
Formal Analysis and Validation of Continuous-Time Markov Chain based
System Level Power Management Strategies

Gethin Norman * David Parker* Marta Kwiatkowska* Sandeep K. Shukla **

Rajesh K. Gupta †

* School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK

**Bradley School of Electrical and Computer Engineering,Virginia Tech
Blacksburg, VA 24060, USA

† Department of Computer Science and Engineering, University of California at San Diego
La Jolla, CA, USA

Abstract

We have shown in the past that competitive analysis based power
management strategies can be automatically analyzed for proving
competitive bounds and for validating power management strate-
gies using the SMV model checker. In this paper, we show that
stochastic modelling based strategies for power management can
similarly be automated for computing optimal strategies. Further,
these can be analyzed for finding system parameters for satisfying
probabilistic constraints. Effects of any changes in probabilistic
assumptions can be easily analyzed without expensive and time
consuming simulations. We demonstrate our methodology using
the probabilistic model checker PRISM. We model the system using
a continuous-time Markov chain, and compute strategies under
varying requirements for performance. We also prove probabilis-
tic properties of strategies using PRISM, which gives insight into
individual strategies and pragmatics of their implementations. We
also show the effects of changing probabilistic assumptions com-
puted by our method and compare the results with other stochastic
analysis based methods, and show that we obtain similar results
in a uniform framework of probabilistic model checking.

1 Introduction

Power Management is an important area of research [1, 3, 4, 16,
19, 21] because of an increasing trend in the usage of portable,
mobile, and hand-held electronic devices. These devices usually
run on batteries and any savings in power usage translate to ex-
tended battery life. Various approaches to low power design have
been explored, at device, circuit and micro-architecture level. Sys-
tem level power management exploits application characteristics

and manages various system devices for power optimization. Sys-
tem components such as network interface cards, disk drives and
DRAM, are manufactured with a number of power modes which
can be changed by an operating system through standard APIs
such as ACPI [9] and power-aware API [14]. However, in order to
take advantage of these power modes and APIs, the power man-
agement strategies need to be implemented at the O/S level. In
this context, Dynamic Power Management (DPM) strategies re-
fer to strategies that attempt to make power mode changing deci-
sions based on the information about their usage pattern available
at runtime. The objective of such strategies is to minimize power
consumption, while minimizing the effect on performance.

In recent years, several stochastic modelling based approaches
for designing DPM strategies have been proposed [2, 1, 6, 16, 17].
Irrespective of whether these models are based on stationary
discrete-time Markov chains [13], continuous-time Markov chains
[16] or their variants [23], the methodologies depend on modelling
the input arrival process and the behaviour of the power managed
components. This is done by manually creating the stochastic
matrices or generator matrices for these processes, and then for-
mulating optimization problems whose solution is the required
strategy. In [18], the power manager and managed components
are modelled using stochastic Petri nets. This allows automatic
generation of the stochastic matrices and formulation of the opti-
mization problems. These exact optimization problems are meant
to optimize the average energy usage while minimizing the av-
erage number of requests waiting to be served. They are usu-
ally validated by simulation to check the soundness of the mod-
elling assumptions and the effectiveness of the strategies in prac-
tice [16, 13].

In this paper we present an innovative approach that exploits
probabilistic model checking to formally validate the effective-
ness of a stochastic DPM strategy that obviates the need for exten-



sive simulations. We demonstrate the utility of our approach us-
ing one example system taken from [17] based on continuous-time
Markov chains. Probabilistic model checking is a relatively new
technology [7, 5] which can formally validate various probabilistic
properties of stochastic models. In the power management con-
text, the request arrival process, uncertainties in service times, and
uncertainties in time taken between issuing a power management
command and its effect can be modelled very naturally. Proba-
bilistic model checking allows formal exhaustive analysis of the
design space for the strategies and proves probabilistic guarantees
on the behaviour of the stochastic management strategies.

There are several advantages of this approach. It helps in de-
signing strategies in the model checker framework, thereby em-
ploying an existing technology to the development and analy-
sis of stochastic power management strategies. Moreover, since
probabilistic model checking is inherently exhaustive in its search
among all possible scenarios, more useful information can be ob-
tained about the design space than using simulation. For exam-
ple, optimal buffer sizes, average delays, probabilities of various
corner case scenarios etc, and probability based comparisons be-
tween various delay-cost possibilities (obtainable by competing
DPM strategies) can easily be predicted. In contrast, existing ap-
proaches cannot provide such information in any direct way be-
cause they only optimize the average case.

In particular, in this paper, we show how to obtain the opti-
mal DPM policy under different performance constraints and then
compute both the average power consumption, and the average
number of requests awaiting service, when probabilistic assump-
tions are varied and the stochastic policy derived under ideal as-
sumptions are held fixed. This allows us to avoid extensive simu-
lation as done in [17], and also allows us to derive other figures of
merit and extremities.

Due to lack of space, this extended abstract briefly illustrates
our modelling methodology and our approach to derivation and
validation of the derived strategies.

2 System Level Power Management

Power management in embedded computing systems is achieved
by actively changing the power consumption profile of the system
by putting its components into power/energy states which are suf-
ficient to meet functionality requirements. For example, an idling
component (such as a disk drive) can be put into a slow-down or
shutdown state. Of course, bringing such a component into an
active state may then require additional energy and/or latency to
service tasks. The problem we consider here is as follows: given
a power managed component, such as a disk drive or a network
interface card, derive a randomized power management strategy
which minimizes average power dissipation, under the constraint
that the average number of requests awaiting service is bounded
by an a priori constant. We also seek to develop probabilistic
guarantees on the worst case and best case scenarios, enabling us
to quantify the effectiveness of the DPM strategy. These measures
include the worst case delay and worst and best power consump-
tion. We also want to obtain information on buffer sizes and other
design space parameters (in a probabilistic sense). In other words,
we want to know the values of these parameters as a function of

probabilities of certain delays or power consumption in the system.

2.1 Related Work on Dynamic Power Manage-
ment (DPM)

Dynamic Power Management (DPM) attempts to make optimal
decisions (usually under the control of the operating system) at
runtime based on dynamically changing system state, functional-
ity and delay requirements [8, 24, 4, 3, 22, 20, 6, 21]. A sur-
vey of DPM techniques can be found in [1] which classifies DPM
strategies into two main groups: (a) predictive schemes, and (b)
stochastic optimum control schemes. Predictive schemes attempt
to predict the timing of future input to the system and based on
such predictions, schedule shutdown (usually to a single lower
power state) of the system. Stochastic optimum control is a well-
researched area [1, 23, 2, 6, 16, 17]. The chief characteristic of
these approaches is the construction (and validation) of a mathe-
matical model of the system that lends itself to a formulation of
a stochastic optimization problem, and then creation of strategies
to guide the system power profile that achieves the highest power
savings in the presence of the uncertainty related to system inputs.

While several useful and practical techniques have been devel-
oped using predictive and stochastic optimum control schemes, as
of now it is difficult to develop bounds on the quality of these re-
sults without extensive simulations and/or model justification.

2.1.1 Stochastic Control and DPM

Stochastic control oriented dynamic power management work
[2, 16] has relied on modelling inter-arrival times using an expo-
nential distribution. In practice, such stochastic modelling seems
to work well for specific kinds of applications. However, the ap-
proaches varied in the modelling of time. For example, in [2] the
arrival process and service process are all modelled as discrete
time Markov chains, whereas in [16], they are modelled with con-
tinuous time Markov chains. In more recent work, such as in [23],
extended models which incorporate more general stochastic pro-
cesses for modelling event arrivals have been considered. In this
paper, we focus on continuous-time Markov chains following [17].

2.2 Power States of Components

Due to the importance of the minimization of power consumption
in today’s embedded systems, a lot of work has been initiated in
both component manufacturing industry, and the systems design
industry. Notably, Intel, Toshiba, and Microsoft’s ACPI [9] stan-
dardizes APIs to access and control devices’ power states. A simi-
lar industrial effort is seen in OnNow [12]. Device and component
manufacturers also provide multiple power saving states which can
be controlled under the operating system through these standard-
ized APIs. Table 1-3 shows the data from [17] for a 3-state (busy,
idle and sleep) device. It illustrates the power states of a portable
hard disk drive and service time and power dissipation averages,
which are used in our experiments.



state “sleep” “idle” “busy”

Avg. Power(Watt) 0.13 0.95 2.15
Avg. Service Time(sec) 0 0 0.008

Table 1. Average Power Consumption Values and Service
Times for the managed device [17].

Avg. Energy(Joules) “sleep” “idle” “busy”

“sleep” 0 7.0 –
“idle” 0.067 0 0
“busy” – 0 0

Table 2. Average Energy Consumption Values for state tran-
sition of the device [17].

3 Probabilistic Model Checking

At a high level of abstraction, a model can often be simplified for
instance by replacing determinism by nondeterminism. However,
complete nondeterminism often leads to an inability to prove any
useful property of such systems. As a result, probabilities are of-
ten used to abstract some of the low level disregarded information,
and a quantified nondeterminism can be represented in a proba-
bilistic model. For example, consider the service time by a disk-
drive per request; if one models the functionality of the disk-drive,
the queues, the environment, the device drivers and the operating
system and the architecture, one may be able to predict exactly for
each request how much service time is required. However, mod-
elling disk-drive behaviour in detail is difficult and not amenable
to formal analysis. However, by observing its behaviour for a suf-
ficiently long time, one can infer that the disk-drive exhibits prob-
abilistic behaviour with certain parameters. As an example, the
service time per request is often modelled as an exponential distri-
bution with a mean determined by sampling. Such information is
often useful in modelling and analysing this behaviour and also in
devising probabilistic algorithms for managing such devices.

3.1 Probabilistic Model Checking and PRISM

Probabilistic model checking refers to a state space analysis tech-
nique for probabilistic finite state systems. The system is usually
specified as state transition system, with probability measures on
the rate of transitions, and a probabilistic model checker applies
algorithmic techniques to analyse the state space and calculate the

Avg. Transition Time(sec) “sleep” “idle” “busy”

“sleep” 0 1.6 –
“idle” 0.67 0 0
“busy” – 0 0

Table 3. Average Transition Times for state transition of the
managed device [17].

probabilities of reaching different states etc. Given probabilistic
assertions about the system, such model checkers can prove or dis-
prove such assertions by means of algorithmic techniques [7, 5].

We use PRISM [11, 15], a probabilistic model checker de-
veloped at the University of Birmingham. It supports analy-
sis of three types of probabilistic models: discrete-time Markov
chains, continuous-time Markov chains and Markov decision pro-
cesses. These models are described in a high-level language based
on guarded commands with probabilistic information attached to
them. Properties of the models to be analysed are specified in the
probabilistic temporal logics PCTL and CSL. This allows us to
express various probabilistic properties such as “some event hap-
pens with probability 1”, and “the probability of cost exceeding C
is 95%”. The model checker then analyses the model and checks
if the property holds in each state.

We model the managed component’s servicing behaviour, the
request arrival process, the buffers where requests are queued, and
the strategies that make the servicing component move between
power states. Then, through analysis, obtain quantified informa-
tion regarding the effectiveness of alternative strategies, and other
useful information as will be seen in the rest of the paper. Note that
in this approach we do not rely on the simulation results to find the
effectiveness of various approaches. Irrespective of whether they
are based on stationary discrete-time Markov chains, continuous-
time Markov chains or their variants, existing methodologies de-
pend on modelling the input arrival process and the behaviour of
power managed components by creating the stochastic matrices
or generator matrices for these processes by hand, and then creat-
ing and solving optimization problems from those to optimize the
average case. One novelty of this work is that we express the be-
haviour of the input generator and power managed component, as
well as the power manager, in a high level probabilistic language
for expressing stochastic state machines. This allows generation
of the matrices, and carry out the rest of the required computation
for designing strategies in a model checker framework.

4 Implementation and Results

4.1 The System Model

State Observations

Service Provider 
(SP)

Commands

Request 

Generator 
(SR)

Service Queue
(SRQ)

Power Manager (PM)

Figure 1. The System Model.

We consider the system model as illustrated in Figure 1. The
model consists of a Service Requester (SR), a Service Provider



(SP), Service Request Queue (SRQ), and the power manager
(PM). In both discrete-time as well as continuous-time models,
this level of description is the same. However, they differ in how
time is represented. In [17], time is considered to be continuous
and mode switching commands can be issued at any time, and
events can happen at any time.

4.2 Model Construction

We have designed generic models of the the Power Management
system in PRISM’s input description language, for the continuous
time model of [17]. Then, using PRISM, we are able to construct
the full generator matrix of the system, and hence construct the
optimization problem whose solution is the optimal policy. More-
over, once the optimal policy is found, by using the generic de-
scription we can construct a model of the system corresponding
to this policy and investigate its performance. Table 4 shows our
derived optimal policies for the 3 state device from [17]. Vary-
ing the average number of requests awaiting service (queue size)
constraints, we obtain different stochastic policies. The left-most
column lists the average queue size constraints allowed, and right
column summarizes the power manager’s policy. This calcula-
tion is done by generating the matrices in PRISM and formulating
and solving the linear optimization problem in MAPLE symbolic
solver.

Figure 2, 3 and 4 show the PRISM representation of a 3 state
continuous-time Markov chain model, after deriving a policy un-
der the performance constraint of 1 (average number of requests
awaiting service). This model shows a power manager with prob-
abilities taken from the fourth row of Table 4. This model can
be modified by just modifying the PM module, using a different
row from Table 4. This way we analyse performance under varied
constraints.

// POWER MANAGER performance constraint: average size of queue ≤1
// if the queue is full and SP is off then go to idle
// if the queue is empty and the SP is on then
// go to sleep with probability 0.008963 and stay in idle with probability 0.991037

module PM
pm : [0..1];
// 0 – loop or go from sleep to idle
// 1 – try and go from idle to sleep (only do this if queue is empty)

// when queue is full go from sleep to idle
[sleep2idle] q = QMAX → pm′ = pm;
// probabilistic choice when queue becomes empty
[serve] q = 1 → 0.008963 : pm′ = 1; // go to sleep
[serve] q = 1 → 0.991037 : pm′ = 0; // stay in idle
[serve] !q = 1 → pm′ = pm; // loops for the remaining cases
[idle2sleep] pm = 1 → pm′ = 0; // idle to sleep
[request] true → pm′ = 0; // reset p when queue no longer empty

endmodule

Figure 2. Encoding of the Power Manager in PRISM for the
derived Policy under the performance constraint = 1.

// SERVICE PROVIDER simple model with 3 states (sleep, idle and busy)
// ASSUMPTIONS
// (i) SP automatically moves from idle to busy when ever a request arrives
// (ii) moves from busy to idle when ever a request is served
// (iii) transitions between the sleep and idle states are controlled by the PM

// rates of local state changes
rate idle = 10/16; // sleep to idle
rate sleep = 100/67; // idle to sleep
rate service = 1000/8; // rate of service

module SP
sp : [0..2]
// 0 – sleep, 1 – idle and 2 – busy

// SLEEP TO IDLE TRANSITIONS
// something in the queue so start serving immediately
[sleep2idle] sp = 0 ∧ q > 0 → idle : sp′ = 2;
// nothing in the queue so start go to idle
[sleep2idle] sp = 0 ∧ q = 0 → idle : sp′ = 1;
// IDLE TO SLEEP
[idle2sleep] sp = 1 → sleep : sp′ = 0;
// IDLE TO BUSY (when a request arrives)
[request] sp = 1 → sp′ = 2;
[request] !sp = 1 → sp′ = sp; // loop for other states
// SERVE REQUESTS
[serve] sp = 2 ∧ q > 1 → service : sp′ = 2; // queue not empty: stay in busy
[serve] sp = 2 ∧ q = 1 → service : sp′ = 1; // queue empty: go to idle

endmodule

Figure 3. Service Provider Module representation in PRISM.

// SERVICE REQUESTER AND QUEUE (single priority queue)
const QMAX = 20; // maximum size of queue
rate arrive = 100/72; // arrival rate (mean value = 0.72)

module SQ
q : [0..QMAX]; // number of requests awaiting service

// request arrives
[request] true → arrive : q′ = min(q+1,QMAX);
// request is served
[serve] q > 0 → q′ = q−1; //

endmodule

Figure 4. Service Queue Module representation in PRISM.

4.3 Model Anaylsis

PRISM allows us to compute performance measures for both the
CTMC and DTMC models, including: the long run average cost;
the long run average number of requests awaiting service; and the
probability that the queue does not exceed a certain size within a
given time bound.

We are currently developing a prototype tool extending the
modelling capabilities of PRISM to include expected time and ex-
pected cost. This will allow us, for example, to calculate the ex-
pected cost/queue size within a given time bound. Furthermore,
we are also considering the use of more general distributions, such
as Pareto or uniform, which can be used to give a more realistic
model of the inter-arrival time of service requests.

Table 5 illustrates the performance of this power manager un-
der varying performance constraints, when the arrival process also



constraint policy

average queue size ≤ 20 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then go to sleep

average queue size ≤ 10 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then
go to sleep with probability 0.869135 and stay in idle with probability 0.130865

average queue size ≤ 5 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then
go to sleep with probability 0.075140 and stay in idle with probability 0.924860

average queue size ≤ 1 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then
go to sleep with probability 0.008963 and stay in idle with probability 0.991037

average queue size ≤ 0.25 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then
go to sleep with probability 0.002014 and stay in idle with probability 0.997986

average queue size ≤ 0.1 if queue is full and SP is off, then go to idle
if queue is empty and the SP is in idle, then
go to sleep with probability 7.39e-04 and stay in idle with probability 0.999261

Table 4. Policies under varying constraints on the average queue size derived using PRISM.

varies from the ideal exponential ones. These numbers are com-
puted using steady state probabilities and, in the non-exponential
cases, the techniques presented in [10].

As can be seen in Table 5 the average queue size when requests
arrive with a Pareto distribution are in general much smaller than
when requests arrive with the other distributions considered. This
is due to the Pareto distribution’s heavy tail, which means that, in
the long run, many requests will not arrive for a very long time, and
hence in these cases the service provider (SP) will serve all pend-
ing requests, and then the system will spend a long time with the
queue empty. While for the remaining distributions, Table 5 shows
that the long-run performance and costs are reasonably close to
that of an exponential arrival process.

5 Conclusion and Future Work

We show that probabilistic model checking can be effectively used
to obtain stochastic power management policies, by taking an ex-
ample of a 3-state managed device and modelling the arrival pro-
cess and service distribution as exponential with parameter taken
from known experiments [18]. We also obtain the power manage-
ment policies under varied performance constraints (rather than
only the one that minimizes average number of requests awaiting
service). We also evaluate performance of policies in terms of av-
erage queue size and energy expenditure, if the arrival processes
are not ideal (exponential) but uniform, Pareto, Erlang, and de-
terministic. This is useful in the design and effective analysis of
system level DPM strategies without having to do exhaustive sim-
ulation. Simulation is not only time consuming, but also does not
guarantee the quality of results quantitatively. Ongoing work fo-
cuses on building an analytical framework that includes both con-
tinuous time and discrete time Markov chain analysis, as well as
more generic process characteristics.
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