
Probabilistic Model Checking and Power-Aware Computing∗

Marta Kwiatkowska Gethin Norman David Parker
School of Computer Science, University of Birmingham

Birmingham, B15 2TT, UK

Abstract

Power-aware computing aims either to maximise the per-
formance of a system under certain constraints on its
power consumption and dissipation or, dually, to reduce
power consumption in order to meet desired performance
or throughput targets. This area is currently gaining impor-
tance due to the increasing usage of portable, mobile and
hand-held electronic devices. In this paper we illustrate the
applicability of probabilistic model checking, a formal ver-
ification technique for the analysis of systems which exhibit
stochastic behaviour, to the field of power-aware comput-
ing. We use the probabilistic model checking tool PRISM
on two case studies in this application domain: dynamic
power management and dynamic voltage scaling.

1 Introduction

In recent years, the world of computing has witnessed a shift
in emphasis from the traditional setting of servers, worksta-
tions and desktop machines towards embedded, ubiquitous
and pervasive computing. This move from wired to wire-
less computing and the resulting increased prominence of
devices such as handheld computers, wireless sensors and
biomedical appliances has made the issue of battery perfor-
mance and power savings a crucial one. As a result, much
research has been done in the area of low-power design,
power management and the balance between computation
and communication power. One approach which has gained
significant attention in the last few years issystem-level
power management, characterised by operating system con-
trolled power saving measures based on the observation of
application characteristics. Two distinct flavours of system-
level power management aredynamic power management
anddynamic voltage/frequency scaling.

Dynamic power management (DPM) is a way to save
energy in devices which, under operating system control,
can be switched either on and off or between severalpower
statesof varying power consumption. Due to the impor-
tance of the minimising power consumption in today’s em-
bedded systems, a lot of work has been initiated in both the

∗This work was supported by EPSRC grants GR/N22960 and
GR/S11107.

component manufacturing industry and the systems design
industry.

Dynamic voltage/frequency scaling (DVS/DFS) is used
in real-time embedded systems to achieve a compromise be-
tween battery life and performance. The technique is used
to schedule a number of tasks which must be executed pe-
riodically. Each task has an associated period and a worst-
case execution time. The voltage of the system can also be
varied during scheduling, which has the effect of reducing
the power consumption of the system. This will, however,
slow down the execution of the current task. The aim is to
schedule tasks and voltage changes in such a way that power
consumption is minimised whilst ensuring that all tasks are
executed within their deadlines.

In this paper, we illustrate the usefulness ofprobabilis-
tic model checkingas a technique for analysing the per-
formance of both of these two approaches to system-level
power management. A detailed account of the work con-
cerning DPM schemes appears in [4].

2 Probabilistic Model Checking and PRISM

Probabilistic model checking is a technique for the auto-
matic verification of finite state systems that exhibit prob-
abilistic behaviour. These include randomised algorithms,
which use probabilistic choices or electronic coin flipping,
and unreliable or unpredictable processes, such as fault-
tolerant systems or communication networks.

To perform probabilistic model checking, one first con-
structs a probabilistic model of the system which is to be
analysed. This model is usually a labelled transition system
which defines the set of all possible states that the system
can be in and the transitions which can occur between these
states, augmented with information about the likelihood that
each transition will take place.

Properties of the system which are to be verified are then
specified, typically in probabilistic temporal logic. These
allow reasoning about a wide range of properties such
as: “the probability of system shutdown eventually occur-
ring”; “the probability that the video frame will be deliv-
ered within 5ms”, or “the expected number of failures in
the first hour of operation of the system”. A probabilis-
tic model checker applies algorithmic techniques to analyse
the state space of the probabilistic model and ascertain nu-
merical values corresponding to these properties.



PRISM [3, 6] is a probabilistic model checker devel-
oped at the University of Birmingham. It supports anal-
ysis of three types of probabilistic models: discrete-time
Markov chains (DTMCs), continuous-time Markov chains
(CTMCs), and Markov decision processes (MDPs). These
probabilistic models are specified in the PRISM language,
based on the Reactive Modules formalism of Alur and Hen-
zinger [1]. The basic components of this language aremod-
ulesandvariables. A system is constructed as the parallel
composition of a set of modules. A module’s state is de-
termined by a set of finitely ranging variables and it’s be-
haviour is given by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and
the command describes a transition which the module can
make if the guard is true. A command is specified by defin-
ing the new values of the variables of that module. This
means that a module canread all of the variables in the
system but onlywrite to its own variables. In general, be-
haviour is probabilistic and a command takes the form:

<prob> : <action> + · · · + <prob> : <action>

where<prob> is a probability when the model is a DTMC
or MDP and a non-negative, real value (taken to be the pa-
rameter of an exponential distribution) when it is a CTMC.
In addition, the pair of square brackets at the start of a
guarded command can contain a label. Actions from differ-
ent modules with the same label take place synchronously.
See [6] for more details.

Properties of the models constructed in PRISM are ex-
pressed in a language which subsumes the well known prob-
abilistic temporal logics PCTL and CSL. PRISM has been
used to analyse a wide range of case studies, including prob-
abilistic algorithms for anonymity, contract signing, leader
election and consensus; and performance analysis of vari-
ous queueing systems, communication networks and manu-
facturing systems (see [6] for references).

3 Dynamic Power Management (DPM)

In this section, we outline how probabilistic model checking
has been used to provide a detailed analysis of the stochas-
tic DPM schemes of [7]. The approach of [7] is based on
constructing a CTMC model of a dynamic power manage-
ment system from which, for a given constraint, an optimi-
sation problem is constructed. The solution to this prob-
lem is the optimum randomised power management policy
satisfying this constraint. The system model is shown in
Figure 1 and comprises: a Service Provider (SP), which
represents the device under control; a Service Requester
(SR), which issues requests to the device; a Service Request
Queue (SRQ), which stores requests that are not serviced
immediately; and the Power Manager (PM), which issues
commands to the SP, based on observations of the system
and a stochastic DPM policy. Constraints placed on this

State Observations

Service Provider 
(SP)

Commands

Request 
Generator 

(SR)
Service Queue

(SRQ)

Power Manager (PM)

Figure 1. The system model

constraint policy

av. queue size6 5 if queue is full and SP is sleeping, then go to idle
if queue is empty and the SP is in idle, then

- go to sleep with probability 0.075140
- stay in idle with probability 0.924860

av. queue size6 1 if queue is full and SP is sleeping, then go to idle
if queue is empty and the SP is in idle, then

- go to sleep with probability 0.008963
- stay in idle with probability 0.991037

av. queue size6 0.1 if queue is full and SP is sleeping, then go to idle
if queue is empty and the SP is in idle, then

- go to sleep with probability 7.39e-04
- stay in idle with probability 0.999261

Table 1. Policies under varying constraints

system in order to derive an optimum policy take the form
of a bound on the average number of requests awaiting ser-
vice.

Model Construction.

We have designed generic models of the the DPM system in
PRISM and then used this model to construct an optimisa-
tion problem whose solution is the optimal policy. Table 1
shows our derived optimal policies for the 3 state device
from [7]. this calculation is done by generating the matrices
in PRISM and formulating and solving the linear optimisa-
tion problem in MAPLE symbolic solver. Once the optimal
policy is found, based on the generic description, we con-
struct a model of the system corresponding to this policy.
Figure 2 show the PRISM language description of the mod-
ule corresponding to the PM, operating under the second
DPM policy from Table 1.

module PM

pm : [0..1]; //0 - sleep to idle and1 - idle to sleep

[sleep2idle] q=QMAX → pm′=pm; // sleep to idle
// probabilistic choice when queue becomes empty
[serve] q=1 → 0.008963 : pm′=1; // go to sleep
[serve] q=1 → 0.991037 : pm′=0; // stay in idle
[serve] !q=1 → pm′=pm; // otherwise loop
[idle2sleep] pm=1 → pm′=0; // idle to sleep
[req] true → pm′=0; // resetp when queue no longer empty

endmodule

Figure 2. PRISM module of the PM



0 20 40 60 80
0

2

4

6

8

10

12

14

ex
pe

ct
ed

 q
ue

ue
 s

iz
e 

at
 ti

m
e 

T

T

constraint=10
constraint=5
constraint=1
constraint=0.1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 1

0 
re

qu
es

ts
 in

 th
e 

qu
eu

e 
by

 ti
m

e 
T

T

constraint=10
constraint=5
constraint=1
constraint=0.1

Figure 3. Analysis of different stochastic policies obtained with PRISM

performance performance measure inter-arrival time distribution
constraint exponential deterministic Erlang10 uniform Pareto

0.1 average queue size 0.099999 0.124273 0.120996 0.112271 0.0226561
average power consumption 0.960167 0.959464 0.959559 0.959812 0.9624347

1 average queue size 0.999999 1.244302 1.212106 1.125065 0.1297798
average power consumption 0.928068 0.921180 0.922088 0.924544 0.9525747

5 average queue size 4.999999 5.685810 5.602779 5.371931 0.8491042
average power consumption 0.785406 0.769478 0.771407 0.776775 0.8814583

Table 2. Average performance of different stochastic policies under various inter-arrival distributions

Model Analysis.

PRISM allows us to compute a wide range of performance
measures including: the average number of requests await-
ing service and the expected queue size within a given time
bound. In Figure 3 we have given some examples of the
results obtained with PRISM. In addition, more general dis-
tributions can be used to give a more realistic model of the
inter-arrival time of requests. Table 3 illustrates the perfor-
mance of this power manager under varying performance
constraints, when the arrival process also varies from the
ideal exponential ones. These numbers are computed using
steady state probabilities and, in the non-exponential cases,
the techniques presented in [2]. The results for the Pareto
distribution are in general much smaller than the other dis-
tributions which is due to the Pareto distribution’sheavy
tail, which means that, in the long run, many requests will
not arrive for a very long time, and hence in these cases the
SP will serve all pending requests, and then the system will
spend a long time with the queue empty.

4 Dynamic Voltage Scaling (DVS)

We have also used PRISM to model and analyse several
dynamic voltage scaling schemes taken from [5]. In the
classic model of real-time embedded systems, a set of tasks
T1,...Tn need to be executed periodically. Each taskTi

has an associated periodPi and worst-case execution time
(WCET) Ci. The taskTi is released everyPi time units
and is required to complete its execution before some dead-
line which is typically defined as the end of its period. A
real time scheduler must guarantee that tasks will meet their
deadline given that both the task set is schedulable and no
task exceeds its worst-case computation time.

The real-time DVS schedulers in [5] are based on the
following standard real-time schedulers:

• Rate Monotonic (RM) schedulers assign the task pri-
ority according to the periods - they always select the
task with the shortest period that is ready to run.

• Earliest-Deadline First (EDF) schedulers order tasks
by their deadlines, giving highest priority to the re-
leased task with the most immediate deadline.

As in [5], we assume that the task deadline equals the pe-
riod, scheduling and preemption overheads are negligible
and the tasks are independent.

The first schedulers that [5] consider simply extend RM
and EDF by selecting the lowest possible operating fre-
quency that will allow the scheduler to meet all the dead-
lines of the task set. The frequency is set statically (and are
therefore called “static”) and is only changed when the task
set is changed. In general, tasks are completed far sooner
than their worst case execution time and in [5] extensions
of RM and EDF are introduced which take advantage of
this fact. In particular, when a task uses less than its WCET,
the scheduler can use this fact to reduce the operating fre-
quency. Note that, when a task is released for execution we
do not know how much computation time it will require,
and therefore at this point the algorithms make the conser-
vative assumption that the task will require its worst case
execution time. However, when a task completes, one can
calculate the number of cycles that were not required by the
task, and hence at this time the algorithms recalculate the
frequency taking into account these unused cycles (hence
the term “cycle conserving”).



0 8 16 24 32 40 48 56
0

500

1000

1500

2000

T

E
xp

ec
te

d 
re

w
ar

d

static RM
cc RM
static EDF
cc EDF

(a) Small time scale

0 160 320 480 640 800 960 1120
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

T

E
xp

ec
te

d 
re

w
ar

d

static RM
cc RM
static EDF
cc EDF

(b) Large time scale

Figure 4. Expected energy consumption for four different DVS scheduling schemes over time

Model Construction.

We have modelled a processor with three operating frequen-
cies, 1, 0.75 and 0.5 and corresponding voltages of 5, 4 and
3. The task set is of size three with periodsP1=8, P2=10
andP3=14 and worst case execution timesC1=3, C2=3
andC3=1. To model the system in PRISM, we discretise
time and, to simplify the modelling process, the division of
one time unit is such that, for each of the possible frequen-
cies, the number of discrete time steps required by a task
to finish on its WCET is an integer. Furthermore, we sup-
pose that the completion time distribution of a task is uni-
formly distributed between 1 and its WCET. For further de-
tails on the constructed models see the PRISM website [6].
The constructed models are MDPs in order to capture both
probabilistic behaviour (the execution time of each task is
random since only a worst-case figure is known) and non-
determinism (there exist situations where the schemes do
not specify which task to schedule). Since the model is an
MDP we examine the worst-case behaviour ofany imple-
mentation of each algorithm.

Model Analysis.

Figure 4 shows a comparison of “the maximum expected
energy consumed by a given time bound” for four schedul-
ing schemes outlined above (see [6] for more details). The
actual cost measured is the square of the system’s voltage,
which is proportional to the energy consumed. The compar-
isons match those observed in [5], obtained through simu-
lation.

5 Conclusions

We show that probabilistic model checking can be effec-
tively used in the field of power-aware computing and in
particular in the analysis of both dynamic power manage-
ment policies and dynamic voltage scaling schedulers.

References

[1] R. Alur and T. Henzinger. Reactive modules.Formal Methods
in System Design, 15:7–48, 1999.

[2] M. Kwiatkowska, G. Norman, and A. Pacheco. Model check-
ing expected time and expected reward formulae with random
time bounds.Computers & Mathematics with Applications,
2005. To appear.

[3] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A tool for probabilistic model checking. InProc. QEST’04,
pages 322–323. IEEE, 2004.

[4] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and
R. Gupta. Using probabilistic model checking for dynamic
power management.Formal Aspects of Computing, 2005. To
appear.

[5] P. Pillai and K. Shin. Real-time dynamic voltage scaling for
low-powered embedded operating systems.Operating Sys-
tems Review, 35(5):89–102, 2001.

[6] PRISM web page (www.cs.bham.ac.uk/∼dxp/prism).
[7] Q. Qiu and Q. Wu and M. Pedram. Stochastic Modeling of a

Power-Managed System: Construction and Optimization. In
Proceedings of the International Symposium on Low Power
Electronics and Design, 1999.


	Introduction
	Probabilistic Model Checking and PRISM
	Dynamic Power Management (DPM)
	Dynamic Voltage Scaling (DVS)
	Conclusions

