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Abstract. We introduce a Stochastic Process Algebra called PEPA∞ph,
based on Hillston’s PEPA. PEPA∞ph is suitable for describing and analysing
the performance of certain kinds of queues, such as Ph/Ph/c and M/Ph/1.
The activities of PEPA∞ph components have durations given by phase-type
distributions. To overcome the state space explosion that arises when
solving the models through the underlying Markov process we instead
use the Matrix-Geometric Method. Though the method proposed here
can only be applied to a fragment of PEPA∞ph because of its dependence
on the structure of the system, we can solve models with potentially in-
finitely many customers queued (an unbounded buffer), in contrast to
the approaches used in SPAs such as PEPA, TIPP and EMPA.

1 Introduction

Conventional Stochastic Process Algebras, to mention PEPA [1], only allow du-
rations of activities to be exponentially distributed. Though this has several
advantages, such as a straightforward representation for distributions (the du-
ration of an activity can be simply represented by a single real number denoting
the rate of the activity) and efficiency of calculation (performed through the
single-parameter functional form without the need for tabulation), the restric-
tion on the duration to be exponentially distributed is often unrealistic. Many
systems, e.g. M/En/1 queues, require distributions other than exponential. An-
other difficulty is the rapid increase in the size of the state space of the underlying
Markov process (known as the state space explosion problem). We attempt to
overcome these problems by formulating a Stochastic Process Algebra based on
PEPA [1], called PEPA∞

ph, which allows us to specify systems with potentially
infinitely many customers in an infinite queueing system with durations given
as phase-type distributions, and calculating the steady-state probability of the
models that arise from a fragment of PEPA∞

ph through the Matrix-Geometric
Method (MGM). Thus, the MGM enables us to avoid the explicit construction
of the generator matrix of the underlying Markov chain (hence tackling the state
space explosion problem), while at the same time allowing us to consider systems
with potentially infinitely many customers (hence also infinitely many states if
fully unfolded), combined with the generality that phase-type distributions may
offer.

J. Hillston and M. Silva (Eds.), 7th Process Algebras and Performance Modelling Workshop
(PAPM’99), pages 41–62, University of Zaragoza, 1999.



The queueing systems we can analyze in PEPA∞
ph are scheduled according to

first in-first out and have structure including the following classes:

1. queueing models with a Quasi-Birth-Death structure: in these queues the
transitions can only happen between the adjacent levels/groups of states in
the model,

2. queueing models with failure, subject to the restriction that if a processor
fails, all the customers in the system are assumed to be lost and all other
transitions only happen between the adjacent levels/groups of states,

3. a bulk service queue, in which the server can serve up to k customers at a time
and all other transitions only happen between the adjacent levels/groups of
states.

We allow durations of activities to be given in terms of phase-type distri-
butions as defined by Neuts [2], which generalises the conventional approach
employing only exponentials. In contrast to exponential distributions (which
are closed under minimum only), the class of phase-type distributions has very
strong closure properties: they are closed under maximum, minimum and convo-
lution. This allows us to define the synchronisation, choice and prefixing of two
PEPA∞

ph components respectively as the maximum, minimum and convolution
of the phase-type distributions of their activities. The activities in the composed
system thus have phase-type distributed durations. Another advantage of phase-
type distributions is that any other distribution defined on the interval [0,∞)
can be approximated by arbitrarily accurate phase-type distributions [3].

The Matrix-Geometric Method (see e.g. [3,4,2]) relies on identifying two por-
tions (parts) within the structure of the underlying Continuous Time Markov
Chain (state transition system): the initial portion and the repetitive portion.
The initial portion (which must be finite) has a non-regular structure and each
component in it must be represented in detail. The repetitive portion has a reg-
ular structure and can be represented in SPAs as a composition of several com-
ponents. In MGM the generator matrix is decomposed into submatrices, with
each one of them representing the transition rates in a particular area within a
given portion, or between them. The size of the state space in MGM, even if the
system is infinite, is reasonably small compared with the size of the generator
matrix of the Markov process. Through solving the system of submatrices by
using MGM we obtain the steady-state probability, which we can use to further
compute the performance measures of the model.

The mainstream SPAs (PEPA [1], TIPP [5] and EMPA [6]) are extensions
of CCS that allow only exponentially distributed durations and differ in the ap-
proach to synchronisation. There has been recent work extending SPAs to allow
general distributions including [7,8,9] and [10]. Furthermore, in [11] an approach
for analysing the performance of a plain-old telephone system is introduced by
defining a stochastic process algebra that separates the advance of time and
action occurrences, where time can be described by a continuous phase-type
distribution. The induced state space is very large, and semantic equivalence
checking is introduced to minimise the size of the generator matrix. The Matrix-
Geometric Method is used in [12] to solve infinite stochastic Petri Nets which



have an underlying Markov chain of the Quasi-Birth-Death type. In [13] a multi-
server queue with non-preemptive heterogeneous priority structures is analyzed
and the MGM is used to derive the stationary distribution of the queue and
waiting times.

The work of Mitrani, Ost and Rettelbach [14] has similarities with the ap-
proach presented here: both modify SPAs to model queueing systems with poten-
tially infinitely many customers queued. Our approach differs in that we extend
PEPA as opposed to TIPP; the two differ as far synchronization is concerned. In
addition, we allow phase-type distributions and solve the model through MGM,
whereas in [14] only exponential distributions are used in conjunction with the
spectral expansion method of [15].

The organisation of the paper is as follows. The next section gives a brief
overview of phase-type distributions and their properties. In Section 3 the Matrix-
Geometric Method is presented, including the calculation of steady-state prob-
abilities and some performance measures. In Section 4 we introduce the process
language PEPA∞

ph, its syntax and operational semantics. Section 5 describes the
fragment of PEPA∞

ph for which the steady-state probabilities can be calculated
via MGM and the algorithm for deriving the submatrices for PEPA∞

ph compo-
nents in this class. The last section includes the conclusion and further work.

2 Phase-type distributions

We assume familiarity with Markov processes and probability theory, see e.g.
[3].

The family of phase-type distributions is widely used in algorithmic probabil-
ity. The advantage of phase-type distributions is their generality and versatility,
which permits the calculation of the performance measures of stochastic models
with a high degree of accuracy. Combined with the use of the Matrix Geometric
Method [2], the exact and detailed characteristics of most of these models can
be obtained relatively easily.

We now overview phase-type distributions following [2,3]. Consider an (m +
1)-state Markov process. Assume that states 1, 2, . . . ,m are transient and that
state m + 1 is an absorbing state. Define αi, i = 1, 2, . . . ,m + 1, to be the
probability that the process is started in state i and define α = [α1, α2, . . . , αm]
(a row vector).

Define Tij ≥ 0, for i 6= j and i ≥ 1, j ≤ m, to be the rate of transition
from state i to state j. T 0

i denotes the rate of transition from state i to the
absorbing state m+1, T 0 the column vector of these rates and Tii is defined by
Tii = −T 0

i −
∑

i 6=j Tij , for 1 ≤ i ≤ m.
If F (x) is the probability distribution of the time to absorption in the (m+1)-

state with the infinitesimal generator

Q =
(

T T 0

0 0

)
(1)



and initial probability vector [α αm+1], then the pair (α,T) is a representation of
F (x). Furthermore, the probability distribution F (x) and the associated density
function f(x) are given by:

F (x) = 1− α exp(Tx) e and f(x) = α exp(Tx) T 0 for x ≥ 0

respectively, where e is a column vector of 1’s.
We consider the matrix T+T 0α to be irreducible; then (α,T) is an irreducible

representation.

Definition 1. A continuous time phase-type distribution (Ph-distribution) is
the distribution of the time until absorption in an absorbing Markov process.

Erlang (i.e. convolutions of identical exponential distributions), hyper-expo-
nential, hypo-exponential and Coxian distributions are examples of phase-type
distributions [2].

Phase-type distributions have many important properties [16] that make
them useful in the evaluation of performance models: they are closed under
convolution, maximum and minimum.

We shall require the following definition of a Ph-distribution resulting from
a Ph-distribution being selected in a state with probability r ∈ (0, 1).

Definition 2. For any phase-type distribution F (•) with representation (α,T)
and r ∈ (0, 1), let r ·F (•) denote the phase-type distribution with representation
(α, r ·T).

3 Matrix-Geometric Methods

3.1 Introduction

The Matrix-Geometric Method [16,3,4] allows us to deal with the models whose
activities are not necessarily exponentially distributed, while at the same time
overcoming the problem of the rapid growth of the state space introduced by
the need to explicitly construct the generator matrix of the underlying Markov
process.

The MGM can only be applied if the system can be decomposed into two
parts: the initial portion and the repetitive portion. For example, queueing sys-
tems with possibly an unbounded number of customers queued have such a struc-
ture: typically there exists an integer i? such that from that i? onwards the be-
haviour of the system for all i ≥ i? (where i is the number of queued customers)
is the same as the behaviour of the system for i?. Such similarity need not hold
for 0, 1, . . . , i?− 1. Thus we can represent the system by storing the information
for the initial (also called boundary) portion 0, 1, . . . , i? − 1 and the repeating,
or repetitive, portion (i?, i? + 1 . . .).

More precisely, consider a M/Ph/1 queueing model, where the arrival rate is
exponentially distributed and the service rate belongs to phase-type distributions.
We construct a Markov process (called a vector-state process) to solve this model



as follows. The (infinitely many) states are represented as pairs (i, j) where
i ≥ 0 is an unbounded integer representing the number of queued customers, and
j, 1 ≤ j ≤ m is the phase of the service. The set of states {(i, 1), (i, 2), . . . , (i, m)},
for i ≥ 0 is called the level i of the system. Then, there exists an integer i? such
that the levels 0 up to i? − 1 form the boundary, and those for i ≥ i? are
repeating. Transitions between the repeating states have the property that the
rates from state (i, j) to state (i + k, j′) for 0 ≤ k < ∞ and 0 ≤ j, j′ ≤ m, are
independent of the value of i for i ≥ i?. For simplicity, we let the initial portion
(levels 0, . . . , i? − 1 as defined above) to be represented by level zero, and for
the repetitive portion (levels i?, i? + 1, . . .) by levels 1, 2, . . . The repetition of
the state transitions for vector processes implies a geometric form where scalars
are replaced by matrices. Such Markov Processes are called Matrix-Geometric
Processes.

3.2 Matrix-Geometric Solution

The theory of Matrix-Geometric Solutions was developed by Neuts [2] to solve
the stationary state probabilities for the vector state Markov processes with
repetitive structure.

Consider the generator matrix Q of a continuous time Markov process with
the structure shown below:

Q =


B0,0 B0,1 0 0 0 . . .
B1,0 B1,1 A0 0 0 . . .
B2,0 B2,1 A1 A0 0 . . .

...
...

...
...

...
. . .


The matrix Q is composed of submatrices: B0,0, a square matrix of dimension

(m1−m); B0,1, a matrix of dimension (m1−m)×m; Bk,0, where k ≥ 1, matrices
of dimension m × (m1 − m); with all the remaining submatrices square with
dimension m, where m1 ≥ m.

The off-diagonal elements of Q are non-negative. The diagonal elements are
all strictly negative and the row sums of Q equal zero.

The 0th level of the process associated with Q are the m1 − m boundary
states. The first level are the next m states, and likewise for the second level,
and so on.

For simplicity, we will only consider the generator matrix Q with the following
structure, where Bk,1 = Ak for all k ≥ 1:

Q =



B0,0 B0,1 0 0 0 . . .
B1,0 A1 A0 0 0 . . .
B2,0 A2 A1 A0 0 . . .

...
...

...
...

...
. . .

Bk,0 Ak Ak−1 Ak−2 Ak−3 . . .
...

...
...

...
... . . .





Each submatrix contains the transition rates for a particular area. In the initial
portion:

– B0,0 contains the transition rates within level 0
– B0,1 contains the transition rates from level 0 to level 1
– Bk,0 contains the transition rates from level k in the repetitive portion to

level 0.

In the repetitive portion:

– A0 contains the transition rates from level i to level i + 1, for i ≥ 1
– A1 contains the transition rates within level i, for i ≥ 1
– Ak contains the transition rates from level i to level i− k, for i > k ≥ 1.

Let πi = [πi,1, πi,2, . . . , πi,m] for i ≥ 1, π0 = [π0,0, π0,1, . . . , π0,m1−m−1], and
π = [π0, π1, π2, . . .].

The equation for the repeating states of the process is given (in block matrix
form) by:

∞∑
k=0

πj−1+k ·Ak = 0 for j = 1, 2, . . .

The value of πj (vector of stationary probabilities) is a function only of the
transition rates between states with j − 1 queued customers and states with j
queued customers. Since these transition rates do not depend on j, then there
is a constant matrix R such that:

πj = πj−1 ·R for j = 1, 2, . . .

and the values of πj for j = 1, 2, . . . have the matrix-geometric form:

πj = π1 ·Rj−1. (2)

Simplification yields:
∞∑

k=0

Rk ·Ak = 0.

Solving this matrix polynomial gives the solution matrix R and then we can
calculate the stationary probabilities for the repeating states. The matrix R is
called the rate matrix and it is the minimal solution of the matrix polynomial.

For the initial portion we have:

π0 ·B0,0 + π1 ·B0,1 = 0

and
∞∑

k=1

πk−1 ·Bk,0 +
∞∑

k=1

πk ·Ak = 0



Now using (2) we can rewrite the above in matrix form as:

(π0, π1)

 B0,0 B0,1
∞∑

k=1

Rk−1 ·Bk,0

∞∑
k=1

Rk−1 ·Ak

 = 0. (3)

This equation is not sufficient to determine the probabilities π0 and π1, so using
the normalisation condition we obtain:

π0 · e +

(
π1 ·

∞∑
k=1

Rk−1

)
· e = π0 · e +

(
π1 · (I−R)−1

)
· e = 1,

where e is a column vector of 1′s. The above equation together with equation
(3) yields a unique solution. For any matrix B define the matrix B∗ to be the
matrix B with its first column eliminated and let the row vector [1, 0] consist of
a 1 followed by a suitable number of zeros, then the solution for the boundary
states can be given by solving:

(π0, π1)

 e B0,0
∗ B0,1

(I−R)−1 · e
[ ∞∑

k=1

Rk−1 ·Bk,0

]∗ ∞∑
k=1

Rk−1 ·Ak

 = [1, 0].

The above method can also be applied (approximately) to the case of finite
models, as outlined in [12]. Under many circumstances, this method provides a
good approximation for the steady-state probabilities of a finite model. When
certain quasi-reversibility properties hold, the solution is even exact.

3.3 Computation of R

Assume that the generator matrix is irreducible. The necessary condition for
this is that the matrices B0,0 and A1 are nonsingular, which means that we can
calculate the inverse of the matrices.

The computation of the matrix R is by means of the iterative procedure. Start
with the initial iteration R(0) = 0, and calculate successive approximations as:

R(n + 1) = −
∞∑

j=0,j 6=1

Rj(n) ·Aj ·A1
−1, n = 0, 1, . . .

The sequence {R(n)}n is entry-wise nondecreasing and converges monotonically
to a nonnegative matrix R. This follows from the fact that−A−1

1 is a nonnegative
matrix. The number of iterations needed for convergence increases as the spectral
radius of R increases.

We terminate the iteration and return with the solution of R when

‖ R(n + 1)−R(n) ‖∞≤ ε,

where ε is a given small constants.



In many cases the matrices Ak are all zero for some k satisfying k ≥ 3.
We note that the above algorithm for computing R can often converge very

slowly, and hence a large number of iterative steps may be required. However,
in the restricted case of Quasi-Birth-Death processes, we can greatly reduce the
number of iterations through using the algorithm of Latouche and Ramaswami
[17] for calculating R (see for example [4,18]).

3.4 Calculating performance measures

Having calculated the matrix R, we can compute a range of performance mea-
sures for the model directly from R. For example:

– the expected number N of queued customers:

N = π1 · (I−R)−2 · e

– the conditional probabilities {qk(j)} of being in phase j given the system is
at level k, for k ≥ 0 and 1 ≤ j ≤ m:

qk(j) = (π∗j )
−1 · πkj

– the probability Jk of having k jobs in the queue, for k ≥ 1:

Jk = π1 ·Rk−1 · (I−R)−1 · e.

4 The Process Language

We now introduce our process language based on PEPA [1]. We call this language
PEPA∞

ph, where the superscript ∞ denotes that we can model queues with an
unbounded number of customers and ph stands for phase-type distributions.

4.1 Syntax and Operational Semantics

In PEPA∞
ph an activity is represented by a pair (a, ph), where a ∈ Act , Act

is a countable set of all possible action types, and ph is a random variable
representing the duration of a. We denote by τ a distinguished symbol for internal
activity not included inAct . We assume that ph belongs to the class of phase-type
distributions and is represented by (α,T) as described in Section 2, or ph = >
denoting a passive activity of [1].

We now describe the syntax of PEPA∞
ph terms. Let a ∈ Act ∪ {τ}, S ⊆ Act

and p ∈ (0, 1). A valid term E of PEPA∞
ph must be of the form

E ::= P ‖S Q(0)

where P is a PEPA1 term, Q(0) is a term belonging to the class QA(i) of infinite
queue terms, and ‖S is the synchronization operator. We describe the classes
PEPA and QA(i) of terms in turn.
1 Roughly speaking, the language PEPA∞ph subsumes PEPA, with the only differences

arising through the interpretation of the synchronization operator.



The subset PEPA of terms is given by

P ::= (a, ph).P | P + P | P p⊕P | P ‖S P | P/S | C.

The meaning of the operators is based on those of PEPA [1], where we refer the
reader for more detail. The prefix (a, ph).P , action choice P +R and hiding P/S
are as in PEPA, except we allow phase-type distributions instead of exponentials.
The probabilistic choice operator, P p⊕R, is not included in PEPA, but can be
modelled there by using passive activities. Thus, P p⊕R represents a system
which may behave either as the component P or as R, where the chosen activity
is decided internally, with P chosen with probability p and R with probability
1 − p. The synchronization operator P ‖S R realises the same intuition as the
PEPA cooperation ��

S
, i.e. the synchronization is at the rate of the slowest,

except that we allow phase-type distributions, and so can take the maximum of
the random variables directly. As is standard in PEPA, we assume the existence
of a countable set of constants C. The meaning of a constant C

def= P is given by
the defining equation P .

Now we turn our attention to the infinite queue terms QA(i). Let i be an
unbounded integer variable. Intuitively, each QA(i) term models the behaviour
of an infinite queue parametrised by the variable i recording the number of
customers, where k? denotes the maximum number of customers that can be
served at any time. Formally, the syntax of the sublanguage QA(i) is given by:

Q(i) ::= if i = 0 then
Q0

else if i = 1 then
Q1

...
else if i = j − 1 then

Qj−1

else
(a, ph).Q(i + 1)u (b, ph′).Q(i)u (c, ph′′).Q(i− k?)uQj

where u stands for either + or p⊕ , j ≥ k? ≥ 1, Q0, Q1, . . . , Qj−1 ∈ Σj
Q(i) and

Qj ∈ Σj−1
Q(i). We use Σk

Q(i), for any k ∈ IN, to denote the subset of PEPA∞
ph terms

restricted to Q(i) terms only for 0 ≤ i ≤ k, defined by the following syntax:

Q ::= (a, ph).Q(i) | Q + Q | Q p⊕Q

where i ∈ {0, . . . , k}.
In the above, the terms Q0, Q1, . . . , Qi?−1 correspond to transitions within

the initial portion and to the repetitive portion, Qj corresponds to transitions
from the repetitive to the initial portion, and for any i ≥ j, the action a denotes a
transition from level i to level i+1, b a transition within level i and c a transition
from level i to level i− k?. Formally, each term Q(i) in the sublanguage QA(i)
denotes an infinite set of defining equations for constants

Q(0) def= · · · , . . . , Q(i) def= · · · , . . .



We note that the value of i?, the start of the repetitive portion, can be com-
puted by reachability analysis on the subcomponents of QA(i) terms, namely
Q(0), . . . , Q(j). In many cases the value of i? can simply be read from the spec-
ification and often i? = j.

We now illustrate the above syntax by means of an example.

Example 1. Consider a queueing model with failure, subject to the constraint
only one customer is served at a time (k? = 1) and if the processor fails, all the
customers in the system are lost. The state transition diagram for this queue is
given in Figure 1, where the duration for arrival, service and failure are given
by the phase-type distributions ph1, ph2 and ph3 respectively.

ph2

ph3

ph1

ph2

ph3

ph1

ph2

ph1

ph2

ph3

. . .

1ph

Fig. 1. State transition diagram for queueing model with failure

Using PEPA∞
ph this queue can be specified as follows:

Queue(i) def= if i = 0 then
(arrive, ph1).Queue(1)

else
(arrive, ph1).Queue(i + 1) + (serve,>).Queue(i− 1)
+(fail ,>).Queue(0)

Server def= (serve, ph2).Server + (fail , ph3).Server
System def= Server ‖{serve, fail} Queue(0).

By simple reachability analysis we find that i? = 1.

4.2 Operational Semantics

The operational semantics of PEPA∞
ph is given in Figure 2 below. Similarly to

the semantics for PEPA [1], the transition rules of Figure 2 enable us to view
a PEPA∞

ph component as a multi-graph whose nodes are components and arcs
represent the possible transitions between them, as derived by the above rules.

We shall require the notion of the derivative set [1] of a node of the multi-
graph corresponding to a PEPA∞

ph component, which we now introduce.

Definition 3. The derivative set of a PEPA∞
ph component E, denoted ds(E), is

the smallest set of PEPA∞
ph components satisfying the following conditions:



Prefix

(a, ph).P
(a,ph)

−−−→ P

Action Choice

P
(a,ph)

−−−→ P̃

P + R
(a,ph)

−−−→ P̃

R
(a,ph)

−−−→ R̃

P + R
(a,ph)

−−−→ R̃

Probabilistic Choice

P
(a,ph)

−−−→ P̃

P p⊕R
(a,p·ph)

−−−→ P̃

R
(a,ph)

−−−→ R̃

P p⊕R
(a,(1−p)·ph)

−−−→ R̃

Synchronization

P
(a,ph)

−−−→ P̃

P ‖S R
(a,ph)

−−−→ P̃ ‖S R

(a 6∈ S)
R

(a,ph)

−−−→ R̃

P ‖S R
(a,ph)

−−−→ P ‖S R̃

(a 6∈ S)

P
(a,ph1)

−−−→ P̃ R
(a,ph2)

−−−→ R̃

P ‖S R
(a,ph12)

−−−→ P̃ ‖S R̃

(a ∈ S) where ph12 = max(ph1, ph2)

Hiding

P
(a,ph)

−−−→ P̃

P/S
(a,ph)

−−−→ P̃ /S

(a 6∈ S)
P

(a,ph)

−−−→ P̃

P/S
(τ,ph)

−−−→ P̃ /S

(a ∈ S)

Constant

P
(a,ph)

−−−→ P̃

C
(a,ph)

−−−→ P̃

(C
def
= P )

Fig. 2. Operational Semantics of PEPA∞
ph.

– if E
def= E0 then E0 ∈ ds(E)

– if Ei ∈ ds(E) and Ei

(a,ph)
−−−→ Ej then Ej ∈ ds(E).

As in PEPA [1] we will require that P ‖S Q(0) is ergodic and complete (there are
no passive activities). We note that necessary conditions for this to hold include:
P is cyclic, S ⊆ Act(P )∩Act(Q(i)) (where for any component R, Act(R) is the
set of actions that appear in the multi-graph of R), and Q(i∗) ∈ ds(Q(0)).



5 Derivation of the Structure of the Generator Matrix

All mainstream Stochastic Process Algebra languages, i.e. EMPA [6], TIPP [5]
and PEPA [1], advocate the use of the generator matrix Q of the underlying
Markov process for calculating the performance measures of the system under
study. Thus, a component C is converted into the generator matrix Q, based on
the rates of the activities as specified in the original component, and the steady-
state distribution Π(·) of the system may be found by solving the (normalizing
and global balance) equations:∑

Ci∈ds(C)

Π(Ci) = 1 and ΠQ = 0.

This vector of steady-state probabilities is used as input to a range of formulas
which allow to evaluate the performance of the model under study. As we rely
on the Matrix-Geometric Method, we will not construct the generator matrix Q
for a finite approximation of the system, and instead derive for each PEPA∞

ph

component a family of (in general smaller) submatrices of the generator matrix
Q as described in Section 3. Then we will apply the algorithm in Section 3 for
computing the matrix R, which will be used as input for performance charac-
teristics.

For the remainder of this section we fix a PEPA∞
ph component E = P ‖S Q(0),

and hence fix values for k? (the number of customers that can be served at any
one time) and i? (the start of the repetitive portion).

The first step involves calculating the following sets of derivatives of P ‖S

Q(0). We say P ′ is reachable from P if P ′ ∈ ds(P ).

1. Construct the set init of components of the form P ′ ‖S Q(i) that is reachable
from P ‖S Q(0), for some component P ′ and some i ≤ i? (the components
in the initial portion).

2. Construct the set rep of components P ′ such that P ′ ‖S Q(i?) is reachable
from P ‖S Q(0) (the components in the repetitive portion).

We note that, for any i? + i in the repetitive portion where i ≥ 1, the set of
components P ′ such that P ′ ‖S Q(i? + i) is reachable from P ‖S Q(0) will equal
rep.

Before we introduce our algorithm to construct the above sets we require the
following definition. For any set of components P and ∼∈ {<,=, >} let

Reach(P,∼ i?) def= {P ′ ‖S Q(i) | ∃R ∈ P such that R
(a,ph)
−−−→ P ′ ‖S Q(i) and i ∼ i?}.

Intuitively, to find the sets init and rep we must perform reachability analysis
of the multi-graph of P ‖ Q(0). More precisely, using the repetitive structure
of PEPA∞

ph terms, we step through the multi-graph inductively, one transition
step at a time, finding the reachable components of the required form and also
keeping track of all the components we have visited until the sets init and rep



settle (in other words, the fixed point is reached). Furthermore, this process ter-
minates after a finite number of steps since P ‖ Q(0) is ergodic.

Algorithm 1
Input: A PEPA∞

ph component P ‖S Q(0).
Output: init ⊆ ds(P ‖S Q(0)) and rep ⊆ ds(P ).

Initialization: init0 = {P ‖S Q(0)}, rep0 = ∅ and inf 0 = ∅.
Repeat For k ≥ 0, let

initk+1 = Reach(initk, < i?) ∪ Reach(repk, < i?) ∪ Reach(inf k, < i?) ∪ initk

repk+1 = Reach(initk,= i?) ∪ Reach(repk,= i?) ∪ Reach(inf k,= i?) ∪ repk

aux = Reach(initk, > i?) ∪ Reach(repk, > i?) ∪ Reach(inf k, > i?) ∪ inf k

inf k+1 = {P ′ ‖S Q(i) |P ′ ‖S Q(i) ∈ aux and P ′ ‖S Q(i?) 6∈ repk+1}.

Until initk+1 = initk, repk+1 = repk and inf k+1 = ∅.
Return: init = initk and rep = {P ′ |P ′ ‖S Q(i?) ∈ repk}.

We illustrate the working of Algorithm 1 using Example 1, recalling that
k? = i? = 1. Let S = {serve, fail} then the algorithm computes the sets:

init0 = {Server ‖S Queue(0)}
rep0 = ∅
inf 0 = ∅
init1 = {Server ‖S Queue(0)}
rep1 = {Server ‖S Queue(1)}
inf 1 = ∅
init2 = {Server ‖S Queue(0)}
rep2 = {Server ‖S Queue(1)}
inf 2 = ∅

and hence init = {Server ‖S Queue(0)} and rep = {Server}.
The sets of derivatives calculated by Algorithm 1 serve as input to Algo-

rithm 2 given below. The aim of this algorithm is to compute a family of subma-
trices (denoted with the help of apostrophe, e.g. B′

1,0). These are not directly
the submatrices of the generator matrix Q as described in Section 3, but in-
stead descriptors for these submatrices, in the sense that a single location in
such a matrix is used as a place holder for the transition rate, which can be a
phase-type distribution of any size. The actual phase-type distributions can be
“plugged into” the descriptor submatrices, taking care to match the sizes cor-
rectly with the help of Kronecker product ⊗, thus giving rise to submatrices of
the generator matrix Q.

Recall that we take the minimum of the durations (phase-type distributions)
arising from action choice2.
2 If the matrices corresponding to the phases are of the same size, the minimum reduces

to summation of the matrices.



Algorithm 2
Input: Two finite sets of PEPA∞

ph and PEPA components init and rep.
Output: Matrices B′

0,0, B′
0,1, B′

k,0 for k ≥ 1, A′
0, A′

1 and A′
k?+1.

Step 1 Enumerate the sets init and rep such that init = {E0
1 , . . . , E0

m0
} and

rep = {P1, . . . , Pm}.
Step 2 Construct the m0 ×m0 matrices B′

0,0 and B′
1,0, m0 ×m matrices B′

k,0

for k ≥ 1, and m×m matrices A′
0, A′

1 and A′
k?+1 as follows, where below

we let a ranges over the set of actions Act and min{∅} = 0:

B′
0,0(i, j) = min{ph | E0

i

(a,ph)
−−−→ E0

j }

B′
0,1(i, j) = min{ph | E0

i

(a,ph)
−−−→ Pj ‖S Q(i?)}

B′
k,0(i, j) = min{ph | Pi ‖S Q(k + i?)

(a,ph)
−−−→ E0

j }

A′
0(i, j) = min{ph | Pi ‖S Q(i?)

(a,ph)
−−−→ Pj ‖S Q(i? + 1)}

A′
1(i, j) = min{ph | Pi ‖S Q(i?)

(a,ph)
−−−→ Pj ‖S Q(i?)}

A′
k?+1(i, j) = min{ph | Pi ‖S Q(i? + k?)

(a,ph)
−−−→ Pj ‖S Q(i?)}.

If we consider Example 1 again, recall that k? = i? = 1 and Algorithm 1
gave us the sets init = {Server ‖S Queue(0)} and rep = {Server}. Then, the
matrices (all of size 1× 1) generated by Algorithm 2 are:

B′
0,0(1, 1) = min{ph | Server ‖S Queue(0)

(a,ph)
−−−→ Server ‖S Queue(0)}

= 0

B′
0,1(1, 1) = min{ph | Server ‖S Queue(0)

(a,ph)
−−−→ Server ‖S Queue(1)}

= ph1

B′
1,0(1, 1) = min{ph | Server ‖S Queue(1)

(a,ph)
−−−→ Server ‖S Queue(0)}

= min{ph2, ph3}

B′
k,0(1, 1) = min{ph | Server ‖S Queue(k + 1)

(a,ph)
−−−→ Server ‖S Queue(0)}

= ph3

A′
0(1, 1) = min{ph | Server ‖S Queue(1)

(a,ph)
−−−→ Server ‖S Queue(2)}

= ph1

A′
1(1, 1) = min{ph | Server ‖S Queue(1)

(a,ph)
−−−→ Server ‖S Queue(1)}

= 0

A′
2(1, 1) = min{ph | Server ‖S Queue(2)

(a,ph)
−−−→ Server ‖S Queue(1)}

= ph2.

for k ≥ 2.



As mentioned above, the matrices calculated by Algorithm 2 are only descrip-
tors of the submatrices of the generator matrix Q. They can be used to generate
these submatrices by matching the sizes of the phase distributions. Suppose
ph1 = (α1,T1), ph2 = (α2,T2), ph3 = (α3,T3) and ph4 = min{ph2, ph3} =
(α4,T4), then we calculate the submatrices of the generator matrix for Exam-
ple 1 by performing the following steps3.

1. Calculate A0, A1 and A2 according to the following equations:

A0 = T 0
1α1 ⊗ IT4

A1 = (T1 ⊗ IT4) + (IT1 ⊗ IT3 ⊗T2) + (IT1 ⊗ IT2 ⊗T3)
A2 = IT1 ⊗ IT3 ⊗ T 0

2α2.

2. Calculate B0,0, B0,1, B1,0 and Bk,0 for k ≥ 2. First, since the matrices Bk,0

and B1,0 need to be of equal size, we construct a new phase-type distribution
ph5, of the same size as ph4 and equivalent to ph3, by multiplying T3 by the
identity matrix of T2 and calculating T 0

5. We now construct the matrices
according to the following equations:

B0,0 = T1

B0,1 = T 0
1α1 ⊗ α4

B1,0 = IT1 ⊗ T 0
4

Bk,0 = IT1 ⊗ T 0
5.

6 Examples

We now illustrate the use of PEPA∞
ph and our method of analysis by means

of modelling representative queueing systems. For simplicity, we have restricted
choice to action choice (+). However, the case of probabilistic choice (or a mix-
ture of the two types of choice) can be handled similarly, except that the resulting
phase-type distributions in the matrices constructed by Algorithm 2 will have
to be amended according to the transition rules.

6.1 Quasi-Birth-Death Queue

Consider the ph/ph/1 queueing model, which is an infinite queue of arrivals
with arrival and service durations given by the phase-type distributions ph1 and
ph2 respectively; it is a Quasi-Birth-Death process. Its PEPA∞

ph description is as
follows:

Queue(i) def= if i = 0 then
(arrive, ph1).Queue(1)

else
(arrive, ph1).Queue(i + 1) + (serve,>).Queue(i− 1)

Server def= (serve, ph2).Server
System def= Queue(0) ‖serve Server .

3 Recall that by definition of min: α4 = α2 ⊗ α3 and T4 = (T2 ⊗ IT3) + (IT2 ⊗T3).



In this case we have i? = k? = 1. Now, using Algorithm 1 we find that init =
{Server ‖{serve} Queue(0)} and rep = {Server}. Next we use Algorithm 2 to
construct the family of descriptor matrices which determine the submatrices of
the actual generator matrix Q and find that the only non-zero matrices are as
shown below:

B′
0,1 = A′

0 = (ph1) and B′
1,0 = A′

2 = (ph2).

Now supposing ph1 = (α1,T1) and ph2 = (α2,T2) we calculate the the subma-
trices of the generator matrix Q can be calculated as follows:

1. Calculate A0, A1 and A2 according to the following equations:

A0 = T 0
1α1 ⊗ IT2

A1 = (T1 ⊗ IT2) + (IT1 ⊗T2)
A2 = IT1 ⊗ T 0

2α2.

2. Calculate B0,0, B0,1 and B1,0 according to the following equations:

B0,0 = T1

B0,1 = T 0
1α1 ⊗ α2

B1,0 = IT1 ⊗ T 0
2.

6.2 Bulk Service Queue

A bulk service queue, in which the server can serve up to k customers at a time,
with duration given by the phase-type distribution ph2 and arrival duration
given by ph1, is described by:

Queue(i) def= if i = 0 then
(Queue, ph1).Queue(1)

else if i = 1 then
(Queue, ph1).Queue(2) + (serve,>).Queue(0)

...
else if i = k? then

(Queue, ph1).Queue(k? + 1) + (serve,>).Queue(0)
else

(Queue, ph1).Queue(i + 1) + (serve,>).Queue(i− k?)
Server def= (serve, ph2).Server
System def= Server ‖{serve} Queue(0).

In this case i? = k? = k where k is the number of customers served at a time.
Using Algorithm 1 and Algorithm 2 we have:

init = {Server ‖{serve} Queue(0), . . . , Server ‖{serve} Queue(k? − 1)},
rep = {Server}



and the non-zero matrices:

B′
0,0 =


0 ph1 0 . . . 0

ph2 0 ph1 . . . 0
...

...
...

. . .
...

ph2 0 0 . . . ph1

ph2 0 0 . . . 0

 , B′
0,1 =


0
0
0
...

ph1


B′

1,0 = (ph2 0 0 . . . 0),
B′

2,0 = (0 ph2 0 . . . 0),
...

...
...

B′
k?,0 = (0 0 0 . . . ph2),

A′
0 = (ph1) and A′

k?+1 = (ph2).

Now supposing ph1 = (α1,T1) and ph2 = (α2,T2), the submatrices of the
generator matrix Q can be derived by the following steps.

1. Calculate A0, A1 and Ak?+1 according to the equations:

A0 = T 0
1α1 ⊗ IT2

A1 = (T1 ⊗ IT2) + (IT1 ⊗T2)
Ak?+1 = IT1 ⊗ T 0

2α2.

2. Calculate B0,0, B0,1, B1,0 and Bk,0 for 2 ≤ k ≤ k? according to the
following equations:

B′
0,0 =


T1 T 0

1α1 ⊗ α2 0 . . . 0
IT1 ⊗ T 0

2 T1 ⊗ IT2 + IT1 ⊗T2 T 0
1α1 ⊗ IT2 . . . 0

...
...

...
. . .

...
IT1 ⊗ T 0

2 0 0 . . . T 0
1α1 ⊗ IT2

IT1 ⊗ T 0
2 0 0 . . . T1 ⊗ IT2 + IT1 ⊗T2



B0,1 =


0
0
0
...

T 0
1α1 ⊗ IT2


B1,0 = (IT1 ⊗ T 0

2 0 0 . . . 0)
B2,0 = (0 IT1 ⊗ T 0

2 0 . . . 0)
...

...
...

Bk?,0 = (0 0 0 . . . IT1 ⊗ T 0
2).

6.3 Multimedia Stream

This model is taken from [19], where it was stated that it would be desirable
to analyse it using an unbounded buffer and Erlang distributed timeouts. The
basic multi-media stream consists of the following components: a source process
which generates a continuous sequence of packets, a medium (the channel) which
supports asynchronous communication, and the sink which displays the packets.



Furthermore, the timer monitors delays between displays. In [19] this stream is
both specified and analyzed using PEPA, and hence only a finite approximation
of the model is considered. Here we use PEPA∞

ph, and hence can represent the
channel as an unbounded buffer of packets, as given below:

Channel(i) def= if i = 0 then
(transmit ,>).Channel(1)

else
(transmit ,>).Channel(i + 1) + (receive, ph1).Channel(i− 1)

Source def= (transmit , ph2).Source
Sink0

def= (receive,>).Sink1

Sink1
def= (receive,>).Sink2 + (display , ph3).Sink0 + (timeout ,>).Sink0

Sink2
def= (receive,>).Sink3 + (display , ph3).Sink1 + (timeout ,>).Sink2

Sink3
def= (display , ph3).Sink2 + (timeout ,>).Sink1

Timer def= (tick , ph4).Tick
Tick def= (timeout , ph5).Timeout

System def= (Source ‖ Sink0 ‖{timeout} Timer) ‖{transmit,receive} Channel(0).

For this example i? = k? = 1 and by Algorithm 1 we have sets of derivatives:

init = {Source ‖Sink0 ‖Timer ‖Channel(0), Source ‖Sink0 ‖Tick ‖Channel(0),
Source ‖Sink1 ‖Timer ‖Channel(0), Source ‖Sink1 ‖Tick ‖Channel(0),
Source ‖Sink2 ‖Timer ‖Channel(0), Source ‖Sink2 ‖Tick ‖Channel(0),
Source ‖Sink3 ‖Timer ‖Channel(0), Source ‖Sink3 ‖Tick ‖Channel(0)}

and

rep = {Source ‖Sink0 ‖Timer , Source ‖Sink0 ‖Tick ,
Source ‖Sink1 ‖Timer , Source ‖Sink1 ‖Tick ,
Source ‖Sink2 ‖Timer , Source ‖Sink2 ‖Tick ,
Source ‖Sink3 ‖Timer , Source ‖Sink3 ‖Tick}.

Then using Algorithm 2 we generate the matrices:

B′
0,1 = A′

0 = ph2 · I,

B′
0,0 = A′

1 =



0 ph4 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ph3 0 0 ph4 0 0 0 0
ph5 ph3 0 0 0 0 0 0
0 0 ph3 0 0 ph4 0 0
0 0 ph5 ph3 0 0 0 0
0 0 0 0 ph3 0 0 ph4

0 0 0 0 ph5 ph3 0 0





B′
10 = A′

2 =



0 0 ph1 0 0 0 0 0
0 0 0 ph1 0 0 0 0
0 0 0 0 ph1 0 0 0
0 0 0 0 0 ph1 0 0
0 0 0 0 0 0 ph1 0
0 0 0 0 0 0 0 ph1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Similarly to the other examples we can then calculate the actual submatrices of
the generator matrix.

6.4 Calculating Performance Measures

The performance characteristics for the examples discussed in Subsections 6.1–
6.3 can be computed as follows:

1. Calculate π0 and π1 using (3) (Subsection 3.2).
2. Calculate R using the iteration method or the Latouche Ramaswami algo-

rithm [17] in the case of QBD queues (Subsection 3.3).
3. Calculate the required performance measures of the model (Subsection 3.4).

As demonstrated by examples, the proposed method enables us to consider
the effect of using different phase-type distributions in the same model, without
having to repeatedly perform reachability analysis of the underlying multi-graph.
For example, if the queue is M/E2/1 or M/H2(k)/1 or M/M/1, we only redefine
the values of ph1 and ph2 and calculate the submatrices of the generator matrix
directly (that is, we need only apply Algorithm 1 and Algorithm 2 once).

We have compared PEPA (using the PEPA Workbench [20] and Matlab
solver) against our Matlab implementation for calculating the steady state
probabilities through MGM, and obtained the following results. In all cases the
results of PEPA and PEPA∞

ph agree up to three decimal places. For each case
we have computed R by the iteration method (with ε = 2.4× 10−5). For QBD
models we have also used the Latouche and Ramaswami (LR) algorithm, with
the same accuracy, but this method cannot be applied to more general queues.

Quasi-Birth-Death Queue (Subsection 6.1) We have considered the following
phase-type distributions:

– exponential arrivals and hyper-exponential services with two phases.
In PEPA, approximating the infinite queue with 20 customers, the size of the
generator matrix is 43× 43 and the number of the floating point operations
equals 10699. On the other hand, when the MGM method is used, the largest
matrix is 3 × 3, 26 iterations are need to calculate R and the number of
floating point operations is 2882, which reduces to 2470 and 3 iterations
when the LR algorithm is used.



– exponential arrivals and hypo-exponential services.
The number of floating point operations in PEPA (with 50 customers) equals
18925 and the size of the generator matrix is 103 × 103. Using the MGM
method the largest matrix is 3 × 3, 2310 floating point operations are per-
formed and 27 iterations are required to calculate R, which reduces to 1990
floating point operations and 4 iterations using LR.

The queueing process with failure (Example 1) We assume that if the
processor fails all customers are lost, arrivals are exponential, and services and
failures are hypo-exponential. In PEPA, approximating with 50 customers, the
Markov generator matrix is 103×103 and the number of floating point operations
is 18996. For the MGM method, the largest matrix is 5 × 5 and 13988 floating
point operations and 24 iterations are needed.

The bulk service queue (Subsection 6.2) We work with exponential rate of
arrival and exponential service rate. In PEPA (approximating with 50 customers)
the number of floating point operations equals 13707 flops and the generator
matrix is of size 52 × 52. For the MGM method 437 floating point operations
and 4 iterations are required, and the largest matrix is 3× 3.

Multi-media stream (Subsection 6.3) We use the distributions proposed in
[19]: all durations are exponential except timeout which is Erlang. In PEPA
(approximating with 50/100 channels) the generator matrix has size 1040×1040,
respectively 2040 × 2040, and 2506175/25909274 floating point operations are
required to calculate the steady state probabilities. Using the MGM method, the
largest matrix is of size 40 × 40, 973322 floating point operations are required
and 17 iterations to calculate R.

7 Conclusion

Though performance evaluation of many systems can be achieved with the help of
languages or models that only allow for the activity durations to be represented
as exponential distributions, this restriction is not always realistic. In this paper
we have introduced a new SPA language PEPA∞

ph based on PEPA [1], which can
be used to analyse performance of queueing models subject to certain restrictions
on the structure and with the property that the duration of activities is modelled
by phase-type distributions.

We use the PEPA∞
ph language to describe representative examples of systems

with potentially infinitely many customers. We formulate algorithms which, for
a given valid PEPA∞

ph component, calculate descriptors for submatrices of the
generator matrix Q of the underlying Markov process. Our method permits
the evaluation of the performance characteristics of the model by “plugging in”
different phase-type distributions for each activity, without having to re-compute
the submatrices of the generator matrix. The state space explosion is avoided by



using the Matrix-Geometric Method. First experimental results comparing the
performance of the PEPA workbench with our approach are very encouraging.

Our method has so far been developed for a restricted class of queueing
systems, as exemplified by the model studied. However, we note that there is a
similarity between the construction in all the examples. We hope to be able to
develop our framework further, so that it can be applied to more general classes
of queueing models.

Finally, we note that an extension of TIPP similar to ours has been presented
in [14], except that the spectral expansion method [15] is used instead of MGM.
It would be interesting to compare the two methods as it is mentioned in [18]
that the spectral expansion method is more efficient than MGM.
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