. A number of as-
sumptions were needed in order to perform the verification. These include the
correctness of the cryptographic primitives; for example, we assume the following
properties of the threshold coin-tossing scheme:

Robustness For any round r it is computationally infeasible for an adversary
to produce n− t valid shares of the coin for round r such that the output of
the share combining algorithm is not F (r).

Unpredictability An adversary’s advantage in the following game is negligible.
The adversary interacts with the honest parties and receives less than n−2t
shares of the coin for round r from honest parties, then at the end of the
interaction outputs a bit v ∈ {0, 1}. The adversaries advantage is defined as
the distance from 1/2 of the probability that F (r) = v.

These assumptions are implicit in the Cadence SMV model, in that they restrict
the power of the adversary. For example, the adversary cannot forge messages
or make up any of the votes of the corrupted parties which require justification.

The remaining assumptions concern fairness statements which correspond to
the fact that the adversary must eventually send all messages (which ensure that
parties eventually cast votes), and technicalities which, due to the limitations of
the ordset data type, we were unable to prove in Cadence SMV. In particular,
since variables of different ordset data types cannot be compared, we cannot
show that “if at least k honest parties cast their votes in a round then there
are at least k votes”, as distinct data types PROC and VOTES represent the



set of honest parties and number of votes respectively. We give two illustrative
examples of the assumptions made. For example, we assume2 that in any round
there cannot be n− 2t honest pre-votes for both 0 and 1:

forall (r in ROUNDS) for(c = 0; c ≤ 1; c = c + 1)
assumption1 [r ][c] : assert G ¬(pre votes[r ][c][0]=n− 2t ∧ pre votes[r ][c][1]=n− 2t);

We also assume the following fairness statements when proving Fast Conver-
gence (see [24] for the manual proof).

Proposition 1. For any party that enters round r + 1:

(a) if the party does not decide by round r, then the coin for round r is tossed;
(b) if the party does not decide by round r + 1, then the coin in round r + 1 is

tossed.

3.1 Validity and Agreement

Both these arguments are independent of the actual probability values, and hence
can be verified by conventional model checking methods. The proofs we obtain
are fully automatic. The only assumptions used in the proofs are either similar
to assumption1 or concern fairness, see [24] for further details. Below we give a
brief outline of the arguments based on two lemmas. The Cadence SMV proof of
Lemma 1 is included for illustration purposes. Complete Cadence SMV proofs
can be found at [24].

Lemma 1. If in round r there are main-votes for v, then there are none for ¬v.

Lemma 2. If a party i decides on v in round r, then there are less than n− 2t
main-votes for abstain in round r from honest parties.

Validity: We prove that if all honest parties have the same initial preference,
then all honest parties decide on this value in the initial round. Suppose all
honest parties have the same initial value v, then in round 1 the pre-votes of
all parties will be v, since all will see a majority of pre-processing votes for v (a
majority of pre-processing votes requires at least t+1 votes, that is, at least one
vote from an honest party). It then follows that all parties will have a main-vote
for v in round 1, and hence all decide on v in the first round.

Agreement: We prove that if the first honest party to decide decides on v
in round r, then all honest parties decide on v either in round r or round r + 1.
Therefore, suppose party i is the first honest party to decide and it decides on
v in round r. Then i must have received an honest main-vote for v, and hence,
by Lemma 1, there are no main-votes for ¬v in round r. Therefore, any party
that decides in round r must decide on v. Now, by Lemma 2, there are less
than n − 2t honest main-votes for abstain, and since a party reads at least
n − 2t honest main-votes, a party must receive an honest main-vote for some-
thing other than abstain in round r and Lemma 1 implies this must be for v.
2 If there are n − 2t honest pre-votes for 0 and for 1, then since n > 3t we have at

least 2(n− 2t) = n− t + (n− 3t) > n− t honest parties which is a contradiction.



Putting this together, all honest parties receive a main-vote for v and none for
¬v in round r, thus all have a pre-vote for v in round r+1. It follows that all will
have a main-vote for v in round r+1, and hence all will decide on v in round r+1.

Proof of Lemma 1: The statement of Lemma 1 in Cadence SMV is:

forall (r in ROUNDS)
lemma1 [r ] : assert G ((main votes[r ][0]>0 ∨ corrupted main[r ][0]) ⇒

(main votes[r ][1]=0 ∧ ¬corrupted main[r ][1]));

The proof of lemma1 requires a number of sub-lemmas. First, we show that
for any round r and value c of the coin in round r, the total number of honest
pre-votes for any value does not decrease:

forall (r in ROUNDS) for(c = 0; c ≤ 1; c = c + 1)
for(v = 0; v ≤ 1; v = v + 1) forall (n in VOTES)

prop1 [r ][c][v ][n] : assert G (pre votes[r ][c][v ]≥n ⇒ G (pre votes[r ][c][v ]≥n));

The value of pre votes[r][c][v] is dependent on all honest parties. We remove
this dependency by first proving that pre votes[r][c][v] does not decrease in one
step by case splitting on the party that affects the value of pre votes[r][c][v] in
this single step, i.e. the party currently scheduled (given by the value of the
variable act). We also change the abstractions, for example including r − 1 in
the abstraction of ROUNDS as a party updates pre votes[r][c][v] in round r−1.

forall (r in ROUNDS) for(c = 0; c ≤ 1; c = c + 1)
for(v = 0; v ≤ 1; v = v + 1) forall (n in VOTES) {

prop2 [r ][c][v ][n] : assert G (pre votes[r ][c][v ]≥n ⇒ X (pre votes[r ][c][v ]≥n));
forall (i in PROC ) { /* case split on the party that is scheduled */
subcase prop2 [r ][c][v ][n][i ] of prop2 [r ][c][v ][n] for act=i ;
using ROUNDS⇒{r − 1, r}, /* change abstractions */ . . .
prove prop2 [r ][c][v ][n][i ]; } }

We now prove prop1 , using prop2 and assuming that prop1 holds at time t− 1:

forall (r in ROUNDS) for(c = 0; c ≤ 1; c = c + 1)
for(v = 0; v ≤ 1; v = v + 1) forall (n in VOTES) {
using (prop1 [r ][c][v ][n]), /* assume prop1 holds at time t− 1 */

prop2 [r ][c][v ][n] /* use prop2 */, . . .
prove prop1 [r ][c][v ][n]; }

Similarly, we show that once the coin has been tossed it does not change value:

forall (r in ROUNDS) for(c = 0; c ≤ 1; c = c + 1)
prop3 [r ][c] : assert G (coin[r ]=c ⇒ G (coin[r ]=c));

The proof of lemma1 is via the following argument. Suppose in a state s there
is a main-vote for 0 in round r and coin in round r equals c ∈ {0, 1}. If there
is an honest main-vote for 0, then there exists an honest party i which cast
this vote, and therefore if, at the time i casts this vote, we have coin[r] = c′

then pre votes[r ][c′][0]=2n − t. Using prop1 and prop3 , it follows that c′ = c
and pre votes[r ][c][0]=2n − t in state s. On the other hand, if there is a cor-
rupted main-vote for 0, then pre votes[r ][c][0]=2n − t in state s. Now suppose



that there is also a main-vote for 1 in round r, then either there is an honest
party j which cast this vote or it is a corrupted vote, and similarly we have
pre votes[r ][c][1]=2n− t in state s, which is a contradiction (see assumption1 ).

To adapt this proof to Cadence SMV we need witnesses: the parties i and j
described above. This is accomplished by the following history variables which
record the first honest party to cast a main-vote for each value in each round:

hist : array ROUNDS of array 0..1 of PROC ;
forall (r in ROUNDS) for(v = 0; v ≤ 1; v = v + 1)
next(hist [r ][v ]) := next(main votes[r ][v ])>0 ∧ main votes[r ][v ]=0 ? act : hist [r ][v ];

We now prove lemma1 , case-splitting on hist [r ][0] and hist [r ][1], using prop1 ,
prop3 and assumption1 and changing the abstraction of VOTES .

forall (r in ROUNDS) forall (i in PROC ) forall (j in PROC ) {
subcase lemma1 [r ][i ][j ] of lemma1 [r ] for i=hist [r ][0] ∧ j=hist [r ][1];
using prop1 [r ], prop3 [r ], assumption1 [r ], VOTES⇒{0, 2n− t}, . . .
prove lemma1 [r ][i ][j ]; }

3.2 Fast Convergence

The proof of this property involves a manual argument based on properties (P1
– P6) that are proved automatically in Cadence SMV. Here we state them in
English; for the corresponding formal statements and Cadence SMV proofs see
[24]. First we proved that, for any party that enters round r + 1 and does not
decide in round r:

P1 If before the coin in round r is tossed there is a concrete pre-vote (i.e. a vote
not based on the value of the coin) for v in round r + 1 and after the coin
in round r is tossed it equals v, then the party decides in round r + 1.

P2 If before the coin in round r is tossed there are no concrete pre-votes in
round r +1, then either the party decides in round r +1, or if after the coins
in round r and round r +1 are tossed they are equal, then the party decides
in round r + 2.

In addition, we proved that the following properties hold.

P3 If the coin in round r has not been tossed, then neither has the coin in round
r + 1.

P4 In any round r there cannot be concrete pre-votes for 0 and 1.
P5 In any round r, if there is a concrete pre-vote for v ∈ {0, 1}, then in all future

states there is a concrete pre-vote for v.
P6 Each coin is only tossed once.

We complete the proof of Fast Convergence with a simple manual proof based
on the following classification of protocol states:

– let Undec(r) be the set of states in which the coin in round r−1 is not tossed
and there are no concrete pre-votes in round r;



– for v ∈ {0, 1}, let Pre-vote(r, v) be the set of states where the coin in round
r − 1 is not tossed and there is a concrete pre-vote for v in round r.

If follows from P4 that these sets are pairwise disjoint and any state where the
coin in round r− 1 is not tossed is a member of one of these sets. The following
proposition is crucial to establishing the efficiency of the protocol.

Proposition 2. In an idealised system, where the values of the coins in rounds
1, 2, . . . , 2r − 1 are truly random, the probability of a party advancing by more
than 2r + 1 rounds is bounded above by 2−r.

Proof. We prove the proposition by induction on r ∈ N. The case when r = 0 is
trivial since the probability bound is 1. Now suppose that the proposition holds
for some r ∈ N and suppose a party enters round 2r + 1. If a party decides in
round 2r, then by Agreement all parties will decide by round 2r+1, and hence
the probability that a party enters round 2r+3 given a party enters round 2r+1
is bounded above by 0. On the other hand, if no party decides in round 2r, then
by Proposition 1(a) the coin for round 2r is tossed. For any state s reached just
before the coin is tossed we have two cases to consider:

– s ∈ Pre-vote(2r + 1, v) for some v ∈ {0, 1}: by P1, if the coin in round 2r
equals v, any party which enters round 2r + 1 decides in round 2r + 1, and
hence using P6 it follows that the probability of a party advancing more
than 2r + 3 rounds given that a party advances more than 2r + 1 rounds is
bounded above by 1/2.

– s ∈ Undec(2r +1): using P5, there are no concrete pre-votes in round 2r +1
before the coin in round 2r + 1 is tossed, and hence by P2 any party either
decides in round 2r + 1, or, if the coins in round 2r and 2r + 1 are equal,
it decides in round 2r + 2. Now, since in s the coin for round 2r has not
been tossed, by P3 neither has the coin for round 2r + 1. Therefore, using
Proposition 1 and P6 it follows that the probability of a party advancing
more than 2r+3 rounds given that a party advances more than 2r+1 rounds
is bounded above by 1/2.

Putting this together and since P(A ∩B) = P(A|B) ·P(B), we have

P(a party advances > 2r + 3 rounds)
= P(a party advances > 2r + 3 rounds and a party advances > 2r + 1 rounds)
= P(a party advances > 2r + 3 rounds | a party advances > 2r + 1 rounds) ·

P(a party advances > 2r + 1 rounds)
≤ 1/2 · 2−r = 2−(r+1)

as required. ut

It can be argued that in a real system the probability of a party advancing by
more than 2r + 1 rounds is bounded above by 2−r + ε, where ε is negligible.
This follows from the Unpredictability property of the coin tossing scheme
(see Section 3) and P6; for more details see [4].



In addition to Fast Convergence we can directly prove that the proto-
col guarantees Probabilistic Termination in a constant expected number of
rounds by applying the techniques developed in [27,23] which use probabilistic
complexity statements. A probabilistic complexity statement has the form:

U
φ≤c−−→p U ′

where U and U ′ are sets of states, φ is a complexity measure, c is a nonnegative
real number and p ∈ [0, 1]. Informally the above probabilistic complexity state-
ment means that starting from any state in U , the probability of reaching a state
in U ′ within complexity c is at least p. As in [23], the complexity measure of in-
terest corresponds to the increase in the maximum round number among all the
parties. We now sketch the argument for proving that the protocol guarantees
Probabilistic Termination in a constant expected number of rounds using
the probabilistic complexity statements. First, let φMaxRound be the complex-
ity statement that corresponds to the increase in the maximum round number
among all the parties, and define the following sets of states:

– R, the set of reachable states of the protocol;
– D, the set of reachable states of the protocol in which all parties have decided;
– Undec, the set of states in which the coin in round r − 1 is not tossed and

there are no concrete pre-votes in round r, where r is the current maximum
round number among all parties;

– Pre-vote(v), the set of states where the coin in round r− 1 is not tossed and
there is a concrete pre-vote for v in round r, where r is the current maximum
round number among all parties.

Next we require the following property (which is straightforward to prove in Ca-
dence SMV): from any state (under any fair scheduling of the non-determinism)
the maximum round increases by at most one before we reach a state where either
all parties have decided or the coin in the maximum round has not been tossed,
which can be expressed as the following probabilistic complexity statement:

R φMaxRound≤1−−−−−−−−→1 D ∪Undec ∪ Pre-vote(0) ∪ Pre-vote(1) .

Applying similar arguments to those given in Proposition 2 we can show that
the following probabilistic complexity statements hold:

Undec
φMaxRound≤2−−−−−−−−→ 1

2
D and Pre-vote(v)

φMaxRound≤2−−−−−−−−→ 1
2
D for v ∈ {0, 1}.

Then, using the results presented in [27], the above statements can be combined
to give:

R φMaxRound≤2+1−−−−−−−−−→1· 12
D ,

that is, from any state of the protocol the probability of reaching a state where
all parties have decided while the maximum round increases by at most 3 is at
least 1/2. Finally, again using the results presented in [27], it follows that from
any state of the protocol all parties decide within at most O(1) rounds.



4 Conclusions and Lessons Learnt

The ABBA protocol considered here is a deliverable of the MAFTIA project
[20], and this work was prompted by earlier unsuccessful attempts to prove its
correctness using data independence and FDR [11]. With the help of Cadence
SMV proof assistant, we have succeeded in verifying the protocol correct for
an unbounded number of distributed parties and protocol rounds, relative to
the correctness of the cryptographic primitives. All proofs are automatic except
for high-level arguments involving probabilistic reasoning. The proof consists of
approximately 50 lemmas, requiring at most 20 MB of memory. The version of
Cadence SMV we used is 08-20-01p1.

As additional sanity checks we formulated finite state abstractions of the
protocol for finite configurations, which we validated with FDR by coding the
probabilistic choices in action names and using trace refinement, and used the
probabilistic model checker PRISM to calculate the exact (minimum) probabil-
ities (up to n = 20, requiring 2.63× 1014 states and 45 minutes).

The main challenge was to formulate the model of the protocol while using
only the restricted operations allowed for the ordset data type. In achieving
this, which then enabled us to prove correctness for all n, certain changes to
the protocol were required; for example, the counting of votes was replaced
by a record of the total votes cast for each choice. We have argued that such
changes do not reduce the power of the adversary. Due to the current limitations
of the ordset data type, we could not automatically verify the correctness of
these changes, but a modification to the Cadence SMV proof assistant that
removes this restriction is possible. Also, we have assumed the correctness of the
cryptographic elements of the protocol (the threshold coin tossing and threshold
signature schemes). Producing automated proofs of correctness for these schemes
does not appear to be an easy task, especially as the manual proofs depend upon
the assumption that the RSA and DH problems are hard.

Given our existing experience with Cadence SMV [17] the actual construction
of the proofs was relatively straightforward. Although there are over 50 lemmas,
many are very simple and similar, and furthermore several were introduced only
to simplify later proofs: by assuming simple properties in complex proofs more
variables can be declared free without invalidating correctness, which then re-
duces the complexity of the corresponding model checking problems. Overall we
found that using Cadence SMV did not require a steep learning curve, and that
the tool offers a number of simple but powerful proof techniques.

There are a number of similarities between the strategies and proof tech-
niques used in this case study and the one in [17], and from the success of
these we believe that these techniques can be applied to the verification of many
other randomized distributed algorithms. In both case studies the majority of
properties, for example Validity and Agreement, require no probabilistic rea-
soning, and hence in these cases the proof can be fully automated by replacing
(abstracting) the probabilistic behaviour with non-determinism. On the other
hand, for properties which require probabilistic reasoning, for example expected
time properties, by applying the techniques of [27] and isolating the probabilis-



tic arguments, the proof can be split into a number of simpler properties which
can be derived automatically either with Cadence SMV or PRISM (for finite
configurations after hand-translating the model into PRISM’s input language),
with only the final high-level arguments verified manually.

Currently the PRISM tool does not support data reduction, which restricts its
applicability to complete, finite state, models. Cadence SMV, on the other hand,
does not support probabilistic reasoning. A fully automated proof of correctness
could feasibly be derived using a theorem prover e.g. [14], but initial discussions
indicate that a much greater human effort would be needed. An alternative goal
is to develop proof techniques for probabilistic systems in the style of Cadence
SMV, incorporating both those used in Cadence SMV and the proof rules for
probabilistic complexity statements following [27]. Given an implementation of
such rules as a layer on top of, for example, the PRISM model checking tool, one
may be able to fully automate the proof of correctness of complex randomized
distributed algorithms like the one discussed here. Additional proof rules could
also be developed based on Coin Lemmas [28,13] and the compositionality results
presented in [10].

Acknowledgements

We are grateful to Ken McMillan for suggesting appropriate proof methods and
thank William Simmonds for helpful discussions on the Byzantine agreement
protocol.

References

1. P. Abdulla, C. Baier, P. Iyer, and B. Jonsson. Reasoning about probabilistic lossy
channel systems. In Proc. CONCUR’00, volume 1877 of LNCS, pages 320–333.
Springer, 2000.

2. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Jour-
nal of Algorithms, 11(3):441–460, 1990.

3. C. Cachin. Distributing trust on the Internet. In Proc. DSN’01, pages 183–192.
IEEE Computer Society Press, 2001.

4. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols (extended abstract). In Proc. CRYPTO 2001, volume
2139 of LNCS, pages 524–541. Springer, 2001.

5. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: practical
asynchronous Byzantine agreement using cryptography (extended abstract). In
Proc. PODC’00, pages 123–132. ACM Press, 2000.

6. C. Cachin and J. Poritz. Secure intrusion-tolerant replication on the Internet. In
Proc. DSN-2002, pages 167–176. IEEE Computer Society Press, 2002.

7. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. ACM Symp.
on Operating Systems Design and Implementation (OSDI), pages 173–186, 1999.

8. Coca project: Cornell On-line Certification Authority, Cornell University.
http://www.cs.cornell.edu/home/ldzhou/coca.htm.

9. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In Proc. PAPM-PROBMIV 2001,
volume 2165 of LNCS, pages 39–56. Springer, 2001.



10. L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilistic
systems. In Proc. CONCUR’01, volume 2154 of LNCS, pages 351–365. Springer,
2001.

11. Failures divergence refinement (FDR2). Formal Systems (Europe) Limited,
http://www.formal.demon.co.uk/FDR2.html.

12. M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(5):374–382, 1985.

13. K. Folegati and R. Segala. Coin lemmas with random variables. In Proc. PAPM-
PROBMIV’01, volume 2165 of LNCS, pages 71–86. Springer, 2001.

14. J. Hurd. Verification of the Miller-Rabin probabilistic primality test. In Proc.
TPHOLs’01, number EDI-INF-RR-0046 in Informatics Report Series, pages 223–
238. Division of Informatics, University of Edinburgh, 2001.

15. M. Kwiatkowska and G. Norman. Automated verification of a randomized Byzan-
tine agreement protocol. Technical Report CSR-01-11, University of Birmingham,
School of Computer Science, 2001.

16. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. In Proc. TACAS’02, volume 2280 of LNCS,
pages 52–67. Springer, 2002.

17. M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a random-
ized distributed consensus algorithm using Cadence SMV and PRISM. In Proc.
CAV’01, volume 2102 of LNCS, pages 194–206. Springer, 2001.

18. M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of maximal
probabilistic reachability. In Proc. CONCUR’01, volume 2154 of LNCS, pages
169–183. Springer, 2001.

19. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
deadline properties in the IEEE1394 Firewire root contention. Special Issue of
Formal Aspects of Computing, 2002. To appear.

20. Malicious- and Accidental-Fault Tolerance for Internet Applications (MAFTIA)
project. http://www.newcastle.research.ec.org/maftia/.

21. K. McMillan. A methodology for hardware verification using compositional model
checking. Science of Computer Programming, 37(1–3):279–309, 2000.

22. K. McMillan, S. Qadeer, and J. Saxe. Induction and compositional model checking.
In Proc. CAV’00, volume 1855 of LNCS, pages 312–327, 2000.

23. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–
186, 2000.

24. PRISM web page. http://www.cs.bham.ac.uk/˜dxp/prism/.
25. M. Rabin. Randomized Byzantine generals. In Proc. FOCS’83, pages 403–409.

IEEE Computer Society Press, 1983.
26. A. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
27. R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-

tems. PhD thesis, Massachusetts Institute of Technology, 1995.
28. R. Segala. The essence of coin lemmas. In Proc. PROBMIV’98, volume 22 of

ENTCS, 1998.
29. V. Shoup. Practical threshold signatures. In Proc. Eurocrypt 2000, volume 1807

of LNCS, pages 207–220. Springer, 2000.


	Verifying Randomized Byzantine Agreement
	Introduction
	The Protocol
	Modelling the ABBA protocol in Cadence SMV

	Verification using Cadence SMV
	Validity and Agreement
	Fast Convergence

	Conclusions and Lessons Learnt


