
Metric Denotational Semantics for
PEPA1

Marta Kwiatkowska and Gethin Norman
School of Computer Science University of Birmingham,

Edgbaston, Birmingham B15 2TT, UK
E-mail: {M.Z.Kwiatkowska,G.Norman}@cs.bham.ac.uk

Abstract
Stochastic process algebras, which combine the features of a process calculus with

stochastic analysis, were introduced to enable compositional performance analysis of
systems. At the level of syntax, compositionality presents itself in terms of operators,
which can be used to build more complex systems from simple components. Denota-
tional semantics is a method for assigning to syntactic objects elements of a suitably
chosen semantic domain. This is compositional in style, as operators are represented
by certain functions on the domain, and often allows to gain additional insight by
considering the properties of those functions. We consider Performance Evaluation
Process Algebra (PEPA), a stochastic process algebra introduced by Hillston [9].
Based on the methodology introduced by de Bakker & Zucker, we give denotational
semantics to PEPA by means of a complete metric space of suitably enriched trees.
We investigate continuity properties of the PEPA operators and show that our se-
mantic domain is fully abstract with respect to strong equivalence.

1 Introduction

Probabilistic and stochastic phenomena are important in many areas of computing, for
example, distributed systems, fault tolerance, communication protocols and performance
analysis, and thus formal and automated tools for reasoning about such systems are
needed.

In this paper we consider a stochastic process algebra called Performance Evaluation
Process Algebra (PEPA) originally introduced by Hillston [9]. Stochastic process algebras
arise through enhancing specification languages such as CCS [15] to include stochastic
behaviour in the form of exponential timing, e.g. [3, 2, 8, 9], and probabilistic behaviour,
e.g. [5, 14]. This is achieved by allowing basic actions (which are instantaneous in the
classical process calculi) to have duration (exponentially distributed random variable) and
replacing nondeterminism by a form of probabilistic choice. Starting with the standard
operational semantics for PEPA, given in terms of a multi-transition system and strong
equivalence, we aim to provide the calculus with a denotational metric space semantics,
derived following the techniques introduced by de Bakker and Zucker [1], which is fully
abstract with respect to strong equivalence.

The motivation behind PEPA is to introduce compositionality into the calculus, al-
lowing processes to be composed from components by means of operators. However, this
compositionality is present only at the level of syntax: once the model is reduced to the
equilibrium state equation the compositionality sometimes breaks down and alternative

1 In Proc. 4th Process Algebras and Performance Modelling Workshop, pages 120-138, CLUT 1996.

120

Metric Denotational Semantics for PEPA 121

methods, such as “product” solutions [10] or time scale decomposition [7], have to be
applied. Denotational semantics assigns mathematical objects (here elements of metric
spaces) as denotations to process terms, with operators on processes modelled in terms of
operations on the denotations. This gives rise to an algebra of process denotations, which
can be computed and analysed independently, and then composed. Full abstraction in
our context ensures that (strong) equivalence of PEPA terms corresponds to equality of
their denotations. The hope is that, through compositionality, this approach may shed
some light on the handling of large systems in the workbench. Also, comparisons with
the classical process algebra work are likely to be made easier, opening up the possibility
for the transfer of existing methodologies such as verification and logics.

Recent research in the area has focussed mainly on the operational side, see e.g. [3, 2,
8, 9] for stochastic and [5, 14] for probabilistic behaviour. Some effort has been put into
building fully abstract denotational semantics for (pure) probabilistic process algebras,
of which we mention a full abstraction result for may-testing [11], where the model is
rather involved and no recursion is considered; a denotational semantics for a probabilistic
extension of CSP [17] in terms of conditional probability measures on the space of infinite
traces; a characterisation of testing preorders for probabilistic processes which is shown to
be fully abstract [19]; and our earlier work for the reactive probabilistic language RP [12].
However, to our knowledge, so far little attention has been paid to denotational models for
stochastic process algebras such as PEPA above, Extended Markovian Process Algebra
(EMPA) [3], Markovian Process Algebra (MPA) [2] and Markovian Timed Performance
Algebra (MTIPP) [8]. We believe this area deserves more attention in the light of Edalat’s
work [4].

2 Performance Evaluation Process Algebra (PEPA)

We recall basic notions of the PEPA language introduced in [9]. A system is described by
the interaction of components, where components engage, singly or multiply, in activities.
Each activity is distinguished by an action type, which is equivalent to the usual process
algebra notion of an instantaneous action, but in contrast to the latter each activity also
has associated with it a duration (a random variable with an exponential distribution).
We denote by A the countable set of all possible action types. In situations where the
type of the action is unknown, it may be represented by the distinguished action type, τ .
Thus, an activity a is a pair (α, r), where α ∈ A (the action type) and r is the activity
rate, which can either be specified, i.e. a real number r ∈ (0,∞), or unspecified, i.e. of
the form w> where w ∈ IN is a weight.

Rates are used to reflect race conditions between activities in the system. If several
activities are enabled at the same time, each will have its own associated timer, and
the faster component succeeds. The probability of a happening within a time period
t is Fa(t) = 1 − e−rt. When activities have unspecified rates (i.e. r = w>), they are
understood to be passive (i.e. shared with another component which determines the
actual rate). Comparison and certain arithmetic operations are defined for unspecified
rates (see [9]), but specified and unspecified rates cannot be mixed in arithmetic expres-
sions as the latter serve as weights inducing relative probability, while the former are
(constant) parameters of exponential distribution.

The syntax for PEPA terms is defined as follows, where L ⊆ A:

E ::= (α, r). E | E + F | E .
L
/F | E/L | X | A

122 Marta Kwiatkowska and Gethin Norman

“+” represents choice, “ .
L
/ ” cooperation, “/” hiding, X is a member of a set of variables

X and (assuming the existence of a countable set of constants) A is a constant. Constants
are used to define recursive components.

Before the operational semantics of PEPA can be defined we first need to define the
apparent rates of components.

Definition 2.1 For any component E in PEPA the apparent rate of action type α of
E, denoted rα(E), is the sum of all the rates of all activites of action type α in E. This
is defined inductively on the structure of components as follows.

rα((β, r). E) =
{

r if β = α
0 if β 6= α

rα(E + F) = rα(E) + rα(F)

rα(E/L) =
{

rα(E) if α 6∈ L
0 if α ∈ L

rα(E .
L
/F) =

{
min(rα(E), rα(F)) if α ∈ L
rα(E) + rα(F) if α 6∈ L

The operational semantics of PEPA is given by the following transition rules:

Prefix

(α, r). E
(α, r)

−−−→ E

Choice

E
(α, r)

−−−→ Ẽ

E + F
(α, r)

−−−→ Ẽ

F
(α, r)

−−−→ F̃

E + F
(α, r)

−−−→ F̃

Cooperation

E
(α, r)

−−−→ Ẽ

E .
L
/F

(α, r)

−−−→ Ẽ .
L
/F

(α 6∈ L)
F

(α, r)

−−−→ F̃

E .
L
/F

(α, r)

−−−→ E .
L
/F̃

(α 6∈ L)

E
(α, r1)

−−−→ Ẽ F
(α, r2)

−−−→ F̃

E .
L
/F

(α, R)

−−−→ Ẽ .
L
/F̃

(α ∈ L) where R =
r1

rα(E)

r2

rα(F)
min(rα(E), rα(F))

Hiding

E
(α, r)

−−−→ Ẽ

E/L
(α, r)

−−−→ Ẽ/L

(α 6∈ L)
E

(α, r)

−−−→ Ẽ

E/L
(τ, r)

−−−→ Ẽ

(α ∈ L)

Metric Denotational Semantics for PEPA 123

Constant

E
(α, r)

−−−→ Ẽ

A
(α, r)

−−−→ Ẽ

(A
def
= E)

As an operational equivalence we work with strong equivalence of PEPA terms intro-
duced in [9]. This notion is based on (strong) bisimulation equivalence, and is similar to
probabilistic bisimulation of Larsen and Skou [13]. The definition requires the notion of
a conditional transition rate between components.

Informally, the transition rate between two components Ei,Ej via a given action type α
(denoted q(Ei,Ej,α)) is the rate at which component Ei evolves to behave as component
Ej as a result of completing an activity of action type α. Formally,

q(Ei,Ej,α) =

{∑
a

rα(Ej) | a ∈ Act(Ei|Ej) and a = (α, r)

}

whereAct(Ei|Ej) = {a |Ei
a−→ Ej}. Moreover, if we consider a set of possible derivatives

S, the total conditional transitional rate from Ei to S, denoted q[Ei,S,α], is defined to be

q[Ei,S,α] =
∑

Ej∈S

q(Ei,Ej,α).

Then, informally, two PEPA components are equivalent if there is an equivalence relation
between them such that, for any action type α, the total conditional transition rates
from those components to any equivalence class, via activities of this type, are the same.
Formally, the equivalence is defined for components A of PEPA as follows.

Definition 2.2 An equivalence relation over components, R ⊆ C ×C, is a strong equiv-
alence if whenever (E,F) ∈ R then, for all α ∈ A and for all S ∈ A/C,

q[E,S,α] = q[F,S,α].

One can show by means of methods similar to those used in [15] that there exists a
largest strong equivalence relation denoted ∼=. The relation ∼= is a congruence for PEPA,
and is sufficient to ensure that equivalent components exhibit exactly the same behaviour
[9].

3 Defining Metric Denotational Semantics

In [1] de Bakker and Zucker introduce methodology based on the theory of metric spaces,
by means of which given a (process) language one can derive a domain equation defining
denotations for terms of that language. We illustrate their approach with the help
of a simple example. Consider the language which contains prefixing a. E (a ∈ A),
choice E + F and recursion (A = E). We first consider simple processes, that is, those
which are derived in the subcalculus by means of just the syntactic operator used in
the inductive step of the transition rules of the calculus. As in our language these are
the processes which can be derived using (successive applications of) just prefixing, the
following domain equation of simple processes is reached:

D ∼= {p0} ∪ (A×D)

124 Marta Kwiatkowska and Gethin Norman

where p0 denotes the inactive process. Intuitively, the solution of this domain equation
consists of p0 and all finite sequences of the form (a1, (a2 . . . (an, p0) . . .)) where n ∈ IN,
together with all infinite sequences (a1, (a2 . . .)). We can think of (a1, (a2 . . . (an, p0) . . .))
as the process that can perform the actions a1, a2 . . . an in sequence and then terminate,
and (a1, (a2 . . .)) can be considered as an infinite process performing the sequence a1a2

In the second step, to model the whole calculus de Bakker and Zucker “lift” the
denotations of simple processes to sets using the induced Hausdorff distance between
the sets, and add semantic operators to model the remaining syntactic operators of the
calculus. This corresponds to the introduction of an appropriate powerset operator P
into the equation. Assuming deterministic choice, for the above simple language we
obtain:

D ∼= {p0} ∪ P(A×D)

where P denotes the non-empty closed sets. Now set-theoretic union on D corresponds
to the syntactic choice: the denotation {(a, p0)}∪ {(b, p0)} can intuitively be thought of
as the process that can either perform the action a and then terminate, or perform the
action b and then terminate.

Upon initial analysis, there appears to be a clear similarity between terms in PEPA
and those of the probabilistic process algebra RP of [12], in that in both languages there
are actions a process can perform, and values associated with the possible successor
processes. The difference is that, for PEPA terms, the values are rates, whereas for RP
terms, the values are values of a probabilistic distribution. It might seem that by mapping
rates to (relative) probabilities (in the sense of a discrete time Markov chain) PEPA can
be reduced to a probabilistic language, and that the semantics for the latter, e.g. as
developed in [12], will also be adequate for the former. Unfortunately, this approach fails
as it allows to identify denotations of non-equivalent components. To see this, consider
the processes below where r1, r2 ∈ IR>0 such that r1 6= r2:

p qrr
?r?rαr1

α
r2

Then, for any such r1, r2, the probabilities of p and q performing the action α and then
terminating are given by:

r1

rα(p)
and

r2

rα(q)

respectively. Moreover, since (α, r1) and (α, r2) are the only activities that p and q can
perform, the apparent rates are rα(p) = r1 and rα(q) = r2. Thus, the probabilities of p
and q performing the action α and terminating are both 1, and therefore p and q would
be mapped on to the same denotation. However, since r1 6= r2, they are distinguished
by strong equivalence.

So, there are important differences between the two languages, and hence the con-
struction of [12] cannot directly be applied to PEPA. To give another example, in RP
the probability of a path can be computed by multiplying the probabilities of each step;
similar calculations, for example summing up (or multiplication) of the rates along paths
are meaningless for PEPA, as we demonstrate below.

Metric Denotational Semantics for PEPA 125

p̃ q̃rr
?r?rαr1

α
r2

? ?r rβ
r2

β
r1

Then it follows that the total rate (= the sum of rates along the path) of both p̃ and q̃
of performing the action α and then the action β is r1 + r2, and yet, since r1 6= r2, they
are distinguished by strong equivalence.

We omit the discussion of unspecified rates to simplify the presentation; unspecified
rates can be added at a cost of an extra level of complexity which is not essential in
understanding the basic model construction. As our guiding principle for the construction
we shall adopt the property that small differences in rates result in small differences in
the distance between denotations, and vice versa.

Furthermore, we shall assume that the rates are bounded, and that there also exists
a lower bound on rates. These two conditions hold for any finite PEPA term and are
respectively required to prevent unboundedness of the metric and the rate 0 entering the
model through limits of Cauchy sequences.

Similarly to the metric model for RP [12], we construct the denotations for processes
as enriched trees (arcs have rates as well as actions). The model is derived in two steps
following the techniques introduced in [1]: first, we define the metric on simple compo-
nents (those defined in terms of the prefix), and then generalise the metric construction
to suitably defined trees.

4 A Metric for Simple Components of PEPA

We first turn our attention to simple components of PEPA, that is, those which can be
defined in terms of the prefix operator (α, r). E, cf. [1].

Intuitively, a simple component will be represented by a pair consisting of an activity
and another simple component. Assuming D denotes the set of such simple components,
and letting p0 denote the process which performs no activities (this is needed as a basis
for induction) we reach the domain equation:

D ∼= {p0} ∪
(
A× IR>0

)
×D

where IR>0 def
= {r | r ∈ IR and 0 < r < r < R < ∞}; here r denotes the lower bound on

rates and R the upper bound.
Thus, any (non-trivial) simple component p is of the form p = (α, r)p̃, where α ∈ A,

r ∈ IR>0 and p̃ ∈ D, and we can think of p as the component that can perform the
action α with rate r and then become p̃. When defining the distance function on simple
components we rely on the following intuition: roughly speaking, the distance will depend
on how similar the initial activities are, and how close the successor components are.
More specifically, the distance is set to 1 if the simple components differ on their initial
actions, and otherwise we calculate the (normalised absolute value) of the difference
between the initial rates and combine this with the distance of the successor components.

126 Marta Kwiatkowska and Gethin Norman

Formally, following the techniques of [1], we inductively define a collection of metric
spaces (Dn, dn)n, n = 0,1, . . ., where the elements of the spaces model finite simple
components. Informally, D0 ⊂ D1 ⊂ . . . ⊂ Dn . . . form a sequence of sets, with Dn

modelling the components capable of performing up to n steps.

Definition 4.1 Let (Dn, dn), n = IN, be a collection of metric spaces defined inductively
by putting D0 = {p0}, d0(p, q) = 0 (since p, q ∈ D0 ⇐⇒ p = q = p0), and

Dn+1 = {p0} ∪
(
A× IR>0

)
×Dn,

with dn+1 given by: dn+1(p, q) = 0 if p = q = p0 and 1 if p = p0, q 6= p0 or p 6= p0,
q = p0. Otherwise, p = (α1, r1)p̃ and q = (α2, r2)q̃ for some (α1, r1),(α2, r2) ∈ A × IR>0,
p̃, q̃ ∈ Dn, and we put

dn+1(p, q) =

{
1 if α1 6= α2
1
2

(
1
R
|r1 − r2|+ dn(p̃, q̃)

)
if α1 = α2.

Lemma 4.1 Let (Dn, dn) n = 0,1, . . . be defined as above. Then 0 ≤ dn(p, q) ≤ 1 for all
p, q ∈ Dn.

Proof. The proof follows by induction on n ∈ IN. For n = 0 there is nothing to prove.
Now suppose 0 ≤ dk(p, q) ≤ 1 for all p, q ∈ Dk and consider dk+1(p, q) for any p, q ∈ Dk+1.
Then, by definition, we have 0 ≤ dk+1(p, q) ≤ 1 in all cases except when p = (α, r1)p̃ and
q = (α, r2)q̃ for some (α, r1),(α, r2) ∈ A× IR>0 and p̃, q̃ ∈ Dk. In the latter case we have
by definition:

dk+1(p, q) =
1

2

(
1

R
|r1 − r2|+ dk(p̃, q̃)

)
=

1

2

1

R
|r1 − r2|+

1

2
dk(p̃, q̃)

≤ 1

2
+

1

2
= 1 by induction and since R is a maximum rate.

ut

Proposition 4.1 (Dn, dn) is a metric space for all n ∈ IN.

Proof.

1. We show dk+1(p, q) = 0 if and only if p = q. By definition, dk+1(p, p) = 0 for all
p ∈ Dk+1; now suppose dk+1(p, q) = 0, then again by definition it must be the case
that p = (α, r1)p̃ and q = (α̃, r2)q̃ such that α = α̃, r1 = r2 and dk(p̃, q̃) = 0. By the
induction hypothesis dk(p̃, q̃) = 0 if and only if p̃ = q̃, and hence p = q as required.

2. dk+1(p, q) = dk+1(q, p) for all p, q ∈ Dk+1 follows by the commutativity of + and
induction.

3. The inequality dk+1(p, q) + dk+1(q, s) ≥ dk+1(p, s) for all p, q and r ∈ Dk+1 follows
from Lemma 4.1 in all cases except p = (α, r1)p̃, q = (α, r2)q̃ and s = (α, r3)s̃. In

Metric Denotational Semantics for PEPA 127

the latter case, by definition of dk+1 and rearranging the terms, we have:

dk+1(p, q) + dk+1(q, s)− dk+1(p, s)

=
1

2R
(|r1 − r2|+ |r2 − r3| − |r1 − r3|) +

1

2
(dk(p̃, q̃) + dk(q̃, s̃)− dk(p̃, s̃))

≥ 0 +
1

2
(dk(p̃, q̃) + dk(q̃, s̃)− dk(p̃, s̃)) from properties of the euclidean metric

≥ 0 by the induction hypothesis.
ut

Let Dω =
⋃

n Dn and dω =
⋃

n dn. (Dω, dω) is the metric space of all finite simple
components, and will need to be completed to include the infinite components as well.
Before we do this, however, we would like to point out that Dω can be endowed with the
classical metric (d̃n) of [1]. The definition is similar to the definition of dn above except
in the following case, in which it is given by:

d̃n+1((α1, r1)p̃, (α2, r2)q̃) =


1 if (α1, r1) 6= (α2, r2)

1
2
d̃n(p̃, q̃) if (α1, r1) = (α2, r2).

The main difference is that the euclidean distance between rates is not taken into account.
Let us now consider the simple components q1, q2 ∈ Dω shown in Figure 1.

q1 q2rr
?r?rαr1

α
r1

? ?r rβ
r + ε

β
r

Figure 1 Metric dω vs metric of [1]

Then, by definition of our distance, we have:

d2(q1, q2) =
1

2

(
1

R
|r1 − r1|+

1

2
(

1

R
|r + ε− r|+ 0)

)
=

ε

4R
.

Thus, as ε → 0, we have d(q1, q2) → 0, which reflects our guiding principle that small
differences in rates induce small differences in the distance. On the other hand, according
to the ultra-metric d̃ we have d̃2(q1, q2) = 1

2
for all ε > 0.

It can be shown that our metric, although not an ultra-metric in general, nevertheless
specialises to the metric of [1]. To see this, consider a restriction of the set of rates IR>0

to just a singleton set 1 (meaning all simple components perform at the same rate or
instantaneously). Then any p (6= p0) ∈ Dn+1 in this restricted setting will be of the form

128 Marta Kwiatkowska and Gethin Norman

(α,1)p̃ for some α ∈ A and p̃ ∈ Dn, and so our metric reduces to:

dn+1(p, q) =


1 if α1 6= α2

1
2
dn(p̃, q̃) if α1 = α2.

since clearly |1− 1| = 0, and so coincides with the metric of de Bakker and Zucker [1].
The space (Dω, dω) still lacks infinite simple components needed to model recursive

computations. The infinite PEPA component A = (α, r). A is modelled by the Cauchy
sequence 〈pn〉n, where pn ∈ Dn, with respect to dω, as shown in Figure 2.

p0 p1 p2 pn

r
r

r

r
?

α
1 ?

α
1

?

α
1

?r

r

α

α

?

α
r
?

...

.r r
rrr

Figure 2 Example of recursive simple computations

Then it is straightforward to show (by induction) that dω(pn, pm) = 2−min{m,n}, and so
the sequence is indeed Cauchy, and its limit is the infinite component we require.

As in [1], we now apply the standard metric completion technique to derive the metric
space D of (finite and infinite) simple components consisting of Dω together with all
limit points p = limn→∞ pn, with 〈pn〉n a Cauchy sequence in Dω, such that pn ∈ Dn for
all n ∈ IN.

Definition 4.2 (D, d) is the completion of (Dω, dω).

By a straightforward application of the techniques of [1] it follows that D satisfies the
required domain equation (up to isometry).

Theorem 4.1 D ∼= {p0} ∪ (A× IR>0)×D.

5 A Domain Equation for PEPA

In the previous section we have defined denotations of simple components of PEPA (the
elements of D) by representing them either as p0 (termination), or as limits limn→∞ pn of
Cauchy sequences of (finite) simple components pn ∈ Dn. To allow choice it is necessary
to use sets of elements of D as denotations for all components of PEPA. In the non-
stochastic setting, e.g. [1], this is achieved by introducing an appropriate powerset (e.g.
the non-empty closed subsets) into the domain equation, and considering the Hausdorff
distance between the sets, which for a complete metric space yields a complete metric
space of subsets.

Metric Denotational Semantics for PEPA 129

Definition 5.1 Let (M, d) be a metric space and let X, Y be subsets of M . The Hausdorff
distance between sets X, Y is given by:

(a) d(x, Y) = inf{d(x, y) | y ∈ Y }
(b) d(X,Y) = max{sup{d(x, Y) | x ∈ X} , sup{d(y, X) | y ∈ Y }}

where by convention inf ∅ = 1 and sup ∅ = 0.

Once the metric space of subsets has been derived, the operations of union or disjoint
union (for the branching time case) are commonly used to model choice in the process
algebra. Unfortunately, in PEPA the situation is more complex due to the assumed
interpretation of the rates. For example, the PEPA components:

(α, r1). E + (α, r2). E and (α, r1 + r2). E

are identified (i.e. are strongly equivalent), and thus should correspond to the same
denotation in the the metric model, or else full abstraction with respect to equality
could not be shown. One possible solution is to map components such as (α, r1). E +
(α, r2). E to denotations of the form (α, r1 + r2)M(E), and prevent sets of the form
(α, r1)M(E) ∪ (α, r2)M(E) from occurring in the metric model.

The above restriction can be achieved by imposing the following reactiveness condition
on sets similar to [12].

Definition 5.2 Let X ⊆ (A× IR>0)×P , where P is a set. Then X is said to satisfy the
reactiveness condition if, for any p, q ∈ (A× IR>0)×P where p = (α, r)p̃ and q = (α, r̃)q̃,
if p, q ∈ X then either p̃ 6= q̃ or p = q.

We can now introduce a series of metric spaces (Pn, dn), n ∈ IN, where we let Pfr denote
the powerset operator restricted to the finite subsets satisfying the reactiveness condition.

Definition 5.3 Let (Pn, dn) n = 0,1 . . . be a collection of metric spaces defined induc-
tively by P0 = {p0}, d0(p, q) = 0, and

Pn+1 = {p0} ∪ Pfr

(
(A× IR>0)× Pn

)
,

where dn+1(p, p0) = dn+1(p0, p) = 1 for p 6= p0, and otherwise dn+1(p, q) is the Hausdorff
distance between sets p = X ⊆ (A × IR>0) × Pn and q = Y ⊆ (A × IR>0) × Pn induced
by the distance dn+1(x, y) between points x ∈ X, y ∈ Y .

Again, it follows by induction that (Pn, dn) is a metric space for each n ∈ IN, and as before
we put Pω =

⋃
n Pn, dω =

⋃
n dn and define (P, d) as the completion of (Pω, dω). Moreover,

a straightforward adaptation of the techniques of [1] yields the following theorem, where
∼= denotes isometry.

Theorem 5.1 P ∼= {p0} ∪ Pfr

(
(A× IR>0)× P

)
.

6 Denotational Semantics for PEPA

We have thus obtained P as a solution of a domain equation, and can now give denota-
tional semantics for PEPA. We begin by defining semantic operators on P .

130 Marta Kwiatkowska and Gethin Norman

Definition 6.1 The degree of a component p ∈ P is defined inductively by putting
deg(p0) = 0, deg(p) = n if p ∈ Pn \ Pn−1 for some n ≥ 1, and deg(p) = ∞ other-
wise. We then say a component p is finite if deg(p) = n for some n ∈ IN and infinite
otherwise.

Thus, each p ∈ P is either finite, in which case p = p0 or it is a finite set satisfying the
reactiveness condition and whose elements are of degree at most deg(p), or it is infinite,
in which case p = limn→∞ pn, 〈pn〉n Cauchy, with each pn of degree n.

We now define the operators⊕, / and .
L
/ on P to model choice, hiding and cooperation;

this is done inductively on the degree of elements of P . Before we can do this, we need
to define the apparent rate of action type α for all elements of Pω which will be needed
to model cooperation.

Definition 6.2 For any α ∈ A and p ∈ Pω we define the apparent rate of action type
α in P , denoted rα(p), as follows: if p = p0 then put rα(p) = 0 for all α ∈ A; otherwise,
p =

⋃k
i=1{(αi, ri)pi} for some k ∈ IN, (αi, ri) ∈ A × IR>0 and pi ∈ Pω for all 1 ≤ i ≤ k,

and in this case we put rα(p) =
∑

αi=α ri.

The definition of the semantic operator of choice now follows.

Definition 6.3 Let p ∈ P , X, Y ∈ Pfr((A × IR>0) × Pn), 〈pn〉n and 〈qn〉n Cauchy
sequences of finite components and L ⊆ A. Define the choice operator ⊕ on P by
induction on degree as follows. For the base case put p ⊕ p0 = p0 ⊕ p = p. For the
induction step, let X, Y ∈ Pn+1, i.e. by construction:

X =
k⋃

i=1

{(αi, ri)Xi} and Y =
m⋃

j=1

{(α̃j, r̃j)Yi}

for some (αi, ri),(α̃j, r̃j) ∈ A × IR>0 and Xi, Yj ∈ Pn for all 1 ≤ i ≤ k and 1 ≤ j ≤ m,
and define:

X ⊕ Y = {(αi, ri)Xi | 1 ≤ i ≤ k where αi 6= α̃j or Xi 6= Yj for all 1 ≤ j ≤ m}
∪{(α̃j, r̃j)Yi | 1 ≤ j ≤ m where α̃j 6= αi or Yj 6= Xi for all 1 ≤ i ≤ k}
∪{(αi, ri + r̃j)Xi | 1 ≤ i ≤ k, 1 ≤ j ≤ m where αi = αj and Xi = Yj}.

Finally, define (limi→∞ pi)⊕ (limj→∞ qj) = limk→∞(pk ⊕ qk).

Intuitively, the three clauses in the definition of X⊕Y above are needed to ensure that
reactiveness is preserved. The first two clauses select all the elements of X and Y such
that their union will satisfy the reactiveness condition, whereas the third clause combines
the remaining elements of X and Y into a set satisfying the reactiveness condition by sum-
ming up the rates of activities which have the same action type and successor component.
Recall that this is needed for full abstraction. For example, if X = {(α, r1)p}∪{(β, r2)q}
and Y = {(α, r3)p} then X ∪ Y and X ⊕ Y are identified by the strong equivalence. We
do not allow X ∪ Y as a valid denotation, but instead we take:

X ⊕ Y = {(α, r1 + r3)p} ∪ {(β, r2)q}
and it is easy to see that X ⊕ Y satisfies reactiveness condition.

We now define the operators / (hiding) and .
L
/ (cooperation). To ensure their well-

definedness on P , i.e. that the reactiveness condition is preserved, we shall make use of

Metric Denotational Semantics for PEPA 131

the ⊕ operator. For convenience, for any {xi | 1 ≤ i ≤ k} we introduce the following
notation:

⊕{xi | 1 ≤ i ≤ k} def
= x1 ⊕ x2 . . .⊕ xn.

We now proceed with the remaining operators. There is a commonality between the
definitions, in that they are roughly in three parts: we first show how to combine elements
of P , then lift the operators to sets, and then finally we cater for the infinite processes
by combining limits of two Cauchy sequences.

Definition 6.4 Let p ∈ P , X,Y ∈ Pfr

(
(A× IR>0)× Pn

)
, 〈pn〉n and 〈qn〉n Cauchy se-

quences of finite components and L ⊆ A.

(Hiding) For the base case put p0/L = p0, and for induction put

X/L = ⊕{x/L |x ∈ X},

where each x ∈ X is by definition of the form x = (α, r)X̃ for some (α, r) ∈ A × IR>0

and X̃ ∈ Pn, and we can define:

((α, r)X̃)/L =

{
(τ, r)(X̃/L) if α ∈ L
(α, r)(X̃/L) if α 6∈ L

Finally, put (limi→∞ pi)/L = limi→∞(pi/L).

(Cooperation) We first define .
L
/ on singleton elements of Pn+1, that is, elements of

the form (α, r)X̃ where (α, r) ∈ A× IR>0 and X̃ ∈ Pn by putting:

((α, r)X̃) .L/p0 =

{
(α, r)(X̃.

L
/p0) if α 6∈ L

p0 if α ∈ L,

and

p0
.
L
/((α, r)X̃) =

{
(α, r)(p0

.
L
/X̃) if α 6∈ L

p0 if α ∈ L.

Now lift the above to sets, i.e. for any Y ∈ Pn+1 put:

((α, r)X̃).L/Y = (α, r)(X̃.
L
/Y) and Y .

L
/((α, r)X̃) = (α, r)(Y .

L
/X̃).

Next if {(α, r)X̃} ∈ Pn+1 and {(α, r̂)Ỹ } ∈ Pn+1, define an auxiliary operator
(XY)
.
L
/ :

((α, r)X̃)
(XY)
.
L
/ ((α, r̂)Ỹ) = (α, R)(X̃.

L
/Ỹ) where R =

r

rα(X)

r̂

rα(Y)
min{rα(X),rα(Y)}.

We are now in a position to define .
L
/on all elements of P as follows:

p0
.
L
/p0 = p0, X.

L
/p0 = ⊕{x.

L
/p0 |x ∈ X} p0

.
L
/X = ⊕{p0

.
L
/x |x ∈ X}

and

X.
L
/Y = ⊕{{x.

L
/Y |x ∈ X, x = (α, r)X̃ and α 6∈ L}

∪{X.
L
/y | y ∈ Y, y = (α, r)Ỹ and α 6∈ L}

∪{x
(XY)
.
L
/ y |x ∈ X, y ∈ Y, x = (α, r1)X̃, y = (α, r2)Ỹ and α ∈ L}}.

132 Marta Kwiatkowska and Gethin Norman

Finally, define (limi→∞ pi).L/(limj→∞ qj) = limk→∞(pk
.
L
/qk).

We now investigate the continuity properties of the semantic operators defined above.
Continuity (at least on guarded terms i.e. terms in which every constant is prefixed) is
needed to ensure the existence of limits which model recursive components, and one would
expect continuity to hold for PEPA operators. For example, if 〈pi〉i and 〈qj〉j are Cauchy
sequences in P , then ⊕ was defined by (limi→∞ pi) ⊕ (limj→∞ qj) = limk→∞(pk ⊕ qk).
This is well defined only if the limit of 〈pk ⊕ qk〉k exists. If ⊕ is continuous, then for all
n,m ∈ IN:

d(pn ⊕ qn, pm ⊕ qm) ≤ d(pn, pm) + d(qn, qm)

and since 〈pi〉i and 〈qj〉j are Cauchy, we have 〈pk ⊕ qk〉k is Cauchy and thus it can be
shown that the limit of 〈pk ⊕ qk〉k exists. We begin by considering ⊕; unfortunately, in
general ⊕ is not continuous, as can be seen from the counter-example in Figure 3.

s1 s3s2r rr
? ?r r?rαr1

α α
r2 r3

? ??r r rβ
r

γ
r̃

β
r

s1 ⊕ s3 s2 ⊕ s3

?

?

r r
r
r

α
r1 + r3

β
r

�
�

�
�	

@
@

@
@Rrr

rr? ?

α α
r2 r3

γ
r̃

β
r

Figure 3 Counter-example to continuity of ⊕.

Observe that by definition of the metric d: d(s1, s2) = 1
2
(1
R
|r1 − r2|+ 1) while

d(s1 ⊕ s3, s2 ⊕ s3)

= max
{

1

2

(
1

R
|(r1 + r3)− r2|+ 1

)
,
1

2

(
1

R
|(r1 + r3)− r3|+

1

2

1

R
|r − r|

)}
=

1

2
max

{
1

R
|(r1 + r3)− r2|+ 1,

1

R
|r1|

}
=

1

2

(
1

R
|(r1 + r3)− r2|+ 1

)
since by definition R > r1 and thus 1 >

1

R
|r1|.

Therefore, if r1 > r2 we have |(r1 + r3)− r2| > |r1 − r2|, and thus

d(s1 ⊕ s3, s2 ⊕ s3) > d(s1, s2)

from which it follows that⊕ is not continuous. It should be noted that the above situation
does not arise under guarded recursion. For reasons similar to the above it follows that
hiding is not continuous either.

Metric Denotational Semantics for PEPA 133

Continuity of ⊕ and / can be guaranteed in the restricted setting of those elements
of P for which union and hiding preserve the reactiveness condition, i.e. X ∪ Z and
Y ∪Z, {x/L |x ∈ X} and {y/L | y ∈ Y } must satisfy the reactiveness condition. By the
definition of the Hausdorff distance it can be shown that

d(X ⊕ Z, Y ⊕ Z) ≤ d(X, Y) and d(X/L, Y/L) ≤ d(X, Y)

and hence ⊕ and / are continuous. It should be noted that this restriction corresponds
to imposing deterministic choice at the level of syntax, i.e. components of the form
(α, r1). E + (α, r2). F are disallowed.

The difficulty with continuity of cooperation is of a different nature. In general, .
L
/

is not continuous due to the fact that relative probabilities are incorporated into the
operational semantics. More precisely, this happens when the activity rate is of the
form:

R =
r1

rα(E)

r2

rα(F)
min(rα(E),rα(F)).

However, if X,Y and Z ∈ Pω are such that Z is (unweighted) passive with respect to
the components X and Y , that is, rα(Z) ≥ rα(X), rα(Y) for all actions α, then it can be
shown that .

L
/ is continuous in this restricted setting.

Lemma 6.1 For any X, Y and Z ∈ Pω such that X ∪ Z and Y ∪ Z satisfy the reac-
tiveness condition and rα(Z) ≥ rα(X), rα(Y) (and the same similarly holds for all the
subcomponents of X, Y and Z) we have:

d(X.
L
/Z, Y .

L
/Z) ≤ d(X, Y).

Proof. The proof is by induction on n = max{deg(X), deg(Y)}+deg(Z). If n = 0, or
one or more of X, Y and Z equals p0, the result is trivial. Now suppose the lemma holds
for n = k, and consider n = k + 1.

From Lemma 4.1,
d(X.

L
/Z, Y .

L
/Z) ≤ 1

and thus if d(X, Y) = 1 the result follows. It therefore remains to consider the case of
d(X, Y) < 1. From the definition of d and the Hausdorff distance, in this case X and Y
must be of the form:

X =
k⋃

i=1

{(αi, ri)Xi} and Y =
k̃⋃

j=1

{(αj, r̃j)Yj} (1)

for some k, k̃ ∈ IN, where (αi, ri), (αj, r̃j) ∈ A × IR>0 and Xi, Yj ∈ Pω for all 1 ≤ i ≤ k

and 1 ≤ j ≤ k̃. Moreover using the Hausdorff distance we have the following property:

∀ 1 ≤ i ≤ k, ∃1 ≤ j ≤ k̃ such that d(X,Y) ≥ d((αi, ri)Xi, (αj, r̃j)Yj) and αi = αj. (2)

On the other hand, if we consider any z ∈ X.
L
/Z, by definition of .

L
/ there are three cases

to consider, and using (1) and the fact X ∪ Z is reactive, the cases are of the following
form:

(i) z = (αi, ri)(Xi
.
L
/Z), then from (1), (2) and the fact Y ∪ Z is reactive,

z̃ = (αj,r̃j)(Yj
.
L
/Z) ∈ Y .

L
/Z,

134 Marta Kwiatkowska and Gethin Norman

where d(X, Y) ≥ d((αi, ri)Xi, (αj, r̃j)Yj) and αi = αj. By the definition of .
L
/ and d:

d(z, z̃) = d((αi,ri)(Xi
.
L
/Z), (αj,r̃j)(Yj

.
L
/Z))

=
1

2

(
1

R
|ri − r̃j|+ d(Xi

.
L
/Z, Yj

.
L
/Z)

)
≤ 1

2

(
1

R
|ri − r̃j|+ d(Xi, Yj)

)
by induction

= d((αi, ri)Xi, (αj, r̃j)Yj) ≤ d(X, Y) by (2).

(ii) z = X.
L
/((α, r)Z̃), then, z̃ = Y .

L
/((α, r)Z̃) ∈ Y .

L
/Z, and we have:

d(z, z̃) = d((α, r)(X.
L
/Z̃), (α, r)(Y .

L
/Z̃))

=
1

2

(
1

R
|r − r|+ d(X.

L
/Z̃, Y .

L
/Z̃)

)
=

1

2

(
1

2
d(X.

L
/Z̃, Y .

L
/Z̃)

)
≤ 1

2
d(X, Y) by induction

≤ d(X, Y).

(iii) z = ((αi, ri)Xi)
(XZ)
.
L
/ ((αi, r)Z̃), then similarly to case (i):

z̃ = ((αj, r̃j)Yj)
(XZ)
.
L
/ ((αi, r)Z̃) ∈ Y .

L
/Z,

and moreover, by definition of .
L
/

z = (αi, R)(Xi
.
L
/Z̃) where R =

ri

rαi
(X)

r

rαi
(Z)

min{rαi
(X), rαi

(Z)} (3)

z̃ = (αi, R̃)(Yj
.
L
/Z̃) where R̃ =

r̃j

rαj
(Y)

r

rαi
(Z)

min{rαj
(Y), rαi

(Z)}. (4)

By hypothesis, rα(Z) ≥ rα(X), rα(Y), and thus substituting this into (3) and (4) we
reach:

d(z, z̃) = d((αi, R)(Xi
.
L
/Z̃), (αi, R̃)(Yj

.
L
/Z̃))

=
1

2

(
1

R
|ri

r

rαi
(Z)

− r̃j
r

rαi
(Z)

|+ 1

2
d(Xi

.
L
/Z̃, Yj

.
L
/Z̃)

)

=
1

2

(
1

R

r

rαi
(Z)

|ri − r̃j|+ d(Xi
.
L
/Z̃, Yj

.
L
/Z̃)

)

≤ 1

2

(
1

R
|ri − r̃i|+ d(Xi

.
L
/Z̃, Yj

.
L
/Z̃)

)
since

r

rαi
(Z)

≤ 1

≤ 1

2

(
1

R
|ri − r̃i|+ d(Xi, Yj)

)
by induction

= d((αi, ri)Xi, (αj, r̃j)Yj) ≤ d(X, Y) by (2).

Metric Denotational Semantics for PEPA 135

Therefore, for all z ∈ X .
L
/Z there exists z̃ ∈ Y .

L
/Z such that d(z,z̃) ≤ d(X,Y), and by

definition of the Hausdorff distance (see Definition 5.1):

d(z, Y .
L
/Z) ≤ d(X, Y) for all z ∈ X.

L
/Z.

Moreover, by symmetry

d(z̃, X.
L
/Z) ≤ d(X, Y) for all z̃ ∈ Y .

L
/Z.

Therefore, again by definition of the Hausdorff distance, d(X.
L
/Z, Y .

L
/Z) ≤ d(X, Y) as

required. ut

We now define denotational metric semantics for the set of components C of PEPA. As
usual, we introduce the semantic map M : C → (E → P) parameterised by environments
E . Environments, ranged over by ρ, are simply assignments of variables X to components
and are defined by E = X → P . They are needed to handle free variables. The meaning
M(E) of a component E is a function from environments to components.

Definition 6.5 Define M : C → (E → P) inductively on the structure of the components
of PEPA as follows:

M((α, r). E)(ρ) = {(α, r)M(E)(ρ)}
M(E + F)(ρ) = M(E)(ρ)⊕M(F)(ρ)

M(E .
L
/F)(ρ) = M(E)(ρ) .L/M(F)(ρ)

M(E/L)(ρ) = M(E)(ρ)/L

M(X)(ρ) = ρ(X)

M(A)(ρ) = lim
k→∞

Mk(A)(ρ)

where if A
def
= E, then M0(A)(ρ) = p0 and

Mk+1(A)(ρ) = M(E)(ρ{Mk(A)(ρ)/A}).

In addition, under the assumption of guardedness of the terms it can be shown that:

M(A)(ρ) = λX.M(E)(ρ{X/A}),

i.e. recursion is interpreted as the usual (unique) fixed point. It should be pointed out
that guardedness is sufficient to rule out the failure of continuity.

Finally, we state the full abstraction theorem for PEPA. Its import is that PEPA com-
ponents are equivalent with respect to strong equivalence precisely if their denotations
coincide. The proof is a direct result of the lemma below.

Lemma 6.2 For all E ∈ C, S ∈ C/ ∼= and α ∈ A, q[E,S,α] = r > 0 if and only if

(α, r)p ∈M(E)(ρ) where p =
⋃

F∈S M(F)(ρ)
def
= M(S)(ρ).

Proof. The proof is by induction on the structure of E.

. E = (β, r̃)F ; then M(E)(ρ) = {(β, r̃)M(F)(ρ)}. On the other hand, q[E,S,α] =
r > 0 if and only α = β, r = r̃ and F ∈ S. Moreover, by the inductive hypothesis
on F and the definition of ∼= (see Definition 2.2) it is straightforward to show
M(S)(ρ) = M(F)(ρ), and thus this case is proved.

136 Marta Kwiatkowska and Gethin Norman

. E = E1 + E2; then it is straightforward to show that for any S ∈ C/ ∼= and α ∈ A
q[E,S,α] = q[E1,S,α] + q[E2,S,α]. Hence, consider any S ∈ C/ ∼= and α ∈ A
such that q[E,S,α] = r > 0. There are three cases: q[E2,S,α] = r1 > 0 and
q[E,S,α] = r2 > 0 such that r1 + r2 = r; q[E1,S,α] = r and q[E2,S,α] = 0; and
q[E1,S,α] = 0 and q[E2,S,α] = r . We will just consider the first case. By induction
on the structure of E, the lemma holds for E1 and E2. Therefore, q[E1,S,α] = r1 > 0
if and only if (α, r1)p1 ∈ M(E1)(ρ) and p1 = M(S)(ρ), and q[E2,S,α] = r2 > 0 if
and only if (α, r)p2 ∈ M(E2)(ρ) and p2 = M(S)(ρ). Therefore, p1 = p2 and by
definition of⊕ (see Definition 6.3) and the reactiveness condition, q[E1,S,α] = r1 > 0
and q[E2,S,α] = r2 > 0 if and only if (α, r1 + r2)p1 ∈ M(E1)(ρ) ⊕M(E2)(ρ) =
M(E1 + E2)(ρ) = M(E)(ρ) and p1 = M(S)(ρ) as required.

The other cases follow similarly, for example the case when E = E1
.
L
/E2, uses induction

on E1 and E2 together with the transition rules and the definition of the semantic operator
.
L
/. ut

Theorem 6.1 Let ∼= be the strong equivalence relation of PEPA, and M the semantic
map defined above. Then for all E,F ∈ C

E ∼= F if and only if M(E)(ρ) = M(F)(ρ).

7 Conclusion

We have succeeded in constructing a fully abstract metric denotational model for the
PEPA calculus, thus transferring the compositionality principle to a different level of
abstraction. This paper should not be viewed as an end in itself, but rather as the
first step towards finding “the right” compositional representation for languages such as
PEPA.

We have omitted the discussion of unspecified rates, and instead concentrated on dis-
cussing the issues arising from an attempt to model the PEPA calculus with respect to
the strong equivalence. Unspecified rates introduce relative probabilities of the transi-
tions, and thus would suffer from problems similar to the difficulty with continutity of
cooperation we discussed earlier. As an example, consider the following denotations of
components: s̃1 = (α, 1>)p0 and s̃2 = (α, 2>)p0. Then, the probability of both s̃1 and s̃2

performing the action α and then terminating is 1. Therefore, since they exhibit exactly
the same behaviour, we want the distance between these denotations of components to be
zero. However, if we consider the denotations s̃1⊕ s̃ and s̃2⊕ s̃ where s̃ = (α,>)(α,>)p0,
then the probabilities of s̃1⊕ s̃ and s̃2⊕ s̃ performing the action α and then terminating
are

1>
rα(s̃1 ⊕ s̃)

=
1>

1>+ 1>
=

1

2
and

2>
rα(s̃2 ⊕ s̃)

=
2>

1>+ 2>
=

2

3

respectively. Thus, since s̃1⊕ s̃ and s̃2⊕ s̃ have different behaviour, the distance between
them should be greater than zero. This implies

d(s̃1 ⊕ s̃, s̃2 ⊕ s̃) > 0 = d(s̃1, s̃2)

and thus the operator ⊕ is not continuous. A possible solution might be to introduce
explicit probabilistic distributions into the domain equation, as e.g. done in [12], but
it is not yet clear whether this can be achieved in a compositional fashion. The above

Metric Denotational Semantics for PEPA 137

mentioned difficulties with the continuity / contractivity deserve further study. They
arise due to the nature of the exponential distribution, and in particular properties of
composition of thereof, and also from the inclusion of relative probabilities of perform-
ing actions when calculating the rates of transitions. In addition, we intend to study
the relationship of our model and that generated by the PEPA workbench, as making
comparisons with other representations should give a better insight into their respective
advantages and disadvantages.

A number of different stochastic process algebras have been proposed recently. This
includes: Extended Markovian Process Algebra (EMPA) [3], Markovian Process Algebra
(MPA) [2] and Markovian Timed Performance Algebra (MTIPP) [8]. The syntax and
operational semantics of these stochasic process algebras is very similar to that of PEPA,
the main difference being in the semantics of the parallel or cooperation operator. These
similarities imply that our metric model for PEPA, with some alteration, could be used to
give metric denotational semantics for (non-probabilistic kernels of) the other stochastic
process algebras as well.

References

[1] J.W.de Bakker and J.I. Zucker. Processes and the denotational semantics of concur-
rency, Information and Control, 1/2:70-120, 1984.

[2] M. Bernardo, L. Donatiello and R. Gorrieri. Modelling and analysing concurrent
systems with MPA, in U. Herzog and M. Rettelbach (editors), Proceedings of the
2nd workshop on performance modelling, Technical Report, University of Erlangen,
Germany, 1994.

[3] M. Bernardo, L. Donatiello and R. Gorrieri. Integrating performance and functional
analysis of concurrent systems with EMPA, Technical Report UBLCS-95-14, De-
partment of Computer Science, University of Bologna, 1996.

[4] A. Edalat. Domain theory in stochastic processes, Proc. of the IEEE Annual Sym-
posium on Logic in Computer Science (LICS), 1995.

[5] A. Giacalone, C.-C. Jou and S.A. Smolka. Algebraic reasoning for probabilistic con-
current systems, in M.Broy and C.B.Jones (editors), Proc. IFIP TCS2 Working
Conference on Programming Concepts and Methods, pages 443-458, 1989.

[6] S. Gilmore, J. Hillston, R.Holton and M.Rettelbaum. Specifications in stochastic
process algbra for a robot control problem, International Journal of Production
Research, 1995.

[7] P. Harrison and J. Hillston. Exploiting quasi-reversible structures in Markovian Pro-
cess Algebra, The Computer Journal, vol.38, no.7, 1995.

[8] H. Hermanns and M. Rettelbach. Semantics, equivalences and axioms for MTIPP,
in U. Herzog and M. Rettelbach (editors), Proceedings of the 2nd workshop on per-
formance modelling, Technical Report, University of Erlangen, Germany, 1994.

[9] J. Hillston. A compositional approach to performance modelling, CUP, 1996.
[10] J. Hillston and U. Mertsiotakis. A simple time scale decomposition technique for

stochastic process algebras, The Computer Journal, vol.38, no.3, 1995.
[11] B. Jonsson and Wang Yi. Compositional testing preorders for probabilistic processes,

Proc. IEEE Logic in Computer Science (LICS), 1995.

138 Marta Kwiatkowska and Gethin Norman

[12] M. Kwiatkowska and G. Norman. Probabilistic metric semantics for a simple lan-
guage with recursion, in W. Penczek and A. Szalas (editors), Proc. Mathematical
Foundations of Computer Science (MFCS), LNCS, 1113:419-430, Springer, 1996.

[13] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing, Information
and Computation, 94:1-28, 1991.

[14] K.G. Larsen and A. Skou. Compositional verification of probabilistic processes, Proc.
CONCUR’92, LNCS, 630:456-471, Springer, 1992.

[15] R. Milner. Communication and concurrency, Prentice Hall, 1989.
[16] R. Segala. Modelling and verification of randomized distributed real-time systems,

PhD Thesis, Massachusetts Institute of Technology, 1995.
[17] K. Seidel. Probabilistic communicating processes, TCS, 152:219-249, 1995.
[18] R.J.van Glabbeek, S.A. Smolka, B. Steffen and C. Tofts. Reactive, generative and

stratified models of probabilistic processes, Proc. 5th IEEE Int. Symp. on Logic in
Computer Science (LICS), pages 130-141, 1990.

[19] S. Yuen, R. Cleaveland, Z. Dayar and S.A. Smolka. Fully abstract characterizations
of testing preorders for probabilistic processes, Proc. CONCUR’94, LNCS, 836:497-
512, Springer, 1994.

	Introduction
	Performance Evaluation Process Algebra (PEPA)
	Defining Metric Denotational Semantics
	A Metric for Simple Components of PEPA
	A Domain Equation for PEPA
	Denotational Semantics for PEPA
	Conclusion

