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Abstract

In this thesis we present three mathematical frameworks for the modelling of reac-

tive probabilistic communicating processes. We first introduce generalised labelled

transition systems as a model of such processes and introduce an equivalence, coarser

than probabilistic bisimulation, over these systems. Two processes are identified with

respect to this equivalence if, for all experiments, the probabilities of the respective

processes passing a given experiment are equal. We next consider a probabilistic pro-

cess calculus including external choice, internal choice, action-guarded probabilistic

choice, synchronous parallel and recursion. We give operational semantics for this

calculus be means of our generalised labelled transition systems and show that our

equivalence is a congruence for this language.

Following the methodology introduced by de Bakker & Zucker, we then give deno-

tational semantics to the calculus by means of a complete metric space of probabilistic

processes. The derived metric, although not an ultra-metric, satisfies the intuitive

property that the distance between two processes tends to 0 if a measure of the dif-

ferences of their observable behaviour also tends to 0. We show that the denotational

model is fully abstract with respect to our equivalence.

We also provide a logical characterisation of the process equivalence by means of a

variant of the quantitative Hennessy-Milner Logic (HML), where each HML formula

is interpreted as the probability of it being satisfied by the process instead of the usual

truth value. Two processes are then shown equivalent if, and only if, they agree on

the quantities assigned to all HML formulae.
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Chapter 1

Introduction

Formulating suitable models for the formal description, specification and analysis of

concurrent systems is an important topic of study in theoretical computer science. A

concurrent system is one where programs communicate among themselves by some

well-defined mechanism. A designer or verifier will need a way to assign a consis-

tent meaning to the program or language under consideration. This meaning is the

semantics of the language or program.

There are three main approaches to giving semantics to programming languages:

operational, denotational and logical. The different semantics offer alternative views.

The operational model is closely related to the actual implementation of the language,

and is defined by means of some abstract machine. This machine will then describe

the steps taken to execute the program. The denotational semantics is given in terms

of some mathematical structure where programs are considered as elements of this

structure. This then yields a compositional model: the semantics of a complex program

is defined in terms of its components by means of operators on the mathematical

structure. The logical model enables the investigation of properties and satisfaction

conditions of programs. As the different semantic approaches offer different “views” of

the same system, understanding the relationships between them can prove useful. The

correspondence often sought between the operational and denotational models is one

of full abstraction, which means that two program phrases have the same denotation

if and only if the operational meaning of every program is unchanged when one phrase

is replaced by the other in any context. A similar correspondence regarding the logical

and operational approaches is also useful, where instead of program phrases having

the same denotation we consider program phrases which have the same interpretations

under all formulae of the logical model.

Depending on the application required, one of the three approaches will prove

1



1 Introduction 2

more useful. For example, a programmer is likely to prefer the denotational approach

because the model will be compositional; an implementer will choose an operational

semantics since this approach is most closely linked to an actual implementation,

whereas, if we wish to reason about properties of programs, a logical semantics is the

natural choice since we can express the desired properties as formulae of the logic and

then investigate whether they are true for a particular program.

In recent times, randomisation has proved to be a very useful tool in the con-

struction of certain algorithms for concurrent systems which, unlike their determin-

istic counterparts, can be programmed efficiently: they have relatively simple struc-

tures, use less memory and can achieve results that deterministic algorithms cannot

be proved to meet. The algorithms include: a symmetric distributed solution to the

dining philosopher’s problem [LR81] and solutions to: consensus protocols [Sei92], load

balancing [Pug90] and self-stabilisation [Her90].

Traditionally, the modelling of concurrent systems has abstracted away from quan-

titative aspects. As a result, there is no information about how frequently or with what

chance certain behaviour of a system will occur, whereas, at a practical level, there

need to be distinctions relating to this, since many aspects of concurrent systems are

probabilistic in nature, or at least can be modelled adequately by assuming random

behaviour. Thus, adding randomisation allows us to use a more realistic model of such

systems. For example, it is often infeasible to construct a system that is error-free and

some measure of the frequency of erroneous behaviour could be useful, as illustrated

by modelling communication media, see for example [PS87], where it is often necessary

to allow for processes to lose messages with a certain probability. Using probabilities

will also offer a method of telling how good or bad certain systems are: if the proba-

bilities of errors occurring are very low the system can be deemed useful, whereas if

the probabilities of errors are very high, then clearly the system will have no practical

applications.

Furthermore, allowing randomised behaviour can be seen as a way of modelling

fairness, since a fair choice can be considered as a choice, where the probability of

either action occurring is greater than zero or some assigned lower bound.

The modelling of concurrent systems is already made complex by the phenomenon

of non-determinism. Non-determinism presents a powerful tool to model situations

where there exist two or more possible choices for how a system will behave, but it

is unknown which choice is going to be taken; we call such a choice an internal (or

non-deterministic) choice. This, therefore, offers us a way to under-specify systems,

that is, we can allow certain areas of a system’s behaviour to be partially defined.

Then adding randomisation will increase the complexity of the model since this adds
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a different kind of non-determinism: the choice is made as a result of some random

draw, or more simply from the result of the toss of a coin.

The usual approach to adding randomisation to concurrent systems has been to

replace non-deterministic behaviour by probabilistic behaviour, that is, substitute the

unspecified choice by a probability distribution over the possible choices. However,

although, as indicated above, these two phenomena are similar, they are in fact used to

model very distinct situations: as discussed above, non-determinism allows us to under-

specify the behaviour of system, whereas randomisation fully specifies the behaviour of

systems, as we will know the exact frequency (probability) of the choices of a system.

To illustrate this, consider a choice between picking any number from 1 to 6, then

if this choice is internal (non-deterministic) we will be unable to say which number

is picked or how often each number is picked. However, if this choice arises through

randomisation, one example would be to consider the choice being made according to

the throw of a die and, in this case, over any long series of trials the frequency of any

one of the numbers occurring is one sixth, assuming the die is fair.

Also, non-determinism arises in systems through other forms of behaviour, for

example, if we are in a situation where the environment in which the system is placed

decides how the system behaves. If the system can offer two distinct choices which the

environment cannot distinguish, this type of choice will then degenerate to an internal

choice.

Following this discussion we feel it is important to model both non-determinism and

randomisation and treat them as distinct entities. The main objective of this thesis

is, therefore, to investigate the different semantic views and relationships between

the alternative modelling approaches for concurrent systems which exhibit both non-

determinism and randomisation and distinguish clearly between them, or, in other

words, to construct operational, denotational and logical semantics for such systems.

1.1 Outline

The next chapter gives an overview of related work, concentrating on the classical

operational models for non-probabilistic systems and extensions to allow for probabil-

ities. Chapter 3 introduces most of the notation used and the background material

needed for this thesis.

Chapter 4 introduces reactive probabilistic transition systems, a model of pro-

cesses that exhibit (action-guarded) probabilistic, deterministic and non-deterministic

behaviour. This chapter, furthermore, introduces an observational order and equiva-

lence over elements of such systems.
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Chapter 5 presents the syntax and semantics of our calculus for reactive processes

RP, where the difference between RP and standard (non-probabilistic) process calculi

is that prefixing is replaced by action-guarded probabilistic choice of which the former

is a special case. Moreover, we investigate the properties of our operational ordering

over this semantics.

Chapter 6 gives a denotational semantics for our process calculus based on the

work of de Bakker and Zucker [BZ82], which we show is fully abstract with respect to

our operational semantics.

Chapter 7 investigates a logical approach based on the re-interpretation of the

modal µ-calculus for probabilistic processes introduced by Huth and Kwiatkowska

[HK97], and we show a strong connection between this interpretation and our opera-

tional semantics.

Finally, in Chapter 8 we conclude with an evaluation of the presented work and a

discussion of possible future research directions.



Chapter 2

Related Work

Models of concurrency containing probabilistic behaviour can be classified according

to two main criteria: which process calculus theory the probabilistic work is based

on and the kind of probabilistic behaviour modelled. There are two main process

calculi that serve as the basis for probabilistic extensions, namely Milner’s Calculus

of Communicating Systems (CCS) [Mil89] and Hoare’s Communicating Sequential

Processes (CSP) [BHR84]. The difference between the theories of CCS and CSP arises

from the types of equivalences and the approach used in modelling systems, and in

particular the process constructors.

CCS is modelled using labelled transition systems [Plo81]: a tuple (T,Act ,−→),

where T is a set of processes (or states), Act is a set of actions (or labels), and

−→ ⊆ T × Act × T is a transition relation, where for any (P, a,Q) ∈−→ we write

P
a−→ Q, denoting the process P performing the action a and then behaving as the

process Q. Equivalences for these transition systems are based on bisimulation [Par81]

and [Mil83]. A (strong) bisimulation is a relation ∼ such that for any P,Q ∈ T , P ∼ Q

if and only if for all a ∈ Act :

(i) if P
a−→ P ′ then ∃Q′ ∈ T : Q

a−→ Q′ and P ′ ∼ Q′

(ii) if Q
a−→ Q′ then ∃P ′ ∈ T : P

a−→ P ′ and P ′ ∼ Q′.

Two processes P and Q are said to be bisimilar if there exists a bisimulation relation

∼ such that P ∼ Q. An alternative and weaker equivalence for CCS results from

considering simulations (see [Par81]), where a simulation relation corresponds to only

the first clause in the definition of bisimulation above. The classical denotational

models for CCS are then based on Milner’s synchronization trees [Mil89] and can be

divided into domain-theoretic and metric-space approaches, for example see [Abr91a]

and [BZ82] respectively.

5



2 Related Work 6

In contrast, the models and equivalences for CSP are based on traces [Hoa85] and

failures [BHR84]. The traces of a process are the possible sequences of actions that

the process can perform, and failures are represented by pairs (σ,X) where σ is a

trace and X is a set of actions. Each process is represented by the set of all failures,

where each failure (σ,X) means that the process can perform the trace σ and then

refuse to perform all the actions in the set X (failure sets are closed with respect to

certain axioms). Processes are then trace or failure equivalent when their traces or

failure sets are equal (for the formal definition see Section 3.4). Both models form an

algebraic inductive partial order, a structure used to give denotational models for CSP

(see Mislove [Mis91]).

The above models can be constructed for both CCS and CSP; for example, Brookes

[Bro83] constructs a model for CSP based on synchronization trees. However, the gen-

eral tendency is to use synchronisation trees for CCS and traces or failures for CSP.

The equivalences mentioned above differ substantially in how well they discriminate

branching: trace equivalence is the prime example of a linear-time equivalence, bisim-

ulation is the prime example of a branching-time equivalence and failure equivalence

can be considered as linear-time equivalence enriched with “local branching informa-

tion”. Intuitively, linear time equivalences are completely determined by the observable

contents of processes’ possible runs, whereas branching-time equivalences also use the

information as to when the processes make choices. For these reasons, the equivalences

form a hierarchy, with bisimulation being the finest equivalence and the coarsest being

trace equivalence (see [BKO88] and [Gla90]). To illustrate the differences between

these equivalences consider the example given below:

P Q R

??

?
�

�
�

�=

Z
Z

Z
Z~

�
�

�
�=

Z
Z

Z
Z~

a

b cb c

a a rr
rr

r
r r r r

r
r r r
r r r rb cb c

?

? ?








�

J
J

JĴ
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Figure 2.1: Linear versus Branching-time equivalences

In Figure 2.1 all processes can only perform the traces ab and ac, and hence are linear-

time (trace) equivalent. However, whenever P performs an a transition it then offers

a choice between performing the actions b and c, which is not the case for either Q

and R, and thus P is not branching-time equivalent (bisimilar) to either Q or R. Fur-

thermore, since R can perform an a transition such that there exists a choice between

performing the actions b and c and Q cannot perform such a transition, Q and R

are also not branching-time equivalent. As mentioned before, failure equivalence is

an extended linear-time equivalence, and to illustrate this fact failures can distinguish
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between the processes P and Q but cannot distinguish between the processes P and

R.

There are arguments for and against which type of equivalence is more appropriate,

depending on how strict the notion of observable behaviour is and what is considered

a realistic testing scenario. In van Glabbeek [Gla90, Gla93] a detailed description of

the different options available is provided.

The choice of whether a metric or a domain-theoretic approach is used to give de-

notational semantics is to some degree a matter of taste. Denotational semantics was

first introduced by Scott and Strachey using ordered sets (domains) as the mathemat-

ical framework [Sto77] and since then Nivat [Niv79] followed by de Bakker and Zucker

[BZ82] introduced metric spaces as an alternative framework. In both settings, to

deal with recursive programs, for example while statements, a solution of a recursive

domain equation is used to give denotational semantics, and general techniques for

such constructions, for example [Plo81] and [AJ94] for domains and [AR89] for metric

spaces, are offered.

However, in certain cases one approach can have advantages over the other. For

example, when considering fixed points for metric spaces we have unique fixed points

from Banach’s theorem, whereas in domain-theoretic approaches typically we use least

fixed points according to the Knaster-Tarski theorem. As a result, proofs of statements

relating to fixed points are often simpler in the metric space approach. On the other

hand, one of the main arguments against a metric approach arises from the question

of whether we need to know the actual distance between processes given by a metric,

or whether it is enough to know that one process approximates another as given by

an ordering. In fact, the primary role of metric denotational semantics appears to be

concerned with limit point arguments, as opposed to the quantitative role that the

numerical distance between processes offers.

Although not yet applied to the field of concurrency, there has been some recent

work establishing connections between the theory of metric spaces and domain theory.

Research in this area includes Edalat and Heckmann [EH], where metric spaces can

be represented as the set of maximal elements of suitably constructed domains.

2.1 Probabilistic and Other Choice Operators

If we now consider the different options available to model probabilistic choice, we

see there are two approaches to defining the type of probabilistic choice. The first,

introduced by Lowe [Low93], is based on the choice operators of CSP, namely internal

(or non-deterministic) choice and external (or deterministic) choice, denoted u and
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tu respectively. The difference between these operators is that, for any processes P

and Q, P uQ represents the process that will behave as either P or Q, whereas the

behaviour of P tuQ depends on the actions offered by the environment: if only one of

the processes P and Q can perform the actions offered by the environment then P tuQ
will behave as that process, but if both P and Q can perform the actions offered by

the environment, then P tuQ will choose between P and Q non-deterministically, that

is, tu degenerates to u in this case. Hence, the environment only has control over the

choices with respect to the external choice operator.

Extending this to the probabilistic setting, we arrive at two probabilistic choice

operators, internal and external probabilistic choice, which we will denote puq and

ptuq respectively (where p+ q = 1). E puq F will act as the process E with probability

p and F with probability q. If the environment offers actions which only E or F can

perform then E ptuq F will act as E or F respectively, and if the environment offers

actions which both E and F can perform then E ptuq F will act as E with probability p

and F with probability q. Lowe [Low93], furthermore, considers the two extreme cases

of the external probabilistic choice, that is, when p = 1 and q = 0 and when p = 0 and

q = 1, named prioritised choice: for example, if the environment offers actions that

both E and F can perform then E 1tu0 F will act as E, since the probability of acting

as E is 1 and the probability of acting as F is 0, but if the environment offers only

actions that F can perform then E 1tu0 F will act as F .

An alternative approach has been introduced by van Glabbeek et al. [GSST90]

where three different models for probabilistic choice are presented, namely reactive,

generative and stratified. In the reactive model, the model selected for consideration

in this thesis, the environment is only allowed to offer processes one action at a time,

and if a process can perform this action a probabilistic choice is made between the

transitions associated with this action. The result is that, for any action a process can

perform, the total probability of the process performing transitions associated with

this action is required to be 1. Moreover, we can consider this model as having both

external and internal probabilistic choice: an external (deterministic) choice made by

the environment as to which action a process is allowed to perform, and an inter-

nal probabilistic choice as to which transition associated with this action the process

subsequently performs.

On the other hand, the generative model allows the environment to offer more than

one action and processes then make probabilistic choices between transitions associated

with these actions. Hence, this model represents a type of external probabilistic choice

and allows no other form of choice.

To illustrate the difference between these models consider the following example
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(where + denotes probabilistic choice):

1

4
a.E1 +

3

4
a.F1 +

2

3
b.E2 +

1

3
b.F2 and

1

8
a.E +

1

2
b.F +

3

8
c.G.

First, if we consider the behaviour of the reactive process on the left, we note that if

the environment offers the action a then the process will perform an a transition and

behave as E1 with probability 1
4

and F1 with probability 3
4
. Similarly, if the process

is offered a b, it will perform a b transition and then behave as E2 with probability 2
3

and F2 with probability 1
3
. Now, the generative process on the right (recall that in the

generative model the environment is allowed to offer more than one action at a time),

when offered the actions a, b and c, it will choose the a transition with probability
1
8
, the b transition with probability 1

2
and the c transition with probability 3

8
. If,

however, the environment offers the actions a and b, then the process will perform the

a transition with probability 1
5

and the b transition with probability 4
5
. Note that these

values are reached by normalising the probabilities over the possible choices allowed,

that is over 1
8
+ 1

2
. Similar calculations can be made for other actions being performed;

in particular, if only one of a, b and c is offered, the process will choose the associated

transition with probability 1.

The stratified model captures the probabilistic branching of processes in a more

satisfactory way, by allowing probabilistic choice to be separate from action transitions.

This model contains an external probabilistic choice operator and, as for the generative

model, the only type of choice is probabilistic. To illustrate this consider the following

example of a stratified process:

1

2
a.E ′ +

1

2

(
1

4
b.F ′ +

3

4
c.G′

)
.

It first makes a probabilistic choice between performing an a transition and a b or c

transition, and only after this choice is made does the process make a probabilistic

choice between a b and c transition.

2.2 Probabilistic Versions of CCS

Probabilistic extensions to CCS are based on probabilistic labelled transition systems

and probabilistic bisimulation introduced by Larsen and Skou [LS91]. Probabilistic

transition systems are essentially labelled transition systems with probabilities at-

tached to each transition, such that transitions are now of the form E
a−→µ F , which

stands for E performing an a transition and then behaving as the process F with

probability µ. To model reactive and generative processes we require:∑
{µ | ∃F ∈ T. E a−→µ F} = 1 and

∑
{µ | ∃F ∈ T, ∃a ∈ Act . E

a−→µ F} = 1
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for each process E and action a that E can perform, and (active) process E respectively.

Modelling stratified processes becomes more difficult, but if we introduce a distinct

action to represent probabilistic choice and we require that all transitions of other

action types occur with probability 1, a transition system for stratified processes can

be formulated.

Probabilistic bisimulation [LS91] is an extension of bisimulation to allow for prob-

abilities. Formally, we can define a probabilistic bisimulation relation ∼p over the

set of processes of a probabilistic transition system, P say, as follows. A probabilistic

bisimulation ∼p is an equivalence on P such that whenever E ∼pF the following holds:

∀a ∈ Act . ∀S ∈ P/∼p . E
a−→µ S ⇔ F

a−→µ S

where P/ ∼p denotes the set of equivalence classes of P under ∼p and E
a−→µ S if

and only if µ =
∑{µ′ |E ′ ∈ S and E

a−→µ′ E
′} . Then two probabilistic processes

E and F are said to be probabilistic bisimilar in the case that (E,F ) is contained in

some probabilistic bisimulation. Although the definition of probabilistic bisimulation

appears very different from the definition of bisimulation given above, we note its

similarity to ordinary bisimulation by instead considering the following equivalent

formulation of bisimulation given in [LS91]. A bisimulation ∼ is an equivalence on T

(the set of processes of a labelled transition system) such that whenever P ∼ Q the

following holds:

∀a ∈ Act . ∀S ∈ T/∼ . P a−→ S ⇔ Q
a−→ S.

Formally, a connection between bisimulation and probabilistic bisimulation has

been shown by Bloom and Meyer [BM89] in that, for any two finitely branching bisim-

ilar non-deterministic processes, there exists an assignment of probabilities such that

the resultant probabilistic processes are probabilistic bisimilar. The close relationship

between bisimulation and probabilistic bisimulation implies that probabilistic bisimu-

lation is also a branching time equivalence. Therefore, the time at which probabilistic

choices occur will influence the equivalence of processes.

Larsen and Skou [LS91] have introduced a notion of testing such that if two pro-

cesses are probabilistic bisimilar then there exists a testing algorithm that with prob-

ability 1− ε, for ε arbitrarily small, will distinguish the processes.

Also, Jonsson and Larsen [JL91] generalize probabilistic bisimulation by means of

a specification formalism, which extends specifications for non-probabilistic processes

(for example see [Lam89]). Specifications are represented by probabilistic transition

systems where each transition is labelled with a set of probabilities. Using this they

define a satisfaction relation between processes and specifications. A process and spec-

ification are in such a relation if the probabilities of the process performing transitions
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lie within the set of probabilities of the corresponding transition of the specification.

They then show that, if processes are turned into specifications by considering sin-

gleton sets, then two processes are probabilistic bisimilar if and only if they are in a

satisfaction relation. Moreover, Jonsson and Larsen define a relation between specifi-

cations which leads to a probabilistic simulation relation over probabilistic processes.

Based on this work, Segala and Lynch [SL94] extend both probabilistic bisimulation

and simulation to a generalized reactive model of probabilistic processes. Processes

of the model can be interpreted as allowing an internal choice between behaving as

reactive processes which can perform only one action type. Their notion of proba-

bilistic simulation is shown to coincide with the usual definition of simulations if the

processes are restricted to non-probabilistic processes by letting all transitions occur

with probability 1.

Of approaches related to probabilistic bisimulation we mention Giacalone, Jou and

Smolka [GJS90], where a probabilistic version of Milner’s synchronous version of CCS

(SCCS [Mil83]), called PCCS is considered. The difference from SCCS arises from

the choice operator being replaced by a probabilistic choice operator. Formally, any

SCCS expression of the form
∑
i∈I Ei, denoting the process that can make an inter-

nal choice between behaving as Ei for any i ∈ I, is replaced by an expression of the

form
∑
i∈I [pi]Ei, where pi ∈ (0, 1] and

∑
i∈I pi = 1, which denotes the process which

can behave as the process Ei with probability pi. Adapting Larsen and Skou’s prob-

abilistic transition systems and probabilistic bisimulation to the reactive, generative

and stratified models, van Glabbeek et al. [GSST90] have given operational semantics

for PCCS for each of the three models, where in each case probabilistic bisimulation

is a congruence over all the usual operators of SCCS. For the generative model, Jou

and Smolka [JS90] have given a complete axiomatisation of probabilistic bisimulation.

Similarly, Larsen and Skou [LS92] have constructed a Calculus for Probabilistic Pro-

cesses (CPP), also based on SCCS, which can be considered as a subset of PCCS, and

given a sound and complete axiomatisation of probabilistic bisimulation for reactive

processes.

In [JS90] a weaker form of probabilistic bisimulation is introduced, namely ε-

bisimulation. Two processes are considered ε-bisimilar if their transitions differ by

at most ε. Using this weaker form the authors have investigated a possible metric

over generative probabilistic processes. However, the “metric” fails to satisfy the tri-

angle inequality except in the restricted case where processes can perform at most one

transition of any action type.

Alternative equivalences for generative PCCS [GJS90] have been introduced by Jou

and Smolka [JS90] extending the classical CSP equivalences of traces [Hoa85], failures
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[BHR84] and readies [BKO88] (see Section 3.4 for the definition of ready equivalence

over non-probabilistic processes). They show that the equivalences based on failures

and readies coincide, and all fail to be congruences over PCCS.

Tofts [Tof90] presents a version of SCCS extended with weights as opposed to

probabilities. The operational model is based on a labelled transition system in which

there exist two types of transitions: weighted and action. Hence, his model can be

regarded as a stratified model. He furthermore extends probabilistic bisimulation to

this setting and shows it to be a congruence over his calculus. Also, Hansson [Han94]

considers an extension of CCS with respect to the alternating model of [HJ90], an

extension of the reactive model so named because states alternate between having

an internal probabilistic choice or an internal choice between actions. Probabilistic

bisimulation is then extended to this setting. The resulting equivalence is shown to be

a congruence and a complete axiomatisation of the equivalence is given. It should be

noted that time is also present in his model.

Although not based on CCS, Baeten, Bergsta and Smolka [BBS92] have considered

probabilistic bisimulation over an extended version of Bergstra and Klop’s Algebra

for Communicating Processes (ACP) [BK84] to allow generative probabilistic choice.

Probabilistic bisimulation is shown to be a congruence over this calculus and also a

sound and complete axiomatisation of this equivalence is given.

As for denotational models, Baier and Kwiatkowska [BK97] have used the model of

[SL94] to give denotational semantics to the (full) calculus of CCS enriched with action-

guarded probabilistic choice. Two semantic frameworks are provided: a domain-

theoretic model which is shown to be fully abstract with respect to probabilistic

simulation [SL94] and an ultra-metric semantic model which they show to be fully

abstract with respect to probabilistic bisimulation. Both semantics are based on clas-

sical results for the non-probabilistic case, for example see [Abr87] and [AJ94] for

the domain-theoretic and [BZ82] and [AR89] for the metric space construction and

framework respectively.

2.3 Probabilistic Versions of CSP

Relating to CSP, Lowe [Low93] considers a probabilistic version of CSP, where internal

choice is replaced by internal probabilistic choice and external choice by prioritised

choice. The result is a rather complex semantic model in which all forms of choice are

probabilistic in nature.

Lowe [Low] has since considered a model which includes internal probabilistic

choice, external choice and internal choice. The model is constructed by first consid-
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ering processes as Non-deterministic-Probabilistic-Action (NPA) graphs, where NPA

graphs are graphs with three different nodes: non-deterministic, action and probabilis-

tic, and hence the three sorts of transitions processes can perform can be modelled

separately. Next Probabilistic-Action (PA) graphs are introduced and using these the

non-deterministic behaviour is factored out by considering a NPA graph as a set of PA

graphs, with each graph representing the result of the possible internal choices made.

Using these sets of PA graphs different possible equivalences over processes were con-

sidered, based on, for example, traces, failures and readies. However, each equivalence

arrived at turned out not to be a congruence over certain operators of CSP including

relabelling, and, as such, the resulting denotational model would not be compositional

(the main property sought in denotational models).

Similarly to [Low], Morgan et al. [MMSS96] also add probabilistic choice to CSP by

adding an extra operator, and therefore the original external and internal choice remain

part of their model. They give denotational semantics to this calculus by applying the

probabilistic powerdomain construction of Jones and Plotkin [JP89, Jon90] (which

is possible over any directed complete partial order) to an extended failures model

for CSP. Intuitively, they consider probabilistic processes as probability distributions

over the non-probabilistic processes of CSP, where for any probabilistic process E,

the value corresponding to any process P of CSP is the probability that E is the

process P . A problem that occurs in their model when considering certain operators

is with processes which “appear twice”. To give an example, consider the asynchronous

parallel operator of CSP, then for actions a 6= b according to the theory of CSP the

“unravelling” law for ||| is:

(a→ P ) ||| (b→ Q) =
(
a→ P ||| (b→ Q)

)
tu
(
b→ (a→ P ) |||Q

)
and we see that the processes P and Q appear only once on the left-hand side of

the equation and twice on the right. When we add probabilistic choice to the model,

probabilities of the form p on the left-hand side may become p2 on the right-hand side,

and thus the equality (or law) is lost. We note that a similar problem is encountered in

this thesis (see Section 5.7), although for different reasons. Solutions to this problem,

in their model, have been investigated in [MMSS95].

Seidel [Sei92] has constructed two probabilistic models of CSP. The difference from

the standard CSP is that an internal probabilistic choice operator replaces the internal

choice operator. In the first model the (denotational) semantics for processes is in

terms of probability measures on the space of infinite traces. For any process E and

set of traces A, [[E]]A denotes the probability of E performing a trace from the set A.
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To illustrate this construction, the prefix operator is defined as follows:

[[a→ E]]A = [[E]](prefix−1
a (A))

where prefix−1
a (A) denotes the set of traces u such that au ∈ A. Furthermore, the

probabilistic choice operator is defined as:

[[E puq F ]]A = p · [[E]]A+ q · [[F ]]A.

However, Seidel is unable to define external (deterministic) choice in her model, since

the probability of deterministic processes performing traces depends upon the envi-

ronment. To overcome this, conditional probability measures are introduced, where

if y is a trace, (|E|)(A, y) is the probability that E will perform a trace in the set A

under the condition that the environment is willing to perform the trace y and nothing

else. Using this model an external choice operator Stu, where S is a set of traces, is

introduced. Intuitively, this operator will act as its left argument if offered a trace

from S and as its right argument otherwise. This, therefore, leads to a fully determin-

istic model, since even if E and F can perform the same traces EStuF will act as E

or F depending on whether the trace is in S. Also, hiding cannot be defined in this

extended model.

2.4 Equivalences of Probabilistic Processes

In this section we discuss the properties of the equivalences mentioned above and other

equivalences over probabilistic processes. We will restrict our attention to models con-

taining internal probabilistic choice (for example, any model of reactive probabilistic

processes), as this is the model considered in this thesis. First, we believe that proba-

bilistic bisimulation of Larsen and Skou [LS91] is too fine for any model where the type

of probabilistic choice is internal, in the sense that it will distinguish processes which

are indistinguishable in a reasonable testing scenario. This arises from, as already

mentioned above, probabilistic bisimulation being influenced by the time at which

probabilistic choices occur, which we feel is unimportant, since, unlike other forms of

choice, internal probabilistic choice is made neither by the process nor by the envi-

ronment, but instead by some prescribed probability distribution. To illustrate this,

consider the simple reactive probabilistic processes given in Figure 2.2 below.

Intuitively, the process E behaves as follows: it flips a coin and then performs the

trace abc if the coin lands on heads, or the trace abd if the coin lands on tails. On
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Figure 2.2: Probabilistic bisimulation is too fine.

the other hand, the process F first performs an a transition, and then flips a coin

and performs the trace bc if the coin lands on heads, or the trace bd if the coin lands

on tails. Then, since performing an a transition before or after flipping a coin has

no effect on whether the coin lands on heads or tails, that is, the time at which the

probabilistic choice is made is unimportant, the processes should be observationally

equivalent: both perform the traces abc and abd with probability 1
2
. However, it is

straightforward to show that probabilistic bisimulation will distinguish between these

processes; this is due to the difference in their probabilistic branching behaviour, that

is, when the probabilistic choice actually occurs.

A further example illustrating the unimportance of the time at which probabilistic

choices occur is given by Morgan et al. [MMSS96], where “scratch cards” are consid-

ered. Each card comprises of a number of windows, one of which may be rubbed out

by a customer to either reveal a prize or not. There are two possible ways to imple-

ment such cards. The first is by placing prizes with a certain distribution on every

card, and thus the probabilistic choice is made by the customer when he or she chooses

which window to rub out. Alternatively, two types of cards can be printed: one kind

with no prizes at all and the other with prizes under all the windows, and therefore

in this case the probabilistic choice is made before the customer buys the card, as it

will depend on how the cards are arranged in the factory. Although the probabilistic

choices are made at different times, to the customer – if he or she is only allowed to rub

out one window – the two approaches would appear the same, and therefore the time

at which the probabilistic choice is made has no effect, and hence can be considered

unimportant.

Other equivalences that distinguish the processes given in Figure 2.2 and which

we therefore view as too fine include: Segala and Lynch’s probabilistic simulation

[SL94] and Wang Yi and Larsen’s testing equivalence [YL92], based on de Nicola and

Hennessy [NH84] testing equivalences for non-deterministic processes and defined over

Hansson and Jonsson’s [HJ90] alternating model. In Yi and Larsen’s model tests are

represented by non-deterministic (and non-probabilistic) processes, and processes can

pass tests with a set of probabilities corresponding to different internal choices made.
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They use these sets to deal with two different testing scenarios: must-testing, where

processes pass tests if the minimum probability of the process passing the test is 1, and

may-testing, where a process passes a test if the maximum probability of the process

passing the test is greater than 0.

Nevertheless, when considering models with external probabilistic choice (not con-

sidered in this thesis), the probabilistic branching structure may become important,

since the probabilistic choices the processes make depend on the choices made by the

environment.

Of equivalences that will identify the processes in Figure 2.2 there are several

based on extending traces, failures and readies by incorporating the probabilities of

processes performing traces and then refusing or accepting to then perform a certain

set of actions. Seidel [Sei92] and Lowe [Low] define equivalences for models including

an internal probabilistic choice operator based on traces and both failures and readies

respectively. Also, Jou and Smolka [JS90] have introduced equivalences for generative

process based on traces, failures and readies. We have considered these equivalences

over our reactive setting. However, we feel the resulting equivalences are too coarse:

although they do capture the probabilistic behaviour of processes (and hence do not

distinguish between the processes of Figure 2.2), they are linear-time based equiva-

lences, and therefore do not capture the branching behaviour associated with choices

other than probabilistic, such as external choice which is contained in reactive sys-

tems. We illustrate this point by the example given in Figure 2.3 below. Observe that
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Figure 2.3: Trace, failure and ready equivalence are too coarse.

E ′ can reach an intermediate state (after performing the action a with probability 1
2
)

where there is an external choice between performing a b transition followed by a d

transition, and performing a c transition followed by an e transition. In contrast, F ′

cannot reach such a state.

On the other hand, if we now consider the traces of E ′ and F ′ endowed with the

probabilities of the occurring traces, it is straightforward to show that these processes

are equivalent, and hence the equivalence of Seidel [Sei92] cannot distinguish between
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them. Similarly, if we extend ready sets [BKO88] with probabilities, where (σ, Y, p) is

a ready set of a probabilistic process if the process can perform the trace σ and is then

able only to perform the actions in Y with probability p, we observe that the ready

sets of E ′ and F ′ are equal to{
(a, {b, c}, 1) ,

(
ab, {d}, 1

2

)
,
(
ab, {f}, 1

2

)
,
(
ac, {e}, 1

2

)
,
(
ac, {g}, 1

2

)
,

(
abd, ∅, 1

2

)
,
(
abf, ∅, 1

2

)
,
(
ace, ∅, 1

2

)
,
(
acg, ∅, 1

2

)}
and hence these processes are also ready equivalent. Likewise, they will be equivalent

with respect to Jou and Smolka’s and Lowe’s versions of failures equivalence.

A different approach is introduced by Morgan et al. [MMSS96] where, similarly

to [Low], the model is based on the failures model of CSP, but instead of basing the

equivalence on how processes “make decisions”, that is, the behaviour of processes, the

authors base their equivalence on what the process “is” by intuitively considering the

probability that probabilistic processes are standard CSP processes. The equivalence

of [MMSS96] will not distinguish between the processes given in Figure 2.2. However,

we still feel that their equivalence is too fine in certain cases, which we illustrate by the

following example in which τ is used to represent internal choice. First, observe that
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Figure 2.4: Morgan et al.’s equivalence is too fine.

E ′′ can either perform the trace ab or the trace ac, both with probability 1
2
. Moreover,

no matter which internal choice F ′′ can make, the outcome will match the behaviour of

E ′′. Therefore, these processes should be observationally equivalent. However, in the

approach of Morgan et al. [MMSS96], the processes are distinguished: for example, the

probability that E ′′ is the CSP process a→ (b→ 0) is 1
2
, whereas the probability that

F ′′ is the process a → (b → 0) is 1
4

since F ′′ only becomes the process a → (b → 0)

when both instances of E ′′ in F ′′ choose to perform the trace ab.

If we return to any of the equivalences mentioned previously, it is straightforward

to show that these processes will not be distinguished, even considering probabilistic

bisimulation.
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In addition, Christoff [Chr90], Cleaveland, Smolka and Zwarico [CSZ92] and Yen

et al. [YCDS94] have adapted de Nicola and Hennessy’s testing equivalences [NH84] to

generative processes. However, as this work depends heavily on the generative nature

of processes, and hence on external probabilistic choices, they cannot be compared

with our setting in which probabilistic choices are internal.

As for results relating to probabilistic process calculi and equivalences on proba-

bilistic processes, the conclusions we reach are as follows. If one works with a fine (or

strong) equivalence over probabilistic processes, then almost all operators of CCS and

CSP can be adapted to the probabilistic setting and the equivalence will be a congru-

ence for the resulting calculus. For example, van Glabbeek et al. [GSST90] show that

probabilistic bisimulation is a congruence over their calculus PCCS (which contains

all the usual SCCS operators) and Baier and Kwiatkowska [BK97] show congruence

properties of full CCS extended with action-guarded probabilistic choice. However, as

discussed in the previous chapter, this equivalence will discriminate between processes

that have equivalent operational behaviour under a realistic testing scenario.

One alternative is to work with a weaker (or coarser) equivalence, which can be

considered more satisfactory as it will only distinguish processes that can be distin-

guished by external observations. In this case the difficulty is that only a subset of

operators can be considered if we wish to ensure our equivalence is a congruence; the

latter is an important property, since without it any resulting denotational model will

not be compositional. Examples of these difficulties are mentioned above and include

Jou and Smolka [JS90], where even restriction forces both trace and failure equivalence

to fail to be congruences, and also in [Sei92] and [Low] where hiding cannot be defined.

2.5 Logics for Probabilistic Processes

Modal and temporal logics offer a framework for reasoning about the truth of prop-

erties of systems over time. This is achieved by the introduction of modal/temporal

operators which typically express: invariance (properties will always hold), eventuality

(properties will hold at some time in the future) and precedence (one property must

hold before another one becomes true).

Temporal logics were first introduced to reason about concurrent systems by Pnueli

[Pnu77]. Since then a variety of logics have been introduced. For example, Hennessy

and Milner define a modal logic known as the Hennessy-Milner Logic (HML) [HM85] for

expressing properties of labelled transition systems. HML extends classical propositional

logic by the inclusion of the basic modal operator 〈a〉φ which holds true for a process

if it can perform an a transition such that the formula φ then holds for the resulting
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process. Hennessy and Milner have then shown that two processes are bisimilar if

and only if they satisfy the same HML formulae. Another example is Emerson, Clarke

and Sistla’s Computational Tree Logic (CTL) [CES83] which includes the temporal

operators: AXφ (φ is true in all immediately succeeding states), A[φUψ] (always φ

holds until ψ holds), EXφ there exists an immediate successor state such that φ holds)

and E[φUψ] (there exists a path such that φ holds until ψ holds).

Modal and temporal logics have been extended to the setting of probabilistic con-

current systems. The work in this area falls into two categories. The first is a qualitative

approach, where processes either satisfy a formula or they do not, that is, the formu-

lae are assigned truth values. This is achieved by either keeping the standard syntax

and requiring that formulae hold “with probability 1” (see [SPH84]), or extending the

syntax by including explicit probabilities: the formulae are of the form φp for some

p ∈ [0, 1], and are satisfied if the (non-probabilistic) formula φ holds with probability

at least p (see [Chr93, HJ94, LS91, SL94]). The alternative approach is quantitative,

where the logic is re-interpreted in the sense that instead of formulae either being true

or false they are assigned (estimates of) probabilities as their meaning (see [HK97] and

[MM]).

To illustrate the difference between the two approaches given above, we consider

Larsen and Skou’s [LS91] qualitative extension to HML and Huth and Kwiatkowska’s

[HK97] quantitative re-interpretation of the modal µ−calculus [Koz83a]. Recall that

a process satisfies the formula 〈a〉φ of HML (and of the modal µ−calculus) if it can

perform an a transition and the state reached satisfies the formula φ. Formally:

[[〈a〉φ]]P =

 true if ∃Q such that P
a−→ Q and [[φ]]Q = true

false otherwise.

Then Larsen and Skou formulate Probabilistic Modal Logic (PML) by replacing the

formula 〈a〉φ with 〈a〉µφ, where µ ∈ [0, 1]. Furthermore, a probabilistic process satisfies

this formula if it can perform an a transition with probability greater than or equal to

µ and reach a state satisfying the formula φ. Formally:

[[〈a〉µφ]]E =

 true if ∃S such that E
a−→µ′ S, µ ≤ µ′ and [[φ]]F = true ∀F ∈ S

false otherwise.

On the other hand, Huth and Kwiatkowska’s re-interpretation assigns to 〈a〉φ the

weighted sum over the values assigned to φ in the states reached by the process per-

forming an a transition. Formally:

[[〈a〉φ]]E =
∑

E
a−→λF

λ · [[φ]]F.
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If we return to the processes given in Figure 2.2, then under Larsen and Skou’s inter-

pretation the formula

φ = 〈a〉1〈b〉0·5〈c〉1true

yields [[φ]]E = false and [[φ]]F = true. On the other hand, for the formula

ψ = 〈a〉〈b〉〈c〉true

we have [[ψ]]E = [[ψ]]F = 1
2

in Huth and Kwiatkowska’s re-interpretation. In fact,

Larsen and Skou show that the equivalence induced from PML is the same as prob-

abilistic bisimulation, and Huth and Kwiatkowska show their induced equivalence is

strictly weaker. On the other hand, the induced equivalence of Huth and Kwiatkowska

is strictly finer than the equivalences for probabilistic processes based on trace, failure

or ready equivalence, for example those of Jou and Smolka [JS90]. To illustrate this,

their induced equivalence will distinguish between the processes of Figure 2.3 by means

of the formula:

〈a〉
(
〈b〉〈d〉true ∧ 〈c〉〈e〉true

)
whereas, as already stated, the equivalences based on trace, failure or ready equivalence

will not.

Christoff [Chr93] defines an extension of HML similar to [LS91] where, instead of

single probabilities, intervals of probabilities are considered. Other logics extended

to a probabilistic setting include CTL [CES83] with qualitative extensions [BCHKR97,

HJ94, Han94, Sei92] and propositional dynamic logic (PDL) [Har79] with quantitative

extensions [FH82, Koz83a, FL79].

2.6 Other Related Research

Other research into probabilistic behaviour includes Kozen [Koz81] where semantics

for a probabilistic while-language is given in terms of linear continuous operators on

partially ordered Banach spaces. Also, Jones and Plotkin [Jon90, JP89] construct

a general framework for giving domain-theoretic semantics for probabilistic program-

ming languages in terms of the so called probabilistic powerdomain. They furthermore

give semantics to a simple language containing probabilistic choice, sequential compo-

sition and while statements, but no form of external choice.



Chapter 3

Preliminary Material

This chapter will introduce the notation used and the material required to understand

the rest of the thesis. It divides into four main sections: traces, probability theory,

metric spaces and trace, failure and ready equivalences.

3.1 Traces

In this section we give a summary of the notation we use for traces and operations on

traces; for more formal definitions see for example [Hoa85].

Definition 3.1.1 (Traces) For any set A, A∗ is the set of all finite traces (= se-

quences) made up of elements of A. Furthermore, we have the following notation for

any u, v ∈ A∗, a ∈ A, n ∈ IN and B ⊆ A:

〈〉 the empty trace

au the concatenation of a with the trace u

An the set of traces with length at most n

u |̀n restriction of u to its first n symbols

u ≤ v u is a prefix of v

u |̀B the largest prefix of u such that all its elements are in the set B

u ∩ v the largest common prefix of u and v.

3.2 Probability Theory

In this section we introduce the basic concepts and definitions of probability theory

we shall need throughout this thesis. A more detailed introduction can be found in

[GW86] or any good textbook on probability theory.

21
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3.2.1 Random Experiments and Events

Games of chance such as tossing a coin or rolling a die are examples of “random

experiments”. If we pick a ball from a bag containing a number of different coloured

balls and look for the colour of this ball, this is another random experiment.

More formally, a random experiment is an experiment which has the following

properties:

• it is performed according to a set of rules that determine for each the outcome

completely

• it can be repeated arbitrarily often

• the result of each experiment depends upon “chance”, that is, the outcome or

event is beyond our control, and thus the outcome cannot be uniquely deter-

mined.

Experience has shown that most random experiments exhibit statistical regularity, that

is, the relative frequency of an outcome of an experiment in a long series of trials is

the same if we perform several of such trials. For example, classical results confirm

this for the experiment of flipping a coin, in that a head will be the outcome for half

of the experiments in any long series of trials. The relative frequency of an event for

any random experiment is called the probability of the event.

3.2.2 Conditional Probabilities and Independence

In certain cases, we may require to find the probability of an event B occurring under

the condition that an event A occurs. Formally, this is the conditional probability that

B will occur given A has occurred.

Conditional probabilities lead us to the definition of independent events: two events

A and B are independent if the probability of B occurring under the condition that A

has occurred is equal to the probability that B occurs. Furthermore, classical results

have shown that when A and B are independent, the probability that both A and B

occur is the multiplication of the probability of A occurring and the probability of B

occurring, and thus the formal definition of independence turns out to be symmetric.

3.2.3 Probability Distributions

In this thesis we need only consider discrete probability distributions which we now

define.
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Definition 3.2.1 Let D be a set. A (discrete) probability distribution on D is a

function f :D→ [0, 1] such that
∑
d∈D f(d) = 1. Furthermore, let µ(D) denote the set

of discrete probability distributions on D.

We note that as we are considering discrete probability distributions, for any set D

and f ∈ µ(D), the set s(f) = {d ∈ D | f(d) > 0} called the support of f is countable.

Definition 3.2.2 For any set D and f ∈ µ(D), f is called a point distribution if

there exists p ∈ D such that for any q ∈ D:

f(q) =

 1 if p = q

0 otherwise

and in this case we denote f by ηp (the point distribution at p).

3.3 Metric Spaces

In this section, we include some definitions and results relating to metric spaces re-

quired for the construction of our denotational semantics. For a more detailed intro-

duction to metric spaces see [Sut77] or any good textbook on metric space theory.

Definition 3.3.1 (Metric Space) Let M be a set. A map d : M ×M → IR is called

a metric and (M,d) is called a metric space if the following conditions are satisfied for

all x, y, z ∈M :

(M1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y

(M2) d(x, y) = d(y, x)

(M3) d(x, y) + d(y, z) ≥ d(x, z).

Furthermore, if (M1) is weakened to:

(M1′) d(x, y) ≥ 0 and d(x, x) = 0

then d is called a pseudo-metric and (M,d) a pseudo-metric space. On the other hand,

if (M3) is strengthened to:

(M3′) d(x, z) ≤ max{d(x, y), d(y, z)}

then d is called an ultra-metric and (M,d) an ultra-metric space.
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Definition 3.3.2 Let (M1, d1) and (M2, d2) be metric spaces. We say that (M1, d1)

and (M2, d2) are isometric if there exists a bijection φ : M1 → M2 such that for all

x, y ∈M1:

d2(φ(x), φ(y)) = d1(x, y).

We then write M1
∼= M2. When f is not a bijection, but only an injection, we call f

an isometric embedding.

Definition 3.3.3 A sequence 〈xn〉n∈IN in a metric space (M,d) converges to x, de-

noted limn→∞ xn = x, if for any ε > 0, there exists N ∈ IN such that d(xn, x) < ε for

all n ≥ N . Furthermore, a sequence is called convergent if the sequence converges to

some point.

Definition 3.3.4 (Cauchy Sequence) A sequence 〈xn〉n∈IN in a metric space (M,d)

is a Cauchy sequence if, for any ε > 0, there exists N ∈ IN such that d(xn, xm) < ε

for all m,n ≥ N .

Lemma 3.3.5 Every convergent sequence in a metric space is Cauchy.

Definition 3.3.6 A metric space (M,d) is called complete if every Cauchy sequence

in M converges to some element of M .

Theorem 3.3.7 (Metric Completion) Let (M,d) be an arbitrary (pseudo-)metric

space. Then there exists a metric space (M̂, d̂ ), called the completion of (M,d), to-

gether with an isometric embedding ı : M → M̂ such that:

(i) (M̂, d̂ ) is complete

(ii) for every complete metric space (M ′, d′) and isometric embedding  : M → M ′,

there exists a unique isometric embedding ̂ : M̂ →M ′ such that ̂ ◦ ı = .

Proof. The space (M̂, d̂ ) is constructed as the set of equivalence classes under the

equivalence relation ∼ on the set of Cauchy sequences in M is defined by:

〈xn〉n∈IN ∼ 〈yn〉n∈IN if and only if lim
n→∞

d(xn, yn) = 0

endowed with the metric:

d̂([〈xn〉n∈IN]∼, [〈yn〉n∈IN]∼) = lim
n→∞

d(xn, yn).

Furthermore, the isometric embedding ı maps every x ∈M to the equivalence class of

the Cauchy sequence of which all elements are equal to x:

ı(x) = [(x)n∈IN]∼.

It is easy to show that (M̂, d̂ ) and ı satisfy the above properties. ut
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Definition 3.3.8 (Closed Set) Let (M,d) be a metric space. A subset X ⊆ M is

called closed if every convergent sequence in X converges to a point in X.

Definition 3.3.9 (Hausdorff Distance) Let (M,d) be a metric space and let X, Y

be subsets of M . We define the Hausdorff distance between X and Y as follows:

(a) d(x, Y ) = inf y∈Y d(x, y)

(b) d(X,Y ) = max
{
supx∈Xd(x, Y ), supy∈Y d(y,X)

}
where inf ∅ = 1 and sup ∅ = 0.

Lemma 3.3.10 Let (M,d) be a metric space, and let Pc(M) be the collection of all

non-empty closed subsets of M . Then, if d is the Hausdorff distance (Pc(M), d) is a

metric space.

Definition 3.3.11 (Intervals) Let I = {[a, b] | 0 ≤ a ≤ b ≤ 1}. We now define

addition, multiplication, union and scalar multiplication on I as follows. For all

[a, b], [c, d] ∈ I and e ∈ [0, 1]:

[a, b] + [c, d] = [a+ c, b+ d]

[a, b] · [c, d] = [a · c, b · d]
[a, b] t [c, d] = [min{a, c},max{b, d}]

e · [a, b] = [e · a, e · b].

Furthermore, we introduce the orderings ≤left and ≤right and induced equivalences =left

and =right over I as follows. For all [a, b], [c, d] ∈ I:

[a, b] ≤left [c, d] if a ≤ c and [a, b] ≤right [c, d] if b ≤ d.

Proposition 3.3.12 For all finite I1, I2 ⊆ I: t[a,b]∈I1 [a, b] = t[c,d]∈I2 [c, d] if and only

if

min
[a,b]∈I1

[a, b] =left min
[c,d]∈I2

[c, d] and max
[a,b]∈I1

[a, b] =right max
[c,d]∈I2

[c, d]

where the minimum and maximum are taken with respect to the orderings ≤left and

≤right respectively.

Proof. The proof follows by Definition 3.3.11. ut

Definition 3.3.13 Let dI : I × I → [0, 1] be the map defined as follows. For all

[a1, b1], [a2, b2] ∈ I put:

dI([a1, b1], [a2, b2]) = max{|a1 − a2|, |b1 − b2|}.
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Proposition 3.3.14 The mapping dI is a metric on I.

Proof. (M1) If [a, b], [c, d] ∈ I, then by definition of dI :

dI([a, b], [c, d]) = 0 ⇔ max{|a− c|, |b− d|} = 0

⇔ |a− c| = 0 and |b− d| = 0 rearranging

⇔ a = c and b = d by definition

⇔ [a, b] = [a, c].

(M2) If [a, b], [c, d] ∈ I, then by definition of dI :

dI([a, b], [c, d]) = max{|a− c|, |b− d|}
= max{|c− a|, |d− b|} by properties of the Euclidean metric

= dI([c, d], [a, b]) by definition of dI .

(M3) If [a, b], [c, d], [e, f ] ∈ I, then by definition of dI :

dI([a, b], [c, d]) + dI([c, d], [e, f ])

= max{|a− c|, |b− d|}+ max{|c− e|, |d− f |}
≥ max{|a− c|+ |c− e|, |b− d|+ |d− f |}
≥ max{|a− e|, |b− f |} by properties of the Euclidean metric

= dI([a, b], [e, f ]) by definition of dI .

ut

Lemma 3.3.15 For all [a, b], [c, d] ∈ I, 0 ≤ dI([a, b], [c, d]) ≤ 1.

Proof. The proof follows by definition of dI . ut

Proposition 3.3.16 For all [a1, b1], [a2, b2] and [c, d] ∈ I:

(i) dI([a1, b1] · [c, d], [a2, b2] · [c, d]) ≤ dI([a1, b1], [a2, b2])

(ii) dI([a1, b1] t [c, d], [a2, b2] t [c, d]) ≤ dI([a1, b1], [a2, b2]).

Proof. If [a1, b1], [a2, b2] and [c, d] ∈ I, then by Definition 3.3.11:

dI([a1, b1] · [c, d], [a2, b2] · [c, d])
= dI([a1 · c, b1 · d], [a2 · c, b2 · d])
= max{|a1 · c− a2 · c|, |b1 · d− b2 · d|} by definition of dI

= max{|a1 − a2| · c, |b1 − b2| · d} rearranging

≤ max{|a1 − a2|, |b1 − b2|} since c, d ∈ [0, 1]

= dI([a1, b1], [a2, b2]) by definition



3.3 Metric Spaces 27

and thus the first part of the proposition holds. For the second part, by Defini-

tion 3.3.11 and the definition of dI we have:

dI([a1, b1] t [c, d], [a2, b2] t [c, d])

= dI([min{a1, c},max{b1, d}], [min{a2, c},max{b2, d}])
= max{|min{a1, c} −min{a2, c}|, |max{b1, d} −max{b2, d}|}. (3.1)

Then, considering the values of a1, a2 and c, we have the following four cases:

1. If a1, a2 ≤ c, then |min{a1, c} −min{a2, c}| = |a1 − a2|.

2. If c ≤ a1, a2, then |min{a1, c} −min{a2, c}| = |c− c| = 0 ≤ |a1 − a2|.

3. If a1 ≤ c ≤ a2, then

|min{a1, c} −min{a2, c}| = |a1 − c|
= c− a1 since a1 ≤ c

≤ a2 − a1 since c ≤ a2

= |a1 − a2| since a1 ≤ a2.

4. If a2 ≤ c ≤ a1, then by symmetry on item 3 we have

|min{a1, c} −min{a2, c}| ≤ |a1 − a2|.

Since these are all the possible cases:

|min{a1, c} −min{a2, c}| ≤ |a1 − a2|.

Furthermore, using the dual of the above, we have:

|max{b1, d} −max{b2, d}| ≤ |b1 − b2|

and substituting these facts into (3.1) we have:

dI([a1, b1] t [c, d], [a2, b2] t [c, d]) ≤ max{|a1 − a2|, |b1 − b2|}
= dI([a1, b1], [a2, b2]) by definition of dI

as required. ut

Proposition 3.3.17 If n ≥ 1 and {[ai, bi] | i ∈ {1, . . . , n}} and {[ci, di] | i ∈ {1, . . . , n}}
are subsets of I, then there exists j ∈ {1, . . . , n} such that:

dI(tni=1[ai, bi],tni=1[ci, di]) ≤ dI([aj, bj], [cj, dj]).
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Proof. If n ≥ 1 and {[ai, bi] | i ∈ {1, . . . , n}} and {[ci, di] | i ∈ {1, . . . , n}} are subsets

of I, then by Definition 3.3.11:

tni=1[ai, bi] =

[
min

i∈{1,...,n}
ai, max

i∈{1,...,n}
bi

]
and tni=1 [ci, di] =

[
min

i∈{1,...,n}
ci, max

i∈{1,...,n}
di

]

and hence:

dI(tni=1[ai, bi],tni=1[ci, di])

= max

{∣∣∣∣∣ min
i∈{1,...,n}

ai − min
i∈{1,...,n}

ci

∣∣∣∣∣ ,
∣∣∣∣∣ max
i∈{1,...,n}

bi − max
i∈{1,...,n}

di

∣∣∣∣∣
}

(3.2)

by definition of dI . Next, we show there exists k ∈ {1, . . . , n} such that:∣∣∣∣∣ min
i∈{1,...,n}

ai − min
i∈{1,...,n}

ci

∣∣∣∣∣ ≤ dI([ak, bk], [ck, dk]). (3.3)

If mini∈{1,...,n} ai ≤ mini∈{1,...,n} ci, then setting k such that ak = mini∈{1,...,n} ai:∣∣∣∣∣ min
i∈{1,...,n}

ai − min
i∈{1,...,n}

ci

∣∣∣∣∣ = min
i∈{1,...,n}

ci − min
i∈{1,...,n}

ai

= min
i∈{1,...,n}

ci − ak by definition of k

≤ ck − ak since min
i∈{1,...,n}

ci ≤ ck

= |ak − ck| since ak ≤ ck

≤ max{|ak − ck|, |bk − dk|} rearranging

= dI([ak, bk], [ck, dk]) by definition of dI .

On the other hand, if mini∈{1,...,n} ai ≥ mini∈{1,...,n} ci, then setting k such that ck =

mini∈{1,...,n} ci the result follows by symmetry on the case above. Dually, we show there

exists m ∈ {1, . . . , n} such that:∣∣∣∣∣ max
i∈{1,...,n}

bi − max
i∈{1,...,n}

di

∣∣∣∣∣ ≤ dI([am, bm], [cm, dm]) (3.4)

by setting m such that bm = maxi∈{1,...,n} bi if maxi∈{1,...,n} bi ≥ maxi∈{1,...,n} di and m

such that dm = maxi∈{1,...,n} di otherwise. Now substituting (3.3) and (3.4) into (3.2)

we have:

dI(tni=1[ai, bi],tni=1[ci, di]) ≤ max{dI(|ak, bk], [ck, dk]), dI([am, bm], [cm, dm])}
= dI([aj, bj], [cj, dj]) for some j ∈ {1, . . . , n}

as required. ut
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3.4 Trace, Failure and Ready Equivalences

Recall the definition of a labelled transition system (T,Act ,−→) given in Chapter 2.

In order to define trace, failure and ready equivalences over such a system, we first

need to introduce the following two auxiliary definitions of initial actions of processes

and the generalised action relations.

Definition 3.4.1 The set of initial actions of any P ∈ T is defined by:

initials(P ) = {a ∈ Act | ∃Q such that P
a−→ Q}.

Definition 3.4.2 The generalized action relations
σ−→ for σ ∈ Act∗ are defined in-

ductively by:

1. P
〈〉−→ P for all P ∈ T

2. P
a−→ Q with a ∈ Act implies P

a−→ Q with a ∈ Act∗

3. P
σ−→ Q

ρ−→ R implies P
σρ−→ R.

We are now in a position to introduce the following equivalences over the set of

processes T of any labelled transition system (T,Act ,−→).

Definition 3.4.3 For any P ∈ T , the set of traces traces(P ) of P is given by:

traces(P ) = {σ | ∃Q such that P
σ−→ Q}.

Definition 3.4.4 (Trace Equivalence) Let P,Q ∈ T , then P and Q are trace equiv-

alent if traces(P ) = traces(Q).

Definition 3.4.5 Let (σ,X) ∈ Act∗ × P(Act) and P ∈ T , then (σ,X) is a failure

of the process P if there exists Q ∈ T such that P
σ−→ Q and initials(Q) ∩ X = ∅.

Furthermore, let failures(P ) denote the set of failures of P .

Definition 3.4.6 (Failure Equivalence) Let P,Q ∈ T , then P and Q are failure

equivalent if failures(P ) = failures(Q).

Definition 3.4.7 Let (σ,X) ∈ Act∗ × P(Act) and P ∈ T , then (σ,X) is a ready

set of the process P if there exists Q ∈ T such that P
σ−→ Q and initials(Q) = X.

Furthermore, let readies(P ) denote the set of readies of P .

Definition 3.4.8 (Ready Equivalence) Let P,Q ∈ T , then P and Q are ready

equivalent if readies(P ) = readies(Q).



Chapter 4

Reactive Probabilistic Transition

Systems

In this chapter we introduce a model for reactive probabilistic systems based on labelled

transition systems and define appropriate operational equivalence notions.

4.1 Introduction

We begin by recalling the definition of Larsen and Skou’s probabilistic transition sys-

tems introduced in [LS91]. A probabilistic transition system is a tuple:

S = (P,Act, Can, µ)

where P is a set of processes (states), Act is a set of observable actions, Can is an

Act-indexed family of sets of processes where Cana is the set of processes capable

of performing the action a as their initial move, and µ is a family of probabilistic

distributions, µp,a : P → [0, 1], for a ∈ Act, with p ∈ Cana indicating the possible next

states and their probabilities after p has performed a, that is, µp,a(q) = λ means that

the probability that p becomes q after performing a is λ.

If we consider any p ∈ P and a ∈ Act such that p ∈ Cana then, since µp,a is a

probability distribution, the total probability of p performing the action a is 1, and

hence in the terminology of van Glabbeek et al. [GSST90], p is a reactive process.

Furthermore, since for any a ∈ Act there is at most one probability distribution

associated with p performing a, the choice between which action p performs is external.

Therefore, since we wish to model reactive processes with probabilistic, external

and internal choices we will need to extend the above model to allow for internal

30
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choice. Formally, we generalise Larsen and Skou’s transition systems as follows. First,

we introduce the following definitions.

Definition 4.1.1 (Reactiveness Condition) Let A and S be sets. Then if X ⊆
A× S, X is said to satisfy the reactiveness condition if, for any (a1, s1), (a2, s2) ∈ X,

either a1 6= a2 or (a1, s1) = (a2, s2). In other words, the set X is a partial function

from A to S.

Definition 4.1.2 (Powerset Operators) Let Pf (·) and Pf n(·) denote the powerset

operators restricted to only finite and finite non-empty subsets respectively. Further-

more, let Pf r(·× ·) and Pf nr(·× ·) denote the powerset operators restricted to only finite

and finite non-empty subsets of cartesian products satisfying the reactiveness condition

respectively.

We are now ready to introduce our generalised model. The main difference from

ordinary transition systems is that the transition relation is between states and certain

sets, with each such set representing a probabilistic processes deterministic on the first

step of its behaviour (that is, a set consisting of action-probability distribution pairs).

Definition 4.1.3 A Reactive Probabilistic Transition System is a tuple (R,Act ,→),

where R is a set of states, Act is a finite set of actions and → a transition relation

→ ⊆ R×Pf r(Act × µ(R))

satisfying: for all E ∈ R there exists S ∈ Pf r(Act × µ(R)) such that (E, S) ∈→. We

write E → S instead of (E, S) ∈→. Furthermore, (R,Act ,→) is called:

purely probabilistic if for each E ∈ R there is a unique transition E → S and

either S = ∅ or S = {(a, π)} for some a ∈ Act and π ∈ µ(R).

deterministic if for each E ∈ R there is a unique transition E → S.

non-deterministic if for each E ∈ R and S ∈ Pf r(Act × µ(R)) such that E → S,

either S = ∅ or S = {(a, π)} for some a ∈ Act and π ∈ µ(R).

Unless it is clear from the context, if R is the set of processes or states of a purely

probabilistic transition system, deterministic probabilistic transition system or non-

deterministic probabilistic transition system, we shall refer to R as Rp, Rd and Rnd

respectively.

Intuitively, any S ∈ Pf r(Act × µ(R)) should be thought of as a reactive proba-

bilistic process which is deterministic on the first step of its behaviour: either S =
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{(a1, π1), . . . , (am, πm)}, the process which makes an external choice between the ac-

tions {a1, . . . , am} and for any 1 ≤ i ≤ m and F ∈ R the probability of S performing

the action ai and then behaving as F is given by πi(F ), or S = ∅, the inactive process.

We can relate this to Larsen and Skou’s probabilistic transition systems by considering

any process p ∈ P as such a set Sp where:

Sp = {(a, µa,p) | a ∈ Act and p ∈ Cana}.

Non-determinism is introduced by allowing a choice between “deterministic” processes:

for any E ∈ R and distinct S1, S2 ∈ Pf r(Act × µ(R)), if E → S1 and E → S2, then E

makes an internal choice between continuing as the process S1 or S2. The class of all

reactive systems allows (reactive) probabilistic, external and internal choice.

We now illustrate how the states of such reactive probabilistic transition systems

can be represented graphically by means of the following examples, recall that ηE

is the point distribution at E (see Definition 3.2.2). Consider the states Ê, F̂ , Ĝ, Ĥ

of a reactive probabilistic transition system (R,Act ,→) with the following possible

transitions:

Ê → S if and only if S = {(a, 1
4
· ηĜ + 3

4
· ηĤ)}

F̂ → S if and only if S = {(b, ηĤ), (c, ηĤ)} or S = {(b, ηĤ), (d, ηĤ)}
Ĝ→ S if and only if S = {(b, ηĤ)} or S = {(c, ηĤ)}
Ĥ → S if and only if S = ∅.

Then Ê and F̂ can be represented by the graphs given in Figure 4.1 below (note that

τ is used to represent internal choices).
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Figure 4.1: Example of the states of a reactive probabilistic transition system.

4.2 Purely Probabilistic Transition Systems

Our goal is to define an operational ordering on reactive probabilistic transition sys-

tems based on testing, such that two processes will only be distinguished by the or-

dering if they have observably different behaviour. In this section we only consider an
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operational ordering over purely probabilistic transition systems. In the next sections

the ordering is respectively extended to deterministic and non-deterministic proba-

bilistic transition systems. Finally, the latter two orderings are combined to yield an

order on all reactive probabilistic transition systems.

To begin with, we introduce the set of tests referred to as Tp for purely proba-

bilistic systems. Following Milner [Mil89], we motivate the tests by means of button

pushing experiments on transition systems: we suppose we have a series of buttons,

one for every action (a ∈ Act), which act as an interface between an experimenter and

processes of the transition system as follows. For any process E of the system, if no

buttons are pressed the process E will remain in rest. However, if an experiment is

performed, that is, the a-button is pressed for some action a, the process E can react

in one of two ways:

• by performing an a action, in which case the button will go down and the ex-

periment succeeds. We are then in a position to perform an experiment on the

process reached by E performing the a action (by pressing another button).

• by not performing an a action, in which case the button will not go down and

the experiment fails.

If we consider these experiments over processes of a reactive probabilistic transition

system, they are in fact random experiments, since for any process the success of the

experiment will depend on the probabilistic choices the process performs. We can,

therefore, consider the relative frequency of experiments succeeding, that is, the prob-

ability of the experiment succeeding. Before we investigate the probabilities associated

with experiments on processes we formally define the set of tests as follows.

Definition 4.2.1 Let Tp, be the testing language defined inductively as follows:

t ::= ⊥ | a.t

where a ∈ Act.

In terms of button pushing experiments, ⊥ is the experiment where no buttons are

pressed and a.t is the experiment where we first press the a-button and, if the exper-

iment succeeds, the experiment t is then performed. One can think of elements of Tp

as tests for the occurrence of paths: ⊥ is the empty test, that is, any path can pass

the test ⊥, and a.t tests for the occurrence of paths which begin with the action a and

then pass the test t. We note that any t ∈ Tp is of the form a1 . . . an.⊥ for some n ∈ IN

with ai ∈ Act for all 1 ≤ i ≤ n, and so intuitively t is a test for paths beginning with

the sequence of actions a1 . . . an.
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If we now consider a purely probabilistic transition system (Rp,Act ,→) and E ∈
Rp, by definition there exists a unique S ∈ Pf r(Act × µ(Rp)) such that E → S and

either S = ∅ or S = {(a, π)} for some a ∈ Act and π ∈ µ(Rp). Therefore, we use E

as an abbreviation for the unique element of (Act × µ(Rp)) ∪ {∅} into which it can

evolve. We can now define a map P from Rp and Tp to the unit interval which, for

any process E ∈ Rp and test t ∈ Tp, yields the probability P(E)(t) of E passing the

test t, that is, the probability of E performing the paths that t tests for.

Definition 4.2.2 Let P : Rp → (Tp → [0, 1]) be the map defined inductively on t ∈ Tp

as follows. For any E ∈ Rp put: P(E)(⊥) = 1 and

P(E)(a.t) =


∑

F∈Rp
π(F ) · P(F )(t) if E → {(a, π)} for some π ∈ µ(Rp)

0 otherwise.

The intuition behind the map P is as follows. Firstly, P(E)(⊥) calculates the proba-

bility of E passing the test ⊥, and since any process can pass ⊥ we set this value to

1. Secondly, P(E)(a.t) calculates the probability of E performing paths which have

the initial action a and then pass the test t. If E cannot perform the action a, that

is E 6→ {(a, π)} for any π ∈ µ(Rp), then clearly E cannot perform any paths which

have the initial action a and thus we set P(E)(a.t) = 0. On the other hand, if E can

perform the action a, that is E → {(a, π)} for some π ∈ µ(Rp), then for any F ∈ Rp

the probability of E performing the action a and behaving as the process F is given

by π(F ). So supposing we have calculated the probability of F passing the test t,

that is, the value of P(F )(t), if this was the only a transition E can perform P(E)(a.t)

would be given by π(F ) · P(F )(t); however, since there may be other a transitions E

can perform, we take the weighted sum of π(F ) · P(F )(t) over all F ∈ Rp giving the

value of P(E)(a.t) in the definition of P.

Using the map P we formulate the following ordering and resultant equivalence on

processes.

Definition 4.2.3 For any E,F ∈ Rp, E vp F if P(E)(t) ≤ P(F )(t) for all t ∈ Tp.

Moreover, for any E,F ∈ Rp, E
p∼F if E vpF and F vpE.

The order vp can be understood as follows: if E vpF then any path that E performs

F can perform with a higher or equal probability, or any experiment that E can pass

F can pass with a higher or equal probability.

Lemma 4.2.4 vp is a pre-ordering over Rp.
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Proof. (i) (Reflexivity) E vpE for all E ∈ Rp follows by definition of vp.

(ii) (Transitivity) If E vpF and F vpG, then by definition for any t ∈ Tp: P(E)(t) ≤
P(F )(t) and P(F )(t) ≤ P(G)(t), and hence P(E)(t) ≤ P(G)(t). Since this was for

arbitrary t ∈ Tp, E vpG as required. ut

We now give some examples of purely probabilistic processes to illustrate the ordering

vp. First, consider the processes given in Figure 4.2 below.
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Figure 4.2: Example of the ordering vp.

We will often summarise the results of tests on processes in tables, omitting the zero

values and the trivial case of the empty test (⊥). The table for P(E1) and P(E2) on

Tp is:
t a.⊥ a.b.⊥

P(E1) 1 ε

P(E2) 1 δ

and hence if ε ≤ δ we have E1 vp E2 and if ε ≥ δ, E2 vp E1. Next consider the

processes given in Figure 4.3.
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Figure 4.3: Example of equivalent purely probabilistic processes.

Observe that for any i ∈ {1, 2, 3, 4}, both E3 and E4 can perform the actions a, then b

followed by the action ci, with probability 1
4
, and therefore to any observer they would

appear equivalent. The table summarising test results for the processes in Figure 4.3,

where i ∈ {1, 2, 3, 4}, is:

t a.⊥ a.b.⊥ a.b.ci.⊥
P(E3) 1 1 1/4

P(E4) 1 1 1/4
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and hence we have E3
p∼E4, which corresponds to the processes being equivalent under

any observation. Finally, consider the processes in Figure 4.4.

E5r
�

�
�

�=

Z
Z

Z
Z~

a
δ 1−δ

a rr
?

r
b

1r
?

r
c

1r
?

r
b

1r

E6r
?ra1

�
�

�
�=

Z
Z

Z
Z~

b
δ 1−δ

b rr
c

1r?d
1r? d

1r?
Figure 4.4: Example of equivalent purely probabilistic processes.

Then, both E5 and E6 can perform the action a, then b followed by c with probability

δ, and otherwise perform the action a, then b followed by d with probability 1− δ. For

E5 and E6 the table of test results is:

t a.⊥ a.b.⊥ a.b.c.⊥ a.b.d.⊥
P(E5) 1 1 δ 1− δ

P(E6) 1 1 δ 1− δ

and so E5
p∼E6, which corresponds to the fact that we cannot distinguish between the

behaviour of E5 and E6 by any observation made with the help of our testing language.

The reader should note that both E3 and E4, and E5 and E6, will be distinguished

by probabilistic bisimulation which opposes our view that the processes cannot be

distinguished by any observation.

4.3 Deterministic Probabilistic Transition Systems

We now consider an ordering over any deterministic probabilistic transition system.

Adding external choice adds an extra level of complexity to our model and, as a result,

we need to extend our definitions of Tp and P since otherwise the resultant ordering will

not distinguish processes that have observably different behaviour. We demonstrate

this by means of the example given in Figure 4.5.

The table for H1 and H2 and tests t ∈ Tp is:

t a.⊥ a.b.⊥ a.c.⊥
P(H1) 1 1/2 1/2

P(H2) 1 1/2 1/2

and thus H1
p∼H2 under Tp tests. However, if we consider the behaviour of H1 and H2,

we note that H1 can perform the action a with probability 1
2

and then either perform
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Figure 4.5: vp is too coarse over deterministic probabilistic processes.

the action b with probability 1 or perform the action c with probability 1 (where the

choice between these is external). In contrast, H2 cannot exhibit this behaviour.

We therefore extend Tp by allowing tests of the form (a1.t1, . . . , am.tm) which cor-

responds to the experiment involving making m copies of a process and pushing the

ai-button followed by the experiment ti on one copy of the process for each 1 ≤ i ≤ m.

We impose the restriction on these tests that ai 6= aj for all 1 ≤ i 6= j ≤ m, which

follows from the earlier discussion concerning button pushing experiments, in that we

wish to press different buttons on the different copies made of processes. This also

ensures that the tests are independent, since, for any action a process can perform,

there is a distinct probability distribution associated with the process performing this

action. Although we can add dependent tests, by removing this condition, in terms

of probability theory our testing scenario becomes unrealistic: for certain dependent

events, the probability of both events occurring in the same run will always be zero,

and therefore if we perform dependent tests realistically one of them will always fail.

For example, if we consider the random experiment of tossing a coin, the events of

heads and tails are dependent, and testing for both heads and tails will always fail,

that is, occur with probability 0.

Following this, to ease notation, we say any tests t and t′ are independent if and

only if the first step of their corresponding experiments are associated with pressing

different buttons (which is indeed the case). Furthermore, in any construction of tests

of the form (t1, . . . , tm), we require that ti and tj are independent for all 1 ≤ i 6= j ≤ m.

We now formally extend the definition of Tp as follows.

Definition 4.3.1 Let Td and Td
ω be the testing languages, with elements t and T re-

spectively, defined inductively as follows:

t ::= ⊥ | a.T
T ::= (t, . . . , t)

where a ∈ Act.

As in the case of Tp, we can consider any T ∈ Td
ω as a test for the occurrence of

certain paths, with the addition that (t1, t2) is a test for the occurrence of the paths
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that t1 and t2 test for. For example, for the tests t1 = a.c.⊥ and t2 = b.⊥, (t1, t2) tests

for the paths which have the initial actions ac and those which have the initial action

b.

Alternatively, the following examples demonstrate how Td
ω can be thought of graph-

ically: letting t1 and t2 be the tests given above, and t3 = a.⊥ and t4 = b.(c.e.⊥, d.⊥),

then (t1, t2) and (t3, t4) can be represented as follows (note that ⊥ is represented by

an open circle):
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Now for any deterministic probabilistic transition system (Rd,Act ,→) and E ∈
Rd, by definition there exists a unique S ∈ Pf r(Act × µ(Rd)) such that E → S, and

therefore any E ∈ Rd can be used as an abbreviation of the set S ∈ Pf r(Act × µ(Rd))

such that E → S. We now extend P to the set of states Rd of any deterministic

probabilistic transition system and the set of tests Td
ω, with the resulting map called

D for clarity.

Definition 4.3.2 Let D : Rd → (Td
ω → [0, 1]) be the map defined inductively on Td

ω as

follows. For any E ∈ Rd put: D(E)(⊥) = 1,

D(E)(a.T ) =


∑

F∈Rd

π(F ) · D(F )(T ) if (a, π) ∈ E for some π ∈ µ(Rd)

0 otherwise

and D(E)((t1, . . . , tm)) =
m∏
i=1

D(E)(ti).

As in the case of P, the value of D(E)(t) denotes the probability of E passing the

test t and is calculated as follows. For any test (t1, . . . , tm), we first calculate the

probability of E passing the tests ti, that is D(E)(ti), for all 1 ≤ i ≤ m, and then since

D(E)((t1, . . . , tm)) calculates the probabilities of E passing all the tests t1, . . . , tm we

multiply these probabilities to give the probability of E passing the composite test

(t1, . . . , tm). Multiplication can be used since by construction the probabilities of E

passing the tests ti and tj are independent for all 1 ≤ i 6= j ≤ m.

If we now return to Figure 4.5, we see that for T = (a.(b.⊥, c.⊥)) ∈ Td
ω:

D(H1)(T ) =
1

2
and D(H2)(T ) = 0
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and hence with the help of the tests Td
ω we can distinguish between the processes H1

and H2.

The pre-order and equivalence on purely probabilistic transition systems lift to the

following pre-order and equivalence on deterministic probabilistic transition systems.

Definition 4.3.3 For any E,F ∈ Rd, E vdF if D(E)(T ) ≤ D(F )(T ) for all T ∈ Td
ω.

Moreover, for any E,F ∈ Rd, E d∼F if E vdF and F vdE.

As in the purely probabilistic case, the order vd can be understood as follows: for any

E,F ∈ Rd, E vdF just in the case any test that E can pass, F can pass with a higher

or equal probability.

Lemma 4.3.4 For all E,F ∈ Rd, E vd F if and only if D(E)(t) ≤ D(F )(t) for all

t ∈ Td.

Proof. For the “if” direction consider any E,F ∈ Rd such that D(E)(t) ≤ D(F )(t)

for all t ∈ Td. Then for any T ∈ Td
ω, T = (t1, . . . , tm) for some independent t1, . . . , tm

and by definition of D:

D(E)(T ) =
m∏
i=1

D(E)(ti)

≤
m∏
i=1

D(F )(ti) since ti ∈ Td for all 1 ≤ i ≤ m and the hypothesis

= D(F )(T ) by definition of D

and since this was for arbitrary T ∈ Td
ω, E vd F as required. The “only if” direction

follows by definition of D and since (t) ∈ Td
ω for all t ∈ Td. ut

The lemma above implies that we need only consider the set of tests Td to investigate

properties of our ordering vd, as opposed to the larger set of tests Td
ω.

In later work we will need to consider the composition of certain tests of Td
ω which

we now define. We also introduce an important property of this composition by means

of the lemma below.

Definition 4.3.5 If T1 = (t1, . . . , tm) ∈ Td
ω and T2 = (t′1, . . . , t

′
m′) ∈ Td

ω such that T1

and T2 are independent, put T1 ‖T2 = (t1, . . . , tm, t
′
1, . . . , t

′
m′).

Lemma 4.3.6 If T1, T2 ∈ Td
ω and T1 ‖T2 is defined, then T1 ‖T2 ∈ Td

ω, and for all

E ∈ Rd: D(E)(T1 ‖T2) = D(E)(T1) · D(E)(T2).
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4.3.1 Comparisons with Larsen and Skou’s Testing Scenario

Since, as indicated above, deterministic probabilistic transition systems are equivalent

to Larsen and Skou’s probabilistic transition systems, we are now in a position to

compare our testing scenario with that of Larsen and Skou [LS91]. To do this we

first modify their definition of tests over probabilistic transition systems as given in

the introduction to this chapter to the case of deterministic probabilistic transition

systems (Rd,Act ,→). Note that they do not impose any conditions on the construct

(t, . . . , t).

Definition 4.3.7 The testing language of Larsen and Skou [LS91] is constructed from

the following syntax:

t ::= ω | a.t | (t, . . . , t)

where a ∈ Act. The tests induce the following observation sets:

Oω = {1ω}, Oa.t = {Oa} ∪ { 1a : e | e ∈ Ot} and O(t1,...,tn) = Ot1 × · · · ×Otn .

Then for any E ∈ Rd and test t, Pt,E : Ot → [0, 1] is the probability distribution

defined structurally on the possible tests t as follows:

1. Pω,E(1ω) = 1

2. Pa.t,E(Oa) =

 0 if (a, π) ∈ E for some π ∈ µ(Rd)

1 otherwise

Pa.t,E(1a : e) =


∑

F∈Rd

π(F ) · Pt,F (e) if (a, π) ∈ E for some π ∈ µ(Rd)

0 otherwise

3. P(t1,...,tn),E((e1, . . . , en)) =
n∏
i=1

Pti,E(ei).

There is a clear similarity between the above definition and the definitions of Td and

D (Definition 4.3.1 and Definition 4.3.2 respectively). Formally, we have the following

proposition.

Proposition 4.3.8 For all t ∈ Td there exists (t′t, et) such that D(E)(t) = Pt′t,E(et)

for all E ∈ Rd.

Proof. The proof is by induction on t ∈ Td. If t = ⊥, then setting (t′⊥, e⊥) = (ω, 1ω) we

have: D(E)(⊥) = Pt′⊥,E(e⊥) = 1 for all E ∈ Rd by definition of D and Definition 4.3.7.

If t = a.T for some a ∈ Act , then T = (t1, . . . , tm) for some m ≥ 1 such that

{t1, . . . , tm} ⊆ Td. If we set (t′T , eT ) = (t′t1 , . . . , t
′
tm , et1 × · · · × etm) and (t′t, et) =
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(a.t′T , 1a : eT ) then showing that D(E)(t) = Pt′t,E(et) for all E ∈ Rd follows by definition

of D and Definition 4.3.7, by first showing D(E)(T ) = Pt′T ,E(eT ) for all E ∈ Rd. ut

Intuitively, since both constructions allow tests of the form (t, . . . , t), both induce

branching time equivalences. However, there is a clear difference, in that Larsen and

Skou’s testing scenario removes the syntactic restriction of independence we impose on

our testing language. As a result, the two approaches attach a different meaning to the

phrase “the probability of a process passing a test”. In our approach, the probability

of a process passing a test corresponds to the probability of one run (or execution)

of the process passing a test, with the addition that we allow the value to correspond

to the probability of one run of a process passing a test under different conditions,

for example due to changes in the behaviour of the environment: in our setting the

probability of a process passing the test (a.T, b.T ) is the probability of some run of

the process passing the test a.T when the environment offers the action a, and the

same run passing the test b.T when the action b is offered. On the other hand, the

probability of a process passing a test in Larsen and Skou’s scenario may correspond

to more than one run of a process. To see this consider the process that flips a fair

coin (denoted by the action “flip”) and then performs the action a if the coin lands on

heads and the action b otherwise; then under Definition 4.3.7, the probability of FLIP

passing the test (flip.a.ω, flip.b.ω) and observation set (1flip : 1a : 1ω)× (1flip : 1b : 1ω)

is 1
2
· 1

2
= 1

4
, which is the probability of tossing a coin twice and the coin landing on

heads one time and tails the other, and not the probability of tossing a coin once and

it landing on heads and tails (which is zero). Hence, the outcome of a test corresponds

to more than one run of the process.

The impact of this difference is that, unlike our testing equivalences, Larsen and

Skou’s will be influenced by the time at which probabilistic choices are made. In-

tuitively, this results from allowing different experiments on the same probabilistic

choice in the same test, which we do not allow. Furthermore, using this fact and

Proposition 4.3.8, our induced equivalence is in fact coarser than Larsen and Skou’s.

Moreover, since Larsen and Skou have shown that their testing equivalence corresponds

to probabilistic bisimulation, our induced equivalence is also coarser than probabilis-

tic bisimulation . For example, Larsen and Skou’s testing scenario (and probabilistic

bisimulation) will distinguish the processes E3 and E4 in Figure 4.3, and the processes

E5 and E6 in Figure 4.4, whereas our testing scenario will not.
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4.4 Non-deterministic Probabilistic Transition Sys-

tems

If we now consider any non-deterministic probabilistic transition system (Rnd,Act ,→)

and E ∈ Rnd, then by definition we have that if E → S then S = {(a, π)} (a singleton

set) for some a ∈ A and π ∈ µ(Rnd), which to ease notation we will abbreviate to

(a, π), or S = ∅. Then, for any E ∈ Rnd, since the processes are non-deterministic

in nature, the decision as to which transition E will perform, that is, which s ∈
(Act × µ(Rnd)) ∪ {∅} such that E → s will be selected, and the probability of the

transitions occurring cannot be determined. Thus, if we perform any button pushing

experiment of the form a.T on E, the outcome of the experiment will depend on the

internal choice that E makes. Hence, we will lose any information about the discarded

choices of E.

To overcome this, we extend our tests of the form a.T to tests (|a.T |), where,

in terms of button pushing experiments, (|a.T |) is the experiment in which we make

sufficiently (finitely) many copies of a process, such that each internal choice that the

process can perform will occur in at least one of the copies made, and then we perform

the experiment a.T on each copy, that is, we press the a-button and then perform

the experiment T . We note that the above imposes a condition on the demons that

influence the internal choices processes make: any internal choice a process can make

will become possible within a finite period. Formally, we extend our testing language

to Tnd as follows.

Definition 4.4.1 Let Tnd and Tnd
ω be the testing languages, with elements t and T

respectively, defined inductively as follows:

r ::= ⊥ | a.T
t ::= (|r|)
T ::= (t, . . . , t)

where a ∈ Act.

We note that, in any construction of tests of the form (t1, . . . , tm), we still impose the

restriction that ti and tj are independent for all 1 ≤ i 6= j ≤ m, that is, the first step

of their corresponding button pushing experiments are with pressing different buttons.

The reason behind including tests of the form (t, . . . , t) in Tnd
ω will be illustrated once

we have investigated extending the map P to the non-deterministic setting, which now

follows.
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Recall that, for any process E and test t, P(E)(t) calculates the probability of

the process E passing the test t. For any E ∈ Rnd and test (|a.T |), by means of

the definition of P over purely probabilistic transition systems, we can calculate the

probability of any s ∈ (Act × µ(Rnd)) ∪ {∅} passing the test a.T where E → s.

However, since the transitions that E can perform may pass the test a.T with different

probabilities, we are unable to calculate the exact probability of E passing the test

a.T . Given the test (|a.T |) note that we will, in fact, have a set of values corresponding

to the probability of each s ∈ (Act × µ(Rnd)) ∪ {∅}, where E → s, passing the test

a.T . This leads to two possible extensions of P to non-deterministic processes: one

calculating the greatest lower bound on the probability of processes passing the tests

and the other calculating the least upper bound on the probability of processes passing

the tests; we will denote these extensions Nglb and Nlub respectively.

We note that these are the only realistic options since we are unable to take any

kind of meaningful average, since the choice is internal and so we are unable to calculate

the frequency of each choice being made; in fact, all we know is that each choice will

be made within finitely many steps. Furthermore, if we wanted to model demonic or

angelic non-determinism then we would only need to consider Nglb or Nlub respectively.

To put this another way, for any process E and test (|r|): E will always pass the

test r with a probability that is greater than or equal to Nglb(E)((|r|)) and less than

or equal to Nlub(E)((|r|)), that is, the probability of E passing the test r always falls

inside the interval

[Nglb(E)((|r|)),Nlub(E)((|r|))].

Formally, we define Nlub and Nglb as follows over the set of tests Tnd
ω .

Definition 4.4.2 Let Nglb,Nlub : Rnd → (Tnd
ω → [0, 1]) be the maps defined inductively

on Tnd
ω as follows, where we use N∗ to denote either Nlub or Nglb. For any E ∈ Rnd

put:

Nglb(E)((|r|)) = min
E→s

Nglb(s)(r), Nlub(E)((|r|)) = max
E→s

Nlub(s)(r)

and N∗(E)((t1, . . . , tm)) =
m∏
i=1

N∗(E)(ti)

where for any s ∈ (Act × µ(Rnd)) ∪ {∅} we put: N∗(s)(⊥) = 1 and

N∗(s)(a.T ) =


∑

F∈Rnd

π(F ) · N∗(F )(T ) if s = (a, π) for some π ∈ µ(Rnd)

0 otherwise.

The intuitive explanation behind the definition above follows from our discussion

above except when considering tests of the form (t1, . . . , tm). In this case, similarly to
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the deterministic case, we can use multiplication, since for any test (t1, . . . , tm) by the

restriction we have imposed the corresponding button pushing experiments of ti and

tj for any 1 ≤ i ≤ j ≤ m are associated with pressing different buttons at their first

step, and so the (bounds on the) probabilities of any process passing the tests ti and

tj are associated with different probability distributions (or zero) for all 1 ≤ i ≤ m,

and hence these values are independent.

To ease notation, since by definition Nglb(E)((|⊥|)) = Nlub(E)((|⊥|)) = 1 for all non-

deterministic probabilistic transition systems (Rnd,Act ,→) and E ∈ Rnd, we denote

any occurrence of the test (|⊥|) by ⊥ in our tables.

We now illustrate the reasoning behind including the (t1, . . . , tm) construct in our

definition of Tnd
ω by means of the example given in Figure 4.6 below, where τ is used

to denote internal choice.
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Figure 4.6: Example of non-deterministic probabilistic processes.

Consider the behaviour of F1 and F2. When F1 has performed a, either b or c are

possible, but not both. In contrast, when F2 has performed a, both b and c remain

possible. Hence, these processes have different behaviour, if we allow copies of processes

to be made during any stage of their executions, and therefore we would wish to

distinguish them under testing. However, if we calculate the nonzero values of the

maps Nlub and Nglb with respect to the processes F1 and F2, and the subset of Tnd
ω

where each test is of the form (|a1.(|a2 . . . (|am.⊥|) . . . |)|), for some {a1, . . . , am} ⊆ Act

we have:

T (|a.⊥|)
Nglb(F1) 1

Nglb(F2) 1

T (|a.⊥|) (|a.(|b.⊥|)|) (|a.(|c.⊥|)|)
Nlub(F1) 1 1 1

Nlub(F2) 1 1 1

and hence the orderings induced from Nglb and Nlub with respect to the restricted set

of tests cannot distinguish between F1 and F2. However, if instead we consider all the

tests Tnd
ω , letting T = ((|a.((|b.⊥|), (|c.⊥|))|)) ∈ Tnd

ω and calculating the values of Nlub
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with respect to t and the processes F1 and F2 allows us to obtain:

Nlub(F1)(T ) = 0 6= 1 = Nlub(F2)(T ).

Therefore, Nlub can distinguish between the processes F1 and F2 when we use the tests

Tnd
ω . On the other hand, even with the set of tests Tnd

ω , Nglb cannot distinguish between

F1 and F2. This may lead us to conclude that the ordering induced from Nlub is the

best candidate for the ordering over non-deterministic processes.

However, if we now consider the processes given in Figure 4.7 below:
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Figure 4.7: Example of non-deterministic probabilistic processes.

we see that the process F3 can perform an action a with probability 1
2
, and then

always perform an action b and terminate with probability 1. However, F4 cannot

behave in this way, and so we would wish to distinguish these processes through

testing. Calculating the non-zero values of Nlub and Nglb with respect to the processes

F3 and F4 we have:

T ((|a.⊥|)) ((|a.((|b.⊥|))|)) ((|a.((|b.((|c.⊥|))|))|)) ((|a.((|b.((|d.⊥|))|))|))
Nglb(F3) 1 1 0 0

Nglb(F4) 1 1 0 1/2

Nlub(F3) 1 1 1/2 1/2

Nlub(F4) 1 1 1/2 1/2

and thus Nglb can distinguish F3 and F4, whereas Nlub cannot.

Taking the above two examples into account, we observe that in certain cases

there will exist non-deterministic processes with differing observable behaviour which

only one of the maps Nglb and Nlub can distinguish. Therefore, to incorporate the

advantages of both, we take the intersection of the orderings induced from Nglb and

Nlub as our operational ordering over non-deterministic processes. Formally, we define

the following pre-order and equivalence on non-deterministic probabilistic transition

systems.
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Definition 4.4.3 For any E,F ∈ Rnd, E vnd F if N∗(E)(T ) ≤ N∗(F )(T ) for N∗ =

Nglb, N∗ = Nlub and for all tests T ∈ Tnd
ω . Moreover, for any E,F ∈ Rnd, E nd∼F if

E vndF and F vndE.

Similar to the deterministic case, the following lemma demonstrates why we need

only consider the set of tests Tnd, as opposed to the (larger) set of tests Tnd
ω , when

investigating properties of the ordering vnd.

Lemma 4.4.4 For all E,F ∈ Rnd, E vnd F if and only if Nglb(E)(t) ≤ Nglb(F )(t)

and Nlub(E)(t) ≤ Nlub(F )(t) for all t ∈ Tnd.

Proof. The proof is similar to that of Lemma 4.3.4. ut

We now give some examples of non-deterministic probabilistic processes to illus-

trate the ordering vnd. To begin with, consider the processes in Figure 4.8.
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JĴ








�

J
J

JĴ
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Figure 4.8: Example of the ordering vnd.

The table for Nglb and Nlub with respect to the processes F5 and F6 and Tnd is:

t (|a.⊥|) (|a.(|b.⊥|)|)
Nglb(F5) 1 ε

Nglb(F6) 1 min{ε, δ}

t (|a.⊥|) (|a.(|b.⊥|)|)
Nlub(F5) 1 ε

Nlub(F6) 1 max{ε, δ}

and therefore if ε = δ, ε > δ or ε < δ, then F5
nd∼F6, F6 vnd F5 and F5 vnd F6

respectively. In particular, the outcome of the experiment (|a.(|b.⊥|)|) on F6 can be

considered as any probability in the closed interval [min{ε, δ},max{ε, δ}].
Finally, we give an example of the induced equivalence nd∼ by means of the pro-

cesses given in Figure 4.9.

Both processes can perform an internal choice and reach a state, where for any

i ∈ {1, 2, 3, 4} the probability of performing the trace abi is either one half or zero.

Moreover, the probability of either process performing the traces abi and abj for any

i 6= j ∈ {1, 2, 3, 4} is zero, since either the processes reach a state which is unable to
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Figure 4.9: Example of equivalent non-deterministic probabilistic processes.

perform one of the traces, or the probabilities of performing the traces are dependent

(for example, the probability of tossing a coin and the coin landing on heads and tails

is zero). Summarising, this yields the tables below for Nglb and Nlub with respect to

the processes F7 and F8 and Tnd, where i ∈ {1, 2, 3, 4}:

t (|a.⊥|)
Nglb(F7) 1

Nglb(F8) 1

t (|a.⊥|) (|a.(|bi.⊥|)|)
Nlub(F7) 1 1/2

Nlub(F8) 1 1/2

and thus F7
nd∼F8, which corresponds with their observable behaviour being equivalent.

Recall that F7 and F8 will be distinguished by probabilistic bisimulation.

Before we consider arbitrary reactive probabilistic transition systems, as for the

deterministic case we introduce the definition of the composition for certain tests of

Tnd
ω and an important property of this composition.

Definition 4.4.5 If T1 = (t1, . . . , tm) ∈ Tnd
ω and T2 = (t′1, . . . , t

′
m′) ∈ Tnd

ω such that T1

and T2 are independent, put: T1 ‖T2 = (t1, . . . , tm, t
′
1, . . . , t

′
m′).

Lemma 4.4.6 If T1, T2 ∈ Tnd
ω and T1 ‖T2 is defined, then T1 ‖T2 ∈ Tnd

ω and for all

E ∈ Rnd: N∗(E)(T1 ‖T2) = N∗(E)(T1) · N∗(E)(T2).

4.5 Reactive Probabilistic Transition Systems

In this section we wish to extend the orderings vp, vd and vnd to an ordering over

arbitrary reactive probabilistic transition systems (R,Act ,→). As processes of reac-

tive probabilistic transition systems may exhibit non-deterministic behaviour, the first

step is to introduce extensions of the maps Nglb and Nlub to this setting.

The first approach we consider is simply applying the maps Nglb and Nlub defined for

non-deterministic probabilistic transition systems to reactive probabilistic transition

systems. Note that Nglb and Nlub were already constructed over transition systems

where processes exhibit non-deterministic behaviour. However, since reactive prob-

abilistic processes exhibit external choices, as well as internal, the ordering induced
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from the maps Nglb and Nlub will not distinguish certain reactive probabilistic processes

with different observable behaviour. We demonstrate this by means of an example.

Consider the processes given in Figure 4.10.
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Figure 4.10: Example of reactive probabilistic processes.

Observe that G1 can perform a transition which offers an external choice between the

actions a and b, a behaviour that G2 cannot match. Therefore, we would wish to

distinguish these processes through testing. Calculating the values of Nglb and Nlub we

have:

Nglb(G1)(t) = Nglb(G2)(t) =

 1 if t = ⊥
0 otherwise

and

Nlub(G1)(t) = Nlub(G2)(t) =

 1 if t ∈ {⊥, (|a.⊥|), (|b.⊥|), (|c.⊥|)}
0 otherwise

and thus we cannot distinguish these processes with the ordering induced from Nglb

and Nlub.

We, therefore, need to find alternatives to Nglb and Nlub, and since in the example

above the difference between the observable behaviour of processes G1 and G2 results

from differences in their external choices, we base our definition to a greater degree on

the construction of the tests Td
ω and the map D for deterministic processes, as opposed

to Nglb and Nlub. To accomplish this, we form the testing language Td
ω
′
by replacing

any test of the form (t1, . . . , tn) in Td
ω by the test (|(t1, . . . , tn)|). Then using this testing

language we now introduce the maps Dglb and Dlub as follows.

Definition 4.5.1 Let Dglb,Dlub : R → (Td
ω
′ → [0, 1]) be the maps defined inductively

on Td
ω
′
as follows where D∗ denotes either Dglb or Dlub. For any E ∈ R put:

Dglb(E)((|(t1, . . . , tn)|)) = min
E→S

Dglb(S)((t1, . . . , tn)) and

Dlub(E)((|(t1, . . . , tn)|)) = max
E→S

Dlub(S)((t1, . . . , tn))

where for any S ∈ Pf r(Act × µ(R)) put: D∗(S)(⊥) = 1,

D∗(S)((t1, . . . , tn)) =
m∏
i=1

D∗(S)(ti) and
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D∗(S)(a.T ) =


∑
F∈R

π(F ) · D∗(F )(T ) if (a, π) ∈ S for some π ∈ µ(R)

0 otherwise.

Note that, the difference between the definition of Dglb and Dlub and the definition of

Nglb and Nlub (see Definition 4.4.2), results from the difference between when the tests

of Td
ω
′

and Tnd
ω make copies of processes in order to perform different tests on each

copy: in Td
ω
′
these copies are made after processes perform internal choices, whereas

in Tnd
ω these copies are made before the internal choices.

If we return to Figure 4.10 above and consider the test T = (|(a.⊥, b.⊥)|) ∈ Td
ω
′

then using the definition above we have:

Dlub(G1)(T ) = 1 6= 0 = Dlub(G2)(T )

and thus the ordering induced from Dglb and Dlub will distinguish the processes G1 and

G2.

However, this is still unsatisfactory as we will not correctly discriminate internal

behaviour. As an example, let us return to the processes F1 and F2 given in Figure 4.6

and calculate the values of Dglb and Dlub with respect to these processes:

Dglb(F1)(t) = Dglb(F2)(t) =

 1 if t ∈ {⊥, (|(a.⊥)|)}
0 otherwise

and

Dlub(F1)(t) = Dlub(F2)(t) =

 1 if t ∈ {⊥, (|(a.⊥)|), (|(a.(|(b.⊥)|))|), (|(a.(|(c.⊥)|))|)}
0 otherwise

and thus Dglb and Dlub cannot distinguish between these processes.

The reason for the failure of the above two approaches is that reactive probabilis-

tic processes can make three types of choices: probabilistic, external and internal,

whereas in the tests of Td
ω and Tnd

ω we only have two levels of complexity, namely a.T

and (t, . . . , t). As a result, when testing reactive processes we can only capture the

behaviour associated with two of the choices processes make: a.T is a test relating to

the probabilistic behaviour of processes (since probabilistic choice is action-guarded)

and (t, . . . , t) relates to either the external or internal choices between actions that

processes make. The difference between whether (t, . . . , t) tests for external choice or

internal choice results from where (|.|) appears in the test, for example, in the first

attempt (N∗) the construct was of the form ((|r|), . . . , (|r|)) and the internal choices

were captured, whereas in the second (D∗) the construct was of the form (|t, . . . , t|) and

the external choices were captured.

Following on from this argument, we need to combine the definition of Td
ω and

Tnd
ω to allow for both constructions in order to form a set of tests that will capture
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probabilistic, external and internal choices, which we will denote by Tω. Formally, we

combine the definitions of Td
ω and Tnd

ω to the set of tests Tω as follows. We note that

we still impose the restriction on any construct of the form (t1, . . . , tm) in that for any

1 ≤ i 6= j ≤ m the first steps of their corresponding experiments are associated with

pressing different buttons. Furthermore, we introduce a separate construct [t, . . . , t]

to the syntax of our testing language Tω to distinguish the different types of tests and

apply the same restriction to it.

Definition 4.5.2 Let T and Tω, with elements t and T respectively, be the testing

languages defined inductively as follows:

r ::= ⊥ | [a.T, . . . , a.T ]

t ::= (|r|)
T ::= (t, . . . , t)

where a ∈ Act.

Combining the definition of D over deterministic probabilistic processes, and the def-

initions of Nglb and Nlub over non-deterministic probabilistic processes, we define the

maps Rglb and Rlub over reactive probabilistic transition systems. Similar to the non-

deterministic case, Rglb calculates the greatest lower bound on the probability of the

process passing the test and Rlub calculates the least upper bound on the probability

of the process passing the test. Formally, we define Rglb and Rlub as follows.

Definition 4.5.3 Let Rglb,Rlub : R → (Tω → [0, 1]) be the maps defined inductively

on Tω where R∗ stands for either Rglb or Rlub. For any E ∈ R put:

Rglb(E)((|r|)) = min
E→S

Rglb(S)(r), Rlub(E)((|r|)) = max
E→S

Rlub(S)(r)

and R∗(E)((t1, . . . , tm)) =
m∏
j=1

R∗(E)(tj)

where for any S ∈ Pf r(Act × µ(R)) and 1 ≤ i ≤ m put:

R∗(S)(⊥) = 1, R∗(S)([a1.T1, . . . , am.Tm]) =
m∏
i=1

R∗(S)(ai.Ti) and

R∗(S)(a.T ) =


∑
F∈R

π(F ) · R∗(F )(T ) if (a, π) ∈ S for some π ∈ µ(R)

0 otherwise.

The intuition behind the above calculations is similar to those for D, Nglb and Nlub,

where we note that, as a result of our restriction on the construct (t, . . . , t) and

[a.T, . . . , a.T ], multiplication can be used since the tests will be independent. We note
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that as in the non-deterministic case and to ease notation we replace all occurrences

of the test (|⊥|) by ⊥.

The pre-order and equivalence on all reactive probabilistic transition systems is

defined as follows, where for similar reasons to the non-deterministic case we take the

intersection of the orderings induced from Rglb and Rlub.

Definition 4.5.4 For any E,F ∈ R, E vglbF if Rglb(E)(T ) ≤ Rglb(F )(T ) and E vlub

F if Rlub(E)(T ) ≤ Rlub(F )(T ) for all T ∈ Tω respectively. Moreover, for any E,F ∈ R,

E vrF if E vglbF and E vlubF , and E r∼F if E vrF and F vrE.

As before, we need only consider the set of tests T since the following lemma holds

similarly to Lemma 4.3.4.

Lemma 4.5.5 For all E,F ∈ R, E vr F if and only if Rglb(E)(t) ≤ Rglb(F )(t) and

Rlub(E)(t) ≤ Rlub(F )(t) for all t ∈ T.

If we now return to Figure 4.6 for Rglb and Rlub with respect to the processes F1

and F2 and tests T:

t (|[a.⊥]|) (|[a.(|[b.⊥]|)]|) (|[a.(|[c.⊥]|)]|) (|[a.((|[b.⊥]|), (|[c.⊥]|))]|)
Rglb(F1) 1 0 0 0

Rglb(F2) 1 0 0 0

Rlub(F1) 1 1 1 0

Rlub(F2) 1 1 1 1

Similarly, returning to Figure 4.10 we have:

t (|[a.⊥]|) (|[b.⊥]|) (|[c.⊥]|) (|[a.⊥, b.⊥]|) (|[b.⊥, c.⊥]|)
Rlub(G1) 1 1 1 1 0

Rlub(G2) 1 1 1 0 1

and Rglb(G1) and Rglb(G2) are zero for all tests not equal to (|⊥|). Therefore, using the

testing language T, we can now distinguish between the processes F1 and F2 and the

processes G1 and G2.

Moreover, as the definition of the maps Rglb and Rlub are based on those of P, D, Nglb

and Nlub, by construction the ordering vr is based on the orderings vp, vd and vnd.

As a result it is straightforward to show that each of the following propositions hold

for any purely probabilistic transition system (Rp,Act ,→), deterministic probabilistic

transition system (Rd,Act ,→) and non-deterministic probabilistic transition system

(Rnd,Act ,→).
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Proposition 4.5.6 For all E,F ∈ Rp, E vpF if and only if E vrF .

Proposition 4.5.7 For all E,F ∈ Rd, E vdF if and only if E vrF .

Proposition 4.5.8 For all E,F ∈ Rnd, E vndF if and only if E vrF .

Consequently, all the examples considered so far will remain valid if vr replaces the rel-

evant equivalence or ordering. In particular, vr will distinguish between the processes

of Figure 4.6, and hence we have overcome the problems associated with the first two

attempts at extending our orderings to reactive probabilistic transition systems.

We now illustrate the ordering vr over reactive probabilistic processes by means

of the example given in Figure 4.11 below, where we have removed the probabilities

associated with transitions since all occur with probability 1.
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Figure 4.11: Example of the ordering vr.

Summarising Rglb and Rlub with respect to the processes G1, G2 and G3 and tests T

we have the tables:

t (|[a.⊥]|) (|[b.⊥]|) (|[a.⊥, b.⊥]|)
Rglb(G3) 0 0 0

Rglb(G4) 1 0 0

Rglb(G5) 1 0 0

Rglb(G6) 1 1 1

t (|[a.⊥]|) (|[b.⊥]|) (|[a⊥, b.⊥]|)
Rlub(G3) 1 0 0

Rlub(G4) 1 0 0

Rlub(G5) 1 1 1

Rlub(G6) 1 1 1

and therefore G3 vglb G4
glb∼G5 vglb G6 and G3

lub∼G4 vlub G5
lub∼G6. This gives G3 vr

G4 vrG5 vrG6, and so “more deterministic” processes are further up the ordering.

To further illustrate this point, consider the reactive processes given in Figure 4.12,

where again we remove the probabilities since all transitions occur with probability 1.
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Figure 4.12: Example of the ordering vr.

Then for the processes G7, G8 and G9 we have:

t (|[a.⊥]|) (|[b.⊥]|) (|[c.⊥]|) (|[a.⊥, b.⊥]|) (|[a.⊥, c.⊥]|) (|[b.⊥, c.⊥]|) (|[a.⊥, b.⊥, c.⊥]|)
Rglb(G7) 1 1 1 1 1 1 1

Rglb(G8) 0 0 0 0 0 0 0

Rglb(G9) 0 0 0 0 0 0 0

Rlub(G7) 1 1 1 1 1 1 1

Rlub(G8) 1 1 1 1 0 0 0

Rlub(G9) 1 1 1 0 0 0 0

and hence G9 vrG8 vrG7.

As for the deterministic and non-deterministic case, we now introduce the compo-

sition of tests, which we do for both T and Tω.

Definition 4.5.9 If (|r|) ∈ T, put r ‖⊥ = ⊥‖ r = r, and if (|r1|), (|r2|) ∈ T are such

that r1 = [a1.T1, . . . , am.Tm], r2 = [a′1.T
′
1, . . . , a

′
m.T

′
m′ ], and r1 and r2 are independent,

put

r1 ‖ r2 = [a1.T1, . . . , am.Tm, a
′
1.T

′
1, . . . , a

′
m.T

′
m′ ].

Furthermore, if T1 = (t1, . . . , tm) ∈ Tω and T2 = (t′1, . . . , t
′
m′) ∈ Tω such that T1 and T2

are independent, put:

T1 ‖T2 = (t1, . . . , tm, t
′
1, . . . , t

′
m′).

Lemma 4.5.10 If (|r1|), (|r2|) ∈ T and r1 ‖ r2 is defined, then (|r1 ‖ r2|) ∈ T and for all

S ∈ Pf r(Act × µ(R)): R∗(S)(r1 ‖ r2) = R∗(S)(r1) · R∗(S)(r2).

Lemma 4.5.11 If T1, T2 ∈ Tω and T1 ‖T2 is defined, then T1 ‖T2 ∈ Tω and for all

E ∈ R: R∗(E)(T1 ‖T2) = R∗(E)(T1) · R∗(E)(T2).

4.6 Comparisons with Alternative Equivalences

We first relate our ordering to the classical equivalences over labelled transition sys-

tems, that is, non-probabilistic processes. We accomplish this by restricting any re-

active probabilistic transition system (R,Act ,→) so that all transitions occur with
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probability one, that is in the definition of our transition relation → we restrict the

set of probability distributions µ(R) to the set of point distributions over R (see Def-

inition 3.2.2): that is the set {ηE |E ∈ R}. This then yields a transition system

equivalent to a labelled transition system of the form (S,Act ∪ {τ},−→) where τ

denotes internal choice, with the following restrictions on all P ∈ S:

(i) P
τ−→ if and only if P 6 a−→ for all a ∈ Act

(ii) if P
a−→ P ′ and P

a−→ P ′′ then P ′ = P ′′.

Considering our maps Rglb and Rlub under the above restriction, it is straightforward

to show that their type is now Rglb,Rlub : S → (Tω → {0, 1}) (the two-valued set).

As usual, since such a labelled transition system (S,Act∪{τ},−→) allows τ moves,

we generalise transition relation as follows:

Definition 4.6.1 For any P,Q ∈ S and a ∈ Act, P
a

=⇒ Q, if P (
τ−→)∗

a−→ (
τ−→)∗Q.

Using this new transition relation we reach the following proposition.

Proposition 4.6.2 For all P ∈ S, σ = a1 . . . an ∈ A∗ and X = {b1, . . . , bm} ⊆ Act,

if r = [a1.(| . . . (|[an.⊥]|) . . . |)], r′ = [a1.(| . . . (|[an.((|[b1.⊥, . . . , bm.⊥]|))]|) . . . |)] and r′′ =

[a1.(| . . . (|[an.((|[b1.⊥]|), . . . , (|[bm.⊥]|))]|) . . . |)], then:

1. σ ∈ traces(P ) if and only if Rlub(P )((|r|)) = 1.

2. there exists Q ∈ S such that P
σ

=⇒ Q and X \ initials(Q) 6= ∅ if and only if

Rlub(P )((|r|)) = 1 and min{Rlub(P )((|r′|)),Rlub(P )((|r′′|))} = 0.

3. there exists Q ∈ S such that P
σ

=⇒ Q and X ⊆ initials(Q) if and only if

max{Rlub(P )((|r′|)),Rlub(P )((|r′′|))} = 1.

Proof. The proof follows by induction on σ ∈ A∗. ut

Now comparing the third part of Proposition 4.6.2 with Hennessy’s acceptance sets

[Hen85], for any P ∈ S (using the notation from Proposition 4.6.2) the set:

{(σ,X) | (σ,X) ∈ Act∗ × Pf (Act) and max{Rlub(P )((|r′|)) = 1,Rlub(P )((|r′′|))} = 1}

corresponds to the acceptance sets of P .

Next, we compare our equivalence with the classical equivalences of CSP, namely

trace, failure and ready equivalences (see Section 3.4) over such labelled transition sys-

tems. However, we must first define these equivalences for transition systems allowing

τ moves, which we accomplish by replacing the usual transition relation −→ with the

transition relation =⇒ (see Definition 4.6.1) throughout the definitions in Section 3.4.
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Now, using Proposition 4.6.2, the definition of r∼ and of trace equivalence, it follows

that for any P,Q ∈ S, if P r∼Q then P and Q are trace equivalent. Furthermore,

when restricted to only deterministic processes it is straightforward to show, using

Proposition 4.6.2, that for any P,Q ∈ S if P r∼Q, then P and Q are also failure

and ready equivalent. However, in general this result does not hold, to illustrate this

consider the processes given in Figure 4.13 below.
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Figure 4.13: Example of processes that our equivalence cannot distinguish.

Then calculating the tables for P1 and P2 we have:

t (|[a.⊥]|) (|[b.⊥]|) (|[a.(|[c.⊥]|)]|) (|[a.(|[d.⊥]|)]|) (|[a.(|[c.⊥, d.⊥]|)]|)
Rlub(P1) 1 1 1 1 1

Rlub(P2) 1 1 1 1 1

and Rglb(P2)(t) = Rglb(P2)(t) = 0 for all t 6= ⊥, and hence P1
r∼P2. However, P1 and

P2 are neither failure nor ready equivalent, since for example:

(a, {c}) ∈ readies(P2) \ readies(P1) and (a, {d}) ∈ failures(P1) \ failures(P2).

Furthermore, if we consider the processes Q1 and Q2 given in Figure 4.14 below.
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Figure 4.14: Example of processes that failures and readies cannot distinguish.
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It is straight forward to show that these processes are failure and ready equivalent, for

example, the set of readies of Q1 and of Q2 is:

{(〈〉, {a}), (a, {b, c}), (a, {c, f}), (ab, ∅), (ac, {d}), (ac, {e}), (af, ∅), (acd, ∅), (ace, ∅)}.

However, if we consider the test t = (|[a.(|[b.⊥, c.(|[d.⊥]|)]|)]|), then Rlub(Q1)(t) = 1 6= 0 =

Rlub(Q2)(t), and hence r∼ distinguishes between the processes. Putting these results

together, clearly our equivalence is distinct from both failure and ready equivalence

defined over non-probabilistic processes.

On the other hand, for CCS type equivalences it is straightforward to show that

our equivalence is weaker than bisimulation ( b∼ ) and distinct from simulation ( s∼ ).

Intuitively, our equivalence r∼ is coarser than both bisimulation and simulation equiv-

alences, as r∼ is based on the behaviour of one run of a processes, possibly under

different conditions (that is, changes in the environment), whereas both bisimulation

and simulation equivalences are based on the the total behaviour of processes. This is

accomplished by an inductive definition, for example see the definition of bisimulation

given in Chapter 2. To illustrate this fact consider the processes given in Figure 4.15

below, where all choices are internal.
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Figure 4.15: Example of non-probabilistic processes.

As for other equivalences on probabilistic processes, it is straight forward to show
r∼ is finer than the equivalences of Seidel [Sei92], Lowe [Low] and Jou and Smolka

[JS90] for probabilistic processes, all of which are based on these classical equivalences.

To illustrate this, if we recall the processes in Figure 2.3, which we have shown not to be

distinguishable by the equivalences of [Sei92, Low] and [JS90], it can be shown that for

the test (|a.((|b.(|d.⊥|)|), (|c.(|e.⊥|)|))|) our equivalence r∼ distinguishes these processes.

Also, as mentioned in Subsection 4.3.1, probabilistic bisimulation is finer than d∼
(on deterministic reactive systems) and it follows that the same holds true for r∼ .

Furthermore, it is straightforward to show r∼ is coarser than Segala and Lynch’s

probabilistic simulation [SL94] and Yi and Larsen’s testing equivalence [YL92].

The last equivalence we compare r∼ with is Morgan et al.’s equivalence over prob-

abilistic processes [MMSS96], using as an example the processes of Figure 2.4 which

are distinguished by the equivalence of [MMSS96]. It is easy to show that r∼ does

not distinguish these processes. However, since their equivalence is based on failure

equivalence, which we have shown is distinct from r∼ in the non-probabilistic setting,

there will exist probabilistic processes which their equivalence will not distinguish but
r∼ will. Therefore, r∼ is incomparable with the equivalence of [MMSS96].

Finally, we mention two other results relating to our testing scenario. First, when

we restrict our model to only deterministic probabilistic transition systems and enrich

our tests by allowing to test for termination and for the set of initial actions of a process,

the resulting equivalence will correspond with our equivalence d∼ over deterministic

transition systems. This result appears interesting since, although in a different setting,

both Lowe [Low] and Jou and Smolka [JS90] also define different equivalences which

they then show to coincide.

Also, if we consider the equivalence derived from the map Rlub and allow dependent

tests in the construction of T, the equivalence will coincide with branching simulation

[Gla93] on non-probabilistic systems.



Chapter 5

The Process Calculus

In this chapter, we present a process calculus for reactive probabilistic processes, which

we call RP, following the construction of the operational ordering vr over reactive

probabilistic transition systems. We do this in the following four steps.

1. First we define the syntax of a purely probabilistic calculus RPp, that is, a cal-

culus where the only form of choice is (action-guarded) probabilistic choice. We

then present an operational semantics for RPp in terms of a purely probabilistic

transition system, and then investigate the properties of the ordering vp over

this calculus.

2. We then extend RPp by including an external choice operator to form the calculus

RPd, and give this calculus an operational semantics by means of a deterministic

probabilistic transition system and investigate the properties of the ordering vd

over RPd.

3. Similarly to the above, we extend RPp to form the calculus RPnd, where instead

of allowing external choice we allow internal choice.

4. We then combine the above to obtain the calculus for arbitrary reactive proba-

bilistic processes RP and give an operational semantics to this calculus by means

of a reactive probabilistic transition system, and investigate the ordering vr over

this calculus.

Intuitively, we can consider the above calculi as forming the following hierarchy:

�
��

@
@I

@
@I

�
��

RP

RPd RPnd

RPp
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5.1 Preliminaries

In this section we introduce notation that we will use in the construction of our calculus

and for investigating properties of our operational orderings over the calculus.

Definition 5.1.1 (Process Calculus Notation)

• Act is a (finite) set of actions (or labels) that processes can perform (ranged over

by a, b . . .) and, furthermore, we let B be any subset of Act.

• ∑i∈I µi is a summation over a countable index set I, where µi ∈ (0, 1] for all

i ∈ I and
∑
i∈I µi = 1.

• X is the set of process variables (ranged over by x, y . . .).

• λ is a relabelling function, that is, a function from Act to Act; we also require

that λ is bijective.

When discussing to our operational orderings we will require the notion of an action

a being in a test t, written a ∈ t. Intuitively, a is in the test t if t’s corresponding

button pushing experiment involves, at some stage, pressing the a–button. More

formally, we can define this by induction on tests, for example, for the set of tests Td

(see Definition 4.3.1) and for any a ∈ Act : a 6∈ ⊥ and a ∈ a′.(t1, . . . , tm) if a = a′, or

a ∈ ti for some 1 ≤ i ≤ m.

Furthermore, we will need to extend any relabelling function λ : Act → Act to

a function on our testing languages. Again, this can be done easily by induction on

tests, where for the testing language Td we define the extended map λ : Td → Td by

putting: λ(⊥)
def
= ⊥ and λ(a.(t1, . . . , tm))

def
= λ(a).(λ(t1), . . . , λ(tm)).

5.2 Purely Probabilistic Processes

As described above, in this section we consider a purely probabilistic process calculus

called RPp, where the only form of choice is action-guarded probabilistic choice. The

syntax, however, also includes (full synchronous) parallel composition and recursion.

Definition 5.2.1 The set of RPp expressions is given by the syntax:

F ::= x | 0 | a.∑i∈I µi.Fi | F1 ‖F2 | F |̀B | F [λ] | fixx.F.
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As usual, “0” denotes the inactive process, “F1 ‖F2” denotes parallel composition,

“F |̀B” denotes restriction, “F [λ]” denotes relabelling and “fixx.F” denotes recursion.

Furthermore, “a.
∑
i∈I µi.Fi” denotes action-guarded probabilistic choice. Observe that

prefixing is a special case of probabilistic choice: a → F and a.F (prefixing in CSP

and CCS notation respectively) are equivalent to a.1.F , meaning after a is performed

the process becomes F with probability 1.

The above syntax allows variables to occur freely in expressions. However, as

usual, we will only consider guarded and closed expressions as terms of our calculus.

Formally, we have the following definitions.

Definition 5.2.2 A variable x ∈ X is bound in any expression F ∈ RPp if and only

if every occurrence of x in F occurs within the scope of a subexpression of F of the

form fixx.F
′. If x is not bound in F then we say x is free in F .

Definition 5.2.3 A variable x ∈ X is guarded in an expression F ∈ RPp if any

occurrence of the variable x in G lies within a subexpression of the form
∑
i∈I aµi

.Gi.

Furthermore, we denote the set of guarded expressions of RPp by Gp, that is, the set

expressions without unguarded variables.

Definition 5.2.4 A closed expression or process is a term without free or unguarded

variables. We denote the set of processes of RPp by Prp.

5.2.1 Operational Semantics

We now give operational semantics for the set of processes of RPp, based on reactive

probabilistic transition systems. Since the states of a purely probabilistic transition

system (Rp,Act ,→) can be considered as elements of (Act × µ(Rp)) ∪ {∅}, we map

an element of Prp into an element of (Act × µ(Prp)) ∪ {∅} as follows.

1. O[[0]] = ∅.

2. O[[a.
∑
i∈I µi.Fi]] = (a, π) such that π(F )

def
=

∑
i∈I &
Fi=F

µi for any F ∈ Prp.

3. O[[E1 ‖E2]] = (a, π), if O[[E1]] = (a, π1) and O[[E2]] = (a, π2) for some π1, π2 ∈
µ(Prp) such that for any F ∈ Prp:

π(F )
def
=

 π1(F1) · π2(F2) if F = F1 ‖F2

0 otherwise

and O[[E1 ‖E2]] = ∅ otherwise.
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4. O[[E |̀B]] = (a, π), if O[[E]] = (a, π′) for some π′ ∈ µ(Prp) such that a ∈ B and

for any F ∈ Prp:

π(F )
def
=

 π′(F ′) if F = F ′ |̀B
0 otherwise

and O[[E |̀B]] = ∅ otherwise.

5. O[[E [λ]]] = (a, π), if O[[E]] = (b, π′) for some π′ ∈ µ(Prp) such that λ(b) = a and

for any F ∈ Prp:

π(F )
def
=

 π′(F ′) if F = F ′ [λ]

0 otherwise.

and O[[E [λ]]] = ∅ otherwise.

6. O[[fixx.E]] = O[[E{fixx.E/x}]] where E{F/x} denotes the result of changing all

free occurrences of x in E by F , with change of bound variables to avoid clashes.

The following proposition shows the semantics to be well defined.

Proposition 5.2.5 For all E ∈ Prp, either O[[E]] = ∅ or O[[E]] = (a, π) for some

a ∈ Act and π ∈ µ(Prp), that is, π is a probability distribution on the set of processes

of RPp.

Proof. The proof is by induction on the structure of E ∈ Prp.

1. If E = 0, then O[[E]] = ∅.

2. If E = a.
∑
i∈I µi.Fi, then O[[E]] = (a, π) where by definition of the transition

rules:

∑
F∈Prp

π(F ) =
∑

F∈Prp

 ∑
i∈I &
Fi=F

µi


=

∑
i∈I
µi since Fi ∈ Prp for all i ∈ I

= 1 by Definition 5.1.1

and thus π ∈ µ(Prp).

3. If E = E1 ‖E2, then either O[[E]] = ∅, or O[[E]] = (a, π) for some a ∈ Act such

that O[[E1]] = (a, π1) and O[[E2]] = (a, π2), and by induction πi ∈ µ(Prp) for
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i ∈ {1, 2}. In the second case by definition of the transition rules:

∑
F∈Prp

π(F ) =
∑

F1 ‖F2∈Prp
π1(F1) · π2(F2)

=

( ∑
F1∈Prp

π1(F1)

)
·
( ∑
F2∈Prp

π2(F2)

)
rearranging

= 1 by induction

and hence π ∈ µ(Prp).

4. If E = E ′ |̀B or E = E ′ [λ], the result follows by induction on E ′ and the

transition rules.

5. If E = fixx.E
′, thenO[[E]] = O[[E ′{fixx.E

′/x}]] and the result follows by induction

on E ′ ∈ Gp.

ut

5.2.2 RPp and the ordering vp

Using the operational semantics defined above, we now relate the ordering vp to RPp.

We first investigate the properties of the map P with respect to the processes Prp and

semantic operators of RPp. Since it follows from Proposition 5.2.5 that, for all E ∈ Prp

and t ∈ Tp, we can calculate P(O[[E]])(t), the ordering vp will be well defined on the

set {O[[E]] |E ∈ Prp}. As usual we extend the ordering vp to all guarded expressions

by means of the following definition.

Definition 5.2.6 For all F,G ∈ Gp, O[[F ]] vp O[[G]] if and only if O[[F{Ẽ/x̃}]] vp

O[[G{Ẽ/x̃}]] for all Ẽ ⊆ Prp, where the free variables of F and G are contained in the

vector of variables x̃.

With the help of the above definition, all results for the set of processes of RPp will

also hold for the guarded terms of RPp, and hence for the remainder of this chapter

we will only prove results with respect to processes. Moreover, to simplify notation,

we will denote expressions of the form P(O[[E]]) by P(E) for any E ∈ Prp, and repeat

this notation when we extend the calculus RPp and consider the maps D, N∗ and R∗.

Lemma 5.2.7 For all E1, E2 ∈ Prp and t ∈ Tp: P(E1 ‖E2)(t) = P(E1)(t) · P(E2)(t).

Proof. The proof is by induction on t ∈ Tp. If t = ⊥, then by definition of P for all

E1, E2 ∈ Prp: P(E1 ‖E2)(⊥) = 1 = 1 · 1 = P(E1)(⊥) · P(E2)(⊥).
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If t = a.t′ for some a ∈ Act , then for any E1 ‖E2 ∈ Prp we have the following two

cases to consider.

1. O[[E1 ‖E2]] = (a, π) for some π ∈ µ(Prp), and hence by definition of the transition

rules, O[[E1]] = (a, π1) and O[[E2]] = (a, π2) for some π1, π2 ∈ µ(Prp), and by

definition of P and the transition rules:

P(E1 ‖E2)(a.t
′) =

∑
F1 ‖F2∈Prp

(
π1(F1) · π2(F2)

)
· P(F1 ‖F2)(t

′)

=
∑

F1 ‖F2∈Prp

(
π1(F1) · π2(F2)

)
·
(
P(F1)(t

′) · P(F2)(t
′)
)

by induction

=

( ∑
F1∈Prp

π1(F1) · P(F1)(t
′)

)
·
( ∑
F2∈Prp

π2(F2) · P(F2)(t
′)

)
rearranging

= P(E1)(a.t
′) · P(E2)(a.t

′) by definition of P.

2. O[[E1 ‖E2]] 6= (a, π) for any π ∈ µ(Prp), then without loss of generality we can

suppose O[[E1]] 6= (a, π) for any π ∈ µ(Prp), and therefore by definition of P:

P(E1 ‖E2)(t) = 0 = 0 · P(E2)(t) = P(E1)(t) · P(E2)(t).

Since these are the only possible cases, the lemma is proved by induction on t ∈ Tp. ut

Lemma 5.2.8 For all E ∈ Prp, t ∈ Tp and B ⊆ Act :

P(E |̀B)(t) =

 0 if a ∈ t for any a ∈ Act \B
P(E)(t) otherwise.

Proof. We prove the lemma by induction on t ∈ Tp. If t = ⊥, the lemma holds by

definition of P and since a 6∈ ⊥ for any a ∈ Act .

If E |̀B ∈ Prp and t = a.t′ for some a ∈ Act , then if a′ 6∈ t for all a′ ∈ Act \ B by

definition of P and the transition rules:

P(E |̀B)(a.t′) =


∑

F∈Prp
π(F ) · P(F |̀B)(t′) if O[[E]] = (a, π) for some π ∈ µ(Prp)

0 otherwise
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=


∑

F |̀B∈Prp
π(F ) · P(F )(t′)

if O[[E]] = (a, π) for

some π ∈ µ(Prp)

0 otherwise

by induction

=


∑

F∈Prp
π(F ) · P(F )(t′)

if O[[E]] = (a, π) for

some π ∈ µ(Prp)

0 otherwise

rearranging

= P(E)(a.t′) by definition of P.

On the other hand, if a′ ∈ a.t′ for some a′ ∈ Act \B, we have the following two cases

to consider.

1. a = a′, then by definition of the transition rules, O[[E |̀B]] 6= (a, π) for any

π ∈ µ(Prp) and therefore by definition of P: P(E |̀B)(a.t′) = 0.

2. a 6= a′ and a′ ∈ t′, then by definition of P and the transition rules:

P(E |̀B)(a.t′) =


∑

F∈Prp
π(F ) · P(F |̀B)(t′) if O[[E]] = (a, π) for some π ∈ µ(Prp)

0 otherwise

=


∑

F∈Prp
π(F ) · 0 if O[[E]] = (a, π) for some π ∈ µ(Prp)

0 otherwise
by induction

= 0.

Since these are all the possible cases the lemma holds by induction. ut

Lemma 5.2.9 For all E ∈ Prp, λ and t ∈ Tp: P(E [λ])(t) = P(E)(λ−1(t)).

Proof. The proof is by induction on t ∈ Tp. The case when t = ⊥ is trivial as

λ−1(⊥) = ⊥.

If t = a.t′ for some a ∈ Act and E [λ] ∈ Prp, then by definition of P and the

transition rules P(E [λ])(a.t′) equals:

=


∑

F∈Prp
π(F ) · P(F [λ])(t′) if O[[E]] = (λ−1(a), π) for some π ∈ µ(Prp)

0 otherwise
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=


∑

F∈Prp
π(F ) · P(F )(λ−1(t′)) if O[[E]] = (λ−1(a), π) for some π ∈ µ(Prp)

0 otherwise

by induction

= P(E)(λ−1(a).λ−1(t′)) by definition of P

= P(E)(λ−1(a.t′)) by definition of λ on Tp

and thus the lemma holds by induction on n ∈ IN. ut

Lemma 5.2.10 If G ∈ Gp such that G{E/x} ∈ Prp for all E ∈ Prp, then either

O[[G{E/x}]] = ∅ for all E ∈ Prp, or there exists a ∈ Act and πG ∈ µ(RPp) such that

for any E ∈ Prp, O[[G{E/x}]] = (a, π) where for any F ∈ Prp:

π(F ) =

 πG(F ′) if F = F ′{E/x} for some F ′ ∈ RPp

0 otherwise.

Proof. The proof follows by induction on the structure of E ∈ Gp and the transition

rules. ut

Lemma 5.2.11 For any E ∈ RPp and F, F ′ ∈ Prp such that E{F/x}, E{F ′/x} ∈ Prp

and P(F )(t) ≤ P(F ′)(t) for all t ∈ Tp then: P(E{F/x})(t) ≤ P(E{F ′/x})(t) for all

t ∈ Tp.

Proof. Consider any E ∈ RPp and F, F ′ ∈ Prp such that E{F/x}, E{F ′/x} ∈ Prp and

P(F )(t) ≤ P(F ′)(t) for all t ∈ Tp. We prove the lemma by induction on the structure

of E ∈ Ep.

1. If E ∈ X , then E = x since E{F/x} ∈ Prp, and hence for any t ∈ Tp:

P(E{F/x})(t) = P(F )(t) ≤ P(F ′)(t) = P(E{F ′/x})(t)

by hypothesis.

2. If E = a.
∑
i∈I µi.Ei and t ∈ Tp, then

E{F/x} = a.
∑
i∈I
µi.(Ei{F/x}) and E{F ′/x} = a.

∑
i∈I
µi.(Ei{F ′/x})

and we have the following three cases to consider:

(a) t = ⊥, then by definition of P: P(E{F/x})(t) = 1 = P(E{F ′/x})(t).

(b) t = b.t′ and b 6= a, then P(E{F/x})(t) = 0 = P(E{F ′/x})(t) by definition

of the transition rules and P.
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(c) t = a.t′, then by definition of P and the transition rules:

P(E{F/x})(a.t′) =
∑
i∈I
µi · P(Ei{F/x})(t′)

≤ ∑
i∈I
µi · P(Ei{F ′/x})(t′) by induction

= P(E{F ′/x})(a.t′) by definition of P and

the transition rules.

3. If E = E1 ‖E2, E = E ′ |̀B or E = E ′ [λ], the result follows using induction, the

above lemmas concerning these operators and P. For example if E = E1 ‖E2,

then for any t ∈ Tp, by definition:

P((E1 ‖E2){F/x})(t) = P((E1{F/x}) ‖ (E2{F/x}))(t)
= P(E1{F/x})(t) · P(E2{F/x})(t) by Lemma 5.2.7

≤ P(E1{F ′/x})(t) · P(E2{F ′/x})(t) by induction

= P((E1{F ′/x}) ‖ (E2{F ′/x}))(t) by Lemma 5.2.7

= P((E1 ‖E2){F ′/x})(t).

4. If E = fixy.E
′, then either x = y in which case x is not free in E, therefore

E{F/x} = E{F ′/x} = E, and hence the lemma holds in this case, or y 6= x in

which case for any t ∈ Tp, since x 6= y we have P(E{F/x})(t) is equal to:

= P(fixy.(E
′{F/x}))(t)

= P(E ′{F/x}{fixy.E
′{F/x}/y})(t) by the transition rules

= P(E ′{F/x}{E{F/x}/y})(t) by definition of E

= P(E ′{E/y}{F/x})(t) rearranging since x 6= y

≤ P(E ′{E/y}{F ′/x})(t) by induction on E ′{E/y}
= P(E ′{F ′/x}{E{F ′/x}/y})(t) rearranging since x 6= y

= P(E ′{F ′/x}{fixy.E
′{F ′/x}/y})(t) by definition of E

= P(fixy.(E
′{F ′/x}))(t) by the transition rules

= P(E{F ′/x})(t) since x 6= y,

as required.

ut

Using the above lemmas we can now show that vp is a congruence over Prp by means

of the following proposition.

Proposition 5.2.12 The pre-order vp is preserved by all contexts in the language
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RPp. Formally, if we have that O[[Ei]] vpO[[Fi]] for all i ∈ I and O[[E]] vpO[[F ]], then:

O[[a.
∑
i∈I µi.Ei]] vp O[[a.

∑
i∈I µi.Fi]]

O[[E ‖G]] vp O[[F ‖G]]

O[[E |̀B]] vp O[[F |̀B]]

O[[E [λ]]] vp O[[F [λ]]]

O[[fixx.E]] vp O[[fixx.F ]].

Proof.

1. If E ′ = a.
∑
i∈I µi.Ei and F ′ = a.

∑
i∈I µi.Fi, then E ′ = (a, π) and F ′ = (a, π′)

such that for any G ∈ Prp:

π(G) =
∑
i∈I &
G=Ei

µi and π′(G) =
∑
i∈I &
G=Fi

µi. (5.1)

Considering any t ∈ Tp, either t = ⊥ and by definition of P: P(E ′)(⊥) =

P(F ′)(⊥) = 1, or t = a′.t′ for some a′ ∈ Act and t′ ∈ Tp, in which case by

definition of P:

P(E ′)(a′.t′) =


∑

G∈Prp
π(G) · P(G)(t′) if a′ = a

0 otherwise.

=


∑
i∈I
µi · P(Ei)(t

′) if a′ = a

0 otherwise.
by (5.1)

≤


∑
i∈I
µi · P(Fi)(t

′) if a′ = a

0 otherwise.
by the hypothesis

=


∑

G∈Prp
π′(G) · P(G)(t′) if a′ = a

0 otherwise.
by (5.1)

= P(F ′)(a′.t′) by definition of P.

Putting the above together we have O[[E ′]] vpO[[F ′]].

2. If E ′ = E ‖G and F ′ = F ‖G, then for any t ∈ Tp,

P(E ′)(t) = P(E)(t) · P(G)(t) by Lemma 5.2.7

≤ P(F )(t) · P(G)(t) since E vpF

= P(F ′)(t) by Lemma 5.2.7

and since this was for any t ∈ Tp, O[[E ′]] vpO[[F ′]].
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3. If E ′ = E |̀B and F ′ = F |̀B, then for any t ∈ Tp either a ∈ t for some a ∈ Act\B
and by Lemma 5.2.8: P(E ′)(t) = P(F ′)(t) = 0, or a 6∈ t for all a ∈ Act \ B and

in this case:
P(E ′)(t) = P(E)(t) by Lemma 5.2.8

≤ P(F )(t) since E vpF

= P(F ′)(t) by Lemma 5.2.8.

Then since this was for any t ∈ Tp, O[[E ′]] vpO[[F ′]].

4. If E ′ = E [λ] and F ′ = F [λ], then for any t ∈ Tp,

P(E ′)(t) = P(E)(λ−1(t)) by Lemma 5.2.9

≤ P(F ))(λ−1(t)) since E vpF

= P(F ′)(t) by Lemma 5.2.9

giving O[[E ′]] vpO[[F ′]].

5. If E ′ = fixx.E and F ′ = fixx.F , to simplify the proof we assume that E and F

have at most x as a free variable, in which case by definition E ′, F ′ ∈ Prp and

E{G′/x}, F{G′/x} ∈ Prp for all G′ ∈ Prp. Furthermore, since E vp F we have

O[[E{G′/x}]] vpO[[F{G′/x}]] for all G′ ∈ Prp by Definition 5.2.6, that is:

P(E{G′/x})(t) ≤ P(F{G′/x})(t) for all G′ ∈ Prp and t ∈ Tp. (5.2)

Now, by definition of vp, to prove O[[E ′]] vpO[[F ′]] it is sufficient to show that:

P(E ′)(t) ≤ P(F ′)(t) for all t ∈ Tp, which we prove by induction on t ∈ Tp. If

t = ⊥ the result follows by definition of P.

If t = a.t′, then by definition of the transition rules:

P(E ′)(a.t′) = P(E{E ′/x})(a.t′)
= P(E{E ′/x})(a.t′)
≤ P(F{E ′/x})(a.t′) by (5.2)

=


∑

G∈Prp
π(G) · P(G)(t′) if F{E ′/x} = (a, π) for some π ∈ µ(Prp)

0 otherwise

by definition of P
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=


∑

G∈RPp
πF (G) · P(G{E ′/x})(t′) if F{E ′/x} = (a, π) for some π ∈ µ(Prp)

0 otherwise

by Lemma 5.2.10

≤


∑

G∈RPp
πF (G) · P(G{F ′/x})(t′) if F{E ′/x} = (a, π) for some π ∈ µ(Prp)

0 otherwise

by induction and Lemma 5.2.11

≤


∑

G∈Prp
π(G) · P(G)(t′) if F{F ′/x} = (a, π) for some π ∈ µ(Prp)

0 otherwise

by Lemma 5.2.10

= P(F{F ′/x})(a.t′) by definition of P

= P(F ′)(a.t′) by the transition rules

and hence P(E ′)(t) ≤ P(F ′)(t) for all t ∈ Tp, as required.

ut

5.3 Deterministic Probabilistic Processes

In this section we extend the process calculus RPp by allowing external choice, denoted

tu, to form the process calculus RPd.

Definition 5.3.1 The set of RPd expressions is given by the syntax:

F ::= x | 0 | a.
∑
i∈I

µi.Fi | F1 tuF2 | F1 ‖F2 | F |̀B | F [λ] | fixx.F.

Again, we only consider the guarded and closed expressions of RPd, denoted Gd and

Prd respectively. As is customary, we require that the set of initial actions of E1 and

E2 are disjoint in the construct E1 tuE2, that is, init(E1) ∩ init(E2) = ∅, where, for

any E ∈ Gd, init(E) is the set of initial actions of E. Intuitively, this restriction is

needed since if we considered an external choice between two process, each having

the same action as one of its initial moves, then such a choice must degenerate to an

internal choice which we must exclude since there is no operator for internal choice

in the syntax of RPd. Formally, we have the following definition of the set of initial

actions of a process.
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Definition 5.3.2 Let init : Gd → Pf (Act) be the map defined inductively on the syntax

of RPd as follows:

init(0) = ∅
init (a.

∑
i∈I µi.Fi) = {a}

init(E1 tuE2) = init(E1) ∪ init(E2)

init(E1 ‖E2) = init(E1) ∩ init(E2)

init(E |̀B) = init(E) ∩B
init(E [λ]) = {λ(a) | a ∈ init(E)}

init(fixx.E) = init(E).

5.3.1 Operational Semantics

We give operational semantics for the processes of RPd in terms of reactive probabilistic

transition systems by mapping elements of Prd into Pf r(Act × µ(Prd)) as follows:

1. O[[0]] = ∅.

2. O[[a.
∑
i∈I µi.Fi]] = {(a, π)} such that for any F ∈ Prd: π(E)

def
=

∑
i∈I &
F=Fi

µi.

3. O[[E1 tuE2]] = O[[E1]] ∪ O[[E2]].

4. O[[E1 ‖E2]] = S, if O[[E1]] = S1 and O[[E2]] = S2 such that (a, π) ∈ S if and only

if there exists (a, πi) ∈ Si for i ∈ {1, 2} and for any F ∈ Prd:

π(F )
def
=

 π1(F1) · π2(F2) if F = F1 ‖F2

0 otherwise.

5. O[[E |̀B]] = S, if O[[E]] = S ′ such that (a, π) ∈ S if and only if (a, π′) ∈ S ′,

a ∈ B, and for any F ∈ Prd:

π(F )
def
=

 π′(F ′) if F = F ′ |̀B
0 otherwise.

6. O[[E [λ]]] = S, if O[[E]] = S ′ such that (a, π) ∈ S if and only if (λ−1(a), π′) ∈ S ′

and for any F ∈ Prd:

π(F )
def
=

 π′(F ′) if F = F ′ [λ]

0 otherwise

7. O[[fixx.E]] = O[[E{fixx.E/x}]].
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The well-definedness of the above semantics can be demonstrated by the following

proposition.

Proposition 5.3.3 For all E ∈ Prd: O[[E]] ∈ Pf r(Act × µ(Prd)).

Proof. The proof follows similarly to Proposition 5.2.5 by induction on the structure

of E ∈ Prd, with the following additional case for external choice. If E = E1 tuE2

then, by the restriction we have imposed on RPd, the transition rules and induction,

we know that init(E1) ∩ init(E2) = ∅, O[[E]] = O[[E1]] ∪ O[[E2]] and O[[E1]],O[[E2]] ∈
Pf r(Act × µ(Prd)) respectively. Combining these facts and using Proposition 5.3.4, it

follows that O[[E]] ∈ Pf r(Act × µ(Prd)) as required. ut

Furthermore, the above semantics gives the following characterisation of the mapping

init.

Proposition 5.3.4 For all E ∈ Prd: a ∈ init(E) if and only if (a, π) ∈ O[[E]] for

some π ∈ µ(Prd).

Proof. The proof follows by induction on the structure of E ∈ Prd. ut

5.3.2 RPd and the ordering vd

As for the calculus RPp, we now investigate the properties of the ordering vd over the

operators of RPd. Using the lemmas below we show that vd is a congruence over the

calculus RPd. We note that many of the proofs are simple extensions of similar lemmas

for RPp, and have therefore been omitted.

Lemma 5.3.5 For all E1, E2 ∈ Prd and t ∈ Td: D(E1 ‖E2)(t) = D(E1)(t) · D(E2)(t).

Furthermore, for all E ∈ Prd, t ∈ Td, B ⊆ Act and relabelling function λ:

D(E |̀B)(t) =

 0 if a ∈ t for any a ∈ Act \B
D(E)(t) otherwise

and D(E [λ])(t) = D(E)(λ−1(t)).

Lemma 5.3.6 For all E,F ∈ Prd such that E tuF ∈ Prd and t ∈ Td:

D(E tuF )(t) = max{D(E)(t), D(F )(t)}.

Proof. Consider any E,F ∈ Prd such that E tuF ∈ Prd and t ∈ Td, then either t = ⊥
and the lemma holds by definition of D, or t is of the form a.T for some a ∈ Act .

In the second case, depending on whether a is a member of init(E) or init(F ), since

by the definition of RPd, init(E) ∩ init(F ) = ∅, we have the following three cases to

consider:
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1. a 6∈ init(E) ∪ init(F ), then using Proposition 5.3.4, (a, π) 6∈ O[[E]] and (a, π) 6∈
O[[F ]] for any π ∈ µ(Prd), and since O[[E tuF ]] = O[[E]] ∪ O[[F ]] by definition of

D: D(E tuF )(t) = max{D(E)(t), D(F )(t)} = 0.

2. a ∈ init(E) and a 6∈ init(F ), then similarly to the above, D(F )(t) = 0. Further-

more, since a ∈ init(E), using Proposition 5.3.4 there exists (a, π) ∈ O[[E]] for

some π ∈ µ(Prp), and since O[[E tuF ]] = O[[E]] ∪ O[[F ]] by definition of D:

D(E tuF )(t) = D(E)(t) = max{D(E)(t), 0} = max{D(E)(t), D(F )(t)}.

3. a ∈ init(F ) and a 6∈ init(E), then by symmetry on item 2:

D(E tuF )(t) = max{D(E)(t), D(F )(t)}.

Then since these are the only possible cases the proof is complete. ut

Lemma 5.3.7 If G ∈ Gd such that G{E/x} ∈ Prd for all E ∈ Prd, then there

exists SG ∈ Pf r(Act × µ(RPd)) such that for any E ∈ Prp, O[[G{E/x}]] = ∅ if

and only if SG = ∅ and O[[G{E/x}]] = {(a1, π1), . . . , (am, πm)} if and only if SG =

{(a1, π
1
G), . . . , (am, π

m
G )} where for any F ∈ Prd and i ∈ {1, . . . ,m}:

πi(F ) =

 πiG(F ′) if F = F ′{E/x} for some F ′ ∈ RPd

0 otherwise.

Lemma 5.3.8 For any E ∈ RPd and F, F ′ ∈ Prd such that E{F/x}, E{F ′/x} ∈ Prd

and D(F )(t) ≤ D(F ′)(t) for all t ∈ Td then: D(E{F/x})(t) ≤ D(E{F ′/x})(t) for all

t ∈ Td.

Proposition 5.3.9 The pre-order vd is preserved by all contexts in the language RPd.

Formally, if we have that Ei vdFi for all i ∈ I and E vdF , then:

O[[a.
∑
i∈I µi.Ei]] vd O[[a.

∑
i∈I µi.Fi]]

O[[E tuG]] vd O[[F tuG]]

O[[E ‖G]] vd O[[F ‖G]]

O[[E |̀B]] vd O[[F |̀B]]

O[[E [λ]]] vd O[[F [λ]]]

O[[fixx.E]] vd O[[fixx.F ]].
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Proof. The proof follows the same arguments as that of Proposition 5.2.12, with

the additional clause for external choice, which we now prove. If E ′ = E tuG and

F ′ = F tuG, then for any t ∈ Td:

D(E ′)(t) = max{D(E)(t), D(G)(t)} by Lemma 5.3.6

≤ max{D(F )(t), D(G)(t)} since E vdF

= D(F ′)(t) by Lemma 5.3.6

and since this was for any t ∈ Td, O[[E ′]] vdO[[F ′]] as required. ut

5.4 Non-deterministic Probabilistic Processes

In this section, we extend the syntax of the process calculus RPp to RPnd by allowing

internal choice (denoted u ) as follows.

Definition 5.4.1 The set of RPnd expressions is given by the syntax:

F ::= x | 0 | a.
∑
i∈I

µi.Fi | F1 uF2 | F1 ‖F2 | F |̀B | F [λ] | fixx.F.

As before, we only consider the set of guarded expressions and processes of RPnd,

denoted Gnd and Prnd respectively.

5.4.1 Operational Semantics

We give operational semantics for RPnd in terms of reactive probabilistic transition

systems. We take Prnd as the set of states and define the transition relation → ⊆
Prnd×(Act×µ(Prnd))∪{∅} as the smallest relation satisfying the following conditions:

1. O[[0]] → ∅.

2. O[[a.
∑
i∈I µi.Fi]] → (a, π) such that for any F ∈ Prnd: π(F )

def
=

∑
i∈I &
F=Fi

µi.

3. O[[E1 uE2]] → s, if O[[E1]] → s or O[[E2]] → s.

4. O[[E1 ‖E2]] → ∅, if O[[E1]] → (a1, π1) and O[[E2]] → (a2, π2) such that a1 6= a2,

or either O[[E1]] → ∅ or O[[E2]] → ∅.

5. O[[E1 ‖E2]] → (a, π), if O[[E1]] → (a, π1) and O[[E2]] → (a, π2) such that for any

F ∈ Prnd:

π(F )
def
=

 π1(F1) · π2(F2) if F = F1 ‖F2

0 otherwise.
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6. O[[E |̀B]] → ∅, if O[[E]] → (a, π) such that b ∈ Act \B, or O[[E]] → ∅.

7. O[[E |̀B]] → (a, π), if O[[E]] → (a, π′) such that a ∈ B and for any F ∈ Prnd:

π(F )
def
=

 π′(F ′) if F = F ′ |̀B
0 otherwise.

8. O[[E [λ]]] → ∅, if O[[E]] → ∅.

9. O[[E [λ]]] → (a, π), if O[[E]] → (λ−1(a), π′) such that for any F ∈ Prnd:

π(F )
def
=

 π′(F ′) if F = F ′ [λ]

0 otherwise

10. O[[fixx.E]] → s, if O[[E{fixx.E/x}]] → s.

Proposition 5.4.2 If E ∈ Prnd and O[[E]] → s, then s ∈ (Act × µ(Prnd)) ∪ {∅}.

5.4.2 RPnd and the ordering vnd

Recall that the ordering vnd on non-deterministic probabilistic processes is based on

the mappings Nlub and Nglb. We now investigate the properties of Nlub and Nglb with

respect to the operators of RPnd. In the lemmas below we suppose N∗ denotes both

Nglb and Nlub and, similarly to the case for D, when the proofs are simple extensions

of those relating P and RPp they are omitted.

Lemma 5.4.3 For all E1, E2 ∈ Prnd, t ∈ Tnd:

(i) Nglb(E1 ‖E2)(t) = Nglb(E1)(t) · Nglb(E2)(t)

(ii) Nlub(E1 ‖E2)(t) = Nlub(E1)(t) · Nlub(E2)(t).

Proof. We only consider the case for Nglb; the case for Nlub follows similarly. The

lemma is proved by induction on t ∈ Tnd. If t ∈ Tnd, then t is of the form (|r|). First,

if we consider any s1, s2 ∈ (Act × µ(Prnd)) ∪ {∅}, then returning to the operational

semantics of the operator ‖ for RPp and replacing µ(Prp) by µ(Prnd), we reach a

definition of s1||s2. Using this we obtain:

Nglb(s1 ‖ s2)(r) = Nglb(s1)(r) · Nglb(s2)(r) (5.3)

following the arguments in the inductive step of Lemma 5.2.7. Next, consider any

E1, E2 ∈ Prnd, then by comparing the definition of s1||s2 for any s1, s2 ∈ (Act ×
µ(Prnd)) with the operational semantics for ‖ in RPnd we have:

O[[E1 ‖E2]] → s ⇔ O[[E1]] → s1 and O[[E2]] → s2 such that s = s1||s2. (5.4)
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Now, by definition of Nglb we have Nglb(E1 ‖E2)((|r|)) is equal to:

= min{Nglb(s)(r) | O[[E1 ‖E2]] → s}
= min{Nglb(s1 ‖ s2)(r) | O[[E1]] → s1 & O[[E2]] → s2} by (5.4)

= min{Nglb(s1)(r) · Nglb(s2)(r) | O[[E1]] → s1 & O[[E2]] → s2} by (5.3)

= (min{Nglb(s1)(r) | O[[E1]] → s1}) · (min{Nglb(s2)(r) | O[[E2]] → s2})
rearranging

= Nglb(E1)((|r|)) · Nglb(E2)((|r|)) by definition of Nglb

and hence the lemma holds for Nglb by induction. ut

Lemma 5.4.4 For all E ∈ Prnd, t ∈ Tnd, B ⊆ Act and λ:

N∗(E |̀B)(t) =

 0 if a ∈ t for any a ∈ Act \B
N∗(E)(t) otherwise

and N∗(E [λ])(t) = N∗(E)(λ−1(t)).

Lemma 5.4.5 For all E,F ∈ Prnd and t ∈ Tnd:

(i) Nglb(E uF )(t) = min{Nglb(E)(t), Nglb(F )(t)}
(ii) Nlub(E uF )(t) = max{Nlub(E)(t), Nlub(F )(t)}.

Proof. We only prove the case for Nglb as the case for Nlub follows similarly. Consider

any E,F ∈ Prnd and t ∈ Tnd, then by definition of Tnd, t is of the form (|r|), and hence

by definition of Nglb:

Nglb(E uF )(t) = min{Nglb(s)(r) | O[[E uF ]] → s}
= min{Nglb(s)(r) | O[[E]] → s and O[[F ]] → s} by the transition rules

= min{min{Nglb(s)(r) | O[[E]] → s}, min{Nglb(s)(r) | O[[F ]] → s}
rearranging

= min{Nglb(E)(t), Nglb(F )(t)} by definition of Nglb.

ut

Lemma 5.4.6 If G ∈ Gnd such that G{E/x} ∈ Prnd for all E ∈ Prnd, then there

exists a set SG ⊆ (Act ×µ(RPnd))∪{∅} such that for any E ∈ Prnd, O[[G{E/x}]] → ∅
if and only if ∅ ∈ SG and O[[G{E/x}]] → (a, π) if and only if (a, πG) ∈ SG where for

any F ∈ Prnd:

π(F ) =

 πG(F ′) if F = F ′{E/x} for some F ′ ∈ RPnd

0 otherwise.
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Lemma 5.4.7 For any E ∈ RPnd and F, F ′ ∈ Prnd such that E{F/x}, E{F ′/x} ∈
Prnd and Nlub(F )(t) ≤ Nlub(F

′)(t) for all t ∈ Tnd then:

Nlub(E{F/x})(t) ≤ Nlub(E{F ′/x})(t) for all t ∈ Tnd.

Proposition 5.4.8 The pre-order vnd is preserved by all contexts in the language

RPnd. Formally, if we have that Ei vndFi for all i ∈ I and E vndF , then:

O[[a.
∑
i∈I µi.Ei]] vnd O[[a.

∑
i∈I µi.Fi]]

O[[E uG]] vnd O[[F uG]]

O[[E ‖G]] vnd O[[F ‖G]]

O[[E |̀B]] vnd O[[F |̀B]]

O[[E [λ]]] vnd O[[F [λ]]]

O[[fixx.E]] vnd O[[fixx.F ]].

Proof. The proof follows similarly to the cases for RPp and RPd. ut

5.5 Reactive Probabilistic Processes

We now give the syntax of the calculus RP, combining RPd and RPnd as follows.

Definition 5.5.1 The set of RP expressions is given by the syntax:

F ::= x | 0 | a.
∑
i∈I

µi.Fi | F1 tuF2 | F1 uF2 | F1 ‖F2 | F |̀B | F [λ] | fixx.F.

Again we only consider the guarded expressions and processes (closed terms) of RP,

which we denote G and Pr respectively. Note that we do not restrict when the construct

E1 tuE2 appears in RP since, unlike RPd, RP also contains internal choice.

5.5.1 Operational Semantics

We give operational semantics for RP based on reactive probabilistic transition sys-

tems, where the states are Pr and → ⊆ Pr×Pf r(Act × µ(Pr)) is the smallest relation

satisfying the following conditions:

1. O[[0]] → ∅.

2. O[[a.
∑
i∈I µi.Fi]] → {(a, π)} such that for any F ∈ Pr: π(F )

def
=

∑
i∈I
Fi=F

µi.

3. O[[E1 tuE2]] → S, if O[[E1]] → S1 and O[[E2]] → S2 such that S is a maximal

reactive subset of S1 ∪ S2.
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4. O[[E1 uE2]] → S, if O[[E1]] → S or O[[E2]] → S.

5. O[[E1 ‖E2]] → S, if O[[E1]] → S1 and O[[E2]] → S2 such that (a, π) ∈ S if and

only if (a, πi) ∈ Si for i ∈ {1, 2}, and for any F ∈ Pr:

π(F )
def
=

 π1(F1) · π2(F2) if F = F1 ‖F2

0 otherwise.

6. O[[E |̀B]] → S, if O[[E]] → S ′ such that (a, π) ∈ S if and only if (a, π′) ∈ S ′,

a ∈ B and for any F ∈ Pr:

π(F )
def
=

 π′(F ′) if F = F ′ |̀B
0 otherwise.

7. O[[E [λ]]] → S, if O[[E]] → S ′ such that (a, π) ∈ S if and only if (λ−1(a), π′) ∈ S ′

and for any F ∈ Pr:

π(F )
def
=

 π′(F ′) if F = F ′ [λ]

0 otherwise.

8. O[[fixx.E]] → S, if O[[E{fixx.E/x}]] → S.

With the exception of the rule for tu, all the above transition rules are in agreement

with those given in the subcalculi discussed earlier. We illustrate the rule for tu by

means of the following examples. First, if O[[E1]] → {(a, π)} and O[[E2]] → {(b, π′)}
and a 6= b, then from the transition rules above O[[E1 tuE2]] → {(a, π), (b, π′)}, and

hence O[[E1 tuE2]] makes an external choice between the actions a and b. As a second

example, suppose O[[E1]] → {(a, π), (c, π1)} and O[[E2]] → {(b, π′), (c, π2)} for some

distinct actions a, b and c, then O[[E1 tuE2]] → {(a, π), (b, π′), (c, πi)} for i ∈ {1, 2},
and thus O[[E1 tuE2]] makes an external choice between the actions a, b and c, but

there is an internal choice between the distributions π1 and π2 when performing the

action c, that is, external choice degenerates to internal choice when processes can

perform the same action as their initial move.

We show that the above semantics is well-defined by means of the following propo-

sition.

Proposition 5.5.2 If E ∈ Pr and O[[E]] → S, then S ∈ Pf r(Act × µ(Pr)).
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5.5.2 RP and the ordering vr

As for the case of RPnd, to relate the ordering vr to the operational semantics of RP,

we first consider the mappings Rlub and Rglb. We arrive at the following lemmas with

proofs similar to the cases for RPp, RPd and RPnd, where R∗ denotes both Rglb and Rlub.

Lemma 5.5.3 For all E1, E2 ∈ Pr and t ∈ T:

(i) Rglb(E1 uE2)(t) = min{Rglb(E1)(t), Rglb(E2)(t)}
(ii) Rlub(E1 uE2)(t) = max{Rlub(E1)(t), Rlub(E2)(t)}

(iii) Rglb(E1 ‖E2)(t) = Rglb(E1)(t) · Rglb(E2)(t)

(vi) Rlub(E1 ‖E2)(t) = Rlub(E1)(t) · Rlub(E2)(t).

Furthermore, for any E ∈ Pr, t ∈ T, B ⊆ Act and relabelling function λ:

R∗(E |̀B)(t) =

 0 if a ∈ t for any a ∈ Act \B
R∗(E)(t) otherwise.

and R∗(E [λ])(t) = R∗(E)(λ−1(t)).

Lemma 5.5.4 If G ∈ G such that G{E/x} ∈ Pr for all E ∈ Pr, then there ex-

ists a set SG ⊆ Pf r(Act × µ(RP)) such that for any E ∈ Pr, O[[G{E/x}]] → ∅
if and only if ∅ ∈ SG and O[[G{E/x}]] → {(a1, π1), . . . , (am, πm)} if and only if

{(a1, π
1
G), . . . , (am, π

m
G )} ∈ SG where for any 1 ≤ i ≤ m and F ∈ Pr:

πi(F ) =

 πiG(F ′) if F = F ′{E/x} for some F ′ ∈ RP

0 otherwise.

Lemma 5.5.5 For any E ∈ RP and F, F ′ ∈ Pr such that E{F/x}, E{F ′/x} ∈ Pr

and Rglb(F )(t) ≤ Rglb(F
′)(t) for all t ∈ T then:

Rglb(E{F/x})(t) ≤ Rglb(E{F ′/x})(t) for all t ∈ T.

Lemma 5.5.6 For any E ∈ RP and F, F ′ ∈ Pr such that E{F/x}, E{F ′/x} ∈ Pr

and Rlub(F )(t) ≤ Rlub(F
′)(t) for all t ∈ T then:

Rlub(E{F/x})(t) ≤ Rlub(E{F ′/x})(t) for all t ∈ T.

Lemma 5.5.7 For all E,F ∈ Pr, O[[E]] vglbO[[F ]] if and only if for any (|r|) ∈ T and

S ′ ∈ Pf r(Act × µ(Pr)) such that O[[F ]] → S ′ there exists S ′′ ∈ Pf r(Act × µ(Pr)) such

that O[[E]] → S ′′ and Rglb(S
′)(r) ≥ Rglb(S

′′)(r).
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Proof. First, if E,F ∈ Pr and O[[E]] vglb O[[F ]], then for any (|r|) ∈ T and S ′ ∈
Pf r(Act × µ(Pr)) such that O[[F ]] → S ′:

Rglb(S
′)(r) ≥ min{Rglb(S)(r) | O[[F ]] → S}

= Rglb(F )((|r|)) by definition of Rglb

≥ Rglb(E)((|r|)) since E vglbF

= min{Rglb(S)(r) | O[[E]] → S} by definition of Rglb

= Rglb(S
′′)(r) for some O[[E]] → S ′′

and since this was for any (|r|) ∈ T and S ′ ∈ Pf r(Act × µ(Pr)) such that O[[F ]] → S ′,

the “if” direction holds.

Second, suppose for any (|r|) ∈ T and S ′ ∈ Pf r(Act × µ(Pr)) such that O[[F ]] → S ′

there exists S ′′ ∈ Pf r(Act×µ(Pr)) such that O[[E]] → S ′′ and Rglb(S
′)(r) ≥ Rglb(S

′′)(r).

Then, Rglb(F )((|r|)) equals:

= min{Rglb(S)(r) | O[[F ]] → S} by definition of Rglb

= Rglb(S
′)(r) for some S ′ ∈ Pf r(Act × µ(Pr))

such that F → S ′

≥ Rglb(S
′′)(r) for some S ′′ ∈ Pf r(Act × µ(Pr))

such that O[[E]] → S ′′ by hypothesis

≥ min{Rglb(S)(r) | O[[E]] → S} since O[[E]] → S ′′

= Rglb(E)((|r|)) by definition of Rglb

and since this was for arbitrary (|r|) ∈ T, O[[E]] vglb O[[F ]] and hence the “only if”

direction holds. ut

Lemma 5.5.8 For all E,F ∈ Pr, O[[E]] vlubO[[F ]] if and only if for any (|r|) ∈ T and

S ′ ∈ Pf r(Act × µ(Pr)) such that O[[E]] → S ′ there exists S ′′ ∈ Pf r(Act × µ(Pr)) such

that O[[F ]] → S ′′ and Rlub(S
′)(r) ≤ Rlub(S

′′)(r).

Proof. The proof is the dual of Lemma 5.5.7 above. ut

Using the lemmas above we can now show that vr is a congruence over RP.

Proposition 5.5.9 The pre-order vr is preserved by all contexts in the language RP.

Formally, if we have that Ei vrFi for all i ∈ I and E vrF , then:

O[[a.
∑
i∈I µi.Ei]] vr O[[a.

∑
i∈I µi.Fi]]

O[[E tuG]] vr O[[F tuG]]

O[[E uG]] vr O[[F uG]]

O[[E ‖G]] vr O[[F ‖G]]

O[[E |̀B]] vr O[[F |̀B]]

O[[E [λ]]] vr O[[F [λ]]]

O[[fixx.E]] vr O[[fixx.F ]].
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Proof. The proof follows similarly to the case for RPp, RPd and RPnd except in the

case of tu . In the latter case, suppose E,F,G ∈ Pr and O[[E]] vrO[[F ]]. Considering

any S ′ ∈ Pf r(Act × µ(Pr)) such that O[[F ′]] → S ′. By definition of the transition

rules there exists S1, S2 ∈ Pf r(Act × µ(Pr)) such that O[[F ]] → S1, O[[G]] → S2 and

(a, π) ∈ S ′ if (a, π) ∈ S1 or (a, π) ∈ S2. Then if (|r|) ∈ T, either r = ⊥, in which case

since by construction O[[E tuG]] → S ′′ for some S ′′ ∈ Pf r(Act × µ(Pr)), we have by

definition of Rglb:

Rglb(S
′)(⊥) = 1 = Rglb(S

′′)(⊥),

or r is of the form [a1.T1, . . . , am.Tm], then putting:

r2 = [a′1.T
′
1, . . . , a

′
m′ .T ′m′ ]

where for any 1 ≤ i ≤ m′ there exists a unique 1 ≤ j ≤ m such that a′i.T
′
i = aj.Tj and

(ai, π) ∈ S ′ ∩ S2 for some πi ∈ µ(RP), and putting:

r1 = [a′′1.T
′′
1 , . . . , a

′′
m′′ .T ′′m′′ ]

where for any 1 ≤ i ≤ m′′, there exists a unique 1 ≤ j ≤ m such that a′′i .T
′′
i = aj.Tj

and a′k.T
′
k 6= aj.Tj for all 1 ≤ k ≤ m′. By definition of Rglb we have:

Rglb(S
′)(r) = Rglb(S1)(r1) · Rglb(S2)(r2).

Moreover, since O[[E]] vrO[[F ]], by definition O[[E]] vglbO[[F ]] and since O[[F ]] → S1,

Lemma 5.5.7 implies there exists S ′1 ∈ Pf r(Act × µ(Pr)) such that O[[E]] → S ′1 and

Rglb(S
′
1)(t1) ≤ Rglb(S1)(t1). Furthermore, it follows by definition of the transition rules

that there exists S ′′ ∈ Pf r(Act × µ(Pr)) such that O[[E tuG]] → S ′′ and

Rglb(S
′′)(r) = Rglb(S

′
1)(r1) · Rglb(S2)(r2).

Combining the above, we have Rglb(S
′)(r) ≥ Rglb(S

′′)(r). Then since this was for any

t ∈ T and S ′ ∈ Pf r(Act × µ(Pr)) such that O[[F tuG]] → S ′, Lemma 5.5.7 implies

O[[E tuG]] vglbO[[F tuG]].

Similarly, using Lemma 5.5.8 instead of Lemma 5.5.7 and considering any S ′ ∈
Pf r(Act×µ(Pr)) such that O[[E tuG]] → S ′, we can show O[[E tuF ]] vlubO[[F tuG]], and

thus, since vr is the intersection of the orderings vglb and vlub, O[[E tuG]] vrO[[F tuG]]

as required. ut

5.6 Equational Laws

In this section, we investigate equational laws for RP. We note that when restricted

to only the syntactic operators of RPp, RPd and RPnd, the laws we derive will hold
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for these subcalculi. We first define the following “equality” and “ordering” relations

co-inductively over the set of processes of RP.

Definition 5.6.1 A relation ≡e⊆ Pr×Pr is a “equality” relation if whenever E ≡e F :

(i) if O[[E]] → S ′ then O[[F ]] → S ′′ such that S ′ ≡e S ′′

(ii) if O[[F ]] → S ′′ then O[[E]] → S ′ such that S ′′ ≡e S ′

where for any S ′, S ′′ ∈ Pf r(Act × µ(RP)), S ′ ≡e S ′′ if whenever (a, π′) ∈ S ′ then

(a, π′′) ∈ S ′′ such that for any G′ ∈ RP there exists G′′ ∈ RP with G′ ≡e G′′ and

π′(G′) = π′′(G′′), and vice versa.

Furthermore, a relation ve⊆ Pr×Pr is a “ordering” relation if whenever E ve F :

if O[[E]] → S ′ then O[[F ]] → S ′′ such that S ′ ve S ′′

where for any S ′, S ′′ ∈ Pf r(Act × µ(RP)), S ′ ve S ′′ if (a, π′) ∈ S ′ implies (a, π′′) ∈ S ′′

such that for any G′ ∈ RP there exists G′′ ∈ RP with G′ ve G′′ and π′(G′) = π′′(G′′).

Now, following the standard techniques we introduce the maximum such “equivalence”

and “ordering” relations as our equality and ordering over RP.

Definition 5.6.2 Let ≡ and v be the maximum “equality” relation and “ordering”

relation respectively.

We now list some of the equational laws of RP in Figure 5.1 below. We see that many

of the laws coincide with those for non-probabilistic process calculi. For example, u is

idempotent, symmetric and associative, and both tu and ‖ are associative, symmetric

and distribute through u . Also, we see that tu degenerates to u when processes can

perform the same action. Other equational laws for RP include those for restriction

and relabelling, which distribute over u , tu and ‖.

However, certain rules fail to extend from the non-probabilistic setting, for example

tu is not idempotent. To illustrate this consider the process E = (a.1.0)u (b.1.0); then

by definition of the transition rules we can represent E and E tuE graphically as given

in Figure 5.2 below.

By definition of ≡, it is clear that E tuE 6≡ E.

Another standard CSP law that fails is that u no longer distributes through tu . To

illustrate this, suppose E is the process given above, F = b.1.0 and G = b.1.0. Then
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E uE ≡ E

E uF ≡ F uE
E u (F uG) ≡ (E uF )uG

E tuF ≡ F tuE
E tu (F tuG) ≡ (E tuF )tuG
E tu (F uG) ≡ (E tuF )u (E tuG)

E u0 v E

E tu0 ≡ E

(a.
∑
i∈I µi.Ei)u (b.

∑
j∈J λj.Fj) v (a.

∑
i∈I µi.Ei)tu (b.

∑
j∈J λj.Fj) if a 6= b

(a.
∑
i∈I µi.Ei)u (a.

∑
j∈J λj.Fj) ≡ (a.

∑
i∈I µi.Ei)tu (a.

∑
j∈J λj.Fj)

E ‖F ≡ F ‖E
E ‖ (F ‖G) ≡ (E ‖F ) ‖G
E ‖ (F uG) ≡ (E ‖F )u (E ‖F )

E ‖0 ≡ 0

(a.
∑
i∈I µi.Ei) ‖ (b.

∑
j∈J λj.Fj) ≡ 0 if a 6= b

(a.
∑
i∈I µi.Ei) ‖ (a.

∑
j∈J λj.Fj) ≡ a.

∑
i∈I & j∈J (µi · λj) .Ei ‖Fj

E |̀ Act ≡ E

(E |̀B1) |̀B2 ≡ E |̀ (B1 ∩B2)

E |̀ ∅ ≡ 0

E [idAct ] ≡ E

(E [λ1]) [λ2] ≡ E [λ2 ◦ λ1]

fixx.E ≡ E{fixx.E/x}

Figure 5.1: Equational Laws of RP.

it is straightforward to show that: E u (F tuG) ≡ E and (E uF )tu (E uG) ≡ E tuE,

and therefore since E 6≡ E tuE:

E u (F tuG) 6≡ (E uF )tu (E uG).

5.7 Adding Additional Syntactic Operators

As we have attempted to define an equivalence to distinguish processes which can

only be distinguished by external observations, consequently we have to omit certain

operators to ensure our equivalence is a congruence (see discussion in Section 2.4).
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Figure 5.2: Example to show external choice is not idempotent.

For example, if we add a parallel operator which is not fully synchronous to our

calculus then r∼ will fail to be a congruence. To illustrate this consider the following

processes of RP, where if no probability is given it is assumed to be 1:

F1 = a.
(
b.
(

1
2
.c.0 + 1

2
.0
))
, F2 = a.

(
1
2
.b.c.0 + 1

2
.b.0

)
and F3 = d.0.

First, it is straightforward to show that O[[F1]]
r∼O[[F2]]. However, following the ex-

pansion law for interleaving we have:

F1 |||F3 =
(
a.
(
b.
(

1
2
.(c.d.0tu d.c.0) + 1

2
d.0

)
tu d.

(
b.
(

1
2
.c.0 + 1

2
.0
))))

tu d.F1

and F2 |||F3 =
(
a.
(

1
2
.b.(c.d.0tu d.c.0) + 1

2
.(b.d.0tu d.b.0)

))
tu d.F2.

Furthermore, by definition of the transition rules the behaviour of F1 |||F3 and F2 |||F3

when offered the action a, denoted F13 and F23 respectively, can be graphically repre-

sented in Figure 5.3 below.
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Figure 5.3: Graphical representation of F13 and F23.

Then considering the test t = (|[a.(|[b.(|[d.(|[c.⊥]|)]|), d.(|[b.(|[c.⊥]|)]|)]|)]|), it is straightfor-

ward to show

R∗(F1 |||F3)(t) =
1

4
6= 1

2
= R∗(F2 |||F3)(t)

where R∗ denotes either Rlub or Rglb. Hence, O[[F1 |||F3]] 6 r∼O[[F2 |||F3]], and thus r∼
fails to be a congruence since O[[F1]]

r∼O[[F2]].
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It should also be noted that we have not included the hiding operator, the reason

being that our model contains action-guarded probabilistic choice. In we added a

hiding operator in this setting, there will exist probabilistic transitions which are

hidden, and it would be problematic to test for the probability of such hidden moves. A

more appropriate model would be one where probabilistic choices and action transitions

are separate, that is, a model that contains both prefixing and an internal probabilistic

choice operator. Moreover, we feel that in this model it may be possible to add an

interleaving parallel operator to the calculus without losing the congruence property

of our equivalence.

One approach to model such a calculus would be to consider a transition system

which exhibits probabilistic, internal and action (external) choices. One such candidate

could be a transition system (P,Act ,→), where the transition relation is:

→ ⊆ P × µ(Pf r(Act × P )).

In the above any S ∈ Pf r(Act × P ) should be thought of as a deterministic process,

where either S = {(a1, E1), . . . , (am, Em)}, the process which makes an external choice

between the actions {a1, . . . , am} and, for any 1 ≤ i ≤ m, if S performs the action

ai it will then behave as the process Ei, or S = ∅, the inactive process. Then any

π ∈ µ(Pf r(Act × P )) represents the probabilistic process in which the probability of

π behaving as any deterministic process S ∈ Pf r(Act × P ) is given by π(S). Finally,

internal choice is introduced by allowing choices between probabilistic processes.

If we then consider our testing scenario over the above transition system, one can

adapt the maps Rglb and Rlub, where R∗ denotes either Rglb or Rlub, as follows. For any

E ∈ P put:

Rglb(E)((|r|)) = min
E→π

Rglb(π)(r), Rlub(E)((|r|)) = max
E→π

Rlub(π)(r)

and R∗(E)((t1, . . . , tm)) =
m∏
i=1

R∗(E)(ti)

where for any π ∈ µ(Pf nr(Act × P )):

Rlub(π)(t) =
∑

S∈Pf r(Act×P )
π(S) · Rlub(S)(t)

and for any S ∈ Pf r(Act × P ) and 1 ≤ i ≤ m:

R∗(S)(⊥) = 1, Rlub(S)([a1.T1, . . . , am.Tm]) =
m∏
i=1

Rlub(S)(ai.Ti)

and Rlub(S)(a.T ) =

 Rlub(F )(T ) if (a, F ) ∈ S for some F ∈ P
0 otherwise.
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Furthermore, we illustrate how we could give operational semantics to a calculus

containing a separate internal probabilistic choice by means of such a transition system,

where ηS denotes the point distribution with value 1 at S (see Definition 3.2.2).

• O[[0]] → η∅.

• O[[a.E]] → η{(a,E)}.

• O[[E puq F ]] → π, if O[[E]] → π1 and O[[F ]] → π2 such that for any S ∈ Pf r(Act×
P ), π(S) = p · π1(S) + q · π2(S).

The above is only an outline for how the operational semantics can be constructed,

which we feel is worth future investigation.

Note also that we only allow a restricted version of the relabelling operator, that is,

we require relabelling functions to be bijective. This again is to preserve the congruence

of our equivalence: we feel that in a model with a separate probabilistic choice operator

our equivalence may turn out to be a congruence for a weaker notion of relabelling.

Furthermore, as none of our results relating to our orderings depend on the sum

of any probability distribution being 1, we can in fact consider sub-probability distri-

butions by allowing the syntactic operator a .
∑
i∈I µi.Fi where

∑
i∈I µi ≤ 1. This way

1−∑
i∈I µi can be used to model the probability of deadlock, and all results relating

to our ordering will still hold.



Chapter 6

Denotational Semantics

In this chapter, we present denotational semantics for our probabilistic calculus RP.

As mentioned in Chapter 2, there are several frameworks available and each offers

its own advantages. We have chosen the metric-theoretic approach as probabilistic

processes are quantitative in nature: the probabilities of transitions occurring are

given, which corresponds with the quantitative information contained in the distance

between denotations given by a process metric.

To achieve our goal we follow de Bakker and Zucker’s metric space construction

for denotational semantics of non-probabilistic process calculi [BZ82], which we now

outline. First, de Bakker and Zucker consider simple processes, that is, those which

are derived in the sub-calculus by means of just the syntactic operator used in the

inductive step of the transition rules of the calculus. In non-probabilistic calculi, these

are the processes which can be derived just using (successive applications of) prefixing.

Formally, de Bakker and Zucker introduce the following inductively defined collection

of metric spaces.

Definition 6.0.1 (cf. [BZ82]) Let (Pn, dn), n = 0, 1, . . ., be a collection of metric

spaces defined inductively as follows. Let P0 = {p0} where d0(p
′, p′′) = 0 for all

p′, p′′ ∈ P0, and Pn+1 = {p0} ∪ (A × Pn) where dn+1(p0, p0) = 0, dn+1(p0, (a1, p1)) =

dn+1((a1, p1), p0) = 0 and

dn+1((a1, p1), (a2, p2)) =

 1 if a1 6= a2

1
2
· dn(p1, p2) otherwise.

Informally, P0 ⊆ P1 ⊆ . . . ⊆ Pn . . . form a sequence of sets, where as n increases

the number of simple processes which are modelled increases, with Pn modelling the

processes capable of performing one action at a time up to the depth n.

Following this, de Bakker and Zucker then take the completion of (∪nPn,∪ndn)
as the denotational model for simple processes. Intuitively, the denotational model

86



6.1 A Metric for Simple Probabilistic Processes 87

consists of p0 and all finite sequences (a1, (a2 . . . (an, p0) . . .)) where n ∈ IN, together

with all infinite sequences (a1, (a2 . . .)). We can think of (a1, (a2 . . . (an, p0) . . .)) as the

process that can perform the actions a1, a2 . . . an in sequence and then terminate, and

(a1, (a2, . . .)) can be considered as an infinite process performing the sequence a1a2 . . .

In the second step, to model the whole calculus de Bakker and Zucker “lift” the

denotations of simple processes to sets using the induced Hausdorff distance between

the sets, and add semantic operators to model the remaining syntactic operators of the

calculus. This corresponds to the introduction of an appropriate powerset operator P
into the construction as follows:

Pn+1 = {p0} ∪ Pc(A× Pn)

Now set-theoretic union corresponds to the syntactic choice: the denotation {(a, p0)}∪
{(b, p0)} can intuitively be thought of as the process that can either perform the action

a and then terminate, or perform the action b and then terminate.

6.1 A Metric for Simple Probabilistic Processes

We first turn our attention to simple probabilistic processes, which should be thought of

as suitable generalisations of the simple processes of de Bakker and Zucker [BZ82]. As

in the non-probabilistic case, a probabilistic process will be represented by a certain set

of such processes. Returning to the transition rules for RP, we see that the inductive

step of the transition rules is given by action-guarded probabilistic choice, and we

therefore consider simple probabilistic processes as those which are derived in the sub-

calculus by means of just this syntactic operator. We denote such a simple probabilistic

process p by the pair (a, f), where a ∈ A is an action type and f : P → [0, 1] is

a probability distribution on the set of simple probabilistic processes P such that for

any simple probabilistic process q, f(q) gives the probability of p performing the action

a and then behaving as q. Furthermore, to model the inactive process we introduce

the distinguished element p0. Then applying the techniques of [BZ82] this leads us to

the following inductively defined collection of carrier sets.

Definition 6.1.1 (Finite simple probabilistic processes) Let Pn, n ∈ IN, be a

collection of carrier sets defined inductively by:

P0 = {p0} and Pn+1 = {p0} ∪ (A× µ(Pn))

where A is a set of actions. Let Pω = ∪n Pn denote processes of bounded depth.
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For simplicity, we consider any f ∈ µ(Pn) as the extension of f to Pω, defined by

letting f(p) = 0 for any p ∈ Pω \ Pn.
The next step is to construct a metric on the set of simple probabilistic processes

Pω. To motivate our construction we first consider what properties we would expect

of a metric over Pω. The main tool a metric offers is the notion of convergence, that

is, defining Cauchy sequences (see Definition 3.3.4). Therefore, we first consider the

Cauchy sequences we would expect a metric over Pω to give us. One example is given

by the sequence 〈pn〉n∈IN of simple processes given in Figure 6.1 below.
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Figure 6.1: Example of a Cauchy sequence and its limit point.

Observe that, as n → ∞, the probability of pn performing its right branch becomes

more and more insignificant, that is, the operational behaviour of pn converges to

that of p. Therefore, following Lemma 3.3.5 which states “any convergent sequence

in a metric space is Cauchy” we would expect the sequence 〈pn〉n∈IN to be a Cauchy

sequence for any intuitively “correct” metric over Pω.

Following de Bakker and Zucker’s construction, we first attempted to define a

metric inductively on the sets Pn. Firstly, the case for n = 0 is simple, as P0 is

a singleton set, that is, d0(p, q) = 0 for all p, q ∈ P0. Moreover, similar to de

Bakker and Zucker’s construction, we can set: dn+1(p0, p0) = 0, dn+1(p, p0) = 1 if

p 6= p0 and dn+1((a, f), (b, g)) = 0 if a 6= b. This leaves us with defining the case for

dn+1((a, f), (a, g)) where f, g ∈ µ(Pn). However, in this situation things become more

complex, since the metric dn+1 will need to take into account the distances dn(p
′, q′)

as well as the values f(p′) and g(q′) for all p′ ∈ s(f) and q′ ∈ s(g). Investigating a

possible definition of dn+1 we found that the metric did not correspond to the opera-

tional behaviour of the processes. For example, possible approaches would be to take

the minimum, maximum or summation of one of the following:

|f(p′)− g(q′)| · dn(p′, q′) (6.1)

|f(p′)− g(q′)|+ 1

2
dn(p

′, q′) (6.2)

over all p′, q′ ∈ Pn. Firstly, if we consider the minimum of either (6.1) or (6.2), it is

straightforward to show the resultant “metric” does not satisfy the triangle inequality

(M3). On the other hand, if we consider (6.1), the only non-zero value for pn and p
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in Figure 6.1 is |1− 2−n|. Therefore, if we take either the maximum or summation of

(6.1), as n→∞ the resultant distance between pn and p increases, and therefore the

sequence 〈pn〉n∈IN does not converge to p.

We note that if instead we consider the maximum or summation of (6.2) similar

problems will be encountered.

Intuitively, the difficulty with these approaches arises from the separation of the

distance between the processes in Pn and the probabilities associated with these pro-

cesses, that is, the values of f and g. For example, there exist cases where |f(p′)−g(q′)|
is small (or zero) and the operational behaviour of p′ and q′ is different, and cases where

|f(p′) − g(q′)| is large and the operational behaviour of p′ and q′ is similar (or even

equivalent). Thus, calculating the value of (6.1) and (6.2) will yield small values even

though the operational behaviour is different.

To overcome these problems, that is, to avoid the above separation, a non-inductive

approach is needed. Based on the above discussion, our first attempt, see [KN96b],

was to define a metric on simple processes Pω by means of the following metric on

probability distributions.

Proposition 6.1.2 (cf. [KN96b]) For any set P , the family µ(P ) of probability dis-

tributions on P is a metric space with respect to the metric:

dµ(f, g) =
1

2

∑
p∈s(f)∪s(g)

|f(p)− g(p)|.

Using the metric dµ of [KN96b] and de Bakker and Zucker’s metric we constructed the

following metric on finite simple probabilistic processes Pω.

Definition 6.1.3 (cf. [KN96b]) Let (Pn)n∈IN and Pω be the carrier sets defined in

Definition 6.1.1. We define the metric d̂ on the structure of elements of Pω by putting

d̂(p0, p0) = 0, d̂(p0, (a, f)) = 1, d̂((a, f), p0) = 1, and

d̂((a, f), (b, g)) =

 1 if a 6= b

dµ(f, g) otherwise.

An analysis of the metric d̂ leads to the following observation. We first consider

the simple probabilistic processes pn and p given in Figure 6.1 which differ on their

first transition. Calculating the distance we have: d̂(pn, p) = 2−n, and hence 〈pn〉n∈IN

is a Cauchy sequence. However, if we now consider the simple probabilistic processes

which differ after the first transitions given in Figure 6.2 below, the above property

relating to convergence no longer holds for the metric d̂.
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Figure 6.2: Processes differing after the first transition.

Calculating the distances between p′n and p′m for any n 6= m ∈ IN we obtain: d̂(p′n, p
′
m) =

1. However, analysing the operational behaviour, similarly to the processes of Fig-

ure 6.1, we have that as n→∞, the behaviour of p′n becomes more similar to that of

p′, and hence we would expect 〈p′n〉n∈IN to be Cauchy.

To understand the above we discuss how the metric “works”: on the first transitions

of simple probabilistic processes the metric considers the difference in the probabilities,

and hence we have the “correct” results for Figure 6.1. However, as soon as we go

beyond the first transitions, the differences between the probabilistic transitions are

only considered with respect to equality. To elaborate on this, consider d̂(p′n, p
′
m) for

any n 6= m ∈ IN: we see that p′n and p′m can perform the action a′ with probability

1 and then behave as the processes pn and pm given in Figure 6.1, but the metric

only uses the information that pn 6= pm, and not the differences in the probabilities

of transitions of pn and pm. Thus, the values given by the metric of [KN96b] be-

tween simple probabilistic processes do not capture the behaviour of certain simple

probabilistic processes, that is, those whose operational behaviour differs after their

first transitions. Therefore, if we wish to find a metric to eliminate this problem an

alternative approach is required, which we now explain.

The motivation behind the new approach is to develop a representation of simple

probabilistic processes which will give us more information about their operational be-

haviour. To achieve this, instead of modelling a simple probabilistic process by the pair

(a, f) of an action symbol and a probability distribution, we consider a simple proba-

bilistic process as sets of (maximal) finite strings over A× (0, 1], that is, sets of strings

of pairs of actions and (non-zero) probabilities of the form: (a1, µ1)(a2, µ2) . . . (ak, µk),

where k ∈ IN, ai ∈ A and µi ∈ (0, 1] for all 1 ≤ i ≤ k. To illustrate this representation,

recall the simple probabilistic process given in Figure 6.1; we can represent pn by the

following set of strings:

{(a, 1− 2−n)(b, 1), (a, 2−n)(c, 1)}.

Formally, using Definition 6.1.1, in order to represent simple probabilistic processes as

sets of finite strings over A× (0, 1], that is, subsets of (A× (0, 1])∗, where to simplify
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notation let A(0,1]∗ def
= (A× (0, 1])∗, we introduce the following mapping from the set of

simple probabilistic processes Pω to the set of strings described above.

Definition 6.1.4 Let S :Pω→ Pf n(A(0,1]∗) be the map defined inductively on p ∈ Pn as

follows. If p ∈ P0, then p = p0 and put S(p) = 〈〉, and if p ∈ Pn+1 \Pn, then p = (a, f)

for some a ∈ A and f ∈ µ(Pn), and put:

S(p) = {(a, f(q))x |x ∈ S(q) & q ∈ s(f)}.

Recall s(f) denotes the support of the distribution f .

Intuitively, for any process p ∈ Pω and x ∈ S(p), by construction we have: x =

(a1, µ1)(a2, µ2) . . . (ak, µk) for some k ∈ IN, where ai ∈ A and µi ∈ (0, 1] for all 1 ≤
i ≤ k. The sequence a1 . . . ak is a complete path (trace) that p can perform, and

µ1 · µ2 · · ·µk is the probability of p performing this path. To make these notions more

precise we introduce the following two projections on A(0,1]∗ .

Definition 6.1.5 Let A : A(0,1]∗→ A∗ and V : A(0,1]∗→ [0, 1] be the maps defined as

follows. For any x = (a1, µ1)(a2, µ2) . . . (ak, µk) ∈ A(0,1]∗ put:

A(x) =

 〈〉 if k = 0

a1a2 . . . ak otherwise
and V(x) =

 1 if k = 0

µ1 · µ2 · · ·µk otherwise.

The idea behind these mappings is that, if we consider any p ∈ Pω and x ∈ S(p), then

A(x) is a path p can perform and V(x) is the probability of p performing this path.

Unfortunately, the situation is more complex, which we demonstrate by the simple

probabilistic process given in Figure 6.3.
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Figure 6.3: Example of a simple probabilistic process.

Then calculating S(p′′) we have:

S(p′′) =
{
(a, 1

2
)(b, 1), (a, 1

2
)(b, 1

4
), (a, 1

2
)(b, 3

4
)(c, 1)

}
and by definition of A: A((a, 1

2
)(b, 1)) = A((a, 1

2
)(b, 1

4
)) = ab. Thus, for certain simple

probabilistic processes p, there will exist distinct x, y ∈ S(p) such that A(x) = A(y);
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intuitively, in these cases, there will be two (or more) ways that p can perform the

path u, and thus the probability of p performing the path u will be V(x)+V(y) (or the

sum over all x ∈ S(p) such that A(x) = u). To make this more formal, we introduce

the following definition:

Definition 6.1.6 For all simple probabilistic processes p ∈ Pω and paths u ∈ A∗,

we define the probability of p performing the path u, denoted V(u, p), as follows:

V(u, p) = 0 if A(x) 6= u for all x ∈ S(p) and

V(u, p) =
∑

x∈S(p) &
A(x)=u

V(x) otherwise.

By abuse of notation, we have two mappings named V . However, the following lemma

leads us towards an alternative characterisation of the map V given in Definition 6.1.6

which will remove the need for the mappings S, A and V (of Definition 6.1.5) and also

simplify subsequent work.

Lemma 6.1.7 For any p = (a, f) ∈ Pω and u ∈ A∗, if u 6= aũ for some ũ ∈ A∗, then

V(u, p) = 0. Furthermore, for all ũ ∈ A∗:

V(aũ, p) =
∑
q∈s(f)

f(q) · V(ũ, q).

Proof. If p = (a, f) ∈ Pω, then by Definition 6.1.4 if x ∈ S(p), then x = (a, f(q))y

for some q ∈ s(f) and y ∈ S(q), and therefore A(x) = aA(y) for some y ∈ S(q) and

q ∈ s(f). Now considering u ∈ A∗ such that u 6= aũ for any ũ ∈ A∗, from the above

we have A(x) 6= u for all x ∈ S(p), and therefore by definition of V , V(u, p) = 0 as

required.

For the second part of the lemma, consider any ũ ∈ A∗, if aũ 6= A(x) for any

x ∈ S(p). From the first part of the proof we have ũ 6= A(y) for all y ∈ S(q) and

q ∈ s(f), and hence by definition of V :

V(aũ, p) = 0 =
∑
q∈s(f)

f(q) · 0 =
∑
q∈s(f)

f(q) · V(ũ, q).
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On the other hand, if aũ = A(x) for some x ∈ S, then by Definition 6.1.6:

V(aũ, p) =
∑

x∈S(p)&
A(x)=aũ

V(x)

=
∑

q∈s(f), y∈S(q)&
A((a,f(q))y)=aũ

V((a, f(q))y) by Definition 6.1.4

=
∑

q∈s(f), y∈S(q)
&A(y)=ũ

f(q) · V(y) by Definition 6.1.5

=
∑

q∈s(f)
f(q) ·

 ∑
y∈S(q) &
A(y)=ũ

V(y)

 rearranging

=
∑

q∈s(f)
f(q) · V(ũ, q) by Definition 6.1.6

as required. ut

Using this lemma, we reach the following alternative to Definition 6.1.6.

Definition 6.1.8 For all p ∈ Pω and u ∈ A∗, we define the probability of p performing

the path u, denoted V(u, p), inductively on u ∈ An as follows. For all p ∈ Pω put:

V(〈〉, p) =

 1 if p = p0

0 otherwise

and for all u ∈ An and a ∈ A:

V(au, p) =


∑
q∈Pω

f(q) · V(u, q) if p = (a, f) for some f ∈ µ(Pω)

0 otherwise.

From the above we reach the following fundamental proposition concerning V .

Proposition 6.1.9 For all p ∈ Pω the map V(·, p) : A∗ → [0, 1] is a probability

distribution.

Proof. The proof is by induction on p ∈ Pn. If n = 0, then p = p0 and by Defini-

tion 6.1.8: ∑
u∈A∗

V(u, p0) = V(〈〉, p0) = 1 as required.
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Now suppose the lemma holds for some n ∈ IN and consider any p ∈ Pn+1 \ Pn,
then p = (a, f) for some a ∈ A and f ∈ µ(Pn), and by definition of V we have

s(V(·, p)) = {au |u ∈ s(V(·, q)) and q ∈ s(f)} and hence:

∑
u∈A∗

V(u, p) =
∑

aũ∈A∗

( ∑
q∈s(f)

f(q) · V(ũ, q)

)

=
∑

q∈s(f)
f(q) ·

( ∑
ũ∈A∗

V(ũ, q)

)
rearranging

=
∑

q∈s(f)
f(q) · 1 by induction

= 1 since f ∈ µ(Pn)

which completes the proof. ut

To recap, we have constructed the map V from the set of simple probabilistic pro-

cesses (Pω) and the set of paths such processes can perform (A∗) to the unit interval,

where for any p ∈ Pω and u ∈ A∗ the value given by V(u, p) is the probability of

p performing the path u. Using this map we can now explain the intuition behind

the construction of our metric: for any two simple probabilistic processes p and q,

to calculate the distance between p and q we should compute the similarities and

differences between them. By the construction of simple probabilistic processes, the

differences and similarities involve the paths that the probabilistic processes can per-

form and the probabilities of performing these paths. Following this argument, using

Definition 6.1.8, for any path u ∈ A∗ we can find the difference in the probabilities of

p and q performing this path, that is:

|V(u, p)− V(u, q)|. (6.3)

Then summing (6.3) over all possible paths, that is, over u ∈ A∗, gives a candidate

value for the distance between p and q which is representative of their similarities and

differences. From this intuition, we can now define our metric (in fact a pseudo-metric)

on Pω as follows, where the factor 1
2

is used to normalise the distance.

Proposition 6.1.10 Pω (and Pn for any n ∈ IN) is a pseudo-metric space with respect

to the pseudo-metric:

dS(p, q) =
1

2

∑
u∈A∗

| V(u, p)− V(u, q) |.

Furthermore, 0 ≤ dS(p, q) ≤ 1 for all p, q ∈ Pω.
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Proof. (M1′) For all p, q ∈ Pω, dS(p, q) ≥ 0 and dS(p, p) = 0 follows by definition of

dS .

(M2) For all p, q ∈ Pω, dS(p, q) = dS(q, p) follows by properties of the Euclidean metric.

(M3) First, by construction V(u, s) ∈ [0, 1] for all u ∈ A∗ and s ∈ Pω, and hence using

the properties of the Euclidean metric, we obtain:

|V(u, p)− V(u, q)|+ |V(u, q)− V(u, r)| − |V(u, p)− V(u, r)| ≥ 0 (6.4)

for any for any p, q, r ∈ Pω and u ∈ A∗. Now by definition of dS and rearranging:

dS(p, q) + dS(q, r)− dS(p, r)

= 1
2

∑
u∈A∗

(
|V(u, p)− V(u, q)|+ |V(u, q)− V(u, r)| − |V(u, p)− V(u, r)|

)
≥ 0 by (6.4),

and hence dS(p, q) + dS(q, r)− dS(p, r) ≥ 0 as required.

To prove that dS does not satisfy (M1) we show there exist distinct p, q ∈ Pω such

that d(p, q) = 0. Consider the simple probabilistic processes given in Figure 6.4.
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Figure 6.4: Example to show dS is only a pseudo-metric.

Clearly q 6= q′ and by definition of dS we reach:

dS(q, q′) =
1

2

( ∣∣∣∣ (1

2
· 1 +

1

2
· 1

4

)
− 1 · 5

8

∣∣∣∣+ ∣∣∣∣ 12 · 3

4
· 1− 1 · 3

8
· 1
∣∣∣∣ )

=
1

2

∣∣∣∣ 58 − 5

8

∣∣∣∣+ 1

2

∣∣∣∣ 38 − 3

8

∣∣∣∣ = 0.

Finally, to show 0 ≤ dS(p, q) ≤ 1 for all p, q ∈ Pω, consider any p, q ∈ Pω. By (M1′)

0 ≤ dS(p, q) and by definition dS(p, q) equals:

1
2

∑
u∈A∗

|V(u, p)− V(u, q)| ≤ 1
2

∑
u∈A∗

V(u, p) + 1
2

∑
u∈A∗

V(u, q) rearranging

= 1
2
(1 + 1) by Proposition 6.1.9

= 1

as required. ut
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If we now return to Figure 6.1 and Figure 6.2 and calculate the distances between the

processes with respect to dS , we obtain for any n,m ∈ IN:

dS(pn, pm) = dS(p′n, p
′
m) = |2−n − 2−m|

and so we have constructed a pseudo-metric with the required convergence properties.

The next step is to consider the Cauchy sequences with respect to dS , with which

we want to model recursive simple probabilistic processes. As an example we discuss

the sequence of simple probabilistic processes 〈qn〉n in Figure 6.5.

q0 q1 q2 qn
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...

. . . . . . . . .r r
rrr

Figure 6.5: Example of recursive simple probabilistic processes.

From the methodology of de Bakker and Zucker, the limit of this sequence will model

the recursive simple probabilistic process which repeatedly performs the action a with

probability 1. However, it is straightforward to show that for any n 6= m ∈ IN,

dS(qn, qm) = 1, and thus 〈qn〉n is not a Cauchy sequence with respect to dS .

As in [KN96b], to solve this problem we introduce truncations, where for any n ∈ IN

the nth truncation of a simple probabilistic process p, denoted p[n], gives only the first

n steps that p performs, as illustrated in Figure 6.6.
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Figure 6.6: An illustration of truncations.

Formally, we define truncations on distributions and simple probabilistic processes as

follows.



6.1 A Metric for Simple Probabilistic Processes 97

Definition 6.1.11 (Truncations) Let f ∈ µ(Pω). For k ∈ IN define the kth trunca-

tion of f , f [k] : Pω → [0, 1], as follows. For any p ∈ Pω,

f [k](p) =
∑
q∈Pω

& q[k]=p

f(q)

where for p ∈ Pω the truncation on simple probabilistic processes, p[k], is defined

inductively on k ∈ IN by putting p[0] = p0 for all p and

p[k + 1] =

 p0 if p = p0

(a, f [k]) if p = (a, f) for some a ∈ A and f ∈ µ(Pω).

The truncation of simple probabilistic processes (and respectively of probabilistic

distributions) satisfies the properties given in the proposition below, useful in proofs

of properties of our pseudo-metric, as truncations are an integral part of its definition.

These properties are, moreover, reminiscent of the properties of projection spaces, for

example see [GH90].

Proposition 6.1.12 For all p, q ∈ Pω and k,m ∈ IN:

(a) if p ∈ Pm, then p[k] ∈ Pk when k < m and p[k] = p otherwise.

(b) (p[m])[k] = p[min{m, k}].
(c) p[m] = q[m] if and only if p[k] = q[k] for all k ≤ m.

(d) dS(p[k], q[k]) ≤ dS(p, q).

(e) if u ∈ A∗ \ Ak, then V(u, p[k]) = 0.

However, before we can give a proof of the above proposition we require the following

lemma.

Lemma 6.1.13 For all p ∈ Pω, u ∈ A∗ and k ∈ IN:

V(u, p[k]) =
∑

ũ |̀ k=u
V(ũ, p).

Proof. The proof is by induction on k ∈ IN. The case for k = 0 follows by Proposi-

tion 6.1.9 and since p[0] = p0 and u |̀ 0 = 〈〉 for all p ∈ Pω and u ∈ A∗.

Now suppose the lemma is true for k ∈ IN and consider any p ∈ Pω. If p = p0 then,

the result follows by definition of truncations and since, for any u ∈ A∗, u |̀ (k+1) = 〈〉

if and only if u = 〈〉. On the other hand, if p = (a, f) for some a ∈ A and f ∈ µ(Pω),

by definition p[k + 1] = (a, f [k]). If u 6= au′ for any u′ ∈ A∗, then by Definition 3.1.1

if ũ |̀ (k + 1) = u we have ũ 6= au′ for any u′ ∈ A∗, and hence by definition of V :

V(u, p[k + 1]) =
∑

ũ |̀ (k+1)=u

V(ũ, p) = 0.
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On the other hand, if u = au′ for some u′ ∈ A∗, by definition of V :

V(au′, p[k + 1]) =
∑

q∈s(f)
f(q) · V(u′, q[k])

=
∑

q∈s(f)
f(q) ·

( ∑
ũ |̀ k=u′

V(ũ, q)

)
by induction

=
∑

a(ũ |̀ k)=au′
V(aũ, (a, f)) rearranging

=
∑

ù |̀ (k+1)=au′
V(ù, p) by Definition 3.1.1

as required. ut

Proof. (of Proposition 6.1.12)

(a) The proof is by induction on p ∈ Pn. If n = 0, then p = p0 and by Defini-

tion 6.1.11 p0[k] = p0 for all k ∈ IN as required.

Now suppose that (a) holds for some n ∈ IN and consider any p ∈ Pn+1 \ Pn.
Then p equals (a, f) for some a ∈ A and f ∈ µ(Pn). If k ≤ n + 1, either k = 0

and by definition p[k] = p0 ∈ P0, or k ≥ 1 and by definition p[k] = (a, f [k − 1]).

In the second case to prove p ∈ Pk by definition of Pk it is sufficient to show

f [k − 1] ∈ µ(Pk−1). By Definition 6.1.11, we have s(f [k − 1]) = {q[k − 1] | q ∈
s(f)}, then by induction we have s(f [k − 1]) ⊆ Pk−1. Moreover, by definition of

truncations:∑
q̃∈Pω

f [k − 1](q̃) =
∑

q̃∈s(f [k−1])
f [k − 1](q̃)

=
∑

q̃∈s(f [k−1])

 ∑
q∈Pω &
q[k−1]=q̃

f(p)

 by Definition 6.1.11

=
∑

q∈s(f)
f(q) from above

= 1 since f ∈ µ(Pn)

and thus p[k] ∈ Pk as required. The case for k ≥ n + 1 follows similarly by

induction.

(b) The proof is by induction on k ∈ IN. If k = 0 the proof follows by definition of

truncations. Now suppose the result is true for k ∈ IN and consider any p ∈ Pω.
Then either p = p0 and by Definition 6.1.11 (p[m])[k+1] = p[min{m, k+1}] = p0.

Or p = (a, f) for some a ∈ A and f ∈ µ(Pω), in which case (p[m])[k + 1] =
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(a, (f [m − 1])[k]) and p[min{m, k + 1}] = (a, f [min{m − 1, k}]). Therefore, to

show (b) holds it is sufficient to show (f [m − 1])[k] = f [min{m − 1, k}] and by

Definition 6.1.11 we have:

s((f [m− 1])[k]) = {q̃[k] | q̃ ∈ s(f [m− 1])}
= {(q[m− 1])[k] | q ∈ s(f)} by Definition 6.1.11

= {q[min{m− 1, k}] | q ∈ s(f)} by induction

= s(f [min{m− 1, k}]).

Similarly, using induction we can show (f [m − 1])[k](q) = f [min{m − 1, k}](q)
for all q ∈ Pω, and hence (p[m])[k + 1] = p[min{m, k + 1}] as required.

(c) The proof follows techniques similar to (a) and (b), using induction on m ∈ IN.

(d) Consider any p, q ∈ Pω and k ∈ IN, then by definition of dS :

dS(p[k], q[k]) = 1
2

∑
u∈A∗

| V(u, p[k])− V(u, q[k]) |

= 1
2

∑
u∈A∗

∣∣∣∣∣ ∑ũ |̀ k=uV(ũ, p)− ∑
ũ |̀ k=u

V(ũ, q)

∣∣∣∣∣ by Lemma 6.1.13

≤ 1
2

∑
u∈A∗

( ∑
ũ |̀ k=u

|V(ũ, p)− V(ũ, q)|
)

rearranging

= 1
2

∑
ũ∈A∗

|V(ũ, p)− V(ũ, q)|

= dS(p, q)

as required.

(e) Consider any p ∈ Pω, k ∈ IN and u ∈ A∗ \ Ak, then by Definition 3.1.1 ũ |̀ k 6= u

for any ũ ∈ A∗ and hence:

0 =
∑

ũ |̀ k=u
V(ũ, p)

= V(u, p[k]) by Lemma 6.1.13

as required.

ut

Using truncations we reach the following classical definition of an ultra-metric dt,

which is the metric Baier and Kwiatkowska use to give denotational semantics to a

probabilistic version of CCS [BK97].
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Definition 6.1.14 For all p and q ∈ Pω:

dt(p, q) =

 0 if p = q

21−min{k | p[k] 6=q[k]} otherwise.

If we return to the recursive processes given in Figure 6.5, we have dt(qm, qn) = 2−m for

any m ≤ n ∈ IN, and hence 〈qn〉n∈IN is a Cauchy sequence with respect to dt. However,

if we calculate the values of dt on the processes in Figure 6.1 and Figure 6.2 then:

dt(pn, pm) =
1

2
and dt(p

′
n, p

′
m) =

1

4

for any n 6= m ∈ IN. Thus, we lose the convergence properties of the pseudo-metric

dS , that is, 〈pn〉n and 〈p′n〉n are no longer Cauchy sequences converging to p and p′

respectively. To keep the properties of dS , and also to incorporate the required Cauchy

sequences, we define a pseudo-metric on Pω as follows.

Definition 6.1.15 For all p, q ∈ Pω, we define dω : Pω × Pω → [0, 1] as follows:

dω(p, q) =
∞∑
k=0

2−kdS(p[k], q[k]).

Proposition 6.1.16 (Pω, dω) (and (Pn, dω) for any n ∈ IN) is a pseudo-metric space.

Furthermore, 0 ≤ dω(p, q) ≤ 1 for all p, q ∈ Pω.

Proof. (M1′) For all p, q ∈ Pω, dω(p, q) ≥ 0 and dω(p, p) = 0 follows from Proposi-

tion 6.1.12(a) and since dS satisfies (M1′).

(M2) For all p, q ∈ Pω, dω(p, q) = dω(q, p) follows from Proposition 6.1.12(a) and since

dS satisfies (M2).

(M3) Consider any p, q and r ∈ Pω, then by Proposition 6.1.12(a), p[k], q[k] and

r[k] ∈ Pω for all k ∈ IN, and since dS is a pseudo-metric on Pω we have:

dS(p[k], q[k]) + dS(q[k], r[k])− dS(p[k], r[k]) ≥ 0

for all k ∈ IN, and hence,

∞∑
k=1

2−k
(
dS(p[k], q[k]) + dS(q[k], r[k])− dS(p[k], r[k])

)
≥ 0.

Rearranging, we have:

∞∑
k=1

2−kdS(p[k], q[k]) +
∞∑
k=1

2−kdS(q[k], r[k]) ≥
∞∑
k=1

2−kdS(p[k], r[k]),
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that is, dω(p, q) + dω(q, r) ≥ dω(p, r) as required.

The proof that dω does not satisfy (M1) follows from the case for dS using Proposi-

tion 6.1.12(a) and Proposition 6.1.12(d).

Finally, for all p, q ∈ Pω 0 ≤ dω(p, q) is a result of (M1′). To show dω(p, q) ≤ 1

for all p, q ∈ Pω, consider any p, q ∈ Pω, then from the definition of truncations,

p[0] = q[0] = p0, and hence since dS is a pseudo-metric, dS(p[0], q[0]) = 0. Substitut-

ing this into the definition of dω, we have:

dω(p, q) =
∞∑
k=1

2−kdS(p[k], q[k])

≤
∞∑
k=1

2−k by Proposition 6.1.10

= 1

as required. ut

If we now consider the processes in Figure 6.1, Figure 6.2 and Figure 6.5 and calculate

the distance between the processes with respect to the pseudo-metric dω, we have:

dω(pn, pm) = |2−n − 2−m|, dω(p
′
n, p

′
m) =

1

2
|2−n − 2−m|

and dω(qm, qn) =

 0 if m = n

2−min{n,m} otherwise

and hence dω has captured both the properties of dS and dt.

Our pseudo-metric nevertheless specialises to the metric of de Bakker and Zucker

[BZ82]. To see this consider a restriction, for each n ∈ IN, of the set µ(Pn) to the set

of point distributions of Pn (see Definition 3.2.2), that is, the set {ηp | p ∈ Pn}. As

before, we inductively denote {p0} ∪ A × {ηp | p ∈ P η
n} by P η

n+1 and put P η
ω = ∪nP η

n .

Intuitively, if p = (a, ηq) ∈ P η
n then the probability of p performing the action a and

becoming q is 1, and the probability of p becoming any other process is 0. This can

be compared with de Bakker and Zucker’s construction of simple processes, where the

elements are of the form p = p0 or p = (a, q), for a action and q process. Formally, we

have the following lemma and proposition.

Lemma 6.1.17 For all p, q ∈ P η
ω :

dS(p, q) =

 0 if p = q

1 otherwise.

Proof. The proof is by induction on p, q ∈ Pn. If n = 0, then p = q = p0 and the

lemma holds since dS is a pseudo-metric.
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Now suppose the lemma holds for some n ∈ IN and consider any p, q ∈ Pn+1. If

p = q, then since dS is a pseudo-metric dS(p, q) = 0. On the other hand, if p 6= q,

without loss of generality we have the following three cases to consider.

1. p 6= q = p0, then by definition of V , if V(u, p) > 0, then V(u, q) = 0 and vice

versa. Substituting this into the definition of dS we have:

dS(p, q) = 1
2

( ∑
u∈A∗

V(u, p) +
∑
u∈A∗

V(u, q)

)
= 1

2
(1 + 1) by Proposition 6.1.9

= 1.

2. p = (a, ηp′) and q = (b, ηq′) such that a 6= b ∈ A and p′, q′ ∈ Pn, then by definition

of V if V(u, p) > 0, V(u, q) = 0 and vice versa, and hence as in the first case we

have dS(p, q) = 1.

3. p = (a, ηp′) and q = (a, ηq′) such that a ∈ A and p′ 6= q′ ∈ Pn, then by definition

of V and dS :

dS(p, q) = 1
2

∑
au∈A∗

|1 · V(u, p′)− 1 · V(u, q′)|

= 1
2

∑
u∈A∗

|V(u, p′)− V(u, q′)| rearranging

= dS(p′, q′) by definition of dS

= 1 by induction.

Since these are all the possible cases the lemma is proved by induction. ut

Proposition 6.1.18 The pseudo-metric dω is equivalent to the metric of de Bakker

and Zucker (see Definition 6.0.1) on the subspace P η
ω of Pω.

Proof. First, classical results have shown us that the metric of de Bakker and Zucker

given in Definition 6.0.1 is equivalent to the metric dt given in Definition 6.1.14. It is

therefore sufficient to prove that dω is equivalent to dt on the subspace P η
ω of Pω. Now,

consider any p, q ∈ P η
ω , then if p = q, it follows that dω(p, q) = 0 since dω is a pseudo-

metric. On the other hand, if p 6= q, using Proposition 6.1.12(c) and Lemma 6.1.17

and letting m = min{k | p[k] 6= q[k]}, by definition of d we have:

dω(p, q) =
∞∑
k=m

2−k = 21−m

and hence, dω is equivalent to the metric dt on the subspace P η
ω of Pω as required. ut

We now consider some of the properties of the pseudo-metrics dS and dω on elements

of Pω.
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Lemma 6.1.19 For all f, g ∈ µ(Pω) and a 6= b ∈ A: dS((a, f), (b, g)) = 1.

Proof. Consider any f, g ∈ µ(Pω) and a 6= b ∈ A, then by definition of dS and V :

dS((a, f), (b, g)) = 1
2

∑
au∈A∗

|V(au, (a, f))− 0|+ 1
2

∑
bu∈A∗

|0− V(bu, (a, g))|

= 1
2

∑
au∈A∗

V(au, (a, f)) +
∑

bu∈A∗
V(bu, (a, g))

= 1
2
(1 + 1) by Proposition 6.1.9

= 1

as required. ut

Lemma 6.1.20 Let a and b be distinct elements of A, f, g ∈ µ(Pω), p ∈ Pω and

m ∈ IN, then

dω((a, f), (b, g)) = dω(p0, (a, f)) = 1, dω((a, f), (a, g)) ≤ 1

2
and dω(p, p[m]) ≤ 1

2m
.

Proof. Consider any f, g ∈ µ(Pω) and distinct a, b ∈ A, then by Lemma 6.1.19 and

Proposition 6.1.12(a):

dS((a, f)[k + 1], (b, g)[k + 1]) = dS((a, f [k]), (b, g[k])) = 1

for all k ≥ 1. Substituting this and the fact that (a, f)[0] = (b, g)[0] = p0 into the

definition of dω we have:

dω((a, f), (b, g)) =
∞∑
k=1

2−k = 1.

Similarly, we can show that dω(p0, (a, f)) = 1.

For the third part, since P0 = {p0}, using Proposition 6.1.12(a) we have f [0] = g[0],

and therefore (a, f)[1] = (a, g)[1] by definition of truncations. Hence, by definition of

dω we have:

dω((a, f), (a, g)) =
∞∑
k=2

2−kdS((a, f)[k], (b, g)[k])

≤
∞∑
k=2

2−k by Proposition 6.1.16

= 1
2

as required.

Finally, consider any p ∈ Pω and m ∈ IN, then by definition of dω:

dω(p, p[k]) =
∞∑
k=0

2−kdS(p[k], (p[m])[k])

=
∞∑
k=0

2−kdS(p[k], (p[min{m, k}]) by Proposition 6.1.12(b)

=
∞∑

k=m+1
2−kdS(p[k], (p[k]) since dS is a pseudo-metric

≤
∞∑

k=m+1
2−k by Proposition 6.1.16

= 1
2m
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as required. ut

We now apply the standard metric completion technique to derive the metric space

(P, d) of (finite and infinite) simple probabilistic processes.

Definition 6.1.21 Define the space (P, d) of simple probabilistic processes as the

metric completion of (Pω, dω).

Applying the standard completion techniques (see Theorem 3.3.7), P consists of the

set of equivalence classes of Cauchy sequences of Pω under the equivalence ∼, where

〈pn〉n∈IN ∼ 〈qn〉n∈IN if and only if lim
n→∞

dω(pn, qn) = 0,

and for any Cauchy sequences 〈pn〉n∈IN and 〈qn〉n∈IN the metric d is given by:

d(〈pn〉n∈IN, 〈qn〉n∈IN) = lim
n→∞

dω(pn, qn).

Categorical techniques of [AR89] have not been used to derive a domain equation for

simple probabilistic processes as it is unclear how to define a functor to represent this

construction; this is due to the fact that our pseudo-metric dω is not defined inductively

in correspondence with the inductively defined metric spaces.

We now introduce some useful lemmas concerning the Cauchy sequences of Pω.

Lemma 6.1.22 For all p ∈ Pω, 〈p[n]〉n is a Cauchy sequence.

Proof. Consider any p ∈ Pω and n,m, k ∈ IN, then (p[n])[k] = p[min{n, k}] and

(p[m])[k] = p[min{m, k}] by Proposition 6.1.12(b). Therefore, since dS is a pseudo-

metric for any k ≤ min{n,m}:

dS((p[n])[k], (p[m])[k]) = dS(p[k], p[k]) = 0.

and substituting this into the definition of dω we have:

dω(p[n], p[m]) =
∞∑

k=1+min{m,n}
2−kdS(p[min{n, k}], p[min{m, k}])

≤
∞∑

k=1+min{m,n}
2−k by Proposition 6.1.10

= 2−min{m,n}

and thus 〈p[n]〉n is a Cauchy sequence. ut

Lemma 6.1.23 If 〈pn〉n∈IN is a sequence in Pω such that pn+1[n] = pn[n] for all n ∈ IN,

then 〈pn〉n∈IN is Cauchy and pm[n] = pn[n] for all m ≥ n ∈ IN. Furthermore, if 〈qn〉n∈IN

is a sequence in Pω such that qn+1[n] = qn[n] for all n ∈ IN and 〈pn〉n∈IN ∼ 〈qn〉n∈IN,

then dω(pn[n], qn[n]) = 0 for all n ∈ IN.
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Proof. First, if 〈pn〉n∈IN is a sequence in Pω such that pn+1[n] = pn[n] for all n ∈ IN,

then since dS is a pseudo-metric and using Proposition 6.1.12(c) we have:

dS(pn+1[k], pn[k]) = 0 for all k ≤ n and n ∈ IN.

Then, substituting this into the definition of dω, for any n ∈ IN:

dω(pn+1, pn) =
∞∑

k=n+1
2−kdS(pn+1[k], pn[k])

≤
∞∑

k=n+1
2−k by Proposition 6.1.10

= 2−n

and hence 〈pn〉n∈IN is Cauchy.

Next, we prove pm[n] = pn[n] for all m ≥ n ∈ IN, by induction on m ≥ n. If m = n

the result is trivial. Now suppose that pm[n] = pn[n] for for some m ≥ n, then:

pm+1[n] = pm+1[min{m,n}]
= (pm+1[m])[n] by Proposition 6.1.12(b)

= pm[n] by hypothesis

= pn[n] by induction.

and since n ∈ IN was arbitrary, this part of the lemma holds by induction.

Finally, if 〈qn〉n∈IN is a sequence in Pω such that qn+1[n] = qn[n] for all n ∈ IN and

〈pn〉n∈IN ∼ 〈qn〉n∈IN. Then, using the second part of the lemma, we have:

pm[n] = pn[n] and qm[n] = qn[n] for all m ≥ n ∈ IN (6.5)

and using Proposition 6.1.12(d), for any n, k ∈ IN:

dω(pk[n], qk[n]) ≤ dω(pk, qk).

Therefore, since 〈pn〉n∈IN ∼ 〈qn〉n∈IN, by definition of ∼:

lim
k→∞

dω(pk, qk) = 0 ⇒ lim
k→∞

dω(pk[n], qk[n]) = 0

⇒ lim
k→∞

dω(pn[n], qn[n]) = 0 by (6.5)

⇒ dω(pn[n], qn[n]) = 0

as required. ut

Lemma 6.1.24 If 〈pn〉n∈IN and 〈qn〉n∈IN are Cauchy sequence and 〈pn〉n∈IN 6∼ 〈qn〉n∈IN,

then there exists n ∈ IN such that pn[n] 6= qn[n].
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Proof. The proof is by contradiction, suppose 〈pn〉n∈IN and 〈qn〉n∈IN are Cauchy se-

quence such that 〈pn〉n∈IN 6∼ 〈qn〉n∈IN and pn[n] = qn[n] for all n ∈ IN. Then, since dS

is a pseudo-metric and using Proposition 6.1.12(c):

dS(pn[k], qn[k]) = 0 for all k ≤ n and n ∈ IN

and hence by definition of dω for any n ∈ IN:

dω(pn, qn) =
∞∑
k=0

2−kdS(pn[k], qn[k])

=
∞∑

k=n+1
2−kdS(pn[k], qn[k]) from above

≤
∞∑

k=n+1
2−k by Proposition 6.1.10

= 2−n.

Now, by definition of d we have:

d(〈pn〉n∈IN, 〈qn〉n∈IN) = lim
n→∞

dω(pn, qn)

≤ lim
n→∞

2−n from above

= 0

that is 〈pn〉n∈IN ∼ 〈qn〉n∈IN which contradicts the hypothesis, and therefore pn[n] 6= qn[n]

for some n ∈ IN. ut

6.2 Denotational Semantics for RPp

Using the complete metric space (P, d), we can now give denotational semantics for our

language RPp, assuming A = Act . The first step is the introduction of the semantic

operators: synchronous parallel ( ‖ ), restriction ( |̀ ), and relabelling ( [λ] ), where

following the definition of RP we require that λ :A→ A is bijective. However, before

we can do this we require the following definition.

Definition 6.2.1 The degree of a process p ∈ Pω is defined inductively by putting

deg(p0) = 0 and deg(p) = n+ 1 if p ∈ Pn+1 \ Pn for some n ∈ IN.

We can now define the semantic operators on the pseudo-metric space Pω by induction

on the degree.

Definition 6.2.2 (Parallel Operator) Let p ‖ p0 = p0 ‖ p = p0 and

(a, f) ‖ (b, g) =

 (a, f ‖ g) if a = b

p0 if a 6= b
where (f ‖ g)(r) =

∑
r1,r2∈Pω

& r1 ‖ r2=r

f(r1) · g(r2)

for any r ∈ Pω.
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We now investigate properties of Definition 6.2.2 with respect to the map V . Recall

that for any u1, u2 ∈ A∗, u1 ∩ u2 denotes the largest common prefix of u1 and u2.

Lemma 6.2.3 For all p, q ∈ Pω and u ∈ A∗:

V(u, p ‖ q) =
∑

u1∩u2=u
V(u1, p) · V(u2, q).

Proof. The lemma is proved by induction on deg(p ‖ q). If deg(p ‖ q) = 0, then

p ‖ q = p0 and by Definition 6.2.2 without loss of generality we have the following two

cases to consider:

1. p = p0, then for any u ∈ A∗, if u 6= 〈〉 and u1 ∩ u2 = u by Definition 3.1.1 u1 6= 〈〉,

and hence by definition of V :

V(u, p ‖ q) =
∑

u1∩u2=u

V(u1, p) · V(u2, q) = 0.

On the other hand, if u = 〈〉, using the above we have:∑
u1∩u2=〈〉

V(u1, p) · V(u2, q) =
∑

u1,u2∈A∗
V(u1, p) · V(u2, q)

=

( ∑
u1∈A∗

V(u1, p)

)
·
( ∑
u2∈A∗

V(u2, q)

)
rearranging

= 1 · 1 by Proposition 6.1.9

= V(〈〉, p0) by Definition 6.1.8

= V(〈〉, p ‖ q) by hypothesis.

2. p = (a, f) and q = (b, g) for some distinct a, b ∈ A and f, g ∈ µ(Pω). Consider

any u ∈ A∗, then if u 6= 〈〉 we have u = cu′ for some c ∈ A and by Definition 3.1.1

if u1∩u2 = u then u1 = cu′1 and u2 = cu′2 such that u′1∩u′2 = u′. Without loss of

generality, we can suppose c 6= a and therefore
∑

u1∩u2=u
V(u1, p) · V(u2, q) equals:

∑
u′1∩u

′
2=u′

V(cu′1, p) · V(cu′2, q) =
∑

u′1∩u
′
2=u′

0 · V(cu′2, q)
by Definition 6.1.8

since c 6= a

= 0

= V(cu′, p0) by Definition 6.1.8

= V(u, p ‖ q) by hypothesis.

On the other hand, if u = 〈〉, similarly to the first case we have:∑
u1∩u2=〈〉

V(u1, p) · V(u2, q) = V(u, p ‖ q) = 1.
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Then since these are all the possible cases, the lemma holds for n = 0.

Now, suppose the lemma holds for some n ∈ IN, and consider any p, q ∈ P such

that deg(p ‖ q) = n + 1. Then, by Definition 6.2.2, p ‖ q = (a, f ‖ g) for some a ∈ A

and f, g ∈ µ(Pω) such that p = (a, f) and q = (a, g). Now considering any u ∈ A∗, if

u 6= au′ for some u′ ∈ A∗ and u1∩u2 = u, by Definition 3.1.1 without loss of generality

we can suppose u1 6= au′ for any u′ ∈ A∗, and hence by Definition 6.1.8 we have:

∑
u1∩u2=u

V(u1, p) · V(u2, q) =
∑

u1∩u2=u

0 · V(u2, q) = 0 = V(u, p ‖ q).

On the other hand if u = au′ for some u′ ∈ A∗ and u1 ∩ u2 = u, by Definition 3.1.1

u1 = au′1 and u2 = au′2 such that u′1 ∩ u′2 = u′, and from Definition 6.2.2:

V(au′, p ‖ q) =
∑

p′∈s(f)
& q′∈s(g)

(
f(p′) · g(q′)

)
· V(u′, p′ ‖ q′)

=
∑

p′∈s(f)
& q′∈s(g)

(
f(p′) · g(q′)

)
·
( ∑
u′1∩u

′
2=u′

V(u′1, p
′) · V(u′2, q

′)

)
by induction

=
∑

u′1∩u
′
2=u′

( ∑
p′∈s(f)

f(p′) · V(u′1, p
′)

)
·
( ∑
q′∈s(g)

g(q′) · V(u′2, q
′))

)

=
∑

u′1∩u
′
2=u′

V(au′1, p) · V(au′2, q) by Definition 6.1.8

=
∑

u1∩u2=au′
V(u1, p) · V(u2, q) from above

as required. ut

Lemma 6.2.4 For all p, q ∈ Pω and k ∈ IN: (p ‖ q)[k] = p[k] ‖ q[k].

Proof. The proof is by induction on k ∈ IN. If k = 0, then by definition of truncations

and ‖ : (p ‖ q)[0] = p[0] ‖ q[0] = p0.

Now, suppose the lemma holds for some k ∈ IN and consider any p, q ∈ Pω. If

p ‖ q = p0, then the result follows by Definition 6.1.11 and Definition 6.2.2. On the

other hand, if p ‖ q 6= p0, then p ‖ q = (a, f ‖ g) for some a ∈ A and f, g ∈ µ(Pω) and

by Definition 6.2.2 to prove (p ‖ q)[k + 1] = p[k + 1] ‖ q[k + 1] it is enough to show

(f ‖ g)[k] = f [k] ‖ g[k]. By Definition 6.2.2 we have:

s(f [k] ‖ g[k]) = {p̃ ‖ q̃ | p̃ ∈ s(f [k]) and q̃ ∈ s(g[k])}
= {p̂[k] ‖ q̂[k] | p̂ ∈ s(f) and q̂ ∈ s(g)} by Definition 6.1.11

= {(p̂ ‖ q̂)[k] | p̂ ∈ s(f) and q̂ ∈ s(g)} by induction

= s((f ‖ g)[k]) by Definition 6.1.11.
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Similarly, we can show (f ‖ g)[k](r) = (f [k] ‖ g[k])(r) for all r ∈ Pω, and thus,

(p ‖ q)[k + 1] = p[k + 1] ‖ q[k + 1]

as required. ut

Proposition 6.2.5 ‖ is continuous and well-defined on (Pω, dω).

Proof. Consider any p, q and r ∈ Pω and k ∈ IN, then by Lemma 6.2.4 we have:

dS((p ‖ r)[k], (q ‖ r)[k]) = dS(p[k] ‖ r[k], q[k] ‖ r[k])

= 1
2

∑
u∈A∗

|V(u, p[k] ‖ r[k])− V(u, q[k] ‖ r[k])| by definition of dS

= 1
2

∑
u∈A∗

∣∣∣∣ ∑
u1∩u2=u

(
V(u1, p[k]) · V(u2, r[k])− V(u1, q[k]) · V(u2, r[k])

)∣∣∣∣
by Lemma 6.2.3

≤ 1
2

∑
u∈A∗

( ∑
u1∩u2=u

V(u2, r[k]) · |V(u1, p[k])− V(u1, q[k])|
)

= 1
2

∑
u1,u2∈A∗

V(u2, r[k]) · |V(u1, p[k])− V(u1, q[k])| rearranging

= 1
2

∑
u∈A∗

1 · |V(u, p[k])− V(u, q[k])| by Proposition 6.1.9

= dS(p[k], q[k]) by definition of dS

and since this was for any k ∈ IN by definition of dω:

dω(p ‖ r, q ‖ r) =
∞∑
k=0

2−kdS((p ‖ r)[k], (q ‖ r)[k])

≤
∞∑
k=1

2−kdS(p[k], q[k]) from above

= dω(p, q) by definition.

Therefore, if p, p′, q and q′ ∈ Pω we have:

dω(p ‖ q, p′ ‖ q′) ≤ dω(p ‖ q, p′ ‖ q) + dω(p
′ ‖ q, p′ ‖ q′) by the triangle inequality

≤ dω(p, p
′) + dω(q, q

′) from above

and thus ‖ is continuous if well defined.

To complete the proof we show p ‖ q ∈ Pω for all p, q ∈ Pω by induction on n where

n = max{deg(p),deg(q)}. If n = 0, then p = q = p0, and thus p ‖ q ∈ P as required.
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Now suppose the proposition holds for n and consider any p, q ∈ Pω such that

n + 1 = max{deg(p),deg(q)}, then by definition of ‖ either p ‖ q = p0 and hence

p||q ∈ Pω, or p ‖ q = (a, f ‖ g) for some a ∈ A and f, g ∈ µ(Pω) such that p = (a, f)

and q = (a, g) for some a ∈ Act and f, g ∈ µ(Pn). Therefore, in the second case, by

Definition 6.2.2 p||q = (a, f ||g), and hence to prove p ‖ q ∈ Pω, it is sufficient to show

f ‖ g ∈ µ(Pω). First, by Definition 6.2.2 it follows that:

s(f ‖ g) = {p̃ ‖ q̃ | p̃ ∈ s(f) and q̃ ∈ s(g)} (6.6)

and therefore by induction p̃ ‖ q̃ ∈ Pω for all p̃ ∈ s(f) and q̃ ∈ s(g), and hence s(f ‖ g) ⊆
Pω. Moreover, by (6.6):

∑
r∈s(f ‖ g)

(f ‖ g)(r) =
∑

p̃∈s(f) &
q̃∈s(g)

(f ‖ g)(p̃ ‖ q̃)

=
∑

p̃∈s(f) &
q̃∈s(g)

f(p̃) · g(q̃) by Definition 6.2.2

=

( ∑
p̃∈s(f)

f(p̃)

)
·
( ∑
q̃∈s(g)

g(q̃)

)
rearranging

= 1 since f, g ∈ µ(Pω)

and thus f ‖ g ∈ µ(Pω) as required.

ut

The next semantic operator we introduce is restriction, which we again define

inductively on the degree of processes.

Definition 6.2.6 (Restriction Operator) For any B ⊆ A, let:

p0 |̀B = p0 and (a, f) |̀B =

 (a, f |̀B) if a ∈ B
p0 otherwise

where f |̀B(q) =
∑

r∈Pω &
r |̀B=q

f(r)

for any q ∈ Pω.

To investigate properties of this semantic operator, as for the case involving parallel

composition we first consider a connection between V and the restriction operator.

Recall that for any u ∈ A∗, u |̀B denotes the largest prefix of u such that all its

elements are in the set B.
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Lemma 6.2.7 For all p ∈ Pω, u ∈ A∗ and B ⊆ A:

V(u, p |̀B) =
∑

u′ |̀B=u

V(u′, p).

Proof. The proof is by induction on u ∈ An. If u ∈ A0, then u = 〈〉 and if u′ |̀B = u

for any u′ ∈ A∗, either u′ = 〈〉 or u′ = au′′ for some a 6∈ B. Now considering any

p ∈ Pω, we have the following three cases:

1. p = p0, then by Definition 6.2.6 p |̀B = p0 and by definition of V since 〈〉 |̀B = 〈〉:

V(u, p |̀B) =
∑

u′ |̀B=u

V(u′, p) = 1.

2. p = (a, f) and a ∈ B, then by Definition 6.2.6 p |̀B = (a, f |̀B) and since

(au) |̀B 6= 〈〉 for any u ∈ A∗, by definition of V :

V(u, p |̀B) =
∑

u′ |̀B=u

V(u′, p) = 0.

3. p = (a, f) and a 6∈ B, then since (au′) |̀B = 〈〉 for all u′ ∈ A∗ and by definition

of V , V(u, p) = 0 if u 6= au′ for some u′ ∈ A∗:∑
u′ |̀B=u

V(u, p) =
∑
u∈A∗

V(u, p)

= 1 by Proposition 6.1.9

= V(〈〉, p0) by Definition 6.1.8

= V(〈〉, p |̀B) by Definition 6.2.6 since a 6∈ B.

Since these are all the possible cases the lemma holds for n = 0.

Now suppose the lemma holds for n ∈ IN and consider any u ∈ An+1 \ An, then

u = aũ for some a ∈ A and ũ ∈ An. If a 6∈ B by Definition 3.1.1 u′ |̀B 6= u for any

u′ ∈ A∗. Moreover, for any p ∈ Pω, by Definition 6.2.6 p |̀B 6= (a, f) for any f ∈ µ(Pω),

and hence by definition of V :∑
u′ |̀B=u

V(u′, p) = V(u, p |̀B) = 0.

On the other hand, if a ∈ B, then for any p ∈ Pω, either p 6= (a, f) for any f ∈ µ(Pω)

and by Definition 3.1.1:∑
u′ |̀B=u

V(u′, p) =
∑

ũ′ |̀B=ũ
V(aũ′, p)

= 0 since p 6= (a, f) for any f ∈ µ(Pω)

= V(aũ, p0) by definition of V
= V(aũ, p |̀B) by Definition 6.2.6,
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or p = (a, f) for some f ∈ µ(Pω), in which case by Definition 6.2.6 and V :

V(u, p |̀B) =
∑

q∈s(f)
f(q) · V(ũ, q |̀B)

=
∑

q∈s(f)
f(q) ·

( ∑
ũ′ |̀B=ũ

V(ũ′, q)

)
by induction

=
∑

ũ′ |̀B=ũ

( ∑
q∈s(f)

f(q) · V(ũ′, q)

)
rearranging

=
∑

ũ′ |̀B=ũ
V(aũ′, p) by Definition 6.1.8

=
∑

u′ |̀B=aũ
V(u′, p) by Definition 3.1.1 since a ∈ B.

Thus, the lemma is proved by induction. ut

Lemma 6.2.8 For all p ∈ Pω, B ⊆ A and k ∈ IN: (p |̀B)[k] = p[k] |̀B.

Proof. The proof is by induction on k ∈ IN and follows similarly to Lemma 6.2.4. ut

Proposition 6.2.9 For all B ⊆ A, |̀B is continuous and well-defined on (Pω, dω).

Proof. Consider any p, q ∈ Pω and k ∈ IN, then by Lemma 6.2.8:

dS((p |̀B)[k], (q |̀B)[k]) = dS(p[k] |̀B, q[k] |̀B)

= 1
2

∑
u∈A∗

|V(u, p[k] |̀B)− V(u, q[k] |̀B)| by definition of dS

= 1
2

∑
u∈A∗

∣∣∣∣∣ ∑
u′ |̀B=u

V(u′, p[k])− ∑
u′ |̀B=u

V(u′, q[k])

∣∣∣∣∣ by Lemma 6.2.7

≤ 1
2

∑
u∈A∗

( ∑
u′ |̀B=u

|V(u′, p[k])− V(u′, q[k])|
)

rearranging

= 1
2

∑
u′∈A∗

|V(u′, p[k])− V(u′, q[k])|

= dS(p[k], q[k]) by definition of dS

and since this was for any k ∈ IN, similarly to Proposition 6.2.5 we have dω(p |̀B, q |̀B) ≤
dω(p, q), that is |̀ is continuous on (Pω, dω).
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To show p |̀B ∈ Pω for all p ∈ Pω follows similarly to Proposition 6.2.5 above using

induction on deg(p). ut

Finally, we introduce the semantic operator for relabelling defined inductively on

the degree of processes as follows.

Definition 6.2.10 (Relabelling Operator) For any λ :A → A, let p0 [λ] = p0 and

(a, f) [λ] = (λ(a), f [λ]), where for any q ∈ Pω:

f [λ](q) =
∑

r∈Pω &
r [λ]=q

f(r).

To show the above operator is continuous and well-defined on (Pω, dω), we first extend

any function λ : A → A to λ : A∗ → A∗ as follows: for any a ∈ A and u ∈ A∗:

λ(〈〉) = 〈〉 and λ(au) = λ(a)λ(u). Using this extension, we reach the following lemma.

Lemma 6.2.11 For all p ∈ Pω, u ∈ A∗ and λ :A→ A: V(u, p [λ]) = V(λ−1(u), p).

Proof. The proof is by induction on u ∈ An. If u ∈ A0, then for any p ∈ P by

definition of V :

V(〈〉, p [λ]) =

 1 if p [λ] = p0

0 otherwise

=

 1 if p = p0

0 otherwise
by Definition 6.2.10

= V(〈〉, p) by definition of V
= V(λ−1(〈〉), p)

as required.

Now suppose the lemma holds for any n ∈ IN and consider any u ∈ An+1 \An, then

u = au′ for some a ∈ A and if p ∈ Pω by definition of V we have:

V(au′, p [λ]) =


∑

q∈s(f)
f(q) · V(u′, q) if p [λ] = (a, f) for some f ∈ µ(P )

0 otherwise
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=


∑

q∈s(f)
f(q) · V(u′, q [λ])

if p = (λ−1(a), f)

for some f ∈ µ(P )

0 otherwise

by Definition 6.2.10

=


∑

q∈s(f)
f(q) · V(λ−1(u), q)

if p = (λ−1(a), f)

for some f ∈ µ(P )

0 otherwise

by induction

= V(λ−1(a)λ−1(u′), p) by Definition 6.1.8

= V(λ−1(au′), p) rearranging

as required. ut

Lemma 6.2.12 For all p ∈ Pω, λ :A→ A and k ∈ IN: (p [λ])[k] = (p[k]) [λ].

Proof. The proof is by induction on k ∈ IN and again follows similarly to Lemma 6.2.4.

ut

Proposition 6.2.13 For all λ :A→ A, [λ] is continuous and well-defined on (Pω, dω).

Proof. The proof follows similarly to Proposition 6.2.5 and Proposition 6.2.9 using

Lemma 6.2.7 and Lemma 6.2.8 lemmas above. ut

We are now in a position to give denotational semantics to the guarded expressions

Gp of RPp. We accomplish this by defining a map D from RPp to P , but only consider

properties of this map over guarded terms. By construction, the element of P are the

equivalence classes of the Cauchy sequences of (Pω, dω) under the equivalence relation

∼, and we therefore first construct a sequence of maps (Dn)n∈IN from RPp to Pω such

that 〈D[[E]]〉n∈IN is Cauchy for any E ∈ Gp, and then set D[[E]] = [〈D[[E]]〉n∈IN]∼ for

any E ∈ Gp.

As usual, in order to handle the variables x in the expressions RPp, we introduce

environments Env, ranged over by ρ, defined by Env = X → P . Similar to the above

discussion, for any ρ ∈ Env we can suppose that there exists a sequence of maps

(ρn)n∈IN such that ρn : X → Pω for all n ∈ IN, 〈ρn(x)〉n∈IN is Cauchy in (Pω, dω) and

ρ(x) = [〈ρn(x)〉n∈IN]∼ for all x ∈ X
In addition, we shall require the following auxiliary function.

Definition 6.2.14 For any set P and family 〈µi, pi〉i∈I where 〈µi, pi〉 ∈ ((0, 1] × P )

for all i ∈ I, let: ΦP (〈µi, pi〉i∈I)(q) =
∑{µj | i ∈ I and q = pi}.
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Lemma 6.2.15 If
∑
i∈I µi = 1 for some family 〈µi, pi〉i∈I , then ΦP (〈µi, pi〉i∈I) ∈ µ(P ).

Proof. By definition of ΦP , if 〈µi, pi〉i∈I ∈ ((0, 1]× P )∗ we obtain:

∑
q∈P

ΦP (〈µi, pi〉i∈I)(q) =
∑
i∈I

µi

and hence ΦP (〈µi, pi〉i∈I) ∈ µ(P ) by the hypothesis. ut

We can now define denotational metric semantics for RPp.

Definition 6.2.16 (Denotational Semantics) Let Dn : RPp → (Env → Pω), n ∈
IN, be the collection of maps defined inductively as follows. Put D0[[E]] = p0 for all

E ∈ RPp, and Dn+1 be defined inductively on the structure of elements of RPp as

follows:

Dn+1[[x]](ρ) = ρn+1(x)

Dn+1[[0]](ρ) = p0

Dn+1[[a.
∑
i∈I µi.Ei]](ρ) = (a,ΦPω(〈µi,Dn[[Ei]](ρ)〉i∈I))

Dn+1[[E1 ‖E2]](ρ) = Dn+1[[E1]](ρ) ‖Dn+1[[E2]](ρ)

Dn+1[[E |̀B]](ρ) = Dn+1[[E]](ρ) |̀B
Dn+1[[E [λ]]](ρ) = Dn+1[[E]](ρ) [λ]

Dn+1[[fixx.E]](ρ) = Dn+1[[E]](ρ{Dn[[fixx.E]](ρ)/x}).

Furthermore, let D : RPp → (Env → P ) be the map defined as follows, for any E ∈ RPp

put: D[[E]](ρ) = [〈Dn[[E]](ρ)〉n∈IN]∼.

To prove the well-definedness of the semantic map we shall require the following tech-

nical lemmas.

Lemma 6.2.17 For all E ∈ RPp, p ∈ Pω, ρ ∈ Env and k ≤ n ∈ IN:

Dk[[E]](ρ{p[n]/x})[k] = Dk[[E]](ρ{p/x})[k].

Proof. If k = 0, the result follows by definition of truncations. Now consider any

k, n ∈ IN such that k + 1 ≤ n, we prove this case by induction on the structure of

E ∈ RPp.

1. If E ∈ X , then by definition for any k ≤ n ∈ IN:

Dk+1[[E]](ρ{p[n]/x})[k + 1] =

 (p[n])[k + 1] if E = x

ρk+1(E)[k + 1] otherwise
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=

 p[min{n, k + 1}] if E = x

ρk+1(E)[k + 1] otherwise
by Proposition 6.1.12(b)

=

 p[k + 1] if E = x

ρk+1(E)[k + 1] otherwise
by hypothesis

= Dk+1[[E]](ρ{p/x})[k + 1] by definition of Dk+1.

2. If E = 0, the result follows by definition of Dk+1.

3. If E = a.
∑
i∈I µi.Ei, then by definition of Dk+1:

Dk+1[[E]](ρ{p/x})[k + 1] =
(
a,ΦPω(〈µi,Dk[[Ei]](ρ{p/x})〉i∈I)

)
[k + 1]

=
(
a,ΦPω(〈µi,Dk[[Ei]](ρ{p/x})〉i∈I)[k]

)
by Definition 6.1.11 and similarly, for any n ∈ IN:

Dk+1[[E]](ρ{p[n]/x})[k + 1] =
(
a,ΦPω(〈µi,Dk[[Ei]](ρ{p[n]/x})〉i∈I)[k]

)
Therefore, to show the lemma holds in this case, by definition of ΦPω it is sufficient to

prove that for all k + 1 ≤ n and i ∈ I:

Dk[[Ei]](ρ{p[n]/x})[k] = Dk[[Ei]](ρ{p/x})[k]

which follows by induction since k ≤ k + 1 ≤ n.

4. If E = E1 ‖E2, then for any k + 1 ≤ n ∈ IN we have Dk+1[[E]](ρ{p[n]/x})[k + 1]

equals:

=
(
Dk+1[[E1]](ρ{p[n]/x}) ‖Dk+1[[E2]](ρ{p[n]/x})

)
[k + 1] by definition of Dk+1

= Dk+1[[E1]](ρ{p[n]/x})[k + 1] ‖Dk+1[[E2]](ρ{p[n]/x})[k + 1] by Lemma 6.2.4

= Dk+1[[E1]](ρ{p/x})[k + 1] ‖Dk+1[[E2]](ρ{p/x})[k + 1] by induction

=
(
Dk+1[[E1]](ρ{p/x}) ‖Dk+1[[E2]](ρ{p/x})

)
[k + 1] by Lemma 6.2.4

= Dk+1[[E1 ‖E2]](ρ{p/x})[k + 1] by definition of Dk+1.

5. If E = F |̀B or E = F [λ], the proof follows a similar argument to the case above

replacing Lemma 6.2.4 by Lemma 6.2.8 and Lemma 6.2.12 respectively.

6. If E = fixy.F , then either x = y and by definition ofDk+1 we haveDk+1[[E]](ρ{q/x}) =

Dk+1[[E]](ρ) for any q ∈ P , and hence the lemma holds in this case, or x 6= y, in which
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by definition of Dk+1:

Dk+1[[E]](ρ{p[n]/x})[k + 1] = Dk+1[[F ]](ρ{Dk[[E]](ρ)/y}{p[n]/x})[k + 1]

= Dk+1[[F ]](ρ{p[n]/x}{Dk[[E]](ρ)/y})[k + 1] since x 6= y

= Dk+1[[F ]](ρ{p/x}{Dk[[E]](ρ)/y})[k + 1] by induction

= Dk+1[[F ]](ρ{Dk[[E]](ρ)/y}{p/x})[k + 1] since x 6= y

= Dk+1[[E]](ρ{p/x})[k + 1] by definition.

Since these are all the possible cases the lemma holds by induction. ut

Lemma 6.2.18 For all E ∈ Gp, p ∈ Pω, ρ ∈ Env and k ∈ IN:

Dk[[E]](ρ{p/x})[k + 1] = Dk[[E]](ρ{p[k]/x})[k + 1].

Proof. The proof is by induction on the structure of E ∈ Gp and follows similarly to

Lemma 6.2.17 above except in the case when E = a.
∑
i∈I µi.Ei. In this case, similarly

to Lemma 6.2.18 and replacing n by k, to show the lemma holds it is sufficient to prove

Dk[[Ei]](ρ{p/x})[k] = Dk[[Ei]](ρ{p[k]/x})[k] for all i ∈ I, which follows by Lemma 6.2.17

since Ei ∈ RPp for all i ∈ I and k ≤ k. ut

Lemma 6.2.19 For all E ∈ Gp, ρ ∈ Env and k ∈ IN: Dk+1[[E]](ρ)[k] = Dk[[E]](ρ)[k].

Proof. We prove the lemma by induction on k ∈ IN. The case for k = 0 follows by

definition of truncations.

Now suppose the lemma holds for some k ∈ IN, then we prove the lemma by

induction on the structure of E ∈ Gp. The proof follows similarly to Lemma 6.2.17

above except in the case when E = fix x.F , which we now prove. If E = fix x.F , then

by definition of Dk+2:

Dk+2[[E]](ρ)[k + 1] = Dk+2[[F ]](ρ{Dk+1[[E]](ρ)/x})[k + 1]

= Dk+2[[F ]](ρ{Dk+1[[E]](ρ)[k]/x})[k + 1] by Lemma 6.2.18

= Dk+2[[F ]](ρ{Dk[[E]](ρ)[k]/x})[k + 1] by induction on k ∈ IN

= Dk+2[[F ]](ρ{Dk[[E]](ρ)/x})[k + 1] by Lemma 6.2.18

= Dk+1[[F ]](ρ{Dk[[E]](ρ)/x})[k + 1] by induction on F

= Dk+1[[E]](ρ)[k + 1] by definition

which completes the proof. ut

Lemma 6.2.20 For all E ∈ RPp, F ∈ Prp, ρ ∈ Env and n ∈ IN:

Dn[[E{F/x}]](ρ)[n] = Dn[[E]](ρ{Dn[[F ]]/x})[n].

Furthermore, if E ∈ Gp then:

Dn+1[[E{F/x}]](ρ)[n+ 1] = Dn+1[[E]](ρ{Dn[[F ]]/x})[n+ 1].
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Proof. The proof is by induction on the structure of E and follows a similar proof to

Lemma 6.2.17 and Lemma 6.2.18. ut

Proposition 6.2.21 D is well-defined on the set of guarded expressions of RPp.

Proof. First, we prove that Dn[[E]](ρ) ∈ Pω for all E ∈ Gp and n ∈ IN by induction

on n. The case for n = 0 is trivial.

Now suppose Dn[[E]](ρ) ∈ Pω for all E ∈ Gp and some n ∈ IN, we prove the case

for n+ 1 by induction on the structure of E ∈ Gp.

1. If E = 0, then by definition Dn+1[[0]](ρ) = p0 ∈ Pω.

2. If E = a.
∑
i∈I µi.Ei, then by induction Dn[[Ei]](ρ) ∈ Pω for all i ∈ I, and since

by construction
∑
i∈I µi = 1, using Lemma 6.2.15 we have:

ΦPω(〈µi,D[[Ei]](ρ) 〉i∈I) ∈ µ(Pω).

and therefore, D[[E]](ρ) ∈ Pω by definition of Dn+1.

3. If E = E1 ‖E2, E = Ẽ |̀B or E = Ẽ [λ], the proposition holds by definition of

Dn+1, the well-definedness of the semantic operators and induction.

4. If E = fixx.E
′, then by induction on E ′ and n ∈ IN we have Dn+1[[E

′]](ρ) ∈ Pω

and Dn[[E]](ρ) ∈ Pω respectively, and hence Dn+1[[E]](ρ) ∈ Pω, by definition of

Dn+1.

Finally to prove that D is well defined, we show that for any E ∈ Gp: 〈Dn[[E]]〉n∈IN

is Cauchy in (Pω, dω) which follows from the continuity of the semantic operators,

Lemma 6.1.23 and Lemma 6.2.19. ut

6.2.1 Full Abstraction

In this section we show that the above denotational model is fully abstract, that is, two

RPp expressions are equivalent with respect to
p∼ if and only if their denotations (under

the semantic map D) have distance zero. By definition the operational equivalence
p∼

and metric d are based on the mappings P and V respectively, where

P :
(
{O[[E]] |E ∈ Prp} × Tp

)
→ [0, 1] and V :

(
A∗ × {Dn[[E]] |E ∈ Prp}

)
→ [0, 1].

Therefore, to reach a full abstraction result, we first relate the semantic maps O and

D and our testing language Tp and the set of strings A∗, then, using these results, the

maps P and V . This leads to a connection between
p∼ and the metric d, and hence

the full abstraction result. Formally, we have the following lemmas and definition.
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Lemma 6.2.22 For all E ∈ Prp and ρ ∈ Env, O[[E]] = ∅ if and only if Dn+1[[E]](ρ) =

p0 for all n ∈ IN, and O[[E]] = (a, π) if and only if Dn+1[[E]](ρ) = (a, fn) for all n ∈ IN

such that for any n ∈ IN and q ∈ Pω:

fn[n](q) =
∑

F∈Prp &
Dn[[F ]](ρ)[n]=q

π(F ).

Proof. Consider any E ∈ Prp, ρ ∈ Env and n ∈ IN, we prove the lemma by induction

on the structure of E ∈ Prp.

1. If E = 0, then O[[E]] = ∅ and Dn+1[[0]](ρ) = p0 as required.

2. If E =
∑
i∈I aµi

.Ei, then by the transition rules O[[E]] = (a, π), where for any

F ∈ Prp:

π(E) =
∑
i∈I &
Ei=E

µi.

On the other hand:

Dn+1[[a.
∑
i∈I µi.Ei]](ρ) =

(
a,ΦPω(〈µi,Dn[[Ei]](ρ)〉i∈I)

)
by definition ofDn+1 and letting fn ≡ ΦPω(〈µi,Dn[[Ei]](ρ)〉i∈I), we obtainDn[[E]] =

(a, fn). Thus, for any n ∈ IN and q ∈ Pω we have:

fn[n](q) =
∑

F∈Prp &
Dn[[F ]](ρ)[n]=q

π(F )

by definition of ΦPω and π.

3. If E = E1 ‖E2, then either O[[E]] = ∅ or O[[E]] = (a, π) for some a ∈ Act and

π ∈ µ(Prp). First consider when O[[E]] = ∅, then by definition of the transition

rules one of the following two cases must hold.

• O[[E1]] = ∅ or O[[E2]] = ∅, then by induction either Dn+1[[E1]](ρ) = p0 or

Dn+1[[E2]](ρ) = p0, and therefore Dn+1[[E1 ‖E2]](ρ) = p0 by definition of

Dn+1 and the semantic operator ‖ .

• O[[E1]] = (a1, π1) and O[[E2]] = (a2, π2) for some π1, π2 ∈ µ(Prp) such that

a1 6= a2. Then by induction, the definition of Dn+1 and the semantic oper-

ator ‖ , Dn+1[[E1 ‖E2]](ρ) = p0.

Secondly, if O[[E]] = (a, π), then by definition of the transition rules O[[E1]] =

(a, π1) and O[[E2]] = (a, π2) for some π1, π2 ∈ µ(Prp). Then by induction and
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the definition of the semantic operator ‖ : Dn+1[[E1 ‖E2]](ρ) = (a, fn ‖ gn), where

Dn+1[[E1]](ρ) = (a, fn) and Dn+1[[E2]](ρ) = (a, gn). Moreover, for any q ∈ P by

Definition 6.2.2:

(fn[n] ‖ gn[n])(q) =
∑

q1,q2∈P
& q1 ‖ q2=q

fn[n](q1) · gn[n](q2)

=
∑

q1,q2∈P
& q1 ‖ q2=q

 ∑
F1∈Prp &

Dn[[F1]](ρ)[n]=q1

π1(F1)

 ·
 ∑

F2∈Prp &
Dn[[F2]](ρ)[n]=q2

π2(F2)

 by induction

=
∑

F1,F2∈Prp &
(Dn[[F1]](ρ) ‖Dn[[F2]](ρ))[n]=q

π1(F1) · π2(F2) by Lemma 6.2.4

=
∑

F1,F2∈Prp &
Dn[[F1 ‖F2]](ρ)[n]=q

π1(F1) · π2(F2) by definition of Dn

=
∑

F∈Prp &
Dn[[F ]](ρ)[n]=q

π(F ) by the transition rules.

4. If E = E ′ |̀B, then either O[[E]] = ∅ or O[[E]] = (a, π) for some a ∈ Act and

π ∈ µ(Prp). Considering when O[[E]] = ∅, by definition of the transition rules:

O[[E ′]] = ∅ or O[[E ′]] = (a, π) for some a ∈ A \ B, in both cases by definition of

the semantic operator for restriction and induction Dn+1[[E]](ρ) = p0.

On the other hand, ifO[[E]] = (a, π) then by definition of the transition rules: a ∈
B such that O[[E ′]] = (a, π′). Furthermore, by induction Dn+1[[E

′]](ρ) = (a, fn),

and hence by definition of the semantic operator for restriction Dn+1[[E]](ρ) =

(a, fn |̀B) and for any n ∈ IN and q ∈ P :

(fn |̀B)[n](q) =
∑

p∈P &
p[n] |̀B=q

fn[n](p)

=
∑

p∈P &
p[n] |̀B=q

 ∑
F∈Prp &

Dn[[F ]](ρ)[n]=p

π′(F )

 by induction

=
∑

F∈Prp &
Dn[[F ]](ρ) |̀B[n]=q

π′(F ) by Lemma 6.2.8

=
∑

F∈Prp &
Dn[[F |̀B]](ρ)[n]=q

π′(F ) by definition of Dn

=
∑

F∈Prp &
Dn[[F ]](ρ)[n]=q

π(F ) by the transition rules.
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5. If E = E ′ [λ], either O[[E]] = ∅ and O[[E ′]] = ∅ in which case the result follows

by induction, or O[[E]] = (a, π) and O[[E ′]] = (λ−1(a), π′), then by induction

Dn+1[[E]](ρ) = (a, fn [λ]), and for any q ∈ Pω, by Definition 6.2.10:

fn[n] [λ](q) =
∑

p∈Pω &
p[n] [λ]=q

fn[n](p)

=
∑

p∈Pω &
p [λ]=q

 ∑
F∈Prp &

Dn[[F ]](ρ)[n]=p

π′(F )

 by induction

=
∑

F∈Prp &
Dn[[F ]](ρ) [λ][n]=q

π′(F ) by Lemma 6.2.12

=
∑

F∈Prp &
Dn[[F [λ]]](ρ)[n]=q

π′(F ) by definition of Dn

=
∑

F∈Prp &
Dn[[F ]](ρ)[n]=q

π(F ) by the transition rules.

6. If E = fixx.E
′, the lemma follows by induction on the structure E ′ ∈ Gp, similarly

to the cases above and using Lemma 6.2.20.

Since these are all the possible forms of E the lemma is proved by induction on the

structure of E. ut

Definition 6.2.23 We define the following map ξ :A∗ → Tp inductively on u ∈ An.

Let ξ(〈〉) = ⊥ and ξ(au) = a.ξ(u).

Lemma 6.2.24 The mapping ξ is bijective.

Proof. The proof follows by definition of A∗ and Tp, and since A = Act . ut

As discussed earlier, we are now in a position to reach a connection between the maps

P and V . Recall that for any u, v ∈ A∗, u ≤ v if u is a prefix of v.

Lemma 6.2.25 For all E ∈ Prp, ρ ∈ Env, u ∈ An and n ∈ IN:

∑
u′∈An

&u≤u′

V(u′,Dn[[E]](ρ)[n]) = P(E)(ξ(u)).
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Proof. The proof is by induction on n ∈ IN, where we remove ρ for simplicity.

Consider any E ∈ Prp and u ∈ A0, then since A0 = {〈〉}:
∑

u′∈A0

& 〈〉≤u′

V(u′,D0[[E]][0]) = V(〈〉,D0[[E]][0])

= V(〈〉, p0) by Definition 6.1.11

= 1 by Definition 6.1.8

= P(E)(⊥) by definition of P

= P(E)(ξ(〈〉)) by definition of ξ.

Now suppose the result holds for n and consider any E ∈ Prp and u ∈ An+1. If

u = 〈〉, then since 〈〉 ≤ u′ for all u ∈ An+1:

∑
u′∈An+1

& 〈〉≤u′

V(u,Dn+1[[E]][n+ 1]) =
∑

u′∈An+1

V(u,Dn+1[[E]][n+ 1])

=
∑

u′∈A∗
V(u,D[[E]][n+ 1]) by Proposition 6.1.12(e)

= 1 by Proposition 6.1.9

= P(E)(⊥) by definition of P

= P(E)(ξ(〈〉)) by definition of ξ.

On the other hand, if u 6= 〈〉 then u = aũ for some a ∈ Act and ũ ∈ An, and in this

case by definition of V , ξ and Lemma 6.2.22, if O[[E]] 6= (a, π) for any π ∈ µ(Prp):

∑
u′∈An+1

&u≤u′

V(u,Dn+1[[E]][n+ 1]) = P(E)(ξ(u)) = 0.
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We are therefore left with the case when O[[E]] = (a, π) for some π ∈ µ(Prp). Using

Lemma 6.2.22, Definition 3.1.1 and since u = aũ we have:

∑
u′∈An+1

&u≤u′

V(u′,D[[E]][n+ 1]) =
∑

u′∈An

& ũ≤u′

V(au′, (a, fn)[n+ 1])

=
∑

u′∈An

& ũ≤u′

V(au′, (a, fn[n])) by Definition 6.1.11

=
∑

u′∈An

& ũ≤u′

( ∑
q∈Pω

fn[n](q) · V(u′, q)

)
by definition of V

=
∑

u′∈An

& ũ≤u′

 ∑
q∈Pω

 ∑
F∈Prp &

Dn[[F ]][n]=q

π(F )

 · V(u′, q)

 by Lemma 6.2.22

=
∑

F∈Prp
π(F ) ·

 ∑
u′∈An

& ũ≤u′

V(u′,Dn[[F ]][n])

 rearranging

=
∑

F∈Prp
π(F ) · P(F )(ξ(ũ)) by induction

= P(E)(a.ξ(ũ)) by definition of P

= P(E)(ξ(aũ)) by definition of ξ

= P(E)(ξ(u)) by hypothesis

and thus we have proved the lemma by induction on n ∈ IN. ut

Finally, using the above lemmas we reach the following full abstraction result.

Theorem 6.2.26 (Full Abstraction) For all E,F ∈ Gp:

O[[E]]
p∼O[[F ]] if and only if D[[E]](ρ) = D[[F ]](ρ) for all ρ ∈ Env.

Proof. We only consider the case for E,F ∈ Prp, as the case for E,F ∈ Gp \ Prp

follows by definition of
p∼ on Gp (we remove ρ for simplicity). First, consider any

E,F ∈ Prp such that D[[E]] = D[[F ]]. Then using Lemma 6.1.23 and Lemma 6.2.19 we

have dω(Dn[[E]][n],Dn[[F ]][n]) = 0 for all n ∈ IN, and hence by definition of d and dS :

|V(u,Dn[[E]][n])− V(u,Dn[[F ]][n])| = 0 ∀u ∈ An & n ∈ IN
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⇒ V(u,Dn[[E]][n]) = V(u,Dn[[F ]][n]) ∀u ∈ An & n ∈ IN

⇒
∑

u′∈A∗
&u≤u′

V(u′,Dn[[E]][n]) =
∑

u′∈An

&u≤u′

V(u′,Dn[[F ]][n]) ∀u ∈ An & n ∈ IN

⇒ P(E)(ξ(u)) = P(F )(ξ(u)) ∀u ∈ An & n ∈ IN by Lemma 6.2.25

⇒ P(E)(ξ(u)) = P(F )(ξ(u)) ∀u ∈ A∗ rearranging

⇒ P(E)(t) = P(F )(t) ∀t ∈ Tp by Lemma 6.2.24

⇒ O[[E]]
p∼O[[F ]] by definition of

p∼
as required.

For the other direction, suppose D[[E]] 6= D[[F ]], then by definition of (P, d):

limn→∞ dω(Dn[[E]],Dn[[F ]]) 6= 0, and hence using Lemma 6.1.24 there exists n ∈ IN

such that dS(Dn[[E]][n],Dn[[F ]][n]) 6= 0. Therefore, by definition of dS there exists

u ∈ A∗ such that V(u,Dn[[E]][n]) 6= V(u,Dn[[F ]][n]). Now by construction Act is finite

and Act = A, and therefore An is finite and using Proposition 6.1.12(e), without loss

of generality we can suppose u ∈ An and that:

V(u′,Dn[[E]][n]) = V(u′,Dn[[F ]][n]) for all u′ ∈ An such that u < u′. (6.7)

Moreover, Lemma 6.2.24 implies ξ(u) ∈ Tp, and therefore by Lemma 6.2.25:

P(E)(ξ(u)) =
∑

u′∈An

&u≤u′

V(u′,Dn[[E]][n])

= V(u,Dn[[E]][n]) +
∑

u′∈An

u<u′

V(u′,Dn[[E]][n]) rearranging

= V(u,Dn[[E]][n]) +
∑

u′∈An

u<u′

V(u′,Dn[[F ]][n]) by (6.7)

6= V(u,Dn[[F ]][n]) +
∑

u′∈An

u<u′

V(u′,Dn[[F ]][n]) by hypothesis

=
∑

u′∈An

&u≤u′

V(u′,Dn[[F ]][n]) rearranging

= P(F )(ξ(u)) by Lemma 6.2.25

thus, O[[E]] 6 p∼O[[F ]] as required. ut

6.3 A Metric for Deterministic Probabilistic Pro-

cesses

Observe that simple probabilistic processes (the elements of P ) are represented either

by p0 (termination), or are limits limn→∞ pn of Cauchy sequences of (finite) processes,
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where with out loss of generality, we can suppose pn+1 = (a, fn) for some a ∈ A

and fn ∈ µ(Pω) for all n ∈ IN , and thus initially can only perform the action a.

To represent choice it is necessary to use sets of elements of P as denotations for

probabilistic processes. As we wish to model deterministic probabilistic processes

(that is, processes that can make external choices), in the light of the definition of

deterministic probabilistic transition systems such sets must satisfy the reactiveness

condition.

We note that since this construction is based on the construction of the denotational

model for purely probabilistic processes, in certain cases the results will overlap and

in such cases we omit the proofs.

We now proceed with the construction involving sets of P , as opposed to just

elements, to give a denotational semantics for deterministic probabilistic processes.

The difference between the equation below and that in Definition 6.1.1 is the presence

of the power set operator Pf nr(· × ·) (finite non-empty reactive subsets).

Definition 6.3.1 (Finite deterministic probabilistic processes) Let Dn, n ∈ IN,

be a collection of carrier sets defined inductively by

D0 = {{p0}} and Dn+1 = {{p0}} ∪ Pf nr (A× µ(Dn))

where A is a set of actions. Furthermore, let Dω = ∪nDn denote deterministic prob-

abilistic processes of bounded depth.

To simplify notation, we define Ds
ω, where s is intended to denote the singleton

elements of Dω, as the elements of the form p0 or (a, f) for some a ∈ A and f ∈ µ(Dω).

Intuitively, we can think of an element of Ds
ω as a finite deterministic probabilistic

process whose first transition can only be of one action type and the total probability

of this action taking place is 1. Furthermore, let Dω be ranged over by X,Y . . . and

p, q . . . range over Ds
ω.

When constructing a pseudo-metric over Pω, recall that we first considered pro-

cesses as sets of strings of the type (A× (0, 1])∗ by means of the mapping S, and using

this representation we could then calculate the probability of processes performing a

given path. Later on we showed that we could, in fact, calculate the probabilities of

paths being performed without the need for the mapping S, by induction on the depth

of paths (see Definition 6.1.8). Now we extend this definition to our current setting.

The next step is therefore to consider the possible paths of deterministic probabilistic

processes.

At first sight it may seem feasible to extend our pseudo-metric on simple proba-

bilistic processes by means of the Hausdorff distance. However, if we consider possible
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paths of deterministic probabilistic processes, as opposed to simple probabilistic pro-

cesses, we see that the situation is more complex, since there is now external choice, as

well as (internal action-guarded) probabilistic choice. We demonstrate this by means

of an example. Consider the deterministic probabilistic process X given below:

X

?

r
a

1r
�

�
�

�=

Z
Z

Z
Z~

b
1 1

c rr
To incorporate the external choice we consider deterministic trees, as opposed to

strings, since we cannot consider the paths that X can perform as elements of A∗:

X can perform the action a and then make an external choice between b and c, which

will be denoted by the tree a{b〈〉, c〈〉}, and thus we need to add sets to the definition

of A∗. Intuitively, we need to add this extra level of complexity as our pseudo-metric

is not inductive, whereas de Bakker and Zucker’s construction does not require this

as their metric is inductive, and so they can use the Hausdorff metric inductively

to capture the branching behaviour. Formally, we define A∗
d, the set of trees that

deterministic processes can perform as follows.

Definition 6.3.2 Let And, n ∈ IN, be a collection of sets defined inductively as follows.

Let

A0
d = {〈〉} and An+1

d = A× (Pf nr(And) ∪ {〈〉}).

Furthermore, let A∗
d = ∪nAnd.

Using A∗
d we are now in a position to extend V (Definition 6.1.8) to deterministic prob-

abilistic processes and deterministic trees as follows, where multiplication is used for

the same intuitive reasons it is used in the definition of D on deterministic probabilistic

transition systems.

Definition 6.3.3 For all p ∈ Ds
ω, u ∈ A∗

d, and n ∈ IN, we define the probability of p

performing the “deterministic tree” u, denoted V(u, p), as follows:

V(〈〉, p) =

 1 if p = p0

0 otherwise

Then for all p ∈ Ds
ω and aU ∈ An+1

d put:

V(aU, p) =


∑

X∈Dω

f(X) · V(U,X) if p = (a, f) for some f ∈ µ(Dω)

0 otherwise
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where, for all X ∈ Dω and U ∈ Pf nr(And) ∪ {〈〉}, either U = {a1U1, . . . , amUm} ∈
Pf nr(And) and

V(U,X) =


m∏
i=1
V(aiUi, (ai, fi))

if X = {(a1, f1), . . . , (am, fm)}
for some {f1, . . . , fm} ⊆ µ(D)

0 otherwise

or U = 〈〉, and then put:

V(〈〉, X) =

 1 if X = {p0}
0 otherwise.

We next introduce the following extension of Proposition 6.1.9 to the deterministic

case.

Proposition 6.3.4 For all p ∈ Ds
ω and X ∈ Dω, the maps V(·, p) : A∗

d → [0, 1] and

V(·, X) : Pf nr(A∗
d) ∪ {〈〉} → [0, 1] are probability distributions.

Proof. The proof is by induction on p ∈ Ds
n and X ∈ Dn. If n = 0 the lemma follows

similarly to Proposition 6.1.9.

Now, suppose that the proposition holds for some n ∈ IN, then again similarly to

Proposition 6.1.9 we can show that V(·, p) ∈ µ(A∗
d) for all p ∈ Ds

n+1. Next consider

any X ∈ Dn+1 \ Dn, then X = {(a1, f1), . . . , (am, fm)} for some m ∈ IN, where

(ai, fi) ∈ Ds
n+1 for all 1 ≤ i ≤ m. Letting pi = (ai, fi), pi ∈ Ds

n+1 and hence from

above V(·, pi) ∈ µ(A∗
d) for all 1 ≤ i ≤ m. By Definition 6.3.3:

∑
U∈Pf nr(A∗

d
)∪{〈〉}

V(U,X) =
∑

∪m
i=1aiUi∈Pf nr(A∗

d
)

(
m∏
i=1
V(aiUi, pi)

)

=
m∏
i=1

( ∑
aiUi∈A∗d

V(aiUi, pi)

)
rearranging

=
m∏
i=1

( ∑
u∈A∗

d

V(u, pi)

)
by Definition 6.3.3 since pi = (ai, fi)

=
m∏
i=1

1 since V(·, pi) ∈ µ(A∗
d) for all 1 ≤ i ≤ m

= 1

as required. ut

Following the construction for the metric space (P, d) of simple probabilistic pro-

cesses, we next define a pseudo-metric on Dω. We achieve this by first defining a

pseudo-metric on Ds
ω based on the pseudo-metric dS on Pω, and then extend this

pseudo-metric to all of Dω using the Hausdorff distance.
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Proposition 6.3.5 Ds
ω is a pseudo-metric space with respect to the pseudo-metric:

dS(p, q) =
1

2

∑
u∈A∗

d

| V(u, p)− V(u, q) |.

Furthermore, for all p, q ∈ Ds
ω, 0 ≤ dS(p, q) ≤ 1.

We note that, since A∗ ⊆ A∗
d and the fact that V (defined over deterministic proba-

bilistic processes) when restricted to simple probabilistic processes coincides with the

definition of V over simple probabilistic processes, the above pseudo-metric is equiva-

lent to the pseudo-metric given in Proposition 6.1.10 defined over simple probabilistic

processes.

Again, following the methodology for the construction of P , we next extend the

definition of truncations on Pω to Dω as follows.

Definition 6.3.6 For any f ∈ µ(Dω), p ∈ Ds
ω and k ∈ IN, f [k] and p[k] are as defined

in Definition 6.1.11. Furthermore, for any X ∈ Dω put X[n] = {p[n] | p ∈ X}.

Using the above definition and Definition 6.3.3, similarly to Lemma 6.1.13 and Proposi-

tion 6.1.12 for Pω we have the following lemma and proposition connecting truncations

and deterministic probabilistic processes.

Lemma 6.3.7 For all p ∈ Ds
ω, X ∈ Dω, u ∈ A∗

d and U ∈ Pf nr(A∗
d) ∪ {〈〉}:

V(u, p[k]) =
∑

ũ |̀ k=u
V(ũ, p) and V(U,X[k]) =

∑
Ũ |̀ k=U

V(Ũ ,X).

Proposition 6.3.8 For all p, q ∈ Ds
ω and k,m ∈ IN:

(a) if p ∈ Ds
m, then p[k] ∈ Ds

k when k < m and p[k] = p otherwise.

(b) (p[m])[k] = p[min{m, k}].
(c) p[m] = q[m] if and only if p[k] = q[k] for all k ≤ m.

(d) dS(p[k], q[k]) ≤ dS(p, q).

(e) if u ∈ A∗
d \ Akd, then V(u, p[k]) = 0.

Similarly to the case for simple probabilistic processes, to obtain the required Cauchy

sequences we consider the pseudo-metric dω (see Definition 6.1.15) over Ds
ω, incorpo-

rating both the pseudo-metric dS and truncations. We reach the following proposition.

Proposition 6.3.9 Ds
ω (and Ds

n for any n ∈ IN) is a pseudo-metric space with respect

the pseudo-metric:

dω(p, q) =
∞∑
k=0

2−kdS(p[k], q[k]).
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We are now in a position to extend dω from Ds
ω to Dω as follows.

Theorem 6.3.10 (Dω, dω) (and (Dn, dω) for any n ∈ IN) is a pseudo-metric space,

where dω is the Hausdorff metric with respect to dω on Ds
ω. Furthermore, for all

p, q ∈ Ds
ω and X,Y ∈ Dω, 0 ≤ dω(p, q), dω(X,Y ) ≤ 1.

Proof. If we consider any X ∈ Dω then either X = {p0} or, by definition of Pf nr(·×·),
X is a non-empty finite set of elements, and hence closed. Then, since this is the case

for any X ∈ Dω, Lemma 3.3.10 implies that dω is a pseudo-metric on Dω. To show

0 ≤ dω(p, q), dω(X, Y ) ≤ 1 for all p, q ∈ Ds
ω and X, Y ∈ Dω we use an argument similar

to that for Proposition 6.1.16 together with the definition of the Hausdorff distance.

ut

We now investigate the properties of the pseudo-metric dω on Dω.

Lemma 6.3.11 Let a and b be distinct elements of A, f, g ∈ µ(Dω), p ∈ Ds
ω and

m ∈ IN, then

dω((a, f), (b, g)) = dω(p0, (a, f)) = 1, dω((a, f), (a, g)) ≤ 1

2
and dω(p, p[m]) ≤ 1

2m
.

Moreover, for all X, Y (6= {p0}) ∈ Dω: dω(X, Y ) ≤ 1
2

if and only if

X = {(a1, f1), . . . , (am, fm)} and Y = {(a1, g1), . . . , (am, gm)}

for some m ∈ IN, where ai ∈ A and fi, gi ∈ µ(Dω) for all 1 ≤ i ≤ m.

Proof. For the proof of the first part of the lemma see Lemma 6.1.20. For the second

part of the lemma and its “if” direction suppose:

X = {(a1, f1), . . . , (am, fm)} and Y = {(a1, g1), . . . , (am, gm)}.

Hence, if p ∈ X then p = (ai, fi) for some 1 ≤ i ≤ m, and therefore by definition of

the Hausdorff distance:

dω(p, Y ) = inf{dω(p, q) | q ∈ Y }
≤ dω((ai, fi), (ai, gi)) since p = (ai, fi) and (ai, gi) ∈ Y
≤ 1

2
by the first part of the lemma

and since this was for any p ∈ X, supp∈Xdω(p, Y ) ≤ 1
2
. Furthermore, by symmetry we

have supq∈Y dω(q,X) ≤ 1
2
, and hence by definition of the Hausdorff distance dω(X, Y ) ≤

1
2

as required.

For the “only if” direction, consider any X, Y (6= {p0}) ∈ Dω not of the form given

in the hypothesis, then without loss of generality we can suppose that there exists
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p ∈ X such that p = (a, f) for some a ∈ A and f ∈ µ(Dω), and for all q ∈ Y ,

q 6= (a, g) for any g ∈ µ(Dω). Then, by definition of the Hausdorff distance:

dω(X, Y ) ≥ inf{dω(q, p) | q ∈ Y }
= 1 by the first part of the lemma.

Moreover, by Proposition 6.3.5, dω(X, Y ) ≤ 1, and thus dω(X, Y ) = 1 as required. ut

As before, we now apply the standard completion techniques to derive the metric

space (D, d) of deterministic probabilistic processes.

Definition 6.3.12 Let (D, d), the metric-space of deterministic probabilistic pro-

cesses, be the completion of (Dω, dω).

Note that, as for the case for simple probabilistic processes, D consists of the set of

equivalence classes of Cauchy sequences of Dω under the equivalence ∼, where

〈Xn〉n∈IN ∼ 〈Yn〉n∈IN if and only if lim
n→∞

dω(Xn, Yn) = 0,

and for any Cauchy sequences 〈Xn〉n∈IN and 〈Yn〉n∈IN the metric d is given by:

d(〈Xn〉n∈IN, 〈Yn〉n∈IN) = lim
n→∞

dω(Xn, Yn).

Before we introduce denotational semantics for RPd, we first require the following

technical lemmas.

Lemma 6.3.13 For all X ∈ Dω, 〈X[n]〉n is a Cauchy sequence.

Lemma 6.3.14 If 〈Xn〉n∈IN is a sequence in Dω such that Xn+1[n] = Xn[n] for all

n ∈ IN, then 〈Xn〉n∈IN is Cauchy and Xm[n] = Xn[n] for all m ≥ n ∈ IN. Furthermore,

if 〈qn〉n∈IN is a sequence in Dω such that Yn+1[n] = Yn[n] for all n ∈ IN and 〈Xn〉n∈IN ∼
〈Yn〉n∈IN, then dω(Xn[n], Yn[n]) = 0 for all n ∈ IN.

Lemma 6.3.15 If 〈Xn〉n∈IN and 〈Yn〉n∈IN are Cauchy sequence and 〈Xn〉n∈IN 6∼ 〈Yn〉n∈IN,

then there exists n ∈ IN such that Xn[n] 6= Yn[n].

6.4 Denotational Semantics for RPd

Similarly to the case for P we can now give denotational semantics for our language

RPd based on D (assuming A = Act). The first step is to add an operator for external

choice and extend the semantic operators defined over Pω. Similar to the case for Pω

we define the operators by induction on the degree of a processes X ∈ Dω, which we

now define.
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Definition 6.4.1 The degree of a process X ∈ Dω is defined inductively by putting

deg({p0}) = 0 and deg(X) = n+ 1 if X ∈ Dn+1 \Dn for some n ∈ IN.

Definition 6.4.2 (External Choice) Let {p0}⊕{p0} = {p0} and if X, Y ∈ Dω with

non-zero degree, then X ⊕{p0} = {p0}⊕X = X and X ⊕ Y is the set theoretic union

of the two sets X and Y .

To show ⊕ is well-defined, we first require the following lemma:

Lemma 6.4.3 For all X, X̃, Y and Ỹ ∈ Dω:

dω(X ⊕ Y, X̃ ⊕ Ỹ ) ≤ max{dω(X, X̃), dω(Y, Ỹ )}.

Proof. If X, X̃, Y , Ỹ ∈ Dω, then without loss of generality either X = {p0} and the

result follows from Lemma 6.3.11. or X, X̃, Y and Ỹ are not equal to {p0}. In this

case, by definition of the Hausdorff distance and ⊕ we obtain:

dω(p, X̃ ⊕ Ỹ ) = dω(p, X̃ ∪ Ỹ ) ≤ dω(p, X̃) ≤ dω(X, X̃) ≤ max{dω(X, X̃), dω(Y, Ỹ )}

for any p ∈ X. Taking the supremum of p ∈ X we have

supp∈Xdω(p, X̃ ⊕ Ỹ ) ≤ max{dω(X, X̃), dω(Y, Ỹ )}.

Then similarly:

supq∈Y dω(q, X̃ ⊕ Ỹ ) ≤ max{dω(X, X̃), dω(Y, Ỹ )}
supp̃∈X̃dω(p̃, X ⊕ Y ) ≤ max{dω(X, X̃), dω(Y, Ỹ )}
supq̃∈Ỹ dω(q̃, X ⊕ Y ) ≤ max{dω(X, X̃), dω(Y, Ỹ )}.

Now taking the maximum of the left hand sides of the above four inequalities, the

lemma follows by definition of the Hausdorff distance. ut

We note that, Lemma 6.4.3 above can be generalize to: for all X, X̃, Y and Ỹ ∈ Dω:

dω(X ⊕ Y, X̃ ⊕ Ỹ ) ≤ max{dω(X, X̃), dω(X, Ỹ ), dω(Y, X̃), dω(Y, Ỹ )}.

Proposition 6.4.4 ⊕ is continuous and well-defined on (Dω, dω), with the restriction

that X ⊕ Y is only considered if X ⊕ Y satisfies the reactiveness condition.



6.4 Denotational Semantics for RPd 132

Proof. The proof that ⊕ is continuous in both arguments is a direct result of

Lemma 6.4.3. Furthermore, with the above restriction, it is clear that X ⊕ Y ∈ Dω

for all X, Y ∈ Dω as required. ut

Before we consider the semantic operators || and |̀ with respect to Dω, following the

techniques used for simple probabilistic processes we lift the operators ∩ and |̀B for

any B ⊆ A on A∗ to A∗
d by induction as follows.

Definition 6.4.5 For any U, Ũ ∈ Pf nr(An+1
d ) and B ⊆ A:

U ∩ Ũ =

 〈〉 if u ∩ ũ = 〈〉 for all u ∈ U & ũ ∈ Ũ
{u ∩ ũ |u ∩ ũ 6= 〈〉, u ∈ U & ũ ∈ Ũ} otherwise

and

U |̀B =

 〈〉 if u |̀B = 〈〉 for all u ∈ U
{u |̀B |u |̀B 6= 〈〉 & u ∈ U} otherwise.

We next introduce the semantic operator for synchronous parallel.

Definition 6.4.6 (Parallel) We extend the definition of the semantic operator ‖ on

Pω to Dω by setting: X ‖Y = ⊕{p ‖ q | p ∈ X & q ∈ Y } for any X, Y ∈ Dω.

We next investigate the connections between ‖ and V . First we require the following

lemma.

Lemma 6.4.7 For all X = X1 ∪ X2 ∈ Dω, such that X1 and X2 are of the form

{(a1, f1), . . . , (am, fm)} and {(b1, g1), . . . , (bm̃, gm̃)} respectively, and U1, U2 ∈ Pf r(A∗
d)

such that U1 and U2 are of the form {a1V1, . . . , amVm} and {b1W1, . . . , bm̃Wm̃} respec-

tively:

V(U1 ∪ U2, X) = V(U1, X1) · V(U2, X2),

and moreover: ∑
U1⊆U

V(U,X) = V(U1, X1).

Proof. Consider any X ∈ Dω and U1, U2 ∈ Pf r(A∗
d) of the form given above. Then

Definition 6.3.3 implies:

V(U1 ∪ U2, X) =
m∏
i=1

m̃∏
j=1

(V(aiVi, (ai, fi)) · V(bjWj, (bj, gj)))

=
(
m∏
i=1
V(aiVi, (ai, fi))

)
·
(

m̃∏
j=1

V(bjWj, (bj, gj))

)
rearranging

= V(U1, X1) · V(U2, X2) as required.
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For the proof of the second part of the lemma, since X ∈ Dω, by the reactiveness

condition ai 6= aj for all 1 ≤ i ≤ m and 1 ≤ j ≤ m̃. Moreover, by definition of V , if

U ∈ Pf nr(A∗
d) and U 6= U1 ∪ U2 for some U1, U2 ∈ Pf nr(A∗

d) of the form given in the

hypothesis, we obtain V(U,X) therefore equals 0. Supposing U2 varies according to

the form given in the hypothesis, the term
∑

U1⊆U
V(U,X) therefore equals:

∑
U2∈Pf nr(A∗

d
)
V(U1 ∪ U2, X) =

∑
U2∈Pf nr(A∗

d
)
V(U1, X1) · V(U2, X2) from above

= V(U1, X1) ·

 ∑
U2∈Pf nr(A∗

d
)
V(U2, X2)

 rearranging

= V(U1, X1) by Proposition 6.3.4

as required. ut

Lemma 6.4.8 For all p, q ∈ Ds
ω, X, Y ∈ Dω, u ∈ A∗

d and U ∈ Pf nr(A∗
d) ∪ {〈〉}:

V(u, p ‖ q) =
∑

u1∩u2=u

V(u1, p) · V(u2, q) and

V(U,X ‖Y ) =
∑

U1∩U2=U

V(U1, X) · V(U2, Y ).

Proof. The proof is by induction on deg(p ‖ q) and deg(X ‖Y ). Similarly to the proof

of Lemma 6.2.3 we can show that the lemma holds for any p, q ∈ Ds
ω and X,Y ∈ Dω

such that deg(p ‖ q) =deg(X ‖Y ) = 0. Suppose that the lemma holds for some n ∈ IN

for any p, q ∈ Ds
ω such that deg(p ‖ q) = n+ 1, and u ∈ A∗

d:

V(u, p ‖ q) =
∑

u1∩u2=u

V(u1, p) · V(u2, q). (6.8)

To complete the proof, consider any X, Y ∈ Dω such that deg(X ‖Y ) = n + 1. By

definition of ‖ , X ‖Y = {(a1, f1 ‖ g1), . . . , (am, fm ‖ gm)} for some m ∈ IN such that:

X = {(a1, f1), . . . , (am, fm), (b1, f̃1), . . . , (bm1 , f̃m1)}

and

Y = {(a1, g1), . . . , (am, gm), (c1, g̃1), . . . , (cm2 , g̃m2)}

where m1,m2 ∈ IN, bi 6= cj for all 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. By definition of V and

Definition 6.4.5:

V(U,X ‖Y ) =
∑

U1∩U2=U

V(U1, X) · V(U2, Y ) = 0

for any U ∈ Pf nr(A∗
d) not of the form {a1U1, . . . , amUm}.
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On the other hand if U is of the form {a1U1, . . . , amUm} then:

V(U,X ‖Y ) =
m∏
i=1
V(aiUi, (ai, fi ‖ gi))

=
m∏
i=1

( ∑
vi∩wi=aiUi

V(vi, (ai, fi)) · V(wi, (ai, gi))

)
by (6.8)

=
m∏
i=1

( ∑
aiVi∩ aiWi=aiUi

V(aiVi, (ai, fi)) · V(aiWi, (ai, gi))

)
by Definition 6.4.5

=
∑

aiVi∩ aiWi=aiUi
∀ 1≤i≤m

V
(
m
∪
i=1
aiVi,

m
∪
i=1

(ai, fi)
)
· V

(
m
∪
i=1
aiWi,

m
∪
i=1

(ai, gi)
)

=
∑

aiVi∩ aiWi=aiUi
∀ 1≤i≤m

( ∑
∪m

i=1aiVi⊆V
V(V,X)

)
·
( ∑
∪m

i=1aiWi⊆W
V(W,Y )

)
by Lemma 6.4.7

=
∑

V ∩W=U
V(V,X) · V(W,Y ) by Definition 6.4.5.

ut

Lemma 6.4.9 For all p, q ∈ Ds
ω and k ∈ IN we have (p ‖ q)[k] = p[k] ‖ q[k].

Proposition 6.4.10 ‖ is continuous and well-defined on (Dω, dω).

The next semantic operator we introduce is restriction.

Definition 6.4.11 (Restriction) We extend the definition of the semantic operator

|̀ by setting: X |̀B = ⊕{p |̀B | p ∈ X} for any X ∈ Dω.

We now investigate properties of this operator.

Lemma 6.4.12 For all p ∈ Ds
ω, X ∈ Dω, u ∈ A∗, U ∈ Pf nr(A∗

d) and B ⊆ A:

V(u, p |̀B) =
∑

u′ |̀B=u

V(u′, p) and V(u,X |̀B) =
∑

U ′ |̀B=U

V(U ′, X).

Furthermore, for any k ∈ IN: (p |̀B)[k] = p[k] |̀B.

Proposition 6.4.13 For all B ⊆ A, the map |̀B is continuous and well-defined on

(Dω, dω).

As for the case concerning Pω, the final semantic operator we introduce is that of

relabelling.
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Definition 6.4.14 (Relabelling) For all λ :A → A we extend Definition 6.2.10, by

setting X [λ] = ⊕{p [λ] | p ∈ X} for any X ∈ Dω.

To show that the above operator is continuous and well-defined we need the following

lemma.

Lemma 6.4.15 For all p ∈ Ds
ω, u ∈ A∗

d, λ : A → A and k ∈ IN: V(u, p [λ]) =

V(λ−1(u), p) and (p [λ])[k] = (p[k]) [λ].

Proposition 6.4.16 For all λ :A→ A, [λ] is continuous and well-defined on (Dω, dω).

We can now define denotational metric semantics for RPd by extending the definition

of the semantic map D given earlier for RPp.

Definition 6.4.17 (Denotational Semantics) Let Dn : RPd → (Env → Dω), n ∈
IN, be the collection of maps defined inductively as follows. Put D0[[E]] = {p0} for

all E ∈ RPd, and Dn+1 be defined inductively on the structure of elements of RPd as

follows:

Dn+1[[x]](ρ) = ρn+1(x)

Dn+1[[0]](ρ) = {p0}
Dn+1[[a.

∑
i∈I µi.Ei]](ρ) = {(a,ΦDω(〈µi,Dn[[Ei]](ρ)〉i∈I))}

Dn+1[[E1 tuE2]](ρ) = Dn+1[[E1]](ρ)⊕Dn+1[[E2]](ρ)

Dn+1[[E1 ‖E2]](ρ) = Dn+1[[E1]](ρ) ‖Dn+1[[E2]](ρ)

Dn+1[[E |̀B]](ρ) = Dn+1[[E]](ρ) |̀B
Dn+1[[E [λ]]](ρ) = Dn+1[[E]](ρ) [λ]

Dn+1[[fixx.E]](ρ) = Dn+1[[E]](ρ{Dn[[fixx.E]](ρ)/x}).

Furthermore, let D : RPd → (Env → D) be the map defined as follows, for any E ∈ RPd

put: D[[E]](ρ) = [〈Dn[[E]](ρ)〉n∈IN]∼.

As before, to prove the well-definedness of the semantic map we must first demonstrate

the following results.

Lemma 6.4.18 For all E ∈ Gd, ρ ∈ Env and k ∈ IN: Dk+1[[E]](ρ)[k] = Dk[[E]](ρ)[k].

Lemma 6.4.19 For all E ∈ RPd, F ∈ Prd, ρ ∈ Env and n ∈ IN:

Dn[[E{F/x}]](ρ)[n] = Dn[[E]](ρ{Dn[[F ]]/x})[n].

Furthermore, if E ∈ Gd then:

Dn+1[[E{F/x}]](ρ)[n+ 1] = Dn+1[[E]](ρ{Dn[[F ]]/x})[n+ 1].
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Moreover, since we have added deterministic choice to our model, we also require the

following lemma.

Lemma 6.4.20 For all E ∈ Gd, ρ ∈ Env and a ∈ Act : a ∈ init(E) if and only if

(a, fn) ∈ Dn+1[[E]](ρ) for some fn ∈ µ(Dω) for all n ∈ IN.

Proof. The proof is by induction on the structure of E ∈ Gd and follows from the

definition of init Dn+1 and the semantic operators on Dω. ut

Proposition 6.4.21 D is well-defined on the guarded expressions of RPd.

Proof. The proof follows similarly to the one of Proposition 6.2.21, with the fol-

lowing additional inductive step. If E = E1 tuE2, then by induction on E1 and E2,

Dk+1[[E1]](ρ) ∈ Dω and Dk+1[[E2]](ρ) ∈ Dω. Furthermore, by Lemma 6.4.20 and since

init(E1)∩init(E2) = ∅ by construction of RPd, we have that Dk+1[[E1]](ρ)∪Dk+1[[E2]](ρ)

satisfies the reactiveness condition and hence Dk+1[[E]](ρ) ∈ Dω by definition of Dk+1

and ⊕. ut

6.4.1 Full Abstraction

To prove full abstraction we first require the following lemmas and definitions where

we remove the proofs if they are simple extensions of the corresponding proofs in

Subsection 6.2.1.

Lemma 6.4.22 For all E ∈ Prp and ρ ∈ Env, O[[E]] = ∅ if and only if Dn[[E]](ρ) =

{p0} for all n ∈ IN and O[[E]] = {(a1, π1), . . . , (am, πm)} if and only if Dn+1[[E]](ρ) =

{(a1, f
1
n), . . . , (am, f

m
n )} for all n ∈ IN such that for any n ∈ IN, 1 ≤ i ≤ m and Y ∈ D:

f in[n](Y ) =
∑

F∈Prd &
D[[F ]](ρ)[n]=Y

πi(F ).

We next extend our mapping ξ : A∗ → Tp to A∗
d → Td as follows: for any U =

{u1, . . . , um} ∈ Pf nr(A∗
d) put:

ξ(U)
def
= (ξ(u1), . . . , ξ(um)).

Furthermore, we extend ≤ to A∗
d by letting: 〈〉 ≤ u for all u ∈ A∗

d and aU ≤ u′ if

u′ = aU ′ for some U ′ ∈ Pf nr(A∗
d)∪{〈〉} such that for all ũ ∈ U there exists ũ′ ∈ U ′ such

that ũ ≤ ũ′. Then we have the following lemmas.

Lemma 6.4.23 The mapping ξ is bijective.
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Lemma 6.4.24 For all E ∈ Prd and ρ ∈ Env, if O[[E]] = {(a1, π1), . . . , (am, πm)},
then Dn+1[[E]](ρ) = {(a1, f

1
n), . . . , (am, f

m
n )} for any n ∈ IN (by Lemma 6.4.22) and for

any 1 ≤ i ≤ m, U ∈ Pf nr(And) ∪ {〈〉} and n ∈ IN:

∑
u∈An+1

d
& aiU≤u

V(u, (ai, f
i
n[n])) = D(E)(ξ(u)).

Proof. Consider any E ∈ Prd and ρ ∈ Env, such thatO[[E]] = {(a1, π1), . . . , (am, πm)}.
We prove the lemma by induction on n ∈ IN and we ignore ρ for simplicity. If n = 0,

then by definition of A0
d, if U ∈ Pf nr(And) ∪ {〈〉}, then U = {〈〉} and by Definition 6.4.5

for any 1 ≤ i ≤ m:

∑
u∈A1

d
& ai{〈〉}≤u

V(u, (ai, f
i
1[0]]) = V(ai{〈〉}, (ai, f i1[0]]).

Now, by definition of V and D we have: V(ai{〈〉}, (ai, f i1[0])) = D(E)(ai.(⊥)) = 1 and

since ξ(ai{〈〉}) = ai.(⊥), the lemma holds for n = 0.

Now suppose the lemma holds for some n ∈ IN and consider any F ∈ Prd and U ∈
Pf nr(An+1

d ) ∪ {〈〉}. Then either U = 〈〉, and since 〈〉 ≤ U ′ for all U ′ ∈ Pf nr(An+1
d ) ∪ {〈〉}:

∑
U ′∈Pf nr(An+1

d
)∪{〈〉}

& 〈〉≤U ′

V(U ′,Dn+1[[F ]][n+ 1]) =
∑

U ′∈Pf nr(An+1
d

)∪{〈〉}
V(U ′,Dn+1[[F ]][n+ 1])

=
∑

U ′∈Pf nr(A∗
d
)∪{〈〉}
V(U ′,Dn+1[[F ]][n+ 1]) by Proposition 6.3.8(e)

= 1 by Proposition 6.3.4

= D(F )(⊥) by definition of P

= D(F )(ξ(〈〉)) by definition of ξ,

or U = {b1U1, . . . , bkUk} for some k ∈ IN, such that biUi ∈ An+1
d for all 1 ≤ i ≤ k.

If {(b1, π1), . . . , (bk, πk)} ⊆ O[[F ]] for some {π1, . . . πk} ⊆ µ(Prd), then Lemma 6.4.22
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entails (bi, f
i
n) ∈ Dn+1[[F ]] for some f in ∈ µ(Dω) for all 1 ≤ i ≤ k, and in this case:

∑
U ′∈Pf nr(An+1

d
)∪{〈〉}

&U≤U ′

V(U,Dn+1[[F ]][n+ 1])

=
∑

biU
′
i∈A

n+1
d

& biUi≤biU ′
i

∀1≤i≤k

 ∑
U ′∈Pf nr(An+1

d
)∪{〈〉}

∪k
i=1biU

′
i⊆U ′

V(U ′,Dn+1[[F ]][n+ 1])

 by definition of ≤

=
∑

biU
′
i∈A

n+1
d

& biUi≤biU ′
i

∀1≤i≤k

k∏
i=1
V(biU

′
i , (bi, f

i
n)[n+ 1]) by Lemma 6.4.7

=
k∏
i=1

 ∑
biU

′
i∈A

n+1
d

& biUi≤biU ′
i

V(biU
′
i , (bi, f

i
n)[n+ 1])

 rearranging

=
k∏
i=1

 ∑
u′i∈A

n+1
d

& biUi≤u′i

V(u′i, (bi, f
i
n)[n+ 1])

 by definition of ≤

=
k∏
i=1

D(F )(ξ(biUi)) by induction

= D(F )((ξ(b1U1), . . . , ξ(bkUk))) by definition of D

= D(F )(ξ(U)) by definition of ξ.

On the other hand, if (bi, πi) 6∈ O[[F ]] for some 1 ≤ i ≤ k and all πi ∈ µ(Prd), then

(bi, f) 6∈ Dn+1[[F ]] for any f ∈ µ(Dω) by Lemma 6.4.22 and therefore:

∑
U ′∈Pf nr(An+1

d
)∪{〈〉}

&U≤U ′

V(U ′,Dn+1[[F ]][n+ 1]) = D(F )(ξ(U)) = 0

by definition of D and V . Putting this together, we have:

∑
U ′∈Pf nr(An+1

d
)∪{〈〉}

&U≤U ′

V(U,Dn+1[[F ]][n+ 1]) = D(F )(ξ(U))

for all F ∈ Prd and U ∈ Pf nr(An+1
d )∪ {〈〉}. Using the latter the remainder of the proof

follows similarly to Lemma 6.2.25. ut
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Theorem 6.4.25 (Full Abstraction) For all E,F ∈ Gd:

O[[E]] d∼O[[F ]] if and only if D[[E]](ρ) = D[[F ]](ρ) for all ρ ∈ Env.

Proof. As for the purely probabilistic case, we only consider when E,F ∈ Prd (we

remove ρ for simplicity). First, consider any E,F ∈ Prd such that D[[E]] = D[[F ]],

then using Lemma 6.3.14 and Lemma 6.4.18 we have dω(Dn[[E]][n],Dn[[F ]][n]) = 0

for all n ∈ IN. Furthermore, by Lemma 6.3.11 and Lemma 6.4.18 either Dn+1[[E]] =

Dn+1[[F ]] = {p0}, in which case O[[E]] = O[[F ]] = ∅ by Lemma 6.4.22, and hence

O[[E]] d∼O[[F ]], or

Dn+1[[E]] = {(a1, f
1
n), . . . , (am, f

m
n )} and Dn+1[[F ]] = {(a1, g

1
n), . . . , (am, g

m
n )}

for some m ∈ IN, such that dω((ai, f
i
n)[n+ 1], (ai, g

i
n)[n+ 1]) = 0 for all 1 ≤ i ≤ m and

n ∈ IN. In the latter case, again using Lemma 6.4.22 we have:

O[[E]] = {(a1, π1), . . . , (am, πm)} and O[[F ]] = {(a1, π
′
1), . . . , (am, π

′
m)} (6.9)

such that πi, π
′
i ∈ µ(Prp) for all 1 ≤ i ≤ m. Now, by definition of dω for any n ∈ IN:

dω((ai, f
i
n)[n+ 1], (ai, g

i
n)[n+ 1]) = 0

⇒ V(aU, (ai, f
i
n)[n+ 1]) = V(aiU, (ai, f

i
n)[n+ 1]) ∀ aiU ∈ An+1

d

⇒
∑

u∈An+1
d

& aiU≤u

V(u, (ai, f
i
n)[n+ 1]) =

∑
u∈An+1

d
& aiU≤u

V(u, (ai, g
i
n)[n+ 1]) ∀ aiU ∈ An+1

d

by Definition 6.4.5

⇒ D(E)(ξ(aiU)) = D(F )(ξ(aiU)) ∀ aiU ∈ An+1
d by Lemma 6.4.24

and since this was for any n ∈ IN and 1 ≤ i ≤ m we have:

D(E)(ξ(aiU)) = D(F )(ξ(aiU)) ∀ aiU ∈ A∗
d and 1 ≤ i ≤ m.

Now considering any u ∈ A∗
d not of the form aiU for some 1 ≤ i ≤ m, then either

u = 〈〉, and hence D(E)(ξ(u)) = D(F )(ξ(u)) = 1 by definition of D since ξ(u) = ⊥, or

u is of the form aU where a 6∈ {a1, . . . , am}. In the latter case, we have D(E)(ξ(u)) =

D(F )(ξ(u)) = 0 by definition of ξ, D and using (6.9). Putting the above together we

have:

D(E)(ξ(u)) = D(F )(ξ(u)) ∀u ∈ A∗
d ⇒ D(E)(t) = D(t) ∀t ∈ Td by Lemma 6.4.23

⇒ O[[E]] d∼O[[F ]] by definition

as required.

The reverse direction follows a similar argument to the proof of Theorem 6.2.26

using the definition of the Hausdorff distance and Lemma 6.4.24. ut
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6.5 A Metric for Non-deterministic Probabilistic

Processes

Similarly to the deterministic case, to add internal choice it is necessary to use sets

of elements of P . We proceed with the construction involving sets of P to give a

denotational semantics for non-deterministic probabilistic processes, as an alternative

to deterministic probabilistic processes, by introducing finite non-deterministic proba-

bilistic processes as follows. We note that certain proofs below follow similar arguments

to the relevant proofs for P and D, and we therefore omit these.

Definition 6.5.1 (Finite non-deterministic probabilistic processes) Let Nn,

n ∈ IN, be a collection of carrier sets defined inductively by

N0 = {{p0}} and Nn+1 = Pf n
(
{p0} ∪ (A× µ(Nn))

)
where A is a set of actions. Furthermore, let Nω = ∪nNn denote non-deterministic

probabilistic processes of bounded depth.

The difference between the above definition and the corresponding definition for the

deterministic case results from the fact that non-deterministic probabilistic processes

are able to perform two distinct transitions of the same action type, whereas deter-

ministic probabilistic processes cannot. For this reason, we remove the reactiveness

condition from the powerset operator to allow transitions of this type to occur. A fur-

ther change is in where p0 (the inactive process) appears in the two definitions. This

difference again arises from the difference between external and internal choice, since

in the process calculus RP we have the following absorption law E tu0 ≡ E, whereas

E u0 6≡ 0; the result of this is that when we model non-deterministic probabilistic

processes, we must allow processes of the form {(a, f), p0}, whereas, when considering

deterministic probabilistic processes, {(a, f), p0} can be represented as {(a, f)}.
Following the construction of P , the next step is to introduce the set of “trees”

which processes can perform and then define a map V which calculates the probability

of processes performing these trees. Following this we will then define a pseudo-metric

over processes using the map V . However, as we are considering processes which

exhibit non-deterministic behaviour, we are unable to calculate the exact probability

of processes performing trees. This is similar to our construction of the ordering vnd

over non-deterministic probabilistic transition systems. To overcome this, instead of

the map V taking values in [0, 1], we will let V take values in the set of closed intervals

(subsets) of [0, 1], that is, the set I (see Definition 3.3.11), and use our metric dI on
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I (see Definition 3.3.13) to formulate a pseudo-metric over finite non-deterministic

probabilistic processes. Recall that for any [a, b], [c, d] ∈ I:

dI([a, b], [c, d]) = max{|a− c|, |b− d|}.

Intuitively, for any process and tree, the probability of the process performing the tree

will always lie inside the interval given by the map V .

As the above will lead to a more complex model than in the cases for P and D,

instead of considering closed trees, we will only work with the set of open trees, by

removing 〈〉 from the definition below. This is to simplify the formalism.

Definition 6.5.2 Let Annd, n ∈ IN, be the sets inductively defined as follows. Put:

A0
nd = A and An+1

nd = (A× Pf nr(Annd)) ∪ A.

Furthermore, let A∗
nd = ∪nAnnd.

As described above, we now introduce the map V from the set of trees A∗
nd and Nω

to I, where summation, multiplication and union take the meaning given in Defini-

tion 3.3.11.

Definition 6.5.3 Let V : (A∗
nd ×Nω) → I be the mapping defined inductively on Annd

as follows. For all p ∈ N s
ω, a ∈ A and V ∈ Pf nr(Annd) put:

V(a, p) =

 [1, 1] if p = (a, f) for some f ∈ µ(Nω)

[0, 0] otherwise.

and

V(aV, p) =


∑

Y ∈Nω

f(Y ) · V(V, Y ) if p = (a, f) for some f ∈ µ(Nω)

[0, 0] otherwise

where for all X ∈ Nω put:

V(V,X) =
∏
v∈V

V(v,X) and V(aV,X) =
⊔
p∈X

V(aV, p).

We now introduce an important lemma concerning the above definition.

Lemma 6.5.4 For all X ∈ Nω and v ∈ A∗
nd: V(v,X) ⊆ [0, 1].

Proof. The proof is by induction on v ∈ Annd. If n = 0 then v = a and the lemma

holds by definition of V .
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Now suppose the lemma holds for n ∈ IN and consider any X ∈ Nω and V ∈
Pf nr(Annd), then by definition of V and induction:

V(V,X) =
∏
v∈V

V(v,X) ⊆ ∏
v∈V

[0, 1] = [0, 1]. (6.10)

Next consider any p ∈ N s
ω and v ∈ An+1

nd \ Annd, then v = aV for some a ∈ A and

V ∈ Pf nr(Annd) and either p 6= (a, f) for all f ∈ µ(Nω), or there exists f ∈ µ(Nω) such

that p = (a, f). In the first case by definition of V , V(aV, p) = [0, 0], whereas in the

second case:

V(aV, p) =
∑

Y ∈Nω

f(Y ) · V(V, Y ) by definition of V

⊆ ∑
Y ∈Nω

f(Y ) · [0, 1] by (6.10)

⊆
[ ∑
Y ∈Nω

f(Y ) · 0, ∑
Y ∈Nω

f(Y ) · 1
]

by Definition 3.3.11

= [0, 1] since f ∈ µ(Nω).

Finally, for any X ∈ Nω, by definition of V :

V(v,X) =
⊔
p∈X

V(v, p)

⊆ ⊔
p∈X

[0, 1] from above

= [0, 1] by Definition 3.3.11

as required. ut

We are now ready to introduce our pseudo-metric over non-deterministic proba-

bilistic processes. As in the previous models, the intuitive understanding behind the

pseudo-metric is that the distance between any processes X and Y should correspond

to the differences or similarities between X and Y . Using the map V and the metric

dI , a candidate value corresponding to the difference in the probabilities of X and Y

performing the tree v, is the value of dI(V(v,X),V(v, Y )). In previous models, we

then took the sum over all trees, that is, in this case over all v ∈ A∗
nd, giving:

d′(X, Y ) =
∑
v∈A∗

nd

dI(V(v,X),V(v, Y ))

as our candidate for a pseudo-metric over non-deterministic probabilistic processes.

This was a suitable definition in the cases before, as the sum over all trees of the

probability of trees being performed was 1. However, due to the difference between
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non-deterministic probabilistic processes and the processes considered so far, this result

will not hold in this case and, in fact, the value of d′(X,Y ) above will be unbounded

(even if we were to replace A∗
nd by a set of closed trees, that is, introduce 〈〉 into the

definition of A∗
nd). To prevent our pseudo-metric from being unbounded, we calculate

the maximum difference in the probabilities of processes performing trees. Formally,

we define the following pseudo-metric over non-deterministic probabilistic processes.

Proposition 6.5.5 Nω (and Nn for any n ∈ IN) is a pseudo-metric space with respect

to the pseudo-metric:

dV(X, Y ) = max
v∈A∗

nd

dI(V(v,X),V(v, Y )).

Furthermore, 0 ≤ dV(X, Y ) ≤ 1 for all X, Y ∈ Nω.

Proof. (M1′) For all X, Y ∈ Nω dV(X, Y ) ≥ 0 and dV(X,X) = 0 follows by definition

of dV and since dI is a metric on I.

(M2) For all X, Y ∈ Nω the expressions dV(X, Y ) and dV(Y,X) are equal by definition

of dV and since dI is a metric on I.

(M3) Consider any X, Y and Z ∈ Nω, and v ∈ A∗
nd, then since dI is a metric (see

Proposition 3.3.14) we get:

dI(V(v,X),V(v, Z)) ≤ dI(V(v,X),V(v, Y )) + dI(V(v, Y ),V(v, Z))

≤ max
v∈A∗

nd

dI(V(v,X),V(v, Y )) + max
v∈A∗

nd

dI(V(v, Y ),V(v, Z))

= dV(X, Y ) + dV(Y, Z) by definition of dV .

Since v ∈ A∗
nd was arbitrary, we have dV(X,Z) ≤ dV(X, Y ) + dV(Y, Z) by taking the

maximum over all v ∈ A∗
nd as required.

To show that dV is only a pseudo-metric we can use the processes in Figure 6.4 given

in the proof of Proposition 6.1.16.

Finally, 0 ≤ dV(X, Y ) ≤ 1 for all X, Y ∈ Nω follows by (M1′), Lemma 6.5.4 and the

property of the metric dI given by Lemma 3.3.15. ut

If we were to follow our construction of the pseudo-metric over Dω, we would instead

construct the pseudo-metric dV over the singleton elements of Nω, that is, over {p0} ∪
(A× µ(Nω)), and then employ the Hausdorff distance of this pseudo-metric over Nω.

However, if we took this approach we would have defined a pseudo-metric with respect

to which processes with equivalent operational behaviour have a non-zero distance. To

illustrate this we return to the processes in Figure 4.9, namely:
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Then, as discussed earlier, these processes have equivalent observable behaviour. If

we consider their denotations in Nω, then F7 and F8 will be represented by the sets:

{(a, f1,2), (a, f3,4)} and {(a, f1,3), (a, f2,4)} respectively, where for any Y ∈ Nω:

fi,j(Y ) =


1
2

if Y = {(bk, η{p0})} and k ∈ {i, j}
0 otherwise.

Then by simple calculations we have dV((a, fi,j), (a, fk,l)) 6= 0 for any {i, j} 6= {k, l},
and hence by definition of the Hausdorff distance, the distance between the denotations

of F7 and F8 will be non-zero.

We now investigate the properties of the pseudo-metric dV . Firstly, we need to check

that the properties of our pseudo-metric defined for simple probabilistic processes still

hold. We therefore return to the example which distinguishes between our pseudo-

metric and the classical ultra-metric construction given in Figure 6.2. Calculating the

non-zero values of V for p′n and v ∈ A∗
nd we have:

v a′ a′a a′ab a′ac

V(v, p′n) [1, 1] [1, 1] [1− 2−n, 1− 2−n] [2−n, 2−n]

and by definition of dV we have dV(p′n, p
′
m) = |2−n− 2−m| for any m,n ∈ IN, and hence

the pseudo-metric dV keeps the properties of dS while at the same time extending it

to non-deterministic probabilistic processes.

Similarly to the earlier construction, to model recursive processes we introduce

the definition of truncations which corresponds to the definition for D. Moreover, as

before, the following proposition holds.

Proposition 6.5.6 For all X, Y ∈ Nω and k,m ∈ IN:

(a) if X ∈ Nm, then X[k] ∈ Nk when k < m and X[k] = X otherwise.

(b) (X[m])[k] = X[min{m, k}].
(c) X[m] = Y [m] if and only if X[k] = Y [k] for all k ≤ m.

(d) dV(X[k], Y [k]) ≤ dV(X,Y ).
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The proofs follow similarly to the case concerning simple probabilistic processes and

using the following lemma to prove part (d).

Lemma 6.5.7 For all X ∈ Nω, v ∈ A∗
nd and k ∈ IN: V(v,X[0]) = [0, 0] and

V(v,X[k + 1]) =

 V(v,X) if v ∈ Aknd

[0, 0] otherwise.

Proof. The first part of the lemma follows by definition of V and since X[0] = {p0}
for all X ∈ Nω.

We now prove the second part of the lemma by induction on k ∈ IN. Firstly

consider any p ∈ N s
ω and v ∈ A0

nd. Then v = a for some a ∈ A and by definition of V :

V(a, p) =

 [1, 1] if (a, f) ∈ p for some f ∈ µ(Nω)

[0, 0] otherwise

=

 [1, 1] if (a, f [0]) ∈ p[1] for some f ∈ µ(Nω)

[0, 0] otherwise
by Definition 6.1.11

= V(a, p[1]) by definition of V
and therefore, by definition of truncations and V for any X ∈ Nω:

V(a,X) =
⊔
p∈X

V(a, p)

=
⊔
p∈X

V(a, p[1]) from above

= V(a,X[1]) by definition of truncations and V .

On the other hand, if v 6∈ A0
nd, then v = aV for some a ∈ A and V ∈ Pf nr(A∗

nd) and in

this case:

V(aV, p[1]) =


∑

Y ∈s(f [0])
f [0](Y ) · V(V, Y ) if (a, f [0]) ∈ p[1] for some f ∈ µ(Nω)

[0, 0] otherwise

=

 1 · V(V, p0) if (a, f [0]) ∈ p[1] for some f ∈ µ(Nω)

[0, 0] otherwise

by Proposition 6.5.6(a)

=

 1 · [0, 0] if (a, f [0]) ∈ p[1] for some f ∈ µ(Nω)

[0, 0] otherwise

by the first part of the lemma

= [0, 0].
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Then, similarly to the first case and using the above, for any X ∈ Nω we have:

V(v,X[1]) =
⊔
p∈X

[0, 0]

= [0, 0] by Definition 3.3.11

and since this was for any X ∈ Nω hence the lemma holds for n = 0.

Now suppose the lemma holds for any k ∈ IN and consider any V ∈ Pf nr(A∗
nd), if

V ∈ Pf nr(Aknd):

V(V,X[k + 1]) =
∏
v∈V

V(v,X[k + 1])

=
∏
v∈V

V(v,X) by induction

= V(V,X) by definition of V .

On the other hand, if V 6∈ Pf nr(Aknd) then there exists ṽ ∈ V such that ṽ 6∈ Aknd, and

in this case:

V(V,X[k + 1]) =
∏
v∈V

V(v,X[k + 1])

= V(ṽ, X[k + 1]) ·
( ∏
v∈V \{ṽ}

V(v,X[k + 1])

)
rearranging

= [0, 0] ·
( ∏
v∈V \{ṽ}

V(v,X[k + 1])

)
by induction

= [0, 0] by Definition 3.3.11.

Next, consider any v ∈ A∗
nd. Then if v = a for some a ∈ Act the proof follows

similarly to the case when k = 0. On the other hand, if v = aV for some a ∈ A and

V ∈ Pf nr(A∗
nd), then for any p ∈ X, either p 6= (a, f) for any f ∈ µ(Nω), and hence by

definition of V : V(aV, p[k + 2]) = V(aV, p) = [0, 0], or p = (a, f) for some f ∈ µ(Nω),
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and in this case since p[k + 2] = (a, f [k + 1]) we obtain:

V(aV, p[k + 2]) =
∑

Y ∈s(f [k+1])

f(Y ) · V(aV, Y )

=
∑

Y ∈s(f)
f(Y ) · V(aV, Y [k + 1]) by definition of truncations

=


∑

Y ∈s(f)
f(Y ) · V(V, Y ) if V ∈ Pf nr(Aknd)∑

Y ∈s(f)
f(Y ) · [0, 0] otherwise

from above

=


∑

Y ∈s(f)
f(Y ) · V(V, Y ) if V ∈ Pf nr(Aknd)

[0, 0] otherwise
rearranging

=

 V(aV, p) if aV ∈ Ak+1
nd

[0, 0] otherwise
by definition of Ak+1

nd .

Using the above the remainder of the proof follows similarly to the case for k = 0. ut

The above lemma also leads to the following connection between truncations and

our pseudo-metric dV .

Proposition 6.5.8 For all X, Y ∈ Nω and k ∈ IN:

dV(X[k + 1], Y [k + 1]) = max
v∈Ak

nd

dI(V(v,X),V(v, Y )).

Proof. Consider any X,Y ∈ Nω and v ∈ A∗
nd. By Lemma 6.5.7:

dI(V(v,X[k + 1]),V(v, Y [k + 1]))

=

 dI(V(v,X),V(v, Y )) if v ∈ Aknd

dI([0, 0], [0, 0]) otherwise

=

 dI(V(v,X),V(v, Y )) if v ∈ Aknd

0 otherwise
by Definition 3.3.13. (6.11)

Therefore, dV(X[k + 1], Y [k + 1]) equals:

= max
v∈A∗

nd

dI(V(v,X[k + 1]),V(v, Y [k + 1])) by definition of dV

= max

{
max
v∈Ak

nd

dI(V(v,X),V(v, Y )), 0

}
by (6.11)

= max
v∈Ak

nd

dI(V(v,X),V(v, Y )) by Lemma 3.3.15
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as required. ut

As in the case of our pseudo-metric for simple probabilistic processes P , we combine

both the pseudo-metric dV and truncations to formulate a pseudo-metric for non-

deterministic processes.

Definition 6.5.9 For all X, Y ∈ Nω, we define dω : Nω ×Nω −→ [0, 1] as follows:

dω(X, Y ) =
∞∑
k=1

2−kdV(X[k], Y [k]).

Proposition 6.5.10 (Nω, dω) (and (Nn, dω) for any n ∈ IN) is a pseudo-metric space.

Furthermore, 0 ≤ dω(X, Y ) ≤ 1 for all X, Y ∈ Nω.

We now continue applying the standard completion techniques (see Theorem 3.3.7),

to construct the metric space of non-deterministic probabilistic processes.

Definition 6.5.11 Let (N, d) be the completion of (Nω, dω).

Before we give denotation semantics to RPnd, we introduce the following lemmas.

Lemma 6.5.12 For all X ∈ Nω, 〈X[n]〉n is a Cauchy sequence.

Lemma 6.5.13 If 〈Xn〉n∈IN is a sequence in Nω such that Xn+1[n] = Xn[n] for all

n ∈ IN, then 〈Xn〉n∈IN is Cauchy and Xm[n] = Xn[n] for all m ≥ n ∈ IN. Furthermore,

if 〈qn〉n∈IN is a sequence in Nω such that Yn+1[n] = Yn[n] for all n ∈ IN and 〈Xn〉n∈IN ∼
〈Yn〉n∈IN, then dω(Xn[n], Yn[n]) = 0 for all n ∈ IN.

Lemma 6.5.14 If 〈Xn〉n∈IN and 〈Yn〉n∈IN are Cauchy sequence and 〈Xn〉n∈IN 6∼ 〈Yn〉n∈IN,

then there exists n ∈ IN such that Xn[n] 6= Yn[n].

6.6 Denotational Semantics for RPnd

As for the cases concerning P and D, we now introduce the semantic operators on N .

We first introduce the semantic operator for internal choice.

Definition 6.6.1 (Internal Choice Operator) For any X, Y ∈ Nω, let X ∪ Y be

set theoretic union.

Lemma 6.6.2 For all X, Y ∈ Nω and k ∈ IN: (X ∪ Y )[k] = X[k] ∪ Y [k].

Proposition 6.6.3 ∪ is continuous and well-defined on (Nω, dω).
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Proof. Consider any X, Y, Z ∈ Nω, v ∈ A∗
nd and k ∈ IN. Then Lemma 6.6.2 entails:

dI(V(v, (X ∪ Z)[k]),V(v, (Y ∪ Z)[k]))

= dI(V(v,X[k] ∪ Z[k]),V(v, Y [k] ∪ Z[k]))

= dI(V(v,X[k]) t V(v, Z[k]),V(v, Y [k]) t V(v, Z[k])) by definition of V
≤ dI(V(v,X[k]),V(v, Y [k])) by Proposition 3.3.16(ii)

≤ maxv∈A∗
nd
dI(V(v,X[k]),V(v, Y [k]))

= dV(X, Y ) by definition.

Since this was for arbitrary v ∈ A∗
nd:

dV((X ∪ Z)[k], (Y ∪ Z)[k]) ≤ dV(X[k], Y [k])

follows by definition of dV . Furthermore, since this was for any k ∈ IN, we have:

dω(X ∪ Z, Y ∪ Z) ≤ dω(X, Y ) by definition of d. The rest of the lemma follows

similarly to the deterministic case. ut

For the remaining semantic operators have definitions equivalent to the deterministic

case with ⊕ replaced by ∪. We now turn our attention to the semantic operator for

synchronous parallel. To show this operator is well-defined and continuous we first

require the following lemmas.

Lemma 6.6.4 For all X, Y ∈ Nω and v ∈ A∗
nd: V(v,X ‖Y ) = V(v,X) · V(v, Y ).

Proof. The proof is by induction on v ∈ Annd. If v ∈ A0
nd then v = a for some a ∈ Act

and the lemma follows by definition of V and the semantic operator ‖ .

Now suppose the lemma holds for any n ∈ IN and consider any X, Y ∈ Nω and

V ∈ Pf nr(Annd), then by definition of V :

V(V,X ‖Y ) =
∏
v∈V

V(v,X ‖Y )

=
∏
v∈V

(V(v,X) · V(v, Y )) by induction

=

( ∏
v∈V

V(v,X)

)
·
( ∏
v∈V

V(v,X)

)
rearranging

= V(V,X) · V(V, Y ) by definition of V .

Next consider any p, q ∈ N s
ω and v ∈ An+1

nd \ Annd, then v = aV for some a ∈ A. Now

if p ‖ q = (a, h) for some h ∈ µ(Nω), then h = f ‖ g where p = (a, f) and q = (a, g), in
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which case:

V(aV, p ‖ q) =
∑

Z∈Nω

(f ‖ g)(Z) · V(V, Z)

=
∑

X ‖Y ∈Nω

(
f(X) · g(Y )

)
· V(V,X ‖Y ) by definition of ‖

=
∑

X ‖Y ∈Nω

(
f(X) · g(Y )

)
·
(
V(V,X) · V(V, Y )

)
by induction

=

( ∑
X∈Nω

f(X) · V(V,X)

)
·
( ∑
Y ∈Nω

g(Y ) · V(V, Y )

)
rearranging

= V(aV, p) · V(aV, q) by definition of V .

On the other hand, if p ‖ q 6= (a, f) for any f ∈ µ(Nω), without loss of generality we

can suppose p 6= (a, f) for any f ∈ µ(Nω). By definition of V we therefore obtain:

V(aV, p ‖ q) = [0, 0] = [0, 0] · V(aV, q) = V(aV, p) · V(aV, q).

Finally for any X, Y ∈ Nω and v ∈ An+1
nd :

V(v,X ‖Y ) = t{V(v, r) | r ∈ X ‖Y } by definition of V
= t{V(v, p ‖ q) | p ∈ X & q ∈ Y } by definition of ‖
= t{V(v, p) · V(v, q) | p ∈ X & q ∈ Y } from above

=
(
tp∈X V(v, p)

)
·
(
tq∈Y V(v, q)

)
rearranging

= V(v,X) · V(v, Y ) by definition of V .

Hence, we have proved the lemma by induction on v ∈ Annd. ut

Lemma 6.6.5 For all X, Y ∈ Nω and k ∈ IN: (X ‖Y )[k] = X[k] ‖Y [k].

Proposition 6.6.6 ‖ is continuous and well-defined on (Nω, dω).

Proof. Consider any X, Y and Z ∈ Nω, k ∈ IN and v ∈ A∗
nd. By Lemma 6.6.5:

dI(V(v, (X ‖Z)[k]),V(v, (Y ‖Z)[k]))

= dI(V(v,X[k] ‖Z[k]),V(v, Y [k] ‖Z[k]))

= dI(V(v,X[k]) · V(v, Z[k]),V(v, Y [k]) · V(v, Z[k])) by Lemma 6.6.4

≤ dI(V(v,X[k]),V(v, Y [k])) by Proposition 3.3.16(i)

≤ maxv∈A∗
nd
dI(V(v,X[k]),V(v, Y [k]))

= dV(X, Y ) by definition of dV
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Then since this was for any v ∈ A∗
nd and k ∈ IN, similarly to proving that ∪ was

continuous, ‖ is continuous. The fact that ‖ is well-defined follows similarly to

Proposition 6.2.5. ut

Next we consider the operator for restriction, for which we require the following lemma

before we can verify that this operator is well-defined.

Lemma 6.6.7 For all X ∈ Nω, v ∈ A∗
nd and B ⊆ A:

V(v,X |̀B) =

 [0, 0] if a ∈ v for some a ∈ A \B
V(v,X) otherwise.

Moreover, for any k ∈ IN: (X |̀B)[k] = X[k] |̀B.

Proposition 6.6.8 For all B ⊆ A, |̀B is continuous and well-defined on (Nω, dω).

Proof. Consider any X, Y ∈ Nω, v ∈ A∗
nd, k ∈ IN and B ⊆ A. Using Lemma 6.6.7 we

infer:

dI(V(v, (X |̀B)[k]),V(v, (Y |̀B)[k]))

= dI(V(v,X[k] |̀B),V(v, Y [k] |̀B))

=

 dI(V(v,X[k]),V(v, Y [k])) if a ∈ V for some a 6∈ B
0 otherwise.

by Lemma 6.6.7

≤ dI(V(v,X[k]),V(v, Y [k])) rearranging

≤ max
v∈A∗

nd

dI(V(v,X[k]),V(v, Y [k]))

= dV(X, Y ) by definition of dV .

Since this was for any V ∈ A∗
nd and k ∈ IN, we have that |̀ is continuous as required.

It follows that |̀ is well-defined by an argument similar to Theorem 6.2.7. ut

Finally, we consider relabelling.

Lemma 6.6.9 For all X ∈ Nω, v ∈ A∗
nd, λ : A → A and k ∈ IN: V(v,X [λ]) =

V(λ−1(v), X) and (X [λ])[k] = (X[k]) [λ].

Proposition 6.6.10 For all λ :A→ A, [λ] is continuous and well-defined on (Nω, dω).

Proof. The proof follows from Lemma 6.6.9 above and a similar proof for the deter-

ministic case. ut

Using the above semantic operators we can now define denotational metric semantics

for the expressions of our process calculus RPnd.
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Definition 6.6.11 (Denotational Semantics) Let Dn : RPnd → (Env → Nω), n ∈
IN, be the collection of maps defined inductively as follows. Put D0[[E]] = {p0} for all

E ∈ RPnd, and Dn+1 be defined inductively on the structure of elements of RPnd as

follows:

Dn+1[[x]](ρ) = ρn+1(x)

Dn+1[[0]](ρ) = {p0}
Dn+1[[

∑
i∈I aµi

.Ei]](ρ) = {(a,ΦNω(〈µi,Dn[[Ei]](ρ)〉i∈I))}
Dn+1[[E1 uE2]](ρ) = Dn+1[[E1]](ρ) ∪ Dn+1[[E2]](ρ)

Dn+1[[E1 ‖E2]](ρ) = Dn+1[[E1]](ρ) ‖Dn+1[[E2]](ρ)

Dn+1[[E |̀B]](ρ) = Dn+1[[E]](ρ) |̀B
Dn+1[[E [λ]]](ρ) = Dn+1[[E]](ρ) [λ]

Dn+1[[fixx.E]](ρ) = Dn+1[[E]](ρ{Dn[[fixx.E]](ρ)/x}).

Furthermore, let D : RPnd → (Env → N) be the map defined as follows, for any

E ∈ RPnd put: D[[E]](ρ) = [〈Dn[[E]](ρ)〉n∈IN]∼.

To prove the well-definedness of this semantic map, we first need to reach the following

technical lemma, similarly to the cases before.

Lemma 6.6.12 For all E ∈ Gnd, ρ ∈ Env and k ∈ IN: Dk+1[[E]](ρ)[k] = Dk[[E]](ρ)[k].

Lemma 6.6.13 For any E ∈ RPnd, F ∈ Prnd, ρ ∈ Env and n ∈ IN:

Dn[[E{F/x}]](ρ)[n] = Dn[[E]](ρ{Dn[[F ]]/x})[n].

Furthermore, if E ∈ Gnd then:

Dn+1[[E{F/x}]](ρ)[n+ 1] = Dn+1[[E]](ρ{Dn[[F ]]/x})[n+ 1].

Proposition 6.6.14 D is well-defined on the guarded expressions of RPnd.

6.6.1 Full Abstraction

To show that the above denotational model is fully abstract with respect to our equiv-

alence nd∼ we first require the following lemmas and definition.

Lemma 6.6.15 For all E ∈ Prnd, ρ ∈ Env and s ∈ (Act × µ(Prnd)) ∪ {∅}, we have

O[[E]] → s if and only if psn+1 ∈ Dn+1[[E]](ρ) for all n ∈ IN such that if s = ∅, then

psn+1 = p0, and if s = (a, π), then psn+1 = (a, fn), where for any Y ∈ P :

fn[n](Y ) =
∑

F∈Prnd&
D[[F ]](ρ)[n]=Y

π(F ).
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Definition 6.6.16 Let ϕ : A∗
nd → Tnd \ {(|⊥|)} be the following map between trees and

tests defined inductively as follows: ϕ(a) = (|a.(|⊥|)|) and ϕ(aV ) = (|a.ϕ(V )|), where

ϕ({v1, . . . , vm}) = (ϕ(v1), . . . , ϕ(vm)).

Lemma 6.6.17 The map ϕ is bijective.

Lemma 6.6.18 For all E ∈ Prnd, ρ ∈ Env, v ∈ Annd and n ∈ IN:

V(v,Dn+1[[E]](ρ)[n+ 1]) = [Nglb(E)(ϕ(v)),Nlub(E)(ϕ(v))].

Proof. The proof is by induction on n ∈ IN. If v ∈ A0
nd, then v = a for some a ∈ IN

and by definition ϕ(a) = (|a.(|⊥|)|). Considering any s ∈ (Act × µ(Prnd)) ∪ {⊥}:

Nlub(s)(a.(|⊥|)) = Nglb(s)(a.(|⊥|)) =

 1 if s = (a, π) for some π ∈ µ(Prnd)

0 otherwise
(6.12)

by definition of Nlub and Nglb. For any s ∈ (Act × µ(Prnd)) ∪ {∅} using the notation

of Lemma 6.6.15 above we have:

V(v, ps1[1]) =

 [1, 1] if p1
s = (a, f0) for some f0 ∈ µ(Nω)

[0, 0] otherwise

=

 [1, 1] if s = (a, π) for some π ∈ µ(Prnd)

[0, 0] otherwise
by Lemma 6.6.15

= [Nglb(s)(a.(|⊥|)),Nlub(s)(a.(|⊥|))] by (6.12). (6.13)

Then for any E ∈ Prnd:

V(v,D1[[E]][1]) = t{V(v, ps1[1]) | O[[E]] → s} by Lemma 6.6.15

=

[
min

O[[E]]→s
V(v, ps1[1]), max

O[[E]]→s
V(v, ps1[1])

]
by Definition 3.3.11

=

[
min

O[[E]]→s
Nglb(s)(a.(|⊥|)), max

O[[E]]→s
Nlub(s)(a.(|⊥|))

]
by (6.13)

= [Nglb(E)((|a.(|⊥|)|)),Nlub(E)((|a.(|⊥|)|))] by definition of N∗

= [Nglb(E)(ϕ(a)),Nlub(E)(ϕ(a))] by definition of ϕ

and thus the lemma holds for n = 0.
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Now suppose the lemma holds for some n ∈ IN and consider any V = {v1, . . . , vm} ∈
Pf nr(Annd). Then:

V(V,Dn+1[[E]][n+ 1]) =
m∏
i=1
V(vi,Dn+1[[E]][n+ 1]) by definition of V

=
m∏
i=1

[Nglb(E)(ϕ(vi)),Nlub(E)(ϕ(vi))] by induction

=
[
m∏
i=1

Nglb(E)(ϕ(vi)),
m∏
i=1

Nlub(E)(ϕ(vi))
]

by Definition 3.3.11

= [Nglb(E)(ϕ(V )),Nlub(E)(ϕ(V ))] by definition of ϕ.

Next consider any v ∈ An+1
nd . Then either v = a for some a ∈ A in which case the

result follows similarly to the case when n = 0, or v = aV for some a ∈ Act and

V ∈ Pf nr(Annd). In the second case, for any E ∈ Prnd and s ∈ (Act × µ(Prnd)) ∪ {∅}
such that O[[E]] → s we have the following two possibilities:

1. s 6= (a, π) for any π ∈ µ(Prnd), and hence by definition of N∗, V , ϕ and

Lemma 6.6.15:

V(aV, psn+2[n+ 2]) = [0, 0] by definition of V
= [Nglb(s)(a.ϕ(V )),Nlub(s)(a.ϕ(V ))] by definition of N∗

= [Nglb(s)(ϕ(aV )),Nlub(s)(ϕ(aV ))] by definition of ϕ.

2. s = (a, π) for some π ∈ µ(Prnd), in which case using Lemma 6.6.15 psn+2 =
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(a, fn+1) ∈ D[[E]], and therefore V(aV, ps[n+ 2]) equals:

=
∑

Y ∈Nω

fn+1[n+ 1](Y ) · V(V, Y ) by definition of V

=
∑

Y ∈Nω

 ∑
F∈Prnd&

D[[F ]][n+1]=Y

π(F )

 · V(V, Y ) by Lemma 6.6.15

=
∑

F∈Prnd

π(F ) · V(V,D[[F ]][n+ 1]) rearranging

=
∑

F∈Prnd

π(F ) · [Nglb(F )(ϕ(V )),Nlub(F )(ϕ(V ))] from above

=

[ ∑
F∈Prnd

π(F ) · Nglb(F )(ϕ(V )),
∑

F∈Prnd

π(F ) · Nlub(F )(ϕ(V ))

]

by Definition 3.3.11

= [Nglb(s)(a.ϕ(V )),Nlub(s)(a.ϕ(V ))] by definition of N∗

= [Nglb(s)(ϕ(aV )),Nlub(s)(ϕ(aV ))] by definition of ϕ.

The remainder of the proof follows as for the case when n = 0. ut

Theorem 6.6.19 For all E,F ∈ Gnd:

O[[E]] nd∼O[[F ]] if and only if D[[E]](ρ) = D[[F ]](ρ) for all ρ ∈ Env.

Proof. As before, we only prove the case for E,F ∈ Prnd removing ρ for simplicity.

First, consider any E,F ∈ Prnd such that D[[E]] = D[[F ]]. Then using Lemma 6.5.13

and Lemma 6.6.13 we have dω(Dn[[E]][n],Dn[[F ]][n]) = 0 for all n ∈ IN, and hence by

definition of d and dV :

|V(v,Dn+1[[E]][n+ 1])− V(v,Dn+1[[F ]][n+ 1])| = 0 ∀v ∈ An+1
nd & n ∈ IN
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⇒ V(v,Dn+1[[E]][n+ 1]) = V(v,Dn+1[[F ]][n+ 1]) ∀v ∈ An+1
nd & n ∈ IN

⇒ Nglb(E)(ϕ(v)) = Nglb(F )(ϕ(v)) & Nlub(E)(ϕ(v)) = Nlub(F )(ϕ(v)) ∀v ∈ A∗
nd

by Lemma 6.6.18 and

definition of A∗
nd

⇒ Nglb(E)(t) = Nglb(F )(t) & Nlub(E)(t) = Nlub(F )(t) ∀t ∈ Tnd \ (|⊥|)
by Lemma 6.6.17

⇒ Nglb(E)(t) = Nglb(F )(t) & Nlub(E)(t) = Nlub(F )(t) ∀t ∈ Tnd

by definition of Nglb and Nlub

⇒ O[[E]] nd∼O[[F ]] by definition of nd∼
as required.

On the other hand, if E,F ∈ Prnd and O[[E]] nd∼O[[F ]], then by definition of nd∼ and

Lemma 6.6.17 for any n ∈ IN:

Nglb(E)(ϕ(v)) = Nlub(E)(ϕ(v)) and Nglb(F )(ϕ(v)) = Nlub(F )(ϕ(v)) ∀v ∈ Annd

⇒ V(v,Dn+1[[E]][n+ 1]) = V(v,Dn+1[[F ]][n+ 1]) ∀v ∈ Annd by Lemma 6.6.18

⇒ V(v,Dn+1[[E]][n+ 1]) = V(v,Dn+1[[F ]][n+ 1]) ∀v ∈ A∗
nd by Lemma 6.5.7

⇒ dV(Dn+1[[E]][n+ 1],Dn+1[[F ]][n+ 1]) = 0 by definition of dV

and substituting this into the definition of dω we have:

dω(Dn+1[[E]],Dn+1[[F ]]) ≤
∞∑

k=n+2
2−kdV(Dn+1[[E]][k],Dn+1[[F ]][k])

≤
∞∑

k=n+2
2−k by Proposition 6.5.5

= 2−(n+1) rearranging

Then, since this was for arbitrary n ∈ IN, by definition of d we have:

d(D[[E]],D[[F ]]) ≤ lim
n→∞

2−n = 0.

and thus, D[[E]] = D[[F ]] since d is a metric. ut

6.7 A Metric for Reactive Probabilistic Processes

In this section, we outline the construction of a metric space for reactive probabilis-

tic processes, based on our previous constructions, where we remove the proofs when

they are simple extensions of the cases discussed earlier. First, we combine the defini-

tions of finite deterministic and non-deterministic probabilistic processes (Dω and Nω

respectively) to form the set of finite reactive probabilistic processes as follows.
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Definition 6.7.1 (Finite reactive probabilistic processes) Let Rn, n ∈ IN, be a

collection of carrier sets defined inductively by:

R0 = {{p0}} and Rn+1 = Pf n
(
{{p0}} ∪ Pf nr(A× µ(Rn))

)
.

Furthermore, let Rω = ∪nRn denote reactive probabilistic processes of bounded depth.

To ease the notation, we let X, Y . . . range over Rω, x, y . . . range over the elements

of X ∈ Rω, that is, over {{p0}} ∪ Pf nr(A × µ(Rn)), and p, q range over the elements

of x ∈ X ∈ Rω, that is, the elements of the form p0 or (a, f) for some a ∈ A and

f ∈ µ(Rω).

We next introduce the set of (open) trees reactive probabilistic processes can per-

form, and then using this definition extend the map V to this setting. We note that

since the processes exhibit internal choices the map V takes values in the set of closed

intervals I, as for the case concerning Nω.

Definition 6.7.2 Let Anr , n ∈ IN, be the sets inductively defined as follows. Put:

A0
r = Pf nr(A) and An+1

r = Pf nr ((A× Pf nr(Anr )) ∪ A) .

Furthermore, let A∗
r = ∪nAnr .

Definition 6.7.3 Let V : (A∗
r ×Rω) → I be the mapping defined inductively on Anr as

follows. For all x ∈ {{p0}} ∪ Pf nr(A× µ(Rω)), a ∈ A, V ∈ Anr and V ∈ Pf nr(Anr ) put:

V(a, x) =

 [1, 1] if (a, f) ∈ x for some f ∈ µ(Rω)

[0, 0] otherwise

V(aV, x) =


∑

Y ∈Rω

f(Y ) · V(V, Y ) if (a, f) ∈ x for some f ∈ µ(Rω)

[0, 0] otherwise

V(V, x) =
∏
v∈V

V(v, x)

and furthermore, for all X ∈ Rω put:

V(V, X) =
∏
V ∈V

V(V,X) and V(V,X) =
⊔
x∈X

V(V, x).

As for the non-deterministic case, the following lemma holds concerning the map V .

Lemma 6.7.4 For all X ∈ Rω and V ∈ A∗
r : V(V,X) ⊆ [0, 1].

Then, for reasons similar to the non-deterministic case, we define our pseudo-metric

over reactive probabilistic processes based on the metric dI as follows.
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Proposition 6.7.5 Rω (and Rn for any n ∈ IN) is a pseudo-metric space with respect

to the pseudo-metric:

dV(X, Y ) = max
V ∈A∗r

dI(V(V,X),V(V, Y )).

Furthermore, 0 ≤ dV(X, Y ) ≤ 1 for all X, Y ∈ Rω.

As before, to model recursive processes we introduce the definition of truncations, for

which the proposition below holds.

Definition 6.7.6 For all f ∈ µ(Rω), truncations are defined as in Definition 6.1.11,

with the additional case that for all X ∈ Rω, X[n] = {x[n] |x ∈ X}, and for all x ∈ X,

x[n] = {p[n] | p ∈ x}.

Proposition 6.7.7 For all X, Y ∈ Rω and k,m ∈ IN:

(a) if X ∈ Rm, then X[k] ∈ Rk when k < m and X[k] = X otherwise.

(b) (X[m])[k] = X[min{m, k}].
(c) X[m] = Y [m] if and only if X[k] = Y [k] for all k ≤ m.

(d) dV(X[k], Y [k]) ≤ dV(X, Y ).

The proofs of (a), (b) and (c) follow similarly to the case concerning simple probabilistic

processes and the proof of (d) follows from the lemma below.

Lemma 6.7.8 For all X ∈ Rω, V ∈ A∗
r and k ∈ IN: V(V,X[0]) = [0, 0] and

V(V,X[k + 1]) =

 V(V,X) if V ∈ Akr
[0, 0] otherwise.

Following our construction, we next combine our pseudo-metric dV with truncations

to reach the following pseudo-metric over reactive processes.

Definition 6.7.9 For all X, Y ∈ Rω, we define dω : Rω ×Rω −→ [0, 1] as follows:

dω(X, Y ) =
∞∑
k=1

2−kdV(X[k], Y [k]).

Proposition 6.7.10 (Rω, dω) (and (Rn, dω) for any n ∈ IN) is a pseudo-metric space.

Furthermore, 0 ≤ dω(X, Y ) ≤ 1 for all X, Y ∈ Rω.

To construct denotational semantics for RP, we first construct the metric space of

reactive probabilistic processes as the completion of the metric space (Rω, dω).



6.8 Denotational Semantics for RP 159

Definition 6.7.11 Let (R, d) be the completion of (Rω, dω).

Before we introduce denotational semantics for RP, we first require the following tech-

nical lemmas.

Lemma 6.7.12 For all X ∈ Rω, 〈X[n]〉n is a Cauchy sequence.

Lemma 6.7.13 If 〈Xn〉n∈IN is a sequence in Rω such that Xn+1[n] = Xn[n] for all

n ∈ IN, then 〈Xn〉n∈IN is Cauchy and Xm[n] = Xn[n] for all m ≥ n ∈ IN. Furthermore,

if 〈qn〉n∈IN is a sequence in Rω such that Yn+1[n] = Yn[n] for all n ∈ IN and 〈Xn〉n∈IN ∼
〈Yn〉n∈IN, then dω(Xn[n], Yn[n]) = 0 for all n ∈ IN.

Lemma 6.7.14 If 〈Xn〉n∈IN and 〈Yn〉n∈IN are Cauchy sequence and 〈Xn〉n∈IN 6∼ 〈Yn〉n∈IN,

then there exists n ∈ IN such that Xn[n] 6= Yn[n].

6.8 Denotational Semantics for RP

Similarly to the cases before we can introduce the definition of the degree of a process

and then define semantic operators on reactive processes by induction on their degree.

We note that the definitions and proofs concerning semantic operators are omitted

when they are the expected extensions.

Definition 6.8.1 For any X, Y ∈ Rω, let X ∪ Y be set-theoretic union.

Lemma 6.8.2 For all X, Y ∈ Rω and k ∈ IN: (X ∪ Y )[k] = X[k] ∪ Y [k].

Proposition 6.8.3 ∪ is continuous and well-defined on (Rω, dω).

We next introduce the semantic operator for external choice.

Definition 6.8.4 (External Choice Operator) For any X, Y ∈ Rω, let

X tuY = {z | z ∈ xtu y, x ∈ X and y ∈ Y }

where {p0}tu{p0} = {{p0}}, and if x, y ∈ Pf nr(A × µ(Rω)) put {p0}tux = xtu{p0} =

{x} and xtu y to be the set of maximal reactive subsets of x ∪ y.

Lemma 6.8.5 For all X, Y ∈ Rω and V ∈ A∗
r :

V(V,X tuY ) =
⊔

V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y )

where V1, V2 ∈ A∗
r ∪ {∅} and V(∅, Z)

def
= [1, 1] for any Z ∈ Rω.
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Proof. Consider any X, Y ∈ Rω and V ∈ A∗
r , then:

V(V,X tuY ) =
⊔

z∈X tu Y
V(V, z)

by definition of V and, using Proposition 3.3.12, it is sufficient to prove that:

min
V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y ) =left min
z∈X tu Y

V(V, z)

and

max
V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y ) =right max
z∈X tu Y

V(V, z).

We only prove the case for max as the case for min follows similarly. First, consider

any z ∈ X tuY , then by Definition 6.8.4 there exists x ∈ X and y ∈ Y such that

z ∈ xtu y. Now setting:

V1 = {aV | aV ∈ V and (a, f) ∈ x ∩ z} and V2 = V \ V1

we have:

V(V, z) = V(V1, x) · V(V2, y) by definition of V
≤right max

x∈X
V(V1, x) ·max

y∈Y
V(V2, y) since x ∈ X and y ∈ Y

=right V(V1, X) · V(V2, Y ) by definition of V
≤right max

V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y ) since V1 ∪ V2 = V and V1 ∩ V2 = ∅.

In either case, since this is valid we infer:

max
z∈X tu Y

V(V, z) ≤right max
V1∪V2=V

V(V1, X) · V(V2, Y ). (6.14)

On the other hand, considering any V1, V2 ∈ A∗
r ∪ {∅} such that V1 ∪ V2 = V and

V1 ∩ V2 = ∅, either V(V1, X) · V(V2, Y ) = [0, 0] and thus:

V(V1, X) · V(V2, Y ) ≤right max
z∈X tu Y

V(V, z)

by Lemma 6.7.4, or V(V1, X) · V(V2, Y ) 6= [0, 0], and then, by definition of V , there

exist x ∈ X and y ∈ Y such that V(V1, X) =right V(V1, x), V(V2, Y ) =right V(V2, Y ),

where aV ∈ V1 if (a, f) ∈ x for some f ∈ µ(Rω) and aV ∈ V2 if (a, f) ∈ y for some

f ∈ µ(Pω). Then, let z be the element of Pf nr(A× µ(Rω)) such that z ∈ (a, f) if and

only if one of the following holds:

• (a, f) ∈ x and aV ∈ V1 for some V ∈ Pf nr(A∗
r )
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• (a, f) ∈ y and aV ∈ V2 for some V ∈ Pf nr(A∗
r )

• (a, f) ∈ x or (a, f) ∈ y and aV 6∈ V for all V ∈ Pf nr(A∗
r ).

By definition of tu , z ∈ xtu y, and hence since x ∈ X and y ∈ Y : z ∈ X tuY . Then,

similarly to the above, we have:

V(V1, x) · V(V2, y) = V(V, z)

≤right max
z∈X tu Y

V(V, z) since z ∈ X tuY .

Since this was for any V1, V2 ∈ A∗
r ∪ {∅} with V1 ∪ V2 = V we obtain:

max
V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y ) ≤right max
z∈X tu Y

V(V, z). (6.15)

Putting (6.14) and (6.15) together we have:

max
V1∪V2=V
&V1∩V2=∅

V(V1, X) · V(V2, Y ) =right max
z∈X tu Y

V(V, z)

as required. ut

Lemma 6.8.6 For all X, Y ∈ Rω and k ∈ IN: (X tuY )[k] = X[k]tuY [k].

Proposition 6.8.7 tu is continuous and well-defined on (Rω, dω).

Proof. The proof that dc is continuous follows from Lemma 6.8.5 and properties of

dI (see Proposition 3.3.16 and Proposition 3.3.17). ut

Lemma 6.8.8 For all X, Y ∈ Rω and V ∈ A∗
r and k ∈ IN: V(V,X ‖Y ) = V(V,X) ·

V(V, Y ) and (X ‖Y )[k] = X[k] ‖Y [k].

Proposition 6.8.9 ‖ is continuous and well-defined on (Rω, dω).

Lemma 6.8.10 For all X ∈ Rω, V ∈ A∗
r , B ⊆ A and k ∈ IN:

V(V,X |̀B) =

 [0, 0] if a ∈ V for some a 6∈ B
V(V,X) otherwise

and (X |̀B)[k] = X[k] |̀B.

Proposition 6.8.11 For all B ⊆ A, |̀B is continuous and well-defined on (Rω, dω).

Lemma 6.8.12 For all X ∈ Rω, V ∈ A∗
r , λ : A → A and k ∈ IN: V(V,X [λ]) =

V(λ−1(V ), X) and (X [λ])[k] = (X[k]) [λ].
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Proposition 6.8.13 For all λ :A→ A, [λ] is continuous and well-defined on (Rω, dω).

We now use the above semantic operators to define denotational semantics for the set

of expressions E of our process calculus RP.

Definition 6.8.14 (Denotational Semantics) Let Dn : RP → (Env → Rω), n ∈
IN, be the collection of maps defined inductively as follows. Put D0[[E]] = {{p0}} for

all E ∈ RP, and Dn+1 be defined inductively on the structure of elements of RP as

follows:

Dn+1[[x]](ρ) = ρn+1(x)

Dn+1[[0]](ρ) = {{p0}}
Dn+1[[

∑
i∈I aµi

.Ei]](ρ) = {{(a,ΦRω(〈µi,Dn[[Ei]](ρ)〉i∈I))}}
Dn+1[[E1 tuE2]](ρ) = Dn+1[[E1]](ρ)tuDn+1[[E2]](ρ)

Dn+1[[E1 uE2]](ρ) = Dn+1[[E1]](ρ) ∪ Dn+1[[E2]](ρ)

Dn+1[[E1 ‖E2]](ρ) = Dn+1[[E1]](ρ) ‖Dn+1[[E2]](ρ)

Dn+1[[E |̀B]](ρ) = Dn+1[[E]](ρ) |̀B
Dn+1[[E [λ]]](ρ) = Dn+1[[E]](ρ) [λ]

Dn+1[[fixx.E]](ρ) = Dn+1[[E]](ρ{Dn[[fixx.E]](ρ)/x}).

Furthermore, let D : RP → (Env → R) be the map defined as follows, for any E ∈ RP

put: D[[E]](ρ) = [〈Dn[[E]](ρ)〉n∈IN]∼.

To prove the well-definedness of the semantic map D, as before we first require the

following lemma.

Lemma 6.8.15 For all E ∈ G, ρ ∈ Env and k ∈ IN: Dk+1[[E]](ρ)[k] = Dk[[E]](ρ)[k].

Lemma 6.8.16 For all E ∈ RP, F ∈ Pr, ρ ∈ Env and n ∈ IN:

Dn[[E{F/x}]](ρ)[n] = Dn[[E]](ρ{Dn[[F ]]/x})[n].

Furthermore, if E ∈ G then:

Dn+1[[E{F/x}]](ρ)[n+ 1] = Dn+1[[E]](ρ{Dn[[F ]]/x})[n+ 1].

Proposition 6.8.17 D is well-defined on the guarded expressions of RP.

6.8.1 Full Abstraction

To show that the above denotational model is fully abstract we first require the follow-

ing extensions of the lemmas and the definition of the map ϕ from the non-deterministic

case.
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Lemma 6.8.18 For all E ∈ Pr, ρ ∈ Env and S ∈ Pf r(Act×µ(Pr)), we have O[[E]] →
S if and only if xSn ∈ Dn+1[[E]](ρ) for all n ∈ IN such that if S = ∅ then xSn+1 = {p0},
and if S = {(a1, π1), . . . (am, πm)} then xSn+1 is of the form {(a1, f

1
n), . . . , (am, f

m
n )},

and for any 1 ≤ i ≤ m and Y ∈ R:

f in[n](Y ) =
∑

F∈RP&
Dn[[F ]](ρ)[n]=Y

πi(F ).

Definition 6.8.19 Let ϕ : A∗
r → T \ {(|⊥|)} be the mapping defined inductively as

follows: ϕ({a1, . . . , am}) = (|[a1.(|⊥|), . . . , am.(|⊥|)]|) and

ϕ({a1V1, . . . , amVm}) = (|[a1.ϕ(V1), . . . am.ϕ(Vm)]|),

where ϕ({V1, . . . , Vm}) = (ϕ(V1), . . . , ϕ(Vm′)).

Lemma 6.8.20 The mapping ϕ is bijective.

Lemma 6.8.21 For all E ∈ Pr, ρ ∈ Env, V ∈ Anr and n ∈ IN:

V(V,Dn+1[[E]](ρ)[n+ 1]) = [Rglb(E)(ϕ(V )),Rlub(E)(ϕ(V ))].

Theorem 6.8.22 For all E,F ∈ G:

O[[E]] r∼O[[F ]] if and only if D[[E]](ρ) = D[[F ]](ρ) for all ρ ∈ Env.

6.9 Discussion

As already mentioned in Section 5.7, one possible topic of future research is to consider

a process calculus with a separate probabilistic choice operator based on the opera-

tional model and our metric space construction for the calculus RP. The first step

would be to consider simple probabilistic processes, which can be considered as any

f ∈ µ({p0} ∪ (A× P )) such that for any simple process g, f((a, g)) is the probability

that f will perform the action a and then behave as g, and f(p0) is the probability

that f behaves as the inactive process. This then gives:

Pn+1 = µ({p0} ∪ (A× Pn))

as a candidate for the carrier set construction for simple probabilistic processes. Then

we could introduce a pseudo-metric (dS) based on the mapping V : A∗ × P → [0, 1],

where for any µ:

V(〈〉, f) = f(p0) and V(au, f) =
∑

(a,g)∈s(f)

f((a, g)) · V(u, g).
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Extending this to respectively allow external choice, internal choice and both types of

choice, we would expect to arrive at the following carrier set constructions:

Dn+1 = µ({{p0}} ∪ Pf nr(A×Dn)),

Nn+1 = Pf n
(
µ({{p0}} ∪ (A×Nn))

)
,

Rn+1 = Pf n
(
µ({{p0}} ∪ Pf nr(A×Rn))

)
.

Also, as mentioned in Section 5.7, we can formulate an operational model contain-

ing sub-probability distributions. However, if we consider the full abstraction results

we see that the cases relating to P and D depend on the summation of distributions

being one, whereas the cases for N and R do not. Thus, to formulate a fully abstract

model for purely probabilistic and deterministic probabilistic process calculi contain-

ing sub-probability distributions we will need to use a psudeo-metric in the spirit of

dV , as opposed to dS , that is, remove the null string (〈〉) from the definitions of A∗ and

A∗
d and then consider the maximum difference between the probabilities of processes

performing these paths instead of a summation over all paths.



Chapter 7

Logical Semantics

In this chapter we give a logical semantics to reactive probabilistic transition systems

using Hennessy-Milner Logic (HML) [HM85] and adapting Huth and Kwiatkowska’s

non-standard interpretation [HK97] for HML over processes of Larsen and Skou’s prob-

abilistic transition systems [LS91] to our reactive probabilistic transition systems.

Similarly to the operational and denotational approaches, we first consider purely

probabilistic transition systems, and in this case give a logical semantics to these

transition systems by means of a sublanguage of HML. We next consider suitable ex-

tensions of this sublanguage of HML to extend our semantics to both deterministic

and non-deterministic probabilistic transition systems, and then finally combine these

sublanguages to give semantics to all reactive probabilistic transition systems.

7.1 Preliminaries

In this section, we introduce the logic HML and give this logic Huth and Kwiatkowska’s

non-standard interpretation originally introduced for Larsen and Skou’s probabilistic

transition systems. Moreover, we state definitions that will be needed to give our

reactive probabilistic transition systems a logical semantics.

Definition 7.1.1 (Hennessy-Milner Logic [HM85]) The logic HML is defined in-

ductively on the syntax:

φ ::= true | 〈a〉φ | ¬φ | φ ∧ φ

where a ranges over a set of actions Act.

We note that we only consider the finitary version of conjunction as we only consider

finite external and internal choices.

165
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Definition 7.1.2 Let [[.]] : (HML × P ) → [0, 1] be the mapping defined inductively on

formulae of HML for any probabilistic transition system (P,Act, Can, µ) and E ∈ P as

follows:

[[true]]E = 1

[[〈a〉φ]]E =
∑
F∈P{µ · [[ψ]]F |E a−→µ F}

[[¬φ]]E = 1− [[φ]]E

[[φ1 ∧ φ2]]E = [[φ1]]E · [[φ2]]E.

We note that in [HK97] Huth and Kwiatkowska also consider additional alternative

operators, for example disjunction (∨) and fixed point operators.

Definition 7.1.3 Let act : HML → Pf (Act) be the mapping defined inductively on the

syntax of HML as follows:

act(true) = ∅
act(〈a〉φ) = {a}
act(¬φ) = act(φ)

act(φ1 ∧ φ2) = act(φ1) ∪ act(φ2).

Definition 7.1.4 We define the height of a formula φ of HML, ht(φ) ∈ IN, by induction

on the syntax of HML as follows:

ht(true) = 0

ht(〈a〉φ) = ht(φ) + 1

ht(¬φ) = ht(φ) + 1

ht(φ1 ∧ φ2) = max{ht(φ1), ht(φ2)}+ 1.

7.2 Purely Probabilistic Transition Systems

First, since the interpretation [[·]] of HML (see Definition 7.1.2) is given for probabilis-

tic transition systems, we adapt it to purely probabilistic transition systems. Let

(Rp,Act ,→) be a purely probabilistic transition system and E ∈ Rp; we need to

replace the clause for 〈a〉φ in Definition 7.1.2 by:

[[〈a〉φ]]E
def
=


∑

F∈Rp
π(F ) · [[φ]]F if E = (a, π) for some π ∈ µ(Rp)

0 otherwise.

As mentioned above, to characterise our equivalence over purely probabilistic transition

systems we need only consider a sublanguage of HML, denoted HMLp, defined as follows.
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Definition 7.2.1 The sublanguage HMLp of HML is the language defined inductively on

the syntax:

φ ::= true | 〈a〉φ

where a ∈ Act.

The following connections between the map P on purely probabilistic tests and HMLp

with its interpretation on Rp given above can be proved.

Proposition 7.2.2 For all t ∈ Tp there exists φt ∈ HMLp such that [[φt]]E = P(E)(t)

for all E ∈ Rp.

Proof. The proposition is proved by induction on t ∈ Tp, where for any t ∈ Tp we set:

φt =

 true if t = ⊥
〈a〉φt′ if t = a.t′.

If t = ⊥, then φ⊥ = true and we conclude by definition of P and [[·]] that [[φ⊥]]E =

P(E)(⊥) = 1 for all E ∈ Rp.

If t = a.t′ for some a ∈ Act , then φa.t′ = 〈a〉φt′ and by induction we have φa.t′ ∈
HMLp. Furthermore, by definition of P and [[·]] for any E ∈ Rp:

P(E)(a.t′) =


∑

F∈Rp
π(F ) · P(F )(t′) if E = (a, π) for some π ∈ µ(Rp)

0 otherwise.

=


∑

F∈Rp
π(F ) · [[φt′ ]]F if E = (a, π) for some π ∈ µ(Rp)

0 otherwise.
by induction

= [[〈a〉φt′ ]]E by definition of [[·]]

and hence the proposition is proved by induction on n ∈ IN. ut

Proposition 7.2.3 For all φ ∈ HMLp there exists tφ ∈ Tp such that [[φ]]E = P(E)(tφ)

for all E ∈ Rp.

Proof. The proof follows by arguments similar to the proof of Proposition 7.2.2 above

by induction on the height of formulae of HMLp, where for any φ ∈ HMLp:

tφ =

 ⊥ if φ = true

a.tψ if φ = 〈a〉ψ.

ut
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Theorem 7.2.4 For all E, F ∈ Rp, E vp F if and only if [[φ]]E ≤ [[φ]]F for all

φ ∈ HMLp.

Proof. First consider E,F ∈ Rp such that E vpF , then for any φ ∈ HMLp:

[[φ]]E = P(E)(tφ) by Proposition 7.2.3

≤ P(F )(tφ) since E vpF

= [[φ]]F by Proposition 7.2.3.

Conversely, suppose E,F ∈ Rp and [[φ]]E ≤ [[φ]]F for all φ ∈ HMLp. Then for any

t ∈ Tp:
P(E)(t) = [[φt]]E by Proposition 7.2.2

≤ [[φt]]F by hypothesis

= P(F )(t) by Proposition 7.2.2

and since this was for arbitrary t ∈ Tp, we obtain E vpF as required. ut

7.3 Deterministic Probabilistic Transition Systems

In this section we consider a deterministic probabilistic transition system (Rd,Act ,→)

and first extend the subset HMLp of HML, to HMLd, defined as follows.

Definition 7.3.1 The sublanguage HMLd of HML is the language defined inductively on

the syntax:

φ ::= true | φ ∧ φ | 〈a〉φ

where, for any φ1 and φ2 ∈ HMLd, φ1∧φ2 exists in HMLd if and only if act(φ1)∩act(φ2) =

∅.

We can state the following connections between the function D and HMLd. Recall that

for any independent T1, T2 ∈ Td
ω, T1 ‖T2 denotes the composition of the tests T1 and

T2.

Proposition 7.3.2 For all t ∈ Td there exists φt ∈ HMLd such that [[φt]]E = D(E)(t)

for all E ∈ Rd, and if t is of the form a.T then act(φt) = a.

Proof. The proof is by induction on t ∈ Td, where for any t ∈ Td we set:

φt =

 true if t = ⊥
〈a〉φT if t = a.T

and φ(t1,...,tm) =
m
∧
i=1
φti .

The case for t = ⊥ follows similarly to Proposition 7.2.2. If t = a.T for some a ∈ Act ,

then T is of the form (t1, . . . , tn) such that ti ∈ Td for all 1 ≤ i ≤ m, and each ti
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is of the form ai.Ti such that ai 6= aj for all 1 ≤ i 6= j ≤ m. By induction we have

φti ∈ HMLd and act(φti) = ai for all 1 ≤ i ≤ m, therefore φT ∈ HMLd since aj 6= aj for

all 1 ≤ i 6= j ≤ m. Hence, by the construction given above, φt ∈ HMLd. Moreover, it

follows by definition of [[·]] and D that [[φt]]E = D(E)(t) for any E ∈ Rd, and hence

the proposition is proved by induction. ut

Proposition 7.3.3 For all φ ∈ HMLd there exists Tφ ∈ Td
ω such that [[φ]]E = D(E)(Tφ)

for all E ∈ Rd, where Tφ is of the form (a1.T1, . . . , am.Tm) if act(φ) = {a1, . . . , am}
and Tφ = (⊥) if act(φ) = ∅.

Proof. The proof is by induction on n ∈ IN where n = ht(φ). Put:

Tφ =


(⊥) if φ = true

(a.Tψ) if φ = 〈a〉ψ
Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2.

The proof now follows similarly to Proposition 7.2.3, except in the inductive step

when supposing the proposition holds for all formulae of height n and φ is of the form

φ1 ∧ φ2 for some φ1, φ2 ∈ HMLd and ht(φ) = n + 1. In this case Tφ1 ‖Tφ2 is well-

defined by induction and since, by definition of HMLd, act(φ1)∩act(φ2) = ∅. Therefore,

from our construction above, we have Tφ ∈ Td
ω and is of the required form since

act(φ1 ∧ φ2) = act(φ1) ∪ act(φ2). Moreover, for any E ∈ Rd:

[[φ]]E = [[φ1 ∧ φ2]]E

= [[φ1]]E · [[φ2]]E by definition of [[·]]
= D(E)(Tφ1) · D(E)(Tφ2) by induction

= D(E)(Tφ1 ‖Tφ2) by Lemma 4.3.6

= D(E)(Tφ) by construction

as required. ut

Using Proposition 7.3.2 and Proposition 7.3.3 we reach the following theorem connect-

ing HMLd and our operational ordering vd.

Theorem 7.3.4 For all E, F ∈ Rd, E vd F if and only if [[φ]]E ≤ [[φ]]F for all

φ ∈ HMLd.

Proof. The proof follows similarly to that of Theorem 7.2.4. ut
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7.4 Non-deterministic Probabilistic Transition Sys-

tems

We now consider a logical semantics for non-deterministic probabilistic transition sys-

tems. In non-probabilistic transition systems internal behaviour is often represented

by processes being able to perform hidden actions, that is, τ actions. When formu-

lating logical semantics over such transition systems, an operator of the form 〈ε〉φ is

added to the syntax of HML (for example, when giving a logical characterisation of weak

bisimulation [Mil89]), where for any labelled transition system (T,Act ∪ {τ},→) and

P ∈ T , 〈ε〉φ is interpreted as follows:

[[〈ε〉φ]]P
def
= max{[[φ]]Q |P ⇒ Q}.

Here P ⇒ Q if there exists a path from P to Q consisting of an arbitrary number (≥ 0)

of τ -steps. Intuitively, a process P satisfies the formula 〈ε〉φ, that is, [[〈ε〉φ]]P = 1, if

P can make an internal choice to evolve as a process which will satisfy φ. Adapting

this to a non-deterministic probabilistic transition system (Rnd,Act ,→), we have the

following interpretation of 〈ε〉φ for any E ∈ Rnd:

[[〈ε〉φ]]E
def
= max{[[φ]]s |E → s}

since E makes an internal choice between behaving as any s ∈ (Act × µ(Rnd)) ∪ {∅}
such that E → s.

Furthermore, we also add the dual of 〈ε〉φ, namely [ε]φ, where, intuitively, a (non-

probabilistic) process P satisfies the formula [ε]φ if all the processes that P can evolve

to by making an internal choice satisfy φ. Since by definition of HML [.] = ¬〈.〉¬, we

reach the desired interpretation of [ε]φ over non-deterministic probabilistic transition

systems by means of the following proposition.

Proposition 7.4.1 For all E ∈ Rnd and φ ∈ HML: [[[ε]φ]]E = min{[[φ]]s |E → s}.

Proof. Consider any E ∈ Rnd and φ ∈ HML, then by definition of [[·]]:

[[[ε]φ]]E = [[¬〈ε〉¬φ]]E

= 1−max{[[¬φ]]s |E → s} by definition of [[·]]
= 1−max{1− [[φ]]s |E → s} by definition of [[·]]
= 1− (1−min{[[φ]]s |E → s}) rearranging

= min{[[φ]]s |E → s}

as required. ut
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Furthermore, since any s ∈ (Act × µ(Rnd)) ∪ {∅} can be considered as a purely

probabilistic process and can therefore perform no internal choices, we can set:

[[〈ε〉φ]]s
def
= [[φ]]s and [[[ε]φ]]s

def
= [[φ]]s.

We also set [[〈a〉φ]]s to have the same interpretation as when we considered purely

probabilistic transition systems.

As we have added 〈ε〉φ to HML, we therefore extend our definition of the maps act(·)
and ht(·) as follows. For any φ ∈ HML:

act(〈ε〉φ)
def
= act(φ) and ht(〈ε〉φ)

def
= ht(φ)

Using this operator, we reach the following two extensions of HMLp, denoted HML
〈ε〉
nd and

HML
[ε]

nd, where intuitively the meaning of HML〈ε〉nd and HML
[ε]

nd respectively is that processes

may or must validate a formula.

Definition 7.4.2 The sublanguage HML
〈ε〉
nd of HML is the language defined inductively

on the syntax:

φ ::= true | 〈ε〉〈a〉φ | φ ∧ φ

where, for any φ1 and φ2 ∈ HML
〈ε〉
nd, φ1 ∧ φ2 exists in HML

〈ε〉
nd if and only if act(φ1) ∩

act(φ2) = ∅.

Definition 7.4.3 The sublanguage HML
[ε]

nd of HML is the language defined inductively

on the syntax:

ψ ::= true | [ε]〈a〉ψ | ψ ∧ ψ

where, for any ψ1 and ψ2 ∈ HML
[ε]

nd, ψ1 ∧ ψ2 exists in HML
[ε]

nd if and only if act(ψ1) ∩
act(ψ2) = ∅.

We now state the following relationship between HML
〈ε〉
nd and Nlub, and HML

[ε]

nd and Nglb.

Proposition 7.4.4 For all t ∈ Tnd there exists φt ∈ HML
〈ε〉
nd such that for all E ∈ Rnd,

[[φt]]E = Nlub(E)(t), and if t is of the form (|a.T |) for some a ∈ Act, then act(φt) = {a}.

Proof. The proposition is proved by induction on t ∈ Tnd
n by setting:

φr =

 true if r = ⊥
〈a〉φT if r = a.T,

φ(|r|) = 〈ε〉φr and φ(t1,...,tm) =
m
∧
i=1
φti .

ut

Proposition 7.4.5 For all t ∈ Tnd there exists ψt ∈ HML
[ε]

nd such that for all E ∈ Rnd,

[[ψt]]E = Nglb(E)(t), and if t = (|a.T |) for some a ∈ Act, then act(ψt) = {a}.
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Proof. The proposition is proved by induction on t ∈ Tnd
n similarly to Proposition 7.4.4

above using Proposition 7.4.1 and replacing 〈ε〉 with [ε]. ut

Proposition 7.4.6 For all φ ∈ HML
〈ε〉
nd there exists Tφ ∈ Tnd

ω such that Nlub(E)(Tφ) =

[[φ]]E for all E ∈ Rnd, where Tφ is of the form ((|a1.T1|), . . . , (|am.Tm|)) if act(φ) =

{a1, . . . , am} and Tφ = (⊥) if act(φ) = ∅.

Proof. The proof follows by induction on the height of formulae similarly to Propo-

sition 7.3.3, using Lemma 4.4.6 instead of Lemma 4.3.6, and putting:

Tφ =


((|⊥|)) if φ = true

((|a.Tφ′|)) if φ = 〈ε〉〈a〉φ′

Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2.

ut

Proposition 7.4.7 For all ψ ∈ HML
[ε]

nd there exists Tψ ∈ Tnd
ω such that Nglb(E)(Tψ) =

[[ψ]]E for all E ∈ Rnd, where Tψ is of the form ((|a1.T1|), . . . , (|am.Tm|)) if act(ψ) =

{a1, . . . , am} and Tψ = (⊥) if act(ψ) = ∅.

Using the above propositions, we reach the following theorem connecting HML
〈ε〉
nd∪HML

[ε]

nd

and vnd.

Theorem 7.4.8 For all E, F ∈ Rnd, E vnd F if and only if [[φ]]E ≤ [[φ]]F for all

φ ∈ HML
〈ε〉
nd and [[ψ]]E ≤ [[ψ]]F for all ψ ∈ HML

[ε]

nd.

Proof. First consider E,F ∈ Rnd such that E vndF , then for any φ ∈ HML
〈ε〉
nd:

[[φ]]E = Nlub(E)(Tφ) by Proposition 7.4.6

≤ Nlub(F )(Tφ) since E vndF

= [[φ]]F by Proposition 7.4.6

and hence [[φ]]E ≤ [[φ]]F for all φ ∈ HML
〈ε〉
nd. To show [[ψ]]E ≤ [[ψ]]F for all ψ ∈ HML

[ε]

nd

follows a similar argument using Proposition 7.4.7 instead of Proposition 7.4.6.

Conversely, suppose E,F ∈ Rnd and [[φ]]E ≤ [[φ]]F for all φ ∈ HML
〈ε〉
nd and [[ψ]]E ≤

[[ψ]]F for all ψ ∈ HML
[ε]

nd, then for any t ∈ Tnd:

Nlub(E)(t) = [[φt]]E by Proposition 7.4.4

≤ [[φt]]F by hypothesis

= Nlub(F )(t) by Proposition 7.4.4.

Similarly using Proposition 7.4.5, we can show Nglb(E)(t) ≤ Nglb(F )(t), and since this

was for arbitrary t ∈ Tnd, we get E vndF as required. ut
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7.5 Reactive Probabilistic Transition Systems

To consider reactive probabilistic transition systems we first extend the interpreta-

tion of 〈ε〉φ from non-deterministic probabilistic transition systems to reactive proba-

bilistic transition systems as follows. For any reactive probabilistic transition system

(R,Act ,→) and E ∈ R:

[[〈ε〉φ]]E
def
= max{[[φ]]S |E → S}

since E makes an internal choice between behaving as any S ∈ Pf r(Act × µ(R)) such

that E → S.

Again, we can consider the dual of 〈ε〉φ, namely [ε]φ, and we reach the interpre-

tation of [ε]φ over reactive probabilistic transition systems by means of the following

proposition.

Proposition 7.5.1 For all E ∈ R and φ ∈ HML: [[[ε]φ]]E = min{[[φ]]S |E → S}.

Furthermore, since any S ∈ Pf r(Act × µ(R)) can be considered as a deterministic

probabilistic process, for any S ∈ Pf r(Act × µ(R)) we set:

[[〈ε〉φ]]S
def
= [[φ]]S and [[[ε]φ]]S

def
= [[φ]]S.

Furthermore, [[〈a〉φ]]S has the same interpretation as when we considered deterministic

probabilistic transition systems.

We next combine the sublanguages of HML, HMLd and HML
〈ε〉
nd, and HMLd and HML

[ε]

nd to

form the following two sublanguages of HML.

Definition 7.5.2 The sublanguage HML〈ε〉r of HML is the language defined inductively

on the syntax:

φ ::= true | 〈ε〉〈a〉φ | φ ∧ φ | 〈ε〉(φ ∧ φ)

where, for any φ1 and φ2 ∈ HML〈ε〉r , φ1 ∧ φ2 and 〈ε〉(φ1 ∧ φ2) exists in HML〈ε〉r if and only

if act(φ1) ∩ act(φ2) = ∅.

Definition 7.5.3 The sublanguage HML[ε]
r of HML is the language defined inductively on

the syntax:

ψ ::= true | [ε]〈a〉ψ | ψ ∧ ψ | [ε](ψ ∧ ψ)

where, for any ψ1 and ψ2 ∈ HML[ε]
r , ψ1 ∧ ψ2 and [ε](ψ1 ∧ ψ2) exists in HML[ε]

r if and only

if act(ψ1) ∩ act(ψ2) = ∅.

Before we consider the relationship between HML〈ε〉r and Rlub and between HML[ε]
r and

Rglb, we first prove the following lemmas.
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Lemma 7.5.4 For any {φ1, . . . , φm} ⊆ HML〈ε〉r , if act(φi) ∩ act(φj) = ∅ for all 1 ≤ i ≤
m then there exists φ ∈ HML〈ε〉r such that

act(φ) =
m⋃
i=1

act(φi), [[φ]]E =
[[
〈ε〉

(
m
∧
i=1
φi

)]]
E and [[φ]]S =

[[
m
∧
i=1
φi

]]
S

for all E ∈ R and S ∈ Pf r(Act × µ(R)).

Proof. The proof is by induction on m ∈ IN. The case for m = 1 follows by definition

of HML〈ε〉r and [[·]].
Now suppose the lemma holds for some m ∈ IN and consider any {φ1, . . . , φm+1} ⊆

HML〈ε〉r such that act(φi)∩ act(φj) for all 1 ≤ i ≤ m+1. Then by induction there exists

φ′ ∈ HML〈ε〉r such that:

act(φ′) =
m⋃
i=1

act(φi), [[φ′]]E =
[[
〈ε〉

(
m
∧
i=1
φi

)]]
E and [[φ′]]S =

[[
m
∧
i=1
φi

]]
S

for all E ∈ R and S ∈ Pf r(Act × µ(R)). Now setting:

φ = 〈ε〉 (φ′ ∧ φm+1)

it follows that φ ∈ HML〈ε〉r by the induction hypothesis and since act(φi) ∩ act(φj) for

all 1 ≤ i ≤ m+ 1. Furthermore, by definition of [[·]], for any S ∈ Pf r(Act × µ(R)):

[[φ]]S = [[φ′ ∧ φm+1]]S

= [[φ′]]S · [[φm+1]]S

=
[[
m
∧
i=1
φi

]]
S · [[φm+1]]S by induction

=
[[
m+1
∧
i=1

φi

]]
S by definition of [[·]].

Then, for any E ∈ R:

[[φ]]E = max
E→S

[[φ′ ∧ φm+1]]S by definition of [[·]]

= max
E→S

[[
m+1
∧
i=1

φi

]]
S from above

=
[[
〈ε〉

(
m+1
∧
i=1

φi

)]]
E by definition of [[·]]

and hence the lemma is proved by induction on n ∈ IN. ut
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Lemma 7.5.5 For any {ψ1, . . . , ψm} ⊆ HML[ε]
r , if act(ψi) ∩ act(ψj) = ∅ for all 1 ≤ i ≤

m then there exists ψ ∈ HML[ε]
r such that

act(ψ) =
m⋃
i=1

act(ψi), [[ψ]]E =
[[
[ε]
(
m
∧
i=1
ψi

)]]
E and [[ψ]]S =

[[
m
∧
i=1
ψi

]]
S

for all E ∈ R and S ∈ Pf r(Act × µ(R)).

Proof. The proof follows similarly to Lemma 7.5.4 above replacing max by min, and

〈ε〉 by [ε]. ut

Using Lemma 7.5.4 and Lemma 7.5.5, we are now in a position to state a connection

between the map Rglb and HML〈ε〉r , and between the map Rlub and HML[ε]
r .

Proposition 7.5.6 For all t ∈ T there exists φt ∈ HML〈ε〉r such that for all E ∈
R, [[φt]]E = Rlub(E)(t), and if t is of the form (|[a1.T1, . . . , am.Tm]|) then act(φt) =

{a1, . . . , am}.

Proof. The proposition is proved by induction on t ∈ T, where for any (|r|) ∈ T, if

r = ⊥ we set φt = true, and if r = [a1.T1, . . . , am.Tm] using Lemma 7.5.4 we set φt to

the formula of HML〈ε〉r such that:

[[φt]]E =
[[
〈ε〉

(
m
∧
i=1

(〈ai〉φTi
)
)]]

E

for all E ∈ R, where φTi
=

mi

∧
j=1
φtij if Ti = (ti1, . . . , t

i
mi

). ut

Proposition 7.5.7 For all t ∈ T there exists ψt ∈ HML[ε]
r such that for all E ∈

R, [[ψt]]E = Rglb(E)(t) and if t is of the form (|[a1.T1, . . . , am.Tm]|) then act(ψt) =

{a1, . . . , am}.

Proof. The proposition is proved by induction on t ∈ Tn similarly to Proposition 7.5.6

above using Proposition 7.5.1 and replacing 〈ε〉 with [ε]. ut

Proposition 7.5.8 For all φ ∈ HML〈ε〉r there exists (|rφ|) ∈ T and Tφ ∈ Tω such that

[[φ]]S = Rlub(S)(rφ) for all S ∈ Pf r(Act × µ(R)), and [[φ]]E = Rlub(E)(Tφ) for all

E ∈ R.

Proof. The proof follows by induction on n ∈ IN, where n is the height of formulae of

HML〈ε〉r , by combining the proofs of Proposition 7.3.3 and Proposition 7.4.6 and using
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Lemma 4.5.10 and Lemma 4.5.11 instead of Lemma 4.3.6 and Lemma 4.4.6, and for

any φ ∈ HML〈ε〉r putting:

rφ =


⊥ if φ = true

[a.Tφ′ ] if φ = 〈ε〉〈a〉φ′

rφ1 ‖ rφ2 if φ = φ1 ∧ φ2

rφ1 ‖ rφ2 if φ = 〈ε〉(φ1 ∧ φ2)

and

Tφ =


((|⊥|)) if φ = true

((|[a.Tφ′ ]|)) if φ = 〈ε〉〈a〉φ′

Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2

((|rφ1 ‖ rφ2 |)) if φ = 〈ε〉(φ1 ∧ φ2).

ut

Proposition 7.5.9 For all ψ ∈ HML[ε]
r there exists (|rψ|) ∈ T and Tψ ∈ Tω such that

[[ψ]]S = Rglb(S)(rψ) for all S ∈ Pf r(Act × µ(R)) and [[ψ]]E = Rglb(E)(Tψ) for all

E ∈ R.

Proof. The proof follows similarly to Proposition 7.5.8. ut

We now give some examples of the mappings between the testing language Tω and the

logics HML〈ε〉r and HML[ε]
r , by means of the following table.

Tω HML〈ε〉r HML[ε]
r

((|[a.(|[b.⊥]|)]|)) 〈ε〉〈a〉〈ε〉〈b〉true [ε]〈a〉[ε]〈b〉true
((|[a.⊥]|), (|[b.⊥]|)) 〈ε〉〈a〉true ∧ 〈ε〉〈b〉true [ε]〈a〉true ∧ [ε]〈b〉true

((|[a.⊥, b.⊥]|)) 〈ε〉(〈ε〉〈a〉true ∧ 〈ε〉〈b〉true) [ε]([ε]〈a〉true ∧ ([ε]〈b〉true)

Finally, using Proposition 7.5.6, Proposition 7.5.7, Proposition 7.5.8 and Proposi-

tion 7.5.9 we reach the following theorem connecting HML〈ε〉r ∪ HML[ε]
r and vr.

Theorem 7.5.10 For all E, F ∈ R, E vr F if and only if [[φ]]E ≤ [[φ]]F for all

φ ∈ HML〈ε〉r and [[ψ]]E ≤ [[ψ]]F for all ψ ∈ HML[ε]
r .

Proof. The proof follows similarly to Theorem 7.4.8 using Lemma 4.5.5. ut

7.6 Fixed Point Operators

In this section we add a fixed point operator to the logics HML〈ε〉r and HML[ε]
r and compare

the results with our maps Rlub and Rglb respectively. We note that we only prove results

relating to HML〈ε〉r and Rlub, as the results for HML[ε]
r and Rglb are dual.
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To add a fixed point operator to our logic we must first add variables (ranged over

by Var) to the syntax of HML〈ε〉r and extend the definition of ht by setting ht(x) = 0

for any x ∈ Var. To compare the tests of T to fixed point operators of HML〈ε〉r , we

construct unfoldings of formulae, and using the map between formulae of HML〈ε〉r and T

given in Proposition 7.5.8 we then consider these unfoldings as elements of our testing

language. Formally, we have the following definitions.

Definition 7.6.1 For any φ ∈ HML〈ε〉r , let (|rφ|) ∈ T and Tφ ∈ Tω be the tests defined by

induction on the height of φ as follows:

rφ =


⊥ if φ = true

[a.Tφ′ ] if φ = 〈ε〉〈a〉φ′

rφ1 ‖ rφ2 if φ = φ1 ∧ φ2 or φ = 〈ε〉(φ1 ∧ φ2)

and Tφ =


((|⊥|)) if φ = true

((|[a.Tφ′ ]|)) if φ = 〈ε〉〈a〉φ′

Tφ1 ‖Tφ2 if φ = φ1 ∧ φ2

((|rφ1 ‖ rφ2|)) if φ = 〈ε〉(φ1 ∧ φ2).

Definition 7.6.2 For all φ ∈ HML〈ε〉r and x ∈ Var, we define φnx by induction on n ∈ IN

as follows: φ0
x = true and φn+1

x = φ{φnx/x}.

Using the sequence of formulae given in Definition 7.6.2 and the map between formulae

and tests given in Definition 7.6.1, we reach the following sequences of tests 〈rnφx
〉n∈IN,

〈T nφx
〉n∈IN. Considering these unfolding with respect to the map Rlub, we have the

following lemma and proposition. Its importance is that successive unfoldings improve

the probability upper bound obtained with the help of the map Rlub.

Lemma 7.6.3 If φ, θ1, θ2 ∈ HML〈ε〉r and x ∈ Var such that Rlub(S)(rθ1) ≤ Rlub(S)(rθ2)

and Rlub(E)(Tθ1) ≤ Rlub(E)(Tθ2) for all S ∈ Pf r(Act × µ(R)) and E ∈ R, then

Rlub(S)(rφ{θ1/x}) ≤ Rlub(S)(rφ{θ2/x}) and Rlub(E)(Tφ{θ1/x}) ≤ Rlub(E)(Tφ{θ2/x}) for all

S ∈ Pf r(Act × µ(R)) and E ∈ R.

Proof. The proof follows by induction on n ∈ IN, where n is the height of the formula

φ ∈ HML〈ε〉r . ut

Proposition 7.6.4 For all S ∈ Pf r(Act × µ(R)), E ∈ R, φ, θ ∈ HML〈ε〉r and x ∈ Var:

Rlub(S)(rθ{φn+1
x /x}) ≤ Rlub(S)(rθ{φn

x/x}) and Rlub(E)(Tθ{φn+1
x /x}) ≤ Rlub(E)(Tθ{φn

x/x}).

Proof. The proof is by induction on the height of θ, where we suppose the only

variable in θ is x. If θ ∈ HML〈ε〉r and ht(φ) = 0, then by hypothesis we have the

following two cases to consider.
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1. If θ = true, then θ{φnx/x} = true for all n ∈ IN, and hence the lemma holds.

2. If θ ∈ Var, then by the hypothesis θ = x, and in this case we prove the lemma

by induction on n ∈ IN. We only consider the case for S ∈ Pf r(Act × µ(R))

since the case for E ∈ R follows similarly. If n = 0 then since θ = x for any

S ∈ Pf r(Act × µ(R)):

Rlub(S)(rθ{φ1
x/x}) = Rlub(S)(rφ1

x
)

≤ 1 by construction of Rlub

= Rlub(S)(⊥) by definition of Rlub

= Rlub(S)(rtrue) by Definition 7.6.1

= Rlub(S)(rθ{φ0
x/x}) by Definition 7.6.2.

Now suppose the lemma holds for some n ∈ IN, then similarly to the above we

have:

Rlub(S)(rθ{φn+2
x /x}) = Rlub(S)(rφn+2

x
)

= Rlub(S)(rφ{φn+1
x /x}) by Definition 7.6.2

≤ Rlub(S)(rφ{φn
x/x}) by induction and Lemma 7.6.3

= Rlub(S)(rφn+1
x

) by Definition 7.6.2

= Rlub(S)(rθ{φn+1
x /x}) since θ = x.

Then, since these are all the possible cases, the lemma holds for all formulae of height

0.

Now suppose the lemma holds for all formulae of HML〈ε〉r of height less than or equal

to some k ∈ IN. Consider any θ ∈ HML〈ε〉r of height k + 1. Then we have the following

three cases to consider.

1. If θ = 〈ε〉〈a〉θ′ for some a ∈ Act and θ′ ∈ HML〈ε〉r of height k, then by Defini-

tion 7.6.1 for any n ∈ IN:

Tθ{φn
x/x} = ((|rθ{φn

x/x}|)) = ((|[a.Tθ′{φn
x/x}]|)) (7.1)

Therefore, if we consider any S ∈ Pf r(Act × µ(R)) then either (a, π) 6∈ S for all

π ∈ µ(R) and by definition of Rlub for any n ∈ IN:

Rlub(S)([a.Tθ′{φn
x/x}]) = 0,

or (a, π) ∈ S for some π ∈ µ(R), and in this case by definition of Rlub for any

n ∈ IN:

Rlub(S)([a.Tθ′{φn+1
x /x}]) =

∑
F∈R

π(F ) · Rlub(F )(Tθ′{φn+1
x /x})

≤ ∑
F∈R

π(F ) · Rlub(F )(Tθ′{φn
x/x}) by induction

= Rlub(S)([a.Tθ′{φn
x/x}]) by definition of Rlub.
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Putting this together and using (7.1) we have:

Rlub(S)(rθ{φn+1
x /x}) ≤ Rlub(S)(rθ{φn

x/x}) (7.2)

for all S ∈ Pf r(Act × µ(R)). Then for any E ∈ R and n ∈ IN:

Rlub(E)(Tθ{φn+1
x /x}) = Rlub(E)(((|[a.Tθ{φn

x/x}]|))) by (7.1)

= maxE→S Rlub(S)(rθ{φn+1
x /x}) by definition of Rlub

≤ maxE→S Rlub(S)(rθ{φn
x/x}) by (7.2)

= Rlub(E)(Tθ{φn
x/x}) by definition of Rlub.

2. If θ = θ1 ∧ θ2 for some θ1, θ2 ∈ HML〈ε〉r of height less than or equal to k, then for

all n ∈ IN by Definition 7.6.1 we reach:

rθ{φn
x/x} = rθ1{φn

x/x} ‖ rθ2{φn
x/x}. (7.3)

Therefore, for any S ∈ Pf r(Act ×µ(R)) and n ∈ IN, by (7.3) and Lemma 4.5.10:

Rlub(S)(rθ{φn+1
x /x}) = Rlub(S)(rθ1{φn+1

x /x}) · Rlub(S)(rθ2{φn+1
x /x})

≤ Rlub(S)(rθ1{φn
x/x}) · Rlub(S)(rθ2{φn

x/x}) by induction

= Rlub(S)(rθ1{φn
x/x} ‖ rθ2{φn

x/x}) by Lemma 4.5.10

= Rlub(S)(rθ{φn
x/x}) by (7.3).

Furthermore, similarly to the above using Lemma 4.5.11 instead of Lemma 4.5.10,

for any E ∈ R:

Rlub(E)(Tθ{φn+1
x /x}) ≤ Rlub(E)(Tθ{φn

x/x}).

3. If θ = 〈ε〉(θ1∧θ2), then for any S ∈ Pf r(Act×µ(R)) by Definition 7.6.1 similarly

to case 2. we can show that for all n ∈ IN:

Rlub(S)(rθ{φn+1
x /x}) ≤ Rlub(S)(rθ{φn

x/x}).

Then since this was for any S ∈ Pf r(Act × µ(R)) and Tθ{φn+1
x /x} = ((|rθ{φn+1

x /x}|))
by Definition 7.6.1, we have for any E ∈ R:

Rlub(E)(Tθ{φn+1
x /x}) ≤ Rlub(E)(Tθ{φn

x/x})

similarly to the first case.

Since these are all the possible cases the lemma holds by induction on the height of

formulae of HML〈ε〉r . ut
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Corollary 7.6.5 For all φ ∈ HML〈ε〉r , x ∈ Var and E ∈ R, the limit lim
n→∞

Rlub(E)(T nφx
)

exists and is in the interval [0, 1].

Proof. If we consider any φ ∈ HML〈ε〉r , then using Proposition 7.6.4 letting θ = φ, we

have 〈Rlub(E)(T nφx
)〉n∈IN is a decreasing sequence in the interval [0, 1], and hence the

(unique) limit exists and is in the interval [0, 1]. ut

Using Corollary 7.6.5 and Huth and Kwiatkowska’s interpretation of the greatest

fixed point operator, in fact the value of limn→∞ R(E)(T nφx
) corresponds to that of the

greatest fixed point operator, that is, for any φ ∈ HML〈ε〉r and E ∈ R:

[[νx.φ]]E = lim
n→∞

Rlub(E)(T nφx
).

The connection with the greatest, as opposed to the least, fixed point operator arises

from the fact that there is no test representing false in our testing language T, and

hence we must begin all iterations from true (that is, (|⊥|)), and since Rlub(E)(T ) ≤ 1

for all E ∈ R and T ∈ Tω, any monotone sequence we construct will either be constant

at 1 or decreasing. Hence, the limit corresponds with the greatest fixed point. To give

an example of the values of [[νx.φ]]E consider the recursive probabilistic processes given

in Figure 7.1 below.
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Figure 7.1: Examples of recursive probabilistic processes.

Then, by simple calculations we have:

[[νx.〈ε〉〈a〉x]]Ẽ = [[νx.[ε]〈a〉x]]Ẽ = 1 and

[[νx.〈ε〉〈b〉x]]F̃ = [[νx.[ε]〈b〉x]]F̃ = lim
n→∞

δn =

 1 if δ = 1

0 otherwise.

Unlike the above, the values of the greatest fixed point operator with respect to the

formulae of HML〈ε〉r and HML[ε]
r may differ in the case of processes with non-deterministic

behaviour. Suppose that G̃ is the process that makes an internal choice between
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behaving as Ẽ and F̃ in Figure 7.1. If a 6= b, then we have:

[[νx.〈ε〉〈a〉x]]G̃ = 1, [[νx.〈ε〉〈b〉x]]G̃ =

 1 if δ = 1

0 otherwise.

and [[νx.[ε]〈a〉x]]G̃ = [[νx.[ε]〈b〉x]]G̃ = 0.

On the other hand, if a = b then:

[[νx.〈ε〉〈a〉x]]G̃ = 1 and [[νx.[ε]〈a〉x]]G̃ =

 1 if δ = 1

0 otherwise.

Comparing this with the classical interpretation of νx.〈a〉x, which means there exists

an infinite path of a actions, intuitively the pair of values[
[[νx.[ε]〈a〉]]G̃, [[νx.〈ε〉〈a〉]]G̃

]
corresponds to the interval containing the probability that G̃ will perform an infinite

path of a actions.

We conclude this chapter by noting a result of some interest: if we restrict ourselves

to any deterministic probabilistic transition system (Rd,Act ,→), then adding nega-

tion to the logic HMLd to form HML¬d does not influence the equivalence induced from

the logic, in the sense that the obtained equivalence will still correspond to our equiv-

alence d∼ over deterministic probabilistic transition systems, and also over any purely

probabilistic transition system. The proof of this follows by Proposition 7.3.2 and

replacing Proposition 7.3.3 by the following proposition, which is proved by induction

on the height of formulae of HML¬d .

Proposition 7.6.6 If φ ∈ HML¬d then there exists T ⊆ Td
ω and ∆φ : T → {−1,+1}

such that:

either [[φ]]E =
∑
T∈T

∆φ(T ) · D(E)(T ) for all E ∈ Rd

or [[φ]]E = 1− ∑
T∈T

∆φ(T ) · D(E)(T ) for all E ∈ Rd.



Chapter 8

Conclusions

In this thesis we first presented an equivalence for reactive probabilistic processes

based on testing which aims only to distinguish processes with observably different

behaviour. This equivalence does not distinguish between when probabilistic choices

occur, which as discussed in Section 2.4 we feel is unimportant as neither processes nor

the environment can influence the choice made. On the other hand, our equivalence

does capture the difference in the behaviour of processes with respect to other forms of

choice, that is external and internal choices, which we feel is important since these can

be influenced by both processes and the environment. To some users, the time at which

internal choices are made is unimportant since the environment has no control over

which alternative is chosen. Our equivalence is intended to be the “finest” equivalence

which can realistically be based on the observable behaviour of processes, that is,

one based only on the outcome of single runs of processes potentially under different

conditions (for example, changes in the environment or different internal choices made)

but by varying the test language we can also derive other equivalences. For example,

by weakening our testing language we can construct an equivalence which will abstract

away from the time at which internal choices are made (in fact, we have already given a

definition of the functions that will induce such an equivalence, namely Dglb and Dlub as

given in Section 4.5). Furthermore, by placing suitable restrictions on the construction

of composite tests, that is, those of the form (t, . . . , t) in our testing language, we will

derive both a “trace” equivalence (by removing all occurrences of the construct) and

a “failure/ready” equivalence (by only allowing this construct at the final step).

Next we constructed a process calculus for reactive probabilistic processes for which

we have shown that our equivalence is a congruence. Returning to the discussion above,

if we consider the weaker equivalences induced from the mappings Dglb and Dlub (the

trace and failure/ready equivalences) then we can show them to be congruences for

182
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our process calculus.

As discussed in Section 2.4, we are unable to add certain syntactic operators with-

out losing the congruence property of our equivalence (for example, asynchronous

parallel), assuming our equivalence is based only on differences in “observable be-

haviour”. However, as mentioned in Section 5.7, we have proposed a solution to this

by considering a process calculus with a separate probabilistic choice operator.

Following this, we have presented a denotational model for our process calculus

based on de Bakker and Zucker’s construction for classical process calculi, which we

have shown is fully abstract with respect to our operational model. The denotational

semantics we have constructed is “smooth” as opposed to the “discrete” model con-

structed by Baier and Kwiatkowska [BK97]. To elaborate on this, consider the space

of probability distributions over a two point set. With the metric presented here it is

isomorphic to the Euclidean metric over [0,1], whereas the ultra-metric of [BK97] gives

rise to the discrete topology on [0,1]. This, however, comes at a cost: we have con-

structed a pseudo-metric, whereas the metric constructed in [BK97] is an ultra-metric.

Also, our metric is not inductive, and as a result we cannot use America and Rutten’s

general framework for metric semantics [AR89], whereas the metric constructed in

[BK97] is inductive and therefore the framework of [AR89] can be used.

We have also considered a logical characterisation of our process equivalence by

means of a quantitative interpretation of the logic HML, and since we have only con-

sidered a positive sub-logic the connection still holds when we add the greatest fixed

point operator to our logic.

8.1 Future Work

As already discussed, a possible future continuation of this work would be to give

semantics to a process calculus containing a separate probabilistic choice operator,

which may allow the addition of syntactic operators such as asynchronous parallel and

hiding without losing the congruence property of an equivalence based only on the

observable behaviour of processes. Other possible future topics include:

• A sound and complete axiomatisation of RP.

• Formulating a domain-theoretic denotational semantics for RP, since domain-

theoretic models have been constructed for CSP based on both failure and ready

sets, and our equivalence can intuitively be thought of as an “extension” of failure

and ready sets to include more of the branching information of processes.
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• Developing a (metric) denotational model for the generative and stratified models

of van Glabbeek et al. [GSST90].

• Constructing a denotational model for stochastic process calculi; we have already

derived a metric model for a subset of the stochastic process calculus called

Performance Evaluation Process Algebra (PEPA) [Hil96] in [KN96a] (joint with

M.Kwiatkowska), and to give a complete metric model for the full calculus we

will need to add probabilistic behaviour, which may involve combining the work

of this thesis and that of [KN96a].

• Generalising the logical framework by removing the rather strong syntactic con-

ditions on the logics considered. This may have to involve a more complicated

interpretation since, by removing the conditions we impose on constructs of the

form φ ∧ ψ, the values of [[φ]]E and [[ψ]]E, for certain probabilistic processes E,

will no longer be independent and we will therefore be unable to use multiplica-

tion in the definition of [[φ ∧ ψ]]. To formulate a probabilistically sound definition

we will have to consider conditional probabilities, since for dependent events the

probability of both events occurring is given in terms of the conditional probabil-

ities of each event occurring given the other has occurred. This research would

also consider adding negation, which as already mentioned earlier, has no effect

on the equivalence induced from the interpretaion of the logics in the cases when

processes do not exhibit any non-deterministic behaviour. One of the main re-

sults of this, in the case when process can make internal choices, would be the

introduction of formulae containing both the operators 〈ε〉 and [ε] which by the

syntactic restrictions imposed have so far been excluded.
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