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Abstract. In recent papers, the partial order reduction approach has been adapted
to reason about the probabilities for temporal properties in concurrent systems
with probabilistic behaviours. This paper extends these results by presenting re-
duction criteria for a probabilistic branching time logic that allows specification
of constraints on quantitative measures given by a reward or cost function for the
actions of the system.

1 Introduction

Partial order reduction [13, 25, 32] is one of the most prominent techniques for tackling
the state explosion problem for concurrent software systems. It has been implemented
in many tools and successfully applied to a large number of case studies, see e.g. [17].
Recently, the ample-set method [24] has been extended for concurrent probabilistic
systems, both in the setting of quantitative linear time [5, 7] and branching time [4]
properties. The underlying models used in this work are Markov decision processes
(MDPs), an extension of transition systems where nondeterminism can be used e.g. to
model the interleaving of concurrent activities, to represent the interface with an un-
known system environment or for abstraction purposes, and where probability serves
e.g. to model coin tossing actions or to specify the frequency of exceptional (faulty)
behaviour (such as losing messages from a buffer). Thus, MDPs arise as natural oper-
ational models for randomized distributed algorithms and communication or security
protocols and are widely used in model checking. Equipped with reward or cost func-
tions MDPs are also standard models in many other areas, such as operations research,
reinforcement learning and robot path planning. In those fields a lot work has already
been done on reducing the state (and/or actions) space via aggregating states (and/or
actions) [2, 29, 11]. Opposed to many results in the field of machine learning that yield
only approximations to optimal solutions, the results in the field of model checking
offer some work on exact process equivalences, like (weak) bisimulation. Contrary to
those approaches that rely on partition refinement and need global knowledge of the
state space, the approach with partial order reduction can be implemented with local
conditions and therefore be intertwined with the state space search on-the-fly, provided
an appropriate high-level representation of the system is given.
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The contribution of this paper is reduction criteria which are shown to be sound
for an extension of probabilistic computation tree logic (PCTL) [6] that serves to rea-
son about rewards or costs. Our logic, called PCTLr , essentially agrees with the logic
suggested by de Alfaro [9, 8]. (PCTLr is also similar to the logic PRCTL [1, 23] which
relies on a Markov chain semantics, while PCTLr -formulae are interpreted over MDPs.)
PCTLr allows specifications regarding e.g. the packet loss characteristics of a queue-
ing system, the energy consumption, or the average number of unsuccessful attempts
to find a leader in a distributed system. We first explain how the ample-set conditions
suggested in [4] for PCTL can be modified to treat reward-based properties specified
in PCTLr and then identify a fragment of PCTLr (which still contains a wide range of
non-trivial reward properties) where the weaker criteria of [4] are sufficient. We also
present results on a new logic PCTLc, that treats the rewards with a discounting seman-
tics. As in the case of previous publications on partial order reduction for probabilistic
systems, the major difficulty was to provide the proof of correctness. The general proof
technique follows the line of [12, 4] by establishing a bisimulation between the full and
the reduced system. However, we depart here from these approaches by introducing a
new variant of bisimulation equivalence for MDPs which borrows ideas from [21, 31]
and relies on the concept of norm functions [22, 14]. This new type of bisimulation
equivalence preserves PCTLr -properties and might be useful also for other purposes.

Organization of the paper. Section 2 summarizes the basic definitions concerning
Markov decision processes, reward structures and PCTLr . Section 2 also recalls the
partial order reduction approach for MDPs without reward structure and PCTL of [4]
which we then extend to reason about rewards in Section 3. Section 4 identifies a class
of reward-based properties that are preserved when using the weaker conditions of [4].
In Section 5 we discuss our approach in the setting of discounted rewards and Section
6 concludes the paper.

2 Preliminaries

Markov decision processes (MDPs), see e.g. [27].An MDP is a tupleM = (S,Act, P,
sinit, AP,L, rew) whereSis a finite state space,sinit ∈Sis the initial state,Acta finite set of
actions,AP a set of atomic propositions,L : S→ 2AP a labelling function,P : S×Act×
S→ [0,1] the three-dimensional transition probability matrix such that∑u∈SP(s,α,u)∈
{0,1} for all statessand actionsα, and a functionrew that assigns to each actionα∈Act
a rewardrew(α) ∈ IR.

Action α is calledenabledin states if ∑u∈SP(s,α,u) = 1. We writeAct(s) for the
set of actions that are enabled ins. The statest with P(s,α, t)>0 are calledα-successors
of s. For technical reasons, we require thatAct(s) 6= /0 for all statess. Action α is called
astutter actioniff for all s∈ Swhereα is enabled ins, L(s) = L(u) for all α-successors
u of s. That is, stutter actions do not change the state labelling. Actionα is callednon-
probabilistic iff for all statess, there is at most oneα-successor. That is, ifα is enabled
in s then there is a statesα with P(s,α,sα) = 1, whileP(s,α,u) = 0 for all other states
u. In particular, ifα ∈ Act(s) is a non-probabilistic stutter action thenL(s) = L(sα).

An infinite path in an MDP is a sequenceς = s0
α1−→ s1

α2−→ s2
α3−→ ·· · such that

αi ∈Act(si−1) andP(si−1,αi ,si) > 0 for all i ≥ 1. We denote byfirst(ς) = s0 the starting



state ofς and writestate(ς, i) for the (i+1)th state inς andρ(ς, i) for the cumulative
reward obtained through the firsti actions. That is, ifς is as above thenstate(ς, i) = si

and ρ(ς, i) = rew(α1 . . .αi) where rew(α1 . . .αi) = rew(α1)+ · · ·+rew(αi). If T ⊆ S
is a set of states thenRew(ς,T) denotes the reward that is earned until aT-state is
visited the first time. Formally, ifstate(ς, i) ∈ T andstate(ς, j) /∈ T for all j < i then
Rew(ς,T) = ρ(ς, i). If state(ς, i) /∈ T for all i ≥ 0 we setRew(ς,T) = ∞. Finite paths
(denoted byσ) are finite prefixes of infinite paths that end in a state. We use the notations
first(σ), state(σ, i) andρ(σ, i) as for infinite paths and|σ| for the length (number of
actions).Pathsfin(s) (resp.Pathsω(s)) denotes the set of all finite (resp. infinite) paths of

M with first(·) = s. Given a pathς = s0
α1−→ s1

α2−→ s2
α3−→ ·· · we denote bytrace(ς) =

L(s0),L(s1),L(s2), . . . the word over the alphabet 2AP obtained by the projection ofς to
the state labels. Two infinite pathsς1 andς2 in an MDP are calledstutter equivalentiff
there is an infinite word̀1, `2, . . . over the alphabet 2AP such thattrace(ς1) = `k1

1 , `k2
2 , . . .

andtrace(ς2) = `n1
1 , `n2

2 , . . . whereki , ni ≥ 1.
A scheduler, also often called policy, strategy or adversary, denotes an instance

that resolves the nondeterminism in the states, and thus yields a Markov chain and
a probability measure on the paths. We shall use herehistory-dependent randomized
schedulersin the classification of [27]. They are defined as functionsA that take as input
a finite pathσ and return a distribution over the actionsα ∈ Act(last(σ)).1 A scheduler
A is called deterministic if it chooses a unique action (with probability 1) for all finite
paths. AnA-path denotes an infinite or finite pathσ that can be generated byA. Given a
statesand a schedulerA, the behaviour ofM underA can be formalised by a (possibly
infinite-state) Markov chain. PrA,s denotes the standard probability measure on the Borel
field of the infiniteA-pathsς with first(ς) = s. If T ⊆ S then IEA,s(♦T) denotes the
expected value underA with starting states for the random functionς 7→ Rew(ς,T).
Recall thatRew(ς,T) denotes the reward that is earned by the prefix ofς that leads
from the starting states to a state inT and thatRew(ς,T) equals∞ if ς does not reach
T. Thus, if there is a positive probability of not reachingT under schedulerA (from
states), thenIEA,s(♦T) = ∞. If s= sinit we simply write PrA andIEA.

Probabilistic computation tree logic.PCTL is a probabilistic variant of CTL which has
been introduced first for Markov chains [15] and then for Markovian models with non-
determinism [6, 31]. We follow here the approach of de Alfaro [9, 8] and extend PCTL
with an operatorR to reason about expected rewards. As partial order reduction relies
on identifying stutter equivalent paths which might be distinguishable by the next step
operator, we do not include the next step operator in the logic. PCTLr -state formulae
are therefore given by the grammar:

Φ ::= true
∣∣ a

∣∣Φ∧Φ
∣∣ ¬Φ

∣∣ PJ(Φ1UI Φ2)
∣∣ R I (Φ)

Here, a ∈ AP is an atomic proposition,J ⊆ [0,1] is a probability interval andI ⊆
IR∪{−∞,∞} a reward interval. We refer to the termsΦ1UI Φ2 as PCTLr -path formu-
lae.UI denotes the standard until operator with a reward bound. The meaning of the

1 By a distribution on a finite setX we mean a functionν : X → [0,1] such that∑x∈X ν(x) = 1
and refer toν(x) as the probability forx.



path formulaϕ = Φ1UI Φ2 is that aΦ2-state will be reached via a finite pathσ where
the cumulative reward is inI , while all states inσ, possibly except the last one, fulfil
Φ1. The state formulaPJ(ϕ) holds for states if for each schedulerA the probability
measure of all infinite paths starting ins and fulfilling the path formulaϕ meets the
probability bound given byJ. On the other hand,R I (Φ) asserts that for any sched-
uler A the expected reward that is earned until aΦ-state has been reached meets the
reward bound given byI . For instance,R [0,17](goal) asserts that independent of the
scheduling policy the average costs to reach a goal state do not exceed 17. The formula
P(0.9,1](true U[0,4] delivered) requires that the probability of a message being delivered
with at most 4 retransmissions is greater than 0.9.

If M is an MDP ands a state inM then we writes |= Φ to denote that state-
formulaΦ holds in states, and similarly,ς |= ϕ to denote that path formulaϕ holds for
the infinite pathς. The formal semantics of the propositional logic fragment is standard
and the semantics of theP - andR -operator is formalised by :

s |= PJ(Φ1UI Φ2) ⇔ for all schedulersA:PrA,s
{

ς ∈ Pathsω(s) : ς |= Φ1UI Φ2
}
∈ J

s |= R I (Φ) ⇔ for all schedulersA:IEA,s(♦Sat(Φ)) ∈ I

If ς = s0
α1−→ s1

α2−→ s2
α3−→ ·· · then ς |= Φ1UI Φ2 iff ∃i ≥ 0 s.t. si |= Φ2 ∧ ρ(ς, i) ∈

I ∧ ∀ j < i. sj |= Φ1. The satisfaction set ofΦ in M is Sat(Φ) =
{

s∈ S: s |= Φ
}
. State

formulaΦ is said to hold for an MDP if the initial state satisfiesΦ.
Note that one could also give theR I operator a different semantics as follows.

s |= R I (Φ) if and only if for all schedulersA, such that the probability to reachSat(Φ)
from sequals 1, it holds thatIEA,s(♦Sat(Φ)) ∈ I . But this is irrelevant for our purposes.

Derived operators.Other Boolean connectives, such as disjunction∨, implication
→, can be derived as usual. The temporal operator eventually♦ is obtained in the stan-
dard way by♦I Φ = trueUI Φ. The always-operator can be derived as in PCTL by the du-
ality of lower and upper probability bounds. For the trivial reward-intervalI = (−∞,∞),
we obtain the standard eventually, always and until operator. We simply writeU , ♦ and
� rather thanU(−∞,∞), ♦(−∞,∞) and�(−∞,∞), respectively.

PCTL denotes the sublogic of PCTLr that does not use theR -operator and where
the path-formulae have the trivial reward interval. Since the reward structure is irrele-
vant for PCTL-formulae, they can be interpreted over MDPs without reward structure.

The ample set method for PCTL [4].Before presenting the partial order reduction
citeria for PCTLr in Section 3, we briefly summarize the results of [4] for applying
the ample-set method to PCTL model checking. The starting point is an MDPM =
(S,Act,P,sinit,AP,L), without reward structure, to be verified against a PCTL-formula.
Following Peled’s ample-set method [24], the idea is to assign to any reachable states
a nonempty action-setample(s)⊆ Act(s) and to construct a reduced MDP̂M by using
the action-setsample(s) instead ofAct(s). Formally, given a functionample: S→ 2Act

with /0 6= ample(s) ⊆ Act(s) for all statess, the state space of the reduced MDPM̂ =
(Ŝ,Act, P̂,sinit,AP, L̂) induced byampleis the smallest set̂S⊆ S that containssinit and
any stateu whereP(s,α,u) > 0 for somes∈ Ŝandα∈ ample(s). The labelling function
L̂ : Ŝ→ 2AP is the restriction of the original labelling functionL to the state-set̂S. The



A1 (Stutter-condition) If ample(s) 6= Act(s) then all actionsα ∈ ample(s) are stutter actions.

A2 (Dependence-condition)For each pathσ = s
α1−→ ·· · αn−→ sn

γ−→ ·· · in M whereγ is depen-
dent onample(s) there exists an indexi ∈ {1, . . . ,n} such thatαi ∈ ample(s).

A3 (Cycle-condition) On each cycles
α1−→ s1

α2−→ ·· · αn−→ sn = s in M̂ there exists a statesi
which is fully expanded, i.e.,ample(si) = Act(si).

A4 (Branching condition) If ample(s) 6= Act(s) thenample(s) is a singleton consisting of a
non-probabilistic action.

Fig. 1. Conditions for the ample-set method for PCTL [4]

transition probability matrix ofM̂ is given byP̂(s,α, t) = P(s,α, t) if α ∈ ample(s) and
0 otherwise. States is called fully expanded ifample(s) = Act(s).

The main ingredient of any partial order reduction technique in the non-probabilistic
or probabilistic setting is an adequate notion for the independence of actions. The defini-
tion for the independence of actionsα andβ in the composed transition system (which
captures the semantics of the parallel composition of all processes that run in paral-
lel) relies on recovering the interleaving ‘diamonds’. Formally, two distinct actionsα
andβ are calledindependent(in M ) iff for all statess∈ S with {α,β} ⊆ Act(s), (I1)
α ∈ Act(u) for eachβ-successoru of s, (I2) β ∈ Act(u) for eachα-successoru of s, and
(I3) P(s,αβ,w) = P(s,βα,w) for all w∈SwhereP(s,γδ,w) = ∑u∈SP(s,γ,u) ·P(u,δ,w)
for γ,δ ∈ Act. Two different actionsα andβ are calleddependentiff α andβ are not
independent. IfD ⊆ Act andα ∈ Act\D thenα is called independent ofD iff for all
actionsβ ∈ D, α andβ are independent. Otherwise,α is called dependent onD.

To preserve PCTL properties, [4] use the four conditions in Fig. 1. These rely on a
slight modification of the conditions by Gerth et al [12] for preserving CTL-properties
and can be implemented in an on-the-fly state space exploration [25, 3].

Theorem 1 ([4]). If (A1)-(A4) hold thenM andM̂ fulfil the samePCTL-formulae.

3 Reduction Criteria for Rewards

In the sequel, we assume that we are given an MDPM and discuss the partial order
reduction approach for properties specified in PCTLr . We first show that (A1)-(A4) are
not sufficient to preserve PCTLr properties with nontrivial reward bounds. To treat full
PCTLr , we shall need a modification of the branching condition (A4).

Example 1.We begin with a simple example illustrating that (A1)-(A4) cannot ensure
that all PCTLr -formulae are preserved. Consider the following MDP with the actions
α,β,γ that are all non-probabilistic and whererew(α) = rew(β) = rew(γ) = 1.
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α
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Sinceα andβ are independent andα is a stutter action, (A1)-
(A4) allow for a reduction obtained throughample(s)={α}.
Thus,Ŝ={s, t,u}. Consider the PCTLr formulaΦ=R [2,∞)(a).
Then, the reduced system̂M satisfiesΦ, while the original
systemM does not, becauseM might choose actionβ in s
which yields the expected reward 1 to reach ana-state. �

We now discuss how to strengthen conditions (A1)-(A4) such that reward-based prop-
erties are preserved. We start with some simple observations. First, asM̂ is a sub-MDP
of the original systemM , any schedulerA for M̂ is also a scheduler forM . Thus:

Lemma 1. Let Φ1,Φ2 be PCTLr -formulae with SatM (Φi)∩ Ŝ= SatM̂ (Φi), i = 1,2.

(i) M |= R I (Φ1) ⇒ M̂ |= R I (Φ1),
(ii) M |= PJ(Φ1UI Φ2) ⇒ M̂ |= PJ(Φ1UI Φ2).

The converse directions in Lemma 1 do not hold in general asM might have “more”
schedulers than̂M . To get a feeling of how to modify the reduction criteria for PCTLr ,
let us first give some informal explanations. In [4], the soundness proof of (A1)-(A4)
for PCTL establishes a kind of bisimulation between the full MDPM and the reduced
MDP M̂ which allows one to transform any schedulerA for M into a schedulerB
for M̂ such thatA andB yield the same probabilities for PCTL-path formulae. As in
the case of the ample-set method for verifying linear time properties (where (A1)-(A3)
and a weaker form of (A4) are sufficient [5, 7]) this scheduler-transformation yields a
transformation of theA-paths into “corresponding”B-paths. Let us look at this path-
transformation “pathς in M  pathς̂ in M̂ ” which, in fact, is already known from the
non-probabilistic case [24]. The pathς̂ in M̂ is obtained through a sequence of paths
ς0,ς1,ς2, . . . in M such that the firsti-steps inςi andςi+1 agree and are composed of
transitions inM̂ . The switch fromςi to ςi+1 is performed as follows.

Let π = s1
α1−→ s2

α2−→ ·· · be the suffix ofςi starting with the(i+1)th step (by the
above,s1 is a state inM̂ ). Our goal is to construct a stutter equivalent pathπ̂ from
s1 that starts with an action inample(s1). We then may compose the prefix ofςi from
first(ςi) to s1 with π̂ to obtain the pathςi+1. If α1 ∈ ample(s1) then we may putπ = π̂.
Let us now assume thatα1 /∈ ample(s1). Then, by (A4),ample(s1) consists of a single
non-probabilistic action.

(T1) If there is some indexj ≥ 2 such thatα j ∈ ample(s1) then choose the smallest
such indexj and replace the action sequenceα1 . . .α j−1α jα j+1 . . . with α jα1 . . .
α j−1 α j+1 . . .. This is possible since by (A2) the actionsα1, . . . ,α j−1 are indepen-
dent ofα j . The resulting patĥπ is stutter-equivalent toπ by condition (A1).

(T2) If α j /∈ ample(s1) for all j ≥ 1 andample(s1) = {β} then replace the action se-
quenceα1α2 . . . with βα1α2 . . .. Again, (A2) ensures that eachα j is independent of
β. (A1) yields the stutter-equivalence ofπ and the resulting patĥπ.

Note, that the insertion of the additional action in transformation (T2) possibly changes
the cumulative reward. Since we are interested in the cumulative reward that is gained
until a certain state labelling is reached, the action permutation in transformation (T1)
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Fig. 2.Mutual exclusion example: (a) components, (b) full system and (c) reduced MDP

possibly changes this reward, as can be seen in Example 1 (note that a stutter action is
permuted to the front of the action sequence).

To establish the equivalence ofM andM̂ for PCTLr it seems to be sufficient to
ensure that, in transformation (T2), the additional actionβ has zero reward, and in
transformation (T1), the stutter actionα j , that is permuted to the front of the action
sequence, has zero reward. This motivates the following stronger branching condition:

A4′ (New branching condition) If ample(s) 6= Act(s) thenample(s) = {β} for some
non-probabilistic action withrew(β) = 0.

Theorem 2. If (A1)-(A3), (A4′) hold thenM andM̂ satisfy the same PCTLr formulae.

Example 2.To illustrate our approach we consider a simple mutual exclusion protocol
in which the processesP1 andP2 attempt to access a common resource controlled by
a resource manager. A shared variablex is used to guarantee mutual exclusion and
we assume that the communication is unreliable (requests to the resource manager are
corrupted/lost with probability 0.1). Fig. 2(a) presents the different components of the
system. Associating a reward of 1 with the actionsreq1 andreq2 and 0 with all other
actions, using PCTLr one can, for example, specify:

– R≤1.4(crit1∨ crit2) : the expected number of requests before a process enters the
critical section is at most 1.4;

– P>0.7(true U[0,6] crit1∨crit2): the probability that a process enters its critical section
after at most 6 requests have been issued is strictly greater than 0.7.

Fig. 2(b) gives the full MDP for the system and (assumingAP = {crit1,crit2}) one can
construct the reduced system given in Fig. 2(c) satisfying conditions (A1)-(A4′). �



4 Preservation Result for (A1)-(A4) and Reward-Based Properties

We now turn to the question of which properties with nontrivial reward bounds are
preserved by (A1)-(A3) and the original branching condition (A4) in Fig. 1. Let us
again look at the path transformation described in (T1) and (T2) where, given a path
π in M a pathπ̂ is generated, where either the action sequence ofπ̂ is a permutation
of the action sequence ofπ (T1) or π̂ starts with a non-probabilistic stutter action and
then performs the same action sequence as the original pathπ (T2). As the rewards are
in IR we do not know, how the cumulative reward ofπ̂ has changed compared to that
of π. If we however require that the rewards of all actions arenon-negative, along the
modified pathπ̂ a reward equal or greater will be earned than that alongπ. This yields
an informal explanation why the additional power ofM can lead to smaller minimal
expected rewards, but the maximal expected rewards agree inM andM̂ . Similarly, we
might expect that the minimal probabilities for events of the forma1U[0,r]a2 agree under

M andM̂ . The same holds for maximal probabilities for events of the form�[0,r]a. This
motivates the definition of the following sublogic of PCTLr .

Let PCTL−r be the sublogic of PCTLr which only uses theR -operator with upper
reward bounds, i.e., formulae of the formR [0,r](Φ), and where the probabilistic oper-
ator is only used in combination with PCTL-path formulaeΦ1UΦ2 or with the until-
operator in combination with upper reward and lower probability bounds or in combi-
nation with lower reward and upper probability bounds or with the always-operator in
combination with upper reward and upper probability bounds or in combination with
lower reward and lower probability bounds, e.g.P [0,p](�[0,r]Φ) or P(p,1](Φ1U[0,r]Φ2).
Note that PCTL is contained in PCTL−r . (The result stated in Theorem 3 would still hold
when dealing with a release- or weak until operator rather than the always-operator.)

Theorem 3. If (A1)-(A4) hold andrew(α) ≥ 0 for all α ∈ Act thenM andM̂ satisfy
the samePCTL−r formulae.

Proof. (sketch) As is the case for many other types of (bi)simulation relations for prob-
abilistic systems, our notion of bisimulation equivalence will use the concept ofweight
functions[18, 19]. LetS, S′ be finite sets andR⊆ S×S′. If ν andν′ are distributions
on S andS′ respectively then a weight function for(ν,ν′) with respect toR denotes a
function w : S×S′ → [0,1] such that{(s,s′) : w(s,s′)> 0} ⊆ R, ∑u′∈S′ w(s,u′) = ν(s)
and∑u∈Sw(u,s′) = ν′(s′) for all s∈ S, s′ ∈ S′. We writeνvR ν′ iff there exists a weight
function for(ν,ν′) with respect toRand refer tovR as the lifting ofR to distributions.

Definition 1 (Normed (bi)simulation). Let M = (SM ,Act,PM ,sM
init,AP,LM , rew) and

N = (SN ,Act, PN , sN
init,AP,LN , rew) be two MDPs with the same set of atomic proposi-

tions, the same action setActand the same reward structurerew : Act→ IR≥0. A normed
reward simulation for(M ,N ) with respect torew is a triple(R,η1,η2) consisting of a
binary relationR⊆ SM ×SN and functionsη1,η2 : R→ IN such that(sM

init,s
N
init) ∈ R and

for each pair(s,s′) ∈ R the following conditions hold.

(N1) LM (s) = LN (s′)
(N2) If α ∈ ActM (s) then at least one of the following conditions holds:

(N2.1) α is enabled ins′ (i.e.,α ∈ ActN (s′)) andPM (s,α, ·)vR PN (s′,α, ·),



(N2.2) α is a non-probabilistic stutter action s. th.(sα,s′)∈Randη1(sα,s′)<η1(s,s′).
(N2.3) There is a non-probabilistic stutter actionβ ∈ ActN (s′) with (s,s′β) ∈ R and

η2(s,s′β)<η2(s,s′).

A normed bisimulation for(M ,N ) is a tuple(R,η1,η2,η−1 ,η−2 ) such that(R,η1,η2)
and(R−1,η−1 ,η−2 ) are normed simulations for(M ,N ), resp.(N ,M ). �

We writeM ≈nb N iff there exists a normed bisimulation forM andN .

A forming path froms to ŝ means a paths = s0
β0−→ s1

β1−→ ·· · βn−1−−→ sn = ŝ where
β0, . . . ,βn−1 are non-probabilistic stutter actions, and for 0≤ i <n, the singleton action-
set{βi} fulfils the dependence condition (A2) for statesi . A shortest forming path from
s to ŝmeans a forming path froms to ŝwhere the cumulative reward is minimal under all
forming paths froms to ŝand where the length (number of actions) is minimal under all
forming paths with minimal cumulative reward. We will writeµ(s, ŝ) for the cumulative
reward of all/some shortest forming path froms to ŝ. s ŝ denotes the existence of a
forming path froms to ŝ and we putR= {(s, ŝ) ∈ S× Ŝ: s ŝ}.

If (s, ŝ) ∈ R then

PrA,s(Π(s, r+µ(s, ŝ),C1, . . . ,Cn))≥ PrB,ŝ(Π(ŝ, r,C1, . . . ,Cn)) (∗)

and PrA,s(Π(s,C1, . . . ,Cn)) = PrB,ŝ(Π(ŝ,C1, . . . ,Cn)). Here, we used the following nota-
tion. Letu∈ S, C1,C2, . . . ,Cn be a sequence of≈nb-equivalence classes withCi 6= Ci+1

for 1≤ i < n and r ≥ 0. Then,Π(u, r,C1, . . . ,Cn) denotes the set of all infinite paths

that have a finite prefix of the formu0 →∗
C1

ũ1
γ1−→ u2 →∗

C2
ũ2

γ2−→ ·· · γn−2−−→ un−1 →∗
Cn−1

ũn−1
γn−1−−→ un whereu0 = u and the total reward is≤ r andun ∈Cn. The actionsγi are

arbitrary. In this context,v→∗
C ṽ means a finite path built out of non-probabilistic stutter

actions such thatv, ṽand all intermediate states of that path belong toC. Π(u,C1, . . . ,Cn)
stands for the union of the path-setsΠ(u, r,C1, . . . ,Cn) for arbitraryr ≥ 0. Fors= sinit = ŝ
we haveµ(s, ŝ) = µ(sinit,sinit) = 0.

The above yields that for each schedulerA for M there exists a schedulerB for
M̂ such that PrA(Π(sinit, r,C1, . . . ,Cn)) ≥ PrB(Π(sinit, r,C1, . . . ,Cn)) for all r ≥ 0 and all
≈nb-equivalence classesC1, . . . ,Cn. From this we can derive thatM andM̂ fulfil the
same PCTL−r formulae. �

Example 3.Let us return to Example 2 and redefine the rewards such that the only
nonzero rewards are for actionsdemand1 anddemand2 which have reward 1. Now, in
this situation the reduced MDP in Fig. 2(c) can no longer be constructed using (A1)-
(A4′). However, this construction is still possible under (A1)-(A4).

This is demonstrated by the fact that both the reduced and full MDP satisfy the
PCTL−r propertyR [0,2](crit1∨ crit2) (the maximum expected number of processes that
can attempt to enter the critical section before one of them does so is at most 2), while
only the reduced model satisfies the PCTLr propertyR [2,∞)(crit1∨ crit2) (the minimum
expected number is at least 2). �



5 Reward Properties w.r.t Discounted Rewards

In many research areas (e.g. economics, operations research, control theory) rewards are
treated with a different semantics, namely as so-calleddiscounted rewards[27], where
given a discount factor 0< c < 1, the reward of thei-th action of a path is multiplied
with ci−1. This interpretation of rewards reflects the fact that a reward (e.g. a payment)
in the future is not worth quite as much as it is now (e.g. due to inflation). In this Section
we investigate our partial order approach for discounted rewards.

Given a pathς = s0
α1−→ s1

α2−→ s2
α3−→ ·· · and a discount factorc ∈ (0,1), we de-

note byρc(ς, i) = rewc(α1 . . .αi) = c0 · rew(α1)+c1 · rew(α2)+ · · ·+ci−1 · rew(αi) the
cumulative discounted reward obtained through the firsti actions.

With this on hand we can define the logic PCTLc, which is a variant of PCTLr .
In PCTLc, we use the new operatorsUc

I andR c
I instead ofUI andR I , where instead

of the cumulative rewardρ(ς, i) the cumulative discounted rewardρc(ς, i) is used in the
semantics of those new operators. The semantics of theUc

I operator is as follows. Given

a pathς = s0
α1−→ s1

α2−→ s2
α3−→ ·· · , we say thatς |= Φ1Uc

I Φ2 iff ∃i ≥ 0 s.tsi |= Φ2 ∧ ∀ j <
i : sj |= Φ1 ∧ ρc(ς, i)∈ I . Similarly, given a set of statesT ⊆Swe denote byRewc(ς,T)
the discounted reward that is earned until aT-state is visited the first time. Formally, if
state(ς, i) /∈ T for all i ≥ 0 thenRewc(ς,T) = ∞. If state(ς, i)∈ T andstate(ς, j) /∈ T for
all j < i thenRewc(ς,T) = ρc(ς, i). ForT ⊆ Sand a schedulerA, IEA,s

c (♦T) denotes the
expected value underA with starting states for the random functionς 7→ Rewc(ς,T).
Thens |= R c

I (Φ) iff ∀ schedulersA: IEA,s
c (♦Sat(Φ)) ∈ I .

A simple example shows that theorem 2 does not hold for PCTLc (even if all rewards
are nonnegative). Consider the MDPM in example 1 on page 5. We assign the follow-
ing rewards :rew(α) = 0, rew(β) = rew(γ) = 1. Choosingample(s) = {α}, conditions
(A1)-(A3) and (A4’) are satisfied. However, if we consider the formulaΦ = R c

[0,c](a),

we gain that the reduced system̂M satisfiesΦ while the original systemM does not,
becauseM might choose actionβ in states which yields the expected discounted re-
ward to reach ana-state to bec0 · rew(β) = 1 > c.

The reader should notice that due to the discounting, the transformations (T1) and
(T2) described in Section 3 on page 6 change the reward of a given path, even under
condition (A4’) which requires the ample set of a non-fully expanded state to be a
singleton consisting of a non-probabilistic action with zero reward. Nevertheless, the
following holds: given an MDPM with only non-negativerewards, ample-sets that
satisfy (A1)-(A3) and (A4’) and a pathς in M , let ς̂ be a path that emanates fromς by
applying transfomation (T1) or (T2). Thenρc(ς̂, i) ≤ ρc(ς, i). Similarly as in Section
4 this informally explains that the additional power ofM can lead to greater maximal
expected rewards, but the minimal expected rewards agree inM and M̂ . Also, the
maximal probabilities for events of the forma1Uc

[0,r]a2 agree underM andM̂ . This
motivates the definition of the following sublogic ofPCTLc.

Let PCTL−c be the sublogic ofPCTLc which uses theR c operator only with lower
reward bounds (i.eR c

[r,∞)Φ) and where the probabilistic operator is only used in combi-
nation with PCTL-path formulaeΦ1UΦ2 or with the until-operator in combination with
lower reward and lower probability bounds or in combination with upper reward and



upper probability bounds or with the always-operator in combination with upper reward
and lower probability bounds or in combination with lower reward and upper probabil-
ity bounds, e.g.P [0,p](�[r,∞)Φ) or P [0,p](Φ1U[0,r]Φ2). Note that PCTL is contained in
PCTL−c .

Theorem 4. If (A1)-(A3) and (A4’) hold andrew(α) ≥ 0 for all α ∈ Act thenM and
M̂ satisfy the samePCTL−c formulae.

6 Conclusion
The goal of this paper was to study the theoretical foundations of the ample-set approach
for the logic PCTLr , a variant of PCTL with reward-bounded temporal modalities and
an expectation operator. The main results of this paper are that the ample-set conditions
presented in [4] for PCTL preserve a class of non-trivial reward-based properties (The-
orem 3) and that a slight modification of the conditions of [4] are sufficient to treat full
PCTLr (Theorem 2). The proofs of these results have been established by means of a
new notion of weak bisimulation for MDPs which preserves PCTLr and – since it is
simpler than other notions of weak bisimulation equivalence for MDPs – might also
be useful for other purposes. Moreover we investigated the logic PCTLc, a variant of
PCTLr where the rewards are given a discounting semantics. We presented ample-set
conditions that preserve a non-trivial subset of PCTLc properties if all given rewards
are non-negative (Theorem 4).

Besides being of theoretical interest, the results of this paper also have a practical
impact. First experimental results on the ample set approach for MDPs (without reward
structure) with the forthcoming model checker LiQuor [3] show that although the cri-
teria needed for probabilistic systems are stronger than in the non-probabilistic case,
good reductions can be obtained. Furthermore, the bottleneck in analysis of probabilis-
tic systems modelled by MDPs are the required techniques for solving linear programs.
Since the amount of time required for the construction of the reduced MDP is negligi-
ble compared to the running time of linear program solvers, even small reductions can
increase the efficiency of the quantitative analysis.

In future work, we plan to integrate the partial order reduction techniques suggested
here in the symbolic MTBDD-based model checker PRISM [16] by constructing a syn-
tactic representation of the reduced MDP at compile time, in the style of static partial
order reduction [20] which permits a combination of partial order reduction with sym-
bolic BDD-based model checking.
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