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Abstract

Several approaches exist to model the evolution of
dynamical systems with large populations. These
approaches can be roughly divided into microscopic
ones, which are usually stochastic and discrete, and
macroscopic ones, which are obtained as the limit
behaviour when the populations tend to infinity and
are usually deterministic and continuous. We study
the dynamics obtained by both approaches in systems
with one deterministic equilibrium. We show that
such dynamics can exhibit rather different behaviour
around the deterministic equilibrium, in particular,
the limit behaviour can tend to an equilibrium while
the stochastic discrete dynamics oscillates indefinitely.
To evaluate such stochastic oscillations quantitatively,
we propose a system of differential equations on polar
coordinates. The solution of this system provides
several measures of interest related to the stochastic
oscillations, such as average amplitude and frequency.

Keywords: Population dynamics, Stochastic oscilla-
tions, Limiting behaviour, Steady state, Polar coordi-
nates

1 Introduction

The population dynamics of many biochemical sys-
tems can be naturally modelled by continuous-time
Markov chains (CTMCs). In these processes, the pop-
ulation of each species is given by an integer number
and the occurrence of a reaction is represented by an
event (or jump). The time to the next event follows
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an exponential distribution whose mean depends on
the rate associated to the reaction and the population
of each species that takes part in the reaction. The
resulting dynamics are therefore stochastic.

Alternatively, the dynamics of such systems can
be described by considering population densities in-
stead of absolute populations. When the size (or vol-
ume) of the system is significantly large, limit theo-
rems [15, 9, 12] offer an appealing mathematical tool
to compute the average behaviour of the system den-
sities. In particular, limit theorems provide a system
of ordinary differential equations (ODEs) whose solu-
tion is the limiting behavior of the densities when the
system size tends to infinity. In contrast to the CTMC
dynamics, the trajectory described by an ODE is con-
tinuous and deterministic.

Although the use of ODEs is straightforward and
they represent a mathematically proven average be-
haviour (continuous and deterministic), they might
also provide a somewhat myopic view of the original
discrete and stochastic system since only the average
behaviour is being considered. This can lead to con-
clusions about the dynamics in which important prop-
erties such as oscillations, commutations, stochastic
resonance, etc. are passed over [10, 2, 7, 1, 5].

This paper is an extension of previous work [13]
and focuses on evaluating stochastic oscillations that
are frequently seen as equilibrium points in the lim-
iting ODE. Identifying oscillatory behaviour and esti-
mating quantitative properties like amplitude and fre-
quency is crucial to correctly analyse real biological
systems where such behaviour is essential [8, 11], e.g.,
reactions associated to circadian rhythm.

The method proposed here to evaluate stochas-
tic oscillations is based on the design of an ODE that
expresses the system behaviour in polar coordinates.
The method is also applicable to other application do-
mains in which similar stochastic models are consid-



ered, e.g., population dynamics, chemical reactions,
ecological models, etc.

The main feature of the proposed ODE is its
ability to correctly average quantitative values of
the stochastic oscillations such as amplitude and fre-
quency. In contrast to approaches that make use of
probabilistic model checking [4, 3] that can suffer from
the state explosion problem and has had limited suc-
cess in both analysing and identifying oscillating be-
haviour, and approaches that require ad hoc Lyapunov
functions to check stability [2], the approach proposed
here does not suffer from the state explosion problem
and can be systematically applied to processes mod-
elled as continuous-time Markov chains.

The overall approach to design the mentioned
ODE on polar coordinates can be summarized in three
steps:

1. Definition of the ODE for the limiting behaviour :
The ODE for the limiting behaviour, as the size
of the system tends to infinity, can be straight-
forwardly obtained from the definition of the
considered continuous-time Markov chain by ap-
plying well known results related to limit theo-
rems [15, 12].

2. Computation of the deterministic equilibrium
point : A state is said to be a deterministic equi-
librium point if at that state all populations re-
main constant indefinitely. More formally, the
derivatives of the ODE representing the limiting
behaviour of the system are null at deterministic
equilibrium points. Thus, equilibrium points can
be obtained by computing the points that make
the derivatives equal to zero. In the remainder
of the paper we will assume that the system un-
der study has a unique deterministic equilibrium
point.

3. Definition of the ODE on polar coordinates and
evaluation of oscillations: In order to describe
the average behaviour of a system around a given
point we will use polar coordinates instead of
cartesian ones. More precisely, the (unique) de-
terministic equilibrium point will be taken as the
origin for the polar coordinates. For each event of
the system, the increments produced by the oc-
currence of such an event on each polar coordinate
will be computed. This allows us to compute the
expected increment of each variable and in turn
to define the average dynamic behaviour of those
variables over time. This results in an ODE for
the polar coordinates. Such an ODE can be used
to compute the amplitude and frequency of the
system around the considered equilibrium point
in the steady state.

Running example. As a running example a sim-
ple population dynamics system described in [2, 17]
is considered. The system is similar to those aris-
ing when modelling biochemical reactions [16] and
predator-prey systems [19]. The state of the system
is given by two populations (integer variables) S and
I representing the number of susceptible and infected
individuals. There are three events, Birth, Contagion,
Death, that modify the state of the system. Table 1
shows the effect and rates of each event, e.g., event
Contagion decreases the number of susceptible indi-
viduals by one, increases the number of infected indi-
viduals by one and has rate wc = (β·S·I)/V . Parame-
ters a, b and β are related to the rates of Birth, Death
and Contagion respectively, and V represents the size
(or volume) of the system.

Event Effect Transition rate

Birth {S, I} → {S+1, I} wb = a·V
Contagion {S, I} → {S−1, I+1} wc = (β·S·I)/V
Death {S, I} → {S, I−1} wd = b·I

Table 1: Events and rates of the running example.

The described system dynamics can be expressed
by means of the following chemical reactions:

∅ wb−−→ S S + I
wc−−→ 2I I

wd−−→ ∅

Let us focus on the concentrations x1= S
V and x2= I

V of
the populations of susceptible and infected individuals.
When the parameters of the CTMC satisfy some con-
vergence conditions, its limiting behaviour as V tends
to infinity can be expressed as an ODE [15, 6]. In the
Appendix it is shown that these conditions are satis-
fied by the CTMC under consideration. The limiting
behaviour of the CTMC can be expressed by the fol-
lowing ODE:

dx1
dt

= − β·x1·x2
dx2
dt

= β·x1·x2 − b·x2
(1)

Figure 1 shows the time evolution of S = V ·x1 given by
both the solution of ODE (1) and just one stochastic
simulation run of the CTMC. The parameters used in
Figure 1 are a=1, b=10, β=10 and V=104. For these
parameters the ODE dynamics has a unique equilib-
rium point (xeq1 , x

eq
2 )=(1, 0.1), thus in terms of popu-

lations the equilibrium point is (Seq , Ieq)=(104, 103).
Notice that, whereas the ODE shows damped

oscillations tending toward its equilibrium point
(Seq=104, Ieq=103), the CTMC dynamics exhibits
sustained oscillations [2, 18]. Thus, for this example,
the ODE representing the limiting behaviour does not
capture the sustained oscillations of the CTMC.
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Figure 1: Time evolution of variable S according to
the ODE (1) and the CTMC.
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Figure 2: Frequency spectrum of the stochastic trajec-
tory of variable S.

Figure 2 shows the frequency spectrum of the
stochastic trajectory of Figure 1, i.e., it represents the
signal in the frequency domain. A clear peak appears
around the frequency 0.5. This phenomenon cannot
be observed if the results of several runs of the CTMC
are then averaged. In other words, the averaged pop-
ulations converge to the solution of the ODE, but the
ODE does not imitate the oscillations present in the
CTMC dynamics around the equilibrium. Further ex-
planations on this phenomenon are provided in the
next section.

The goal of the paper is to develop an ODE that
provides a complementary view of the dynamics of the
CTMC that correctly averages sustained oscillations.
The paper is organised as follows: Section 2.1 de-
scribes the stochastic and deterministic models for the
systems under consideration. The behaviour of both
models around the deterministic equilibrium point is
analysed in Section 3. Section 4 proposes an ODE
based on polar coordinates to average stochastic oscil-

lations. An epidemic system is described and analysed
in Section 5. Section 6 concludes the paper.

2 Stochastic and deterministic
models

2.1 Stochastic models

The dynamics of many biological systems with dis-
crete populations can be naturally expressed in terms
of CTMCs. The following parameters allow us to de-
scribe the dynamics of the concentrations of the pop-
ulations over time. In the following, N denotes the set
of natural numbers, R the set of real numbers and Z
the set of integers.

Definition 1 (System parameters)

• V ∈ R>0 is the size (or volume);

• q ∈ N is the number of species;

• n0 ∈ Zq≥0 is the initial population of the q species;

• α = {α1, . . . , αE} is a set of E ∈ N events;

• δ = {δ1, . . . , δE} defines the system change after
the occurrence of events, i.e., δj ∈ Rq determines
the population density change produced by αj;

• w = {w1, . . . , wE} is a set of functions such that
wj : Rq≥0 → R≥0 defines the transition rate of
event αj, i.e., wj(x) is the transition rate of αj
when the population density is x.

For a population n ∈ Zq≥0, its density (or concentra-
tion) is x=n/V . The exact meaning of V can depend
on the application domain: in physics and chemistry
it usually represents volume; in epidemiological mod-
els it often means the overall population or the size
of the environment being considered. Although some
variables, such as x, depend on time, for readability
we will use x rather than x(t).

For the running example, the system parameters,
where numerical subindices are substituted by letters
for clarity, are:

• V=104 and q=2;

• n0=(S0, I0), where S0=14000 and I0=500 are the
initial numbers of susceptible and infected indi-
viduals respectively,;

• α = {αb, αc, αd} = {Birth,Contagion,Death};

• δ = {δb, δc, δd} =
{(

1
V , 0

)
,
(
− 1
V ,

1
V

)
,
(
0,− 1

V

)}
;

• w = {wb, wc, wd} = {a·V, β·x1·x2·V, b·x2} where
a=1, b=10 and β=10.
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The system evolution follows the usual dynamics of
a CTMC: when an event αj takes place, the popu-
lation density is updated from x to x+δj . The time
to the next event is exponentially distributed. For a
given density x, the mean of the exponential distribu-
tion associated to event αj is 1/wj(x). We will restrict
our attention to CTMCs that satisfy the mass-action
law, i.e., those processes whose reaction rates are pro-
portional to the product of the concentrations of the
participating species.

2.2 Deterministic models

The vector field for species i∈{1, . . . , q} is given by [18]:

Fi(x
c) =

E∑
j=1

δj ·wj(xc) (2)

where xc ∈ Rq≥0 denotes the state of the process. In the
deterministic model the state xc represents the average
behaviour of the stochastic model, that is the reason
why the different notations x and xc are used for the
Markovian and the deterministic models respectively.

When the parameters of the CTMC satisfy cer-
tain conditions [15, 6], its limiting behaviour is given
by the following set of differential equations:

dxc

dt
=

E∑
j=1

δj ·wj(xc) (3)

A state xeq is said to be a deterministic equilibrium
point if it holds that

∑E
j=1 δj ·wj(xeq) = 0. As al-

ready mentioned, this paper focuses on systems having
a unique deterministic equilibrium. The ODE given
in (3) is a deterministic approximation for the densi-
ties of the species in the system. For the particular
system parameters of the running example ODE (3)
corresponds to ODE (1).

Figure 3 shows the evolution of the ODE (1) in
the phase space over 20 time units. Each dot in the
figure corresponds to the state of a simulation run of
the CTMC after 20 time units. Conversely, as Figure 1
demonstrates, at time 20 the deterministic trajectory
has already reached its equilibrium point. It can be
observed that the center of mass of the black dots
lies on the equilibrium point towards which the ODE
converges. This is an expected result since the system
satisfies the conditions of the limit theorems [15].

The static picture of Figure 3 does not show that
each particular run is not tending to the deterministic
equilibrium point. This at first glance surprising phe-
nomenon can be intuitively explained. Figure 4 shows
the potential evolutions, i.e., changes produced by the
events, of the state of the CTMC together with the
rates associated to them. If (seq , ieq) is a determinis-
tic equilibrium point, all the components of the vector
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Figure 3: Evolution of the ODE (1) in the phase space
and final states of several simulation runs.
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Figure 4: Phase space evolution of the CTMC.

field cancel out, i.e., (2) becomes null, and therefore
the solution ODE remains at (seq , ieq). However, the
CTMC does not remain at the deterministic equilib-
rium indefinitely since the rates of the events at this
point are positive. Moreover at the deterministic equi-
librium all three rates are equal, hence the CTMC will
evolve similarly to a random walk in a neighborhood
close to the equilibrium. In fact, as pointed out in [18],
non-extinction deterministic equilibria have associated
a region of stochastic instability. This intuitive expla-
nation is developed mathematically in the next section.

3 System behaviour around the
equilibrium point

This section compares the evolution, with respect to
a deterministic equilibrium point, of ODE (3) and the
CTMC. In particular, we focus on the evolution of the
euclidian distance squared from the system state to
the equilibrium point.

Let xeq ∈ Rq be a deterministic equilibrium point,
i.e.,

∑E
j=1 δj ·wj(xeq) = 0. Let us define the distance
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of a point x ∈ Rq to xeq as:

D(x, xeq) =
q∑
i=1

(xi − xeqi )2 (4)

The variation of D(xc, xeq) per time unit, where xc is
the continuous trajectory provided by (3), is given by:

dD(xc, xeq)

dt
=

q∑
i=1

d(xci − x
eq
i )2

dt
(5a)

=
q∑
i=1

2·(xci − x
eq
i ) · dx

c
i

dt
(5b)

=
q∑
i=1

(
2·(xci − x

eq
i ) ·

E∑
i=1

δji · wj(xc)
)

(5c)

where δji is the density change of the ith species due
to the occurrence of event αj . The expression in (5b)
is obtained by applying the chain rule, and (5c) is ob-
tained by using Equation (3).

In order to compute the time evolution of (4) on
the CTMC, we will first obtain an expression for the
expected change of D(x, xeq) after the occurrence of
an event. To obtain such an expression, the embed-
ded Markov chain is used. In the following, all the
expressions related to expected values depend on the
current state x, i.e., they are conditional expectations.
For brevity, the current state will be omitted in the
expressions, e.g., E[∆D(x, xeq) |x] will be shortened
to E[∆D(x, xeq)]. Let us define R(x) as the average
number of events per time unit:

R(x) =
E∑
j=1

wj(x)

By the product rule of the difference operator we have:

∆(xi−xeqi )2 = 2·(xi−xeqi ) ·∆xi + (∆xi)
2

and hence the expected increment of D(x, xeq) after
an event is:

E[∆D(x, xeq)] = E
[
q∑
i=1

∆(xi−xeqi )2
]

= E
[
q∑
i=1

(
2·(xi−xeqi ) ·∆xi + (∆xi)

2
)]

=
q∑
i=1

E[(∆xi)
2] +

q∑
i=1

2·(xi−xeqi ) · E[∆xi]

=
q∑
i=1

E[(∆xi)
2] +

q∑
i=1

(
2·(xi−xeqi ) ·

∑E
j=1 δji · wj(x)

R(x)

)

Since at state x, the average number of events per
time unit is R(x), the average change of the distance

squared per time unit is given by:

dE[∆D(x, xeq)]

dt
= R(x) · E[∆D(x, xeq)] (7a)

= R(x)·
n∑
i=1

E[(∆xi)
2] +

q∑
i=1

(
2·(xi−xeqi )·

E∑
j=1

δji·wj(x)
)

(7b)

By making use of Equations (5c) and (7b), the follow-
ing equality for the same concentrations of the contin-
uous and discrete trajectories, xc = x, is obtained:

dE[∆D(x, xeq)]

dt
= R(x)·

n∑
i=1

E[(∆xi)
2] +

dD(xc, xeq)

dt

More precisely, if x is not a deadlock point, i.e., there
is at least one event αj with strictly positive wj(x),
then R(x)·

∑n
i=1E[(∆xi)

2] > 0 and it holds that:

dE[∆D(x, xeq)]

dt
>
dD(xc, xeq)

dt
(8)

Equation (8) implies that ODE (3) is not averaging
correctly the distance to the equilibrium point of the
CTMC dynamics.

Due to the mass-action law, R(x) is proportional
to V for a given concentration x, i.e., R(x)=O(V )
where O(V ) is the Landau notation to describe lim-
iting behaviours. On the other hand, the changes in
the concentration x produced by events are O(1/V ),
hence

∑q
i=1 E[(∆xi)

2] = O(1/V 2) implying that:

R(x) ·
(

q∑
i=1

E[(∆xi)
2]

)
= O

(
1

V

)
Therefore as V tends to infinity, R(x) ·

∑q
i=1 E[(∆xi)

2]
vanishes and the ODE (3) improves its quality with
respect to the average distance to equilibrium. Nev-
ertheless, in many practical cases V is finite, and the
term R(x) ·

∑q
i=1 E[(∆xi)

2] cannot be ignored, since it
can cause interesting oscillatory behaviours.

4 Stochastic oscillations

4.1 Polar ODE

The previous section showed that, while stable be-
haviour can occur in the solution of the ODE (3), the
Markov process can exhibit sustained stochastic oscil-
lations around the deterministic equilibrium. In or-
der to study the behaviour of the CTMC around the
deterministic equilibrium, we propose to average the
distance to the deterministic equilibrium for the dif-
ferent potential evolutions, i.e., events, of the CTMC.
To achieve this goal, an ODE based on polar coor-
dinates is designed. The origin of such coordinates
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Figure 5: System evolution from event Contagion.

is the deterministic equilibrium xeq around which the
system dynamics is to be studied. Recall that deter-
ministic equilibrium points can be easily computed by
solving the system of equations

∑E
j=1 δj ·wj(xeq) = 0

(see Equation (3)). In contrast to the classical ap-
proach that focuses on the cartesian coordinates, po-
lar coordinates explicitly refer to the distance to an
equilibrium state. After some mathematical consider-
ations, an ODE that averages the distance and angle
to the deterministic equilibrium is obtained. We will
constrain our attention to systems with two species,
i.e., q=2.

Figure 5 shows the system evolution after the
event Contagion for the cartesian (S, I) and polar
(r, φ) coordinates. For the polar coordinates the de-
terministic equilibrium (seq , ieq) is taken as the origin.
The choice of (seq , ieq) as origin is quite natural since
we desire to study the system dynamics around this
point.

In order to define the state of the process in po-
lar coordinates, radial and angular coordinates are re-
quired. The distance, or radial coordinate, of a point
x to the equilibrium point xeq is given by the function
rad(x):

r = rad(x) =

√
(x1−xeq1 )

2
+ (x2−xeq2 )

2
(9)

For a given x, the angular coordinate of φ is given by:

φ= atan(x2−xeq2 , x1−x
eq
1 ) (10)

where atan(y, x) : R×R → R is the arctangent of a
point with cartesian coordinates (x, y). The range of
atan(y, x) is (−π, π].

For the running example, the expected increment
at state x of the radial coordinate is given by:

E[∆r] =

∑E
j=1 wj(x)·rad(x+δj)

R(x)
− rad(x) (11)

and the expected increment of the angle φ is:

E[∆φ] =

∑E
j=1 wj(x)· atan(x+δj)

R(x)
− atan(x) (12)

where atan is as in (10) but now has one bidimensional
argument instead of two unidimensional ones.

There are two problems associated with equa-
tion (12). First, when the state is close to angle φ = π,
the function atan might yield values close to π for the
angle after a given event, and close to −π for the an-
gle after another event if the abscissa is crossed. The
average of those angles will be close to 0, which is not
meaningful. Second, the angular coordinate φ might
be used not only to localize the state of the system but
also to evaluate the overall number of degrees traveled
by the system around the equilibrium. To cope with
these two issues E[∆φ] is redefined as follows:

E[∆φ] =∑E
j=1 wj(x)·

(
atan(x+δj)+g(x, δj))

R(x)
− atan(x) (13)

where g(x, δj) equals:
−2·π if atan(x)<−π2 and atan(x+δj)>

π
2

+2·π if atan(x)>π
2 and atan(x+δj)<−π2

0 otherwise

(14)

The term g(x, δj) is used to check whether φ has
crossed the value π. If the crossing is clockwise, then
g(x, x+δj) = −2·π, while if it is counterclockwise, then
g(x, x+δj) = 2·π. Thus, g(x, x+δj) allows the incre-
ments of E[∆φ] to be smooth.

More precisely, the inclusion of g(x, x+δj) in the
computation of E[∆φ] solves the two mentioned prob-
lems: a) the average of angles close to π is now ensured
to be close to π; b) if φ is updated according to its in-
crements computed with g(x, x+δj) it will record the
number of degrees traveled by the system around the
equilibirum.

At a given state x, the average number of events
per time unit is R(x). Hence, the term R(x) ·E[∆r] is
the average speed of change of r. Given that the same
reasoning applies to φ, the following ODE can be used
to describe the behaviour over time of r and φ:

dr

dt
= R(x)·E[∆r]

dφ

dt
= R(x)·E[∆φ]

(15)

where E[∆r] and E[∆φ] are given by Equations (11)
and (13) respectively. Given that x is just the carte-
sian coordinate of (r, φ), ODE (15) is composed of 2
equations and 2 variables.
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Figure 6: Time evolution of ODEs (3) and (15).
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Figure 7: Phase space evolution of ODEs (3) and (15).

4.2 Averaging stochastic oscillations

Consider again the running example. Figures 6 and 7
show the evolution of both ODEs, (3) (labelled carte-
sian ODE) and (15) (labelled polar ODE), over time
and in the phase space. It can be observed that,
while (3) exhibits damped oscillations, (15) tends to
a limit cycle with clear sustained oscillations.

The ODEs present complementary views both
useful for analysing the CTMC dynamics. While (3)
focuses on the limiting behaviour of the concentrations
as V goes to infinity, (15) describes the dynamics in
terms of polar coordinates for a given V which uncov-
ers the oscillating behaviour around the equilibrium.

The ODE (15) can be used to evaluate the aver-
age oscillations of the CTMC. To compute the average
distance to the equilibrium, r, of the oscillation in the
steady state, the following formula can be used:

r = lim
τ→∞

1

τ
·
∫ τ

0

rdt (16)

For the running example r = 1.801 · 10−2, thus
the average distance in terms of populations (not den-
sities) to the deterministic equilibrium is r·V = 180.1.
This value is in good agreement with the average dis-
tance to the equilibrium of the dots shown in Figure 3.

In (15) the term dφ/dt is the angular speed ω
of the system for angle φ. Thus the average angular
speed of the system in steady state is given by:

ω = lim
τ→∞

1

τ
·
∫ τ

0

ωdt = lim
τ→∞

φ

τ
(17)

For the running example f = ω/(2·π) = 0.535 which
matches the peak exhibited in Figure 2. This can be
interpreted as if the dots in Figure 3 where orbiting
around the equilibrium point at an average frequency
of 0.535. Next section shows that other values of in-
terest can also be obtained from the ODE on polar
coordinates.

5 Case study

This section applies the ideas developed in the previous
sections to an epidemic system [18] that is a more real-
istic version of the running example. First, the system
parameters are defined, then the suggested approach
to evaluate stochastic oscillations is applied.

5.1 Description of the system

With respect to the running example, two new events
are included: an event Death S associated to the
death of susceptible individuals, and an event Recov-
ery, meaning that an infected individual is restored to
health. Moreover, a more realistic rate for event Birth
is considered. Table 2 summarizes the existing events,
their effect and their rate.

Event Effect Transition rate

Birth {S, I} → {S+1, I} wb = S+I
1+(b·(S+I))/V

Death S {S, I} → {S−1, I} wdS = mS · S
Contagion {S, I} → {S−1, I+1} wc = β · S · I

V

Recovery {S, I} → {S+1, I−1} wr = r · I
Death I {S, I} → {S, I−1} wdI = mI · I

Table 2: Events of the epidemic system.

Let the size of the system be V = 5·103 and the initial
populations be n0=(7000, 250), i.e., the initial concen-
trations are x0=(1.4, 0.05). We will consider the fol-
lowing values for the constants: b=0.4, β=10, mS=0.2,
mI=5 and r=3. This way the stochastic system is fully
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defined: the number of species is q=2 (susceptible and
infected), α is a set of 5 events, δ and w are deter-
mined by the values in Table 2.
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Figure 8: Time evolution of variable S.

The time trajectory of variables S and I of the
stochastic system are shown by the skewed lines in Fig-
ure 8 and Figure 9 respectively. Figure 10 shows the
frequency spectrum of S. The highest peaks appear
for values of the frequency in the interval (0.2, 0.5).

In order to evaluate the oscillations, the fol-
lowing three steps will be followed: 1. Definition of
ODE (3) for the limiting behaviour of the system; 2.
Computation of the deterministic equilibrium point
for such ODE; 3. Evaluation of oscillations by using
ODE (15) describing the evolution of polar coordinates
and Equations (16) and (17).

5.2 ODE for the limiting behaviour

As for the running example, it is quite straightforward
to write down an ODE that defines the limiting be-
haviour of the extended system as V tends to infinity.
The proof for the obtained ODE is very similar to the
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Figure 9: Time evolution of variable I.
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Figure 10: Frequency spectrum of variable S of the
epidemic example.

one presented in the Appendix for the running exam-
ple. For the concentrations x1=S/V and x2=I/V , the
equations of the ODE are given by:

dx1
dt

=
x1+x2

1+b·(x1+x2)
− mS · x1 − β·x1·x2+r·x2

dx2
dt

= β·x1·x2 − mI ·x2 − r·x2 (18)

The trajectories of S and I given by ODE (18) are
shown as the plots labelled “Cartesian ODE” in Fig-
ures 8 and 9. Notice that these eventually reach a
constant value, the so called deterministic equilibrium
point. This can be better appreciated in the phase
space plot of Figure 11.

For the given parameters of the epidemic system,
the point (xeq1 , x

eq
2 ) = (4000/V, 502/V ) is the unique

equilibrium point in which both populations are pos-
itive. We will study the oscillating behaviour of the
system around this point.

5.3 Evaluation of oscillations

According to Section 4, ODE (15) describes the av-
erage time evolution of the distance and angle with
respect to the equilibrium point (xeq1 , x

eq
2 ). The time

trajectories of S and I given by (15) are shown by the
plots labelled “Polar ODE” in Figure 8 and Figure 9
respectively. We see that, using this approach, the
sustained oscillations of the system are clearly visible.
The trajectory in the phase space is the line represent-
ing a limit cycle in Figure 11. The limit cycle towards
which the trajectory tends can be examined to obtain
the amplitude of the oscillations. Variables S and I
oscillate in the interval [3831, 4186] and [411, 603] re-
spectively, thus, the amplitudes of both variables are
177.5 and 96 respectively.
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Figure 11: Trajectories in the phase space of
ODEs (18) and (15).
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Figure 12: Time trajectory of the average distance,
r · V , to the equilibirum according to ODE (15).

Figure 12 and Figure 13 show the time evolu-
tion of the average distance, r·V , to the determinis-
tic equilibrium and the average angular speed (dφdt )
around this point respectively. From these plots, it
can be determined that, once the system is oscillating,
the maximum (minimum) distance to the determinis-
tic equilibrium is 86.1 (182.5), and that the maximum
(minimum) angular speed is 3.875 (1.087).

By means of (16) and (17), the average distance
to the equilibrium and frequency of the oscillations
can be obtained. For the epidemic system the average
distance is r·V = 136 and the average frequency is
f = ω/(2·π) = 0.352.
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Figure 13: Average angular speed (dφdt ) according to
ODE (15).

6 Conclusions

Macroscopic models have been widely used in differ-
ent application areas as biology, chemistry and ecology.
Such models enjoy a solid mathematical grounding in
the theory of limit theorems which provide the condi-
tions required to approximate a large stochastic dis-
crete system by a system of ordinary differential equa-
tions (ODE). Although important conclusions can be
obtained from the solution of such a system of equa-
tions, it must be taken into account that it might also
mask interesting features of the system dynamics as
oscillations.

The paper focuses on systems with a unique de-
terministic equilibrium point, and the dynamics of the
original stochastic discrete model and its limiting be-
haviour around that equilibrium have been studied. It
has been shown that the ODE associated to the limit-
ing behaviour does not average correctly the variations
of the distance to a deterministic equilibrium point.
More precisely, while the solution of the ODE is stable
at such a point, the original continuous-time Markov
chain is unstable in a neighbourhood of this point.

In order to average correctly the evolution of the
distance to the equilibrium and the angular speed, an
ODE based on polar coordinates has been developed.
This ODE can be used to compute several measures of
interest related to the oscillations, such as time evolu-
tion of the average distance to the equilibrium, time
evolution of the angular speed, average amplitude and
frequency of each variable, etc. The developed ODE
must be understood as a complementary tool to under-
stand the behaviour of the stochastic discrete model:
while the initial ODE describes the overall cartesian
tendency of populations, the proposed ODE describes

9



the oscillating behaviour of the populations. This
way, the proposed ODE represents a systematic way of
evaluating quantitatively the behaviour of the system
around an equilibrium point.
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Appendix

This appendix first reports the main Theorem in [6],
and then applies it to the Markov process of the run-
ning example presented in Section 1.

A. Fluid limit of a pure jump Markov
process

Assume that for each N>1 we have a Markov
chain 〈XN

n 〉n≥0, on a state space IN ⊆ E (where
E is an euclidian space), whose increments have
mean µN [x] = E[Xn+1−Xn |Xn=x] and covariance
ΣN [x] = Var[Xn+1−Xn |Xn=x] respectively.

Let 〈νN [t]〉t≥0 be a Poisson process, with event
times τ1 < τ2 < · · · , which is dependent on 〈XN

n 〉n≥0
in the following sense: there is some bounded rate
function cN : IN → R>0, such that each inter-event
time τn+1−τn is exponential with mean 1

cN [x] on the

event XN
n =x. As in [14], the formula ΥN

t ≡ XN
ν[t] de-

fines a pure jump Markov process 〈ΥN
t 〉t≥0. In other

words ΥN
τn=XN

n , so 〈ΥN
t 〉t≥0 has the same increments

as does 〈XN
n 〉n≥0, and these occur at the random times

τ1 < τ2 < · · · .
Let us define bN [x] as bN [x] = cN [x]·µN [x], and

let D ⊆ E be any closed set such that D ⊇ ∪N>2IN .
We fix a relatively open set S ⊆ D and define SN ≡
S ∩N>2 IN . In addition, let us assume that the pa-
rameters of these processes satisfy the following con-
vergence criteria (in the below κ1[δ], κ2, κ3 denote
positive constants, and the inequalities hold uniformly
in N).
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• Initial conditions convergence: assume that there
is some a ∈ S, the relative closure of S in D, such
that for each δ>0:

P[‖ΥN
0 − a‖ > δ] ≤ κ1[δ]

N
(19)

• Mean dynamics convergence: assume that there
is a Lipschitz vector field b : D → E such that:

supx∈SN
‖bN [x]− b[x]‖ → 0 (20)

• Noise convergence to zero:

supx∈SN
cN [x] ≤ κ2·N (21)

supx∈SN

(
Trace[ΣN [x]]+‖µN [x]‖2

)
≤ κ3
N2

(22)

Since b is Lipschitz on S ⊆ D, there is a unique so-
lution 〈y[t]〉0≤t≤ζ[a] in S, where ζ[a] ≡ inf{t≤0 | y[t] 6∈
S} ≤ ∞, to the ordinary differential equation:

ẏ[t] = b[y[t]] and y[0] = a . (23)

Theorem 1 Assume the convergence criteria (19),
(20), (21) and (22) hold, let a ∈ S and fix δ>0. For
any finite z<ζ[a] we have:

P
[

sup0≤t≤z‖ΥN
t −y[t]‖ > δ

]
= O

(
1

N

)
(24)

B. ODE for the running example

Recall, for the cartesian description of the running ex-
ample we have:

• x0=(S0/N, I0/N);

• A={Birth,Death,Contagion};

• D={(1/N, 0), (−1/N, 1/N), (0, 1/N)};

• W = {a·N, β·x1·x2·N, b·x2·N).

The initial condition ΥN
0 =x0 trivially satisfies (19)

by choosing a=x0. The expression associated to
µN [x1, x2] is:

µN [x1, x2] =

( 1
N ·wb −

1
N ·wc

wb+wc+wd
,

1
N ·wc −

1
N ·wd

wb+wc+wd

)
=

(
1

N
· wb − wc
wb+wc+wd

,
1

N
· wc − wd
wb+wc+wd

)

The expression for Trace[ΣN [x1, x2]] is:

Trace[ΣN [x1, x2]] = E[x21]− E[x1]2 + E[x22]− E[x2]2

=

1

N2
·wb +

1

N2
·wc

wb+wc+wd
− 1

N2
·
(

wb − wc
wb+wc+wd

)2

+

1

N2
·wc +

1

N2
·wd

wb+wc+wd
− 1

N2
·
(

wc − wd
wb+wc+wd

)2

=
1

N2
·

(
wb+wc

wb+wc+wd
−
(

wb − wc
wb+wc+wd

)2

+
wc+wd

wb+wc+wd
−
(

wc − wd
wb+wc+wd

)2
)

Finally the expression for cN [x1, x2] is:

cN [x1, x2] = wb+wc+wd = a·N + β·x1·x2·N + b·x2·N

Thus, there exists a set SN in which (21) and (22)
are satisfied. The product cN [x1, x2]·µN [x1, x2] is
bN [x1, x2] = (a − β·x1·x2, β·x1·x2 − b·x2). Hence,
the limiting vector field is b[x1, x2] = (a −
β·x1·x2, β·x1·x2−b·x2). Given that ‖bN [x]−b[x]‖ = 0,
(20) is satisfied. Furthermore, b is Lipschitz on D.
Thus, all the assumptions of Theorem 1 are verified
and the limiting behaviour of the Markov process is
given by ODE (1).
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