
Faster and Symbolic CTMC Model Checking?

Joost-Pieter Katoena, Marta Kwiatkowskab,
Gethin Normanb and David Parkerb

aFormal Methods and Tools Group, Faculty of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

bSchool of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract. This paper reports on the implementation and the experi-
ments with symbolic model checking of continuous-time Markov chains
using multi-terminal binary decision diagrams (MTBDDs). Properties
are expressed in Continuous Stochastic Logic (CSL) [7] which includes
the means to express both transient and steady-state performance mea-
sures. We show that all CSL operators can be treated using standard
operations on MTBDDs, thus allowing a rather straightforward imple-
mentation of symbolic CSL model checking on existing MTBDD-based
platforms such as the verifier PRISM. The main result of the paper is an
improvement of O(N) in the time complexity of checking time-bounded
until-formulas, where N is the number of states in the CTMC under con-
sideration. This result yields a drastic speed-up in the verification time
of model checking CTMCs, both in the symbolic and non-symbolic case.

1 Introduction

In model-based performance and dependability evaluation, techniques such as
stochastic Petri nets, stochastic process algebras, stochastic activity networks,
and queueing networks are used to specify the system behaviour at a high level
of abstraction. Most of these techniques assume a continuous-time Markov chain
(CTMC) as underlying stochastic process. While the analysis of CTMCs focuses
mostly on transient-state and steady-state (i.e. long run) characteristics, the
specification and analysis of path measures is a subject of growing interest [25].

The temporal logic CSL (Continuous Stochastic Logic) developed originally
by Aziz et al. [2,3] and extended by Baier et al. [7] provides a powerful means
to specify path-based as well as traditional state-based measures on CTMCs
in a concise, flexible and unambiguous way. CSL is based on the well-known
branching-time temporal logic CTL (Computation Tree Logic [11]) and PCTL
(Probabilistic CTL [17]); a steady-state operator, a time-bounded until, and a
probabilistic (path) operator constitute its main ingredients. It allows one to
state, for example, that the probability of reaching a certain set of goal-states
within a specified real-valued time bound, provided that all paths to these states
obey certain properties, is at least/at most some probability value.
? Partly supported by EPSRC grants GR/M04617, GR/M13046 and GR/N31573.

L. de Alfaro and S. Gilmore (Eds.), 1st Joint Int. Workshop on Process Algebra and Performance
Modelling and Probabilistic Methods in Verification, volume 2165 of LNCS, pages 23–38, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Verification of a given finite-state CTMC against a CSL formula is performed
using model checking. The model checking problem for CSL is decidable for ra-
tional time bounds [2,3]. Approximate CSL model-checking algorithms have been
studied in [7] where the satisfaction of time-bounded until formulas is shown to
be based on solving a (recursive) Volterra equation system. More recently, Baier
et al. [6] reduced verifying time-bounded until formulas to the problem of com-
puting transient-state probabilities for CTMCs. This significant result employs
a formula-dependent transformation of the CTMC and – more importantly –
allows one to adopt efficient techniques like uniformisation [16,23] for verifying
time-bounded until-formulas. This paper builds upon this earlier work, and con-
siders two issues: improving the time and the space efficiency of model checking
CTMCs against CSL formulas based on transient analysis.

Faster CSL model checking. Verifying time-bounded until formulas using tran-
sient analysis of CTMCs [6] suggests that uniformisation should be applied to
each individual state separately. This results in a worst case time complexity of
O(M ·N), where N is the number of states in the CTMC and M the number of
transitions. The main result of this paper is an improvement of O(N) in the time
complexity of checking time-bounded until formulas. Inspired by PCTL model
checking, the basic idea underlying this efficiency improvement is to carry out
the uniformisation for all states at once. Our experiments show that this result
yields a drastic speed-up in the verification time of model checking CTMCs.

Symbolic CSL model checking. To combat the infamous state-space explosion
problem we investigate representing the state space by multi-terminal binary
decision diagrams (MTBDDs [12], also called algebraic decision diagrams [4]).
MTBDDs are variants of BDDs that can efficiently deal with real matrices; they
allow arbitrary real numbers in the terminal nodes instead of just 0 and 1. We
show that CSL model checking can be treated using standard operations on
MTBDDs, thus generalising the result for PCTL [5,18] to the continuous-time
setting. This basically follows from the fact that CSL model checking amounts to
the analysis of either the embedded discrete-time Markov chain (DTMC) – in the
case of untimed until formulas and steady-state formulas – or the uniformised
DTMC – in the case of time-bounded until – of the CTMC under consideration.
This reduces to graph analysis and iterative matrix-vector multiplication which
can be implemented with standard MTBDD operations. Variants of MTBDDs
tailored to numerical integration [7] are not needed. This paper reports on the
implementation of symbolic CSL model checking as part of PRISM1 (PRoba-
bilistIc Symbolic Model checker), a prototype tool for the symbolic verification
of Markov decision processes (MDPs) with DTMCs as a subset thereof.

Organisation of the paper. Section 2 briefly recalls PCTL model checking. Sec-
tion 3 introduces CTMCs and CSL. Handling time-bounded until is covered in
Section 4. Section 5 discusses CSL model checking with MTBDDs. Section 6
presents our empirical results. Section 7 concludes the paper.
1 www.cs.bham.ac.uk/~dxp/prism

www.cs.bham.ac.uk/~dxp/prism

2 The discrete-time setting

DTMCs. Let AP be a fixed, finite set of atomic propositions. A (labelled) DTMC
D is a tuple (S,P, L) where S is a finite set of states, P : S × S → [0, 1] is a
probability matrix such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S, and L : S → 2AP

is a labelling function which assigns to each state s ∈ S the set L(s) of atomic
propositions that are valid in s. A path through a DTMC is a sequence2 of states
σ = s0 s1 s2 . . . with P(si, si+1) > 0 for all i. Let PathD denote the set of all
paths in D. σ[i] denotes the (i+1)th state of σ, i.e. σ[i] = si+1. Let Prs denote
the unique probability measure on sets of paths that start in state s [22].

PCTL. Let a ∈ AP, p ∈ [0, 1], k be a natural (or ∞) and ./ ∈ {6,> }. The
syntax of PCTL is:

Φ ::= tt
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ P./p(ΦU6k Φ)

The other boolean connectives are derived in the usual way. For the sake of
simplicity, we do not consider the next state operator in this paper. The standard
(i.e. unbounded) until formula is obtained by taking k equal to ∞, i.e. ΦU Ψ =
ΦU6∞ Ψ . The semantics of PCTL is defined by [17]:

s |= tt for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬Φ iff s 6|= Φ

s |= Φ ∧ Ψ iff s |= Φ ∧ s |= Ψ

s |= P./p(ΦU6k Ψ) iff ProbD(s, ΦU6k Ψ) ./ p

P./p(ΦU6k Ψ) asserts that the probability measure of the paths that start in s
and that satisfy ΦU6k Ψ meets the bound ./ p. Here,

ProbD(s, ΦU6k Ψ) = Prs{σ ∈ PathD | σ |= ΦU6k Ψ }

Formula ΦU6k Ψ asserts that Ψ will be satisfied within k steps and that all
preceding states satisfy Φ, i.e.:

σ |= ΦU6k Ψ iff ∃j 6 k. (σ[j] |= Ψ ∧ ∀i < j. σ[i] |= Φ)

Model checking PCTL. PCTL model checking [17] is carried out in the same way
as verifying CTL [11] by recursively computing the set Sat(Φ) = { s ∈ S | s |=
Φ }. Checking bounded until formulas amounts to computing the least solution
of the following set of equations: ProbD(s, ΦU6k Ψ) equals 1 if s ∈ Sat(Ψ),

ProbD(s, ΦU6k Ψ) =
∑
s′∈S

P(s, s′)·ProbD(s′, ΦU6k−1 Ψ) (1)

if s ∈ Sat(Φ∧¬Ψ) and k > 0, and equals 0 otherwise. For DTMC D = (S,P, L)
and PCTL formula Φ, let DTMC D[Φ] = (S,P′, L) where if s 6|= Φ, then
P′(s, s′) = P(s, s′) for all s′ ∈ S, and if s |= Φ, then P′(s, s) = 1 and P′(s, s′) = 0
2 In this paper, we do not dwell upon distinguishing finite and infinite paths.

for all s′ 6= s. We have D[Φ][Ψ] = D[Φ ∨ Ψ]. Let πD(s, k)(s′) denote the prob-
ability of being in state s′ after k steps in DTMC D when starting in s, i.e.
πD(s, k)(s′) = Prs{σ ∈ PathD | σ[k] = s′ }.

Proposition 1. For DTMC D: ProbD(s, ΦU6k Ψ) =
∑

s′|=Ψ

πD[¬Φ∨Ψ](s, k)(s′).

Note that D[¬Φ∨Ψ] = D[¬(Φ∧Ψ)][Ψ], i.e. all ¬(Φ∧Ψ)-states and all Ψ -states in
D are made absorbing3. The former is correct since ΦU6k Ψ is violated as soon
as some state is visited that neither satisfies Φ nor Ψ . The latter is correct since,
once a Ψ -state in D has been reached (along a Φ-path) in at most k steps, then
ΦU6k Ψ holds, regardless of which states will be visited later on.

Model checking U6k for all states thus amounts to computing (PD[¬Φ∨Ψ])k·ιΨ ,
where ιΨ characterises Sat(Ψ), i.e. ιΨ (s) = 1 if s |= Ψ , and 0 otherwise. As it-
erative squaring is not attractive for stochastic matrices due to fill in [28], the
product is typically computed in an iterative fashion: P·(. . . (P·ιΨ))).

3 The continuous-time setting

CTMCs. A (labelled) CTMC C is a tuple (S,R, L) where S and L are as for
DTMCs, and R : S × S → IR>0 is the rate matrix. (We adopt the same conven-
tions as in [6,7], i.e. we do allow self-loops.) The exit rate E(s) =

∑
s′∈S R(s, s′)

denotes that the probability of taking a transition from s within t time units
equals 1− e−E(s)·t. If R(s, s′) > 0 for more than one state s′, a race between the
outgoing transitions from s exists. That is, the probability P(s, s′) of moving
from s to s′ in a single step equals the probability that the delay of going from
s to s′ “finishes before” the delays of any other outgoing transition from s.

Definition 1. For CTMC C = (S,R, L), the embedded DTMC is given by
emb(C) = (S,P, L), where P(s, s′) = R(s, s′)/E(s) if E(s) > 0, and P(s, s) = 1
and P(s, s′) = 0 for s 6= s′ if E(s) = 0.

A path through a CTMC is an alternating sequence σ = s0 t0 s1 t1 s2 . . . with
R(si, si+1) > 0 and ti ∈ IR>0 for all i. The time stamps ti denote the amount of
time spent in state si. Let PathC denote the set of paths through C. σ@t denotes
the state of σ occupied at time t, i.e. σ@t = σ[i] with i the smallest index such
that t 6

∑i
j=0 tj . Let Prs denote the unique probability measure on sets of paths

that start in s [7].

CSL. Let a, p and ./ be as before and t ∈ IR>0 (or ∞). The syntax of CSL is:

Φ ::= tt
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S./p(Φ)
∣∣∣ P./p(ΦU6t Φ)

S./p(Φ) asserts that the steady-state probability for a Φ-state meets the bound
./ p. The semantics of CSL for the boolean operators is identical to that for
3 That is, the only transitions available in these states are self-loops.

PCTL. For the remaining state formulas [7]:

s |= S./p(Φ) iff limt→∞ Prs{σ ∈ PathC | σ@t |= Φ } ./ p

s |= P./p(ΦU6t Φ) iff ProbC(s, ΦU6t Φ) ./ p

The limit in the first equation always exists as C contains finitely many states [28].
ProbC(·) is defined in a similar way as for PCTL:

ProbC(s, ΦU6t Φ) = Prs{σ ∈ PathC | σ |= ΦU6t Φ } .

The operator U6t is the real-time variant of the PCTL operator U6k; ΦU6t Ψ
asserts that Ψ will be satisfied at some time instant in the interval [0, t] and that
at all preceding time instants Φ holds:

σ |= ΦU6t Ψ iff ∃x 6 t. (σ@x |= Ψ ∧ ∀y < x. σ@y |= Φ) .

Note that the standard until operator is obtained by taking t equal to ∞.
CSL model checking [7,6] is performed in the same way as for CTL [11] and

PCTL [17], by recursively computing the set Sat(Φ). For the boolean operators
this is exactly as for CTL and for unbounded until this is exactly as for PCTL.

Model checking the S operator. For determining Sat(S./p(Φ)), first Sat(Φ) is
computed (as usual), and a graph analysis is carried out to determine the bottom
strongly connected components (BSCCs) of C, i.e. the set of SCCs in C that,
once entered, cannot be left any more. The steady-state probability distribution
πB inside each BSCC B is determined using standard means [28]: by solving a
linear equation system in the size of the BSCC at hand. Then, the probabilities
of reaching a BSCC B from a given state s are computed for each B. State s
now satisfies S./p(Φ) if:

∑
B

Pr{ reach B from s } ·
∑

s′∈B∩Sat(Φ)

πB(s′)

 ./ p

All these steps can be performed on the embedded DTMC as timing issues are
not involved; for details see [7].

Model checking the U6t operator. Checking time-bounded until formulas is based
on determining the least solution of the following set of integral equations:
ProbC(s, ΦU6t Ψ) equals 1 if s ∈ Sat(Ψ),

ProbC(s, ΦU6t Ψ) =
∫ t

0

∑
s′∈S

P(s, s′)·E(s)·e−E(s)·x · ProbC(s′, ΦU6t−x Ψ) dx

if s ∈ Sat(Φ ∧ ¬Ψ), and equals 0 otherwise. Here, E(s)·e−E(s)·x denotes the
probability density of taking some outgoing transition from s at time x. Note
the resemblance with equation (1) for the PCTL bounded until operator. For

CTMC C = (S,R, L) and CSL formula Φ let CTMC C[Φ] = (S,R′, L) with
R′(s, s′) = R(s, s′) if s 6|= Φ and 0 otherwise. Note that emb(C[Φ]) = emb(C)[Φ].
It has been shown in [6] that for a given CTMC C and state s in C, the mea-
sure ProbC(s, ΦU6t Ψ) can be calculated by means of a transient analysis of
the CTMC C′, which can easily be derived from C using the [·] operator. Let
πC(s, t)(s′) denote the probability of being in state s′ at time t given that the
system started in state s, i.e. πC(s, t)(s′) = Prs{σ ∈ PathC | σ@t = s′ }.

Theorem 1. [6] For CTMC C: ProbC(s, ΦU6t Ψ) =
∑

s′|=Ψ

πC[¬Φ∨Ψ](s, t)(s′).

4 Faster time-bounded until verification

In this section, we present an algorithm for verifying time-bounded until formulas
that is based on (i) the aforementioned reduction to transient analysis and on
(ii) the algorithm for PCTL bounded until. This combination – suggested by the
strong resemblance of Theorem 1 and Proposition 1 – yields an improvement of
O(N) in time complexity over the algorithm suggested in [6], where N is the
number of states in the CTMC. We first briefly describe uniformisation.

Uniformisation. Uniformisation is a transformation of a CTMC into a DTMC:

Definition 2. For CTMC C = (S,R, L) the uniformised DTMC is given by
unif (C) = (S,P, L) where P = I + Q/q for q > max{E(s) | s ∈ S} and Q =
R− diag(E).

The uniformisation rate q is determined by the state with the shortest mean
residence time. All (exponential) delays in the CTMC C are normalised with
respect to q. That is, for each state s ∈ S with E(s) = q, one epoch in unif (C)
corresponds to a single exponentially distributed delay with rate q, after which
one of its successor states is selected probabilistically. As a result, such states
have no self-loop in the DTMC. If E(s) < q – this state has on average a longer
state residence time than 1

q – one epoch in unif (C) might not be “long enough”.
Hence, in the next epoch these states might be revisited and, accordingly, are
equipped with a self-loop with probability 1− E(s)

q . Note the difference between
the embedded DTMC emb(C) and the uniformised DTMC unif (C): whereas the
epochs in C and emb(C) coincide and emb(C) can be considered as the time-
less variant of C, a single epoch in unif (C) corresponds to a single exponentially
distributed delay with rate q in C.

Transient analysis. The probabilities πC(s, t)(s′) are now computed as follows:

π(s, t) = π(s, 0) ·
∞∑

k=0

e−q·t (q·t)k

k!
Pk =

∞∑
k=0

γ(k, q·t) · π(s, k) (2)

where P is the probability matrix of the DTMC unif (C), and γ(k, q·t) is the
kth Poisson probability with parameter q·t, i.e. γ(k, q·t) = e−q·t·(q·t)k/k!. The

vector π(s, k) denotes the probability distribution in unif (C) after k epochs when
starting in s, i.e. π(s, k) = π(s, 0) ·Pk, where π(s, 0)(s) = 1 and π(s, 0)(s′) = 0
if s 6= s′. Equation (2) can be understood as follows. During the time interval
[0, t), with probability γ(k, q·t) exactly k jumps have taken place in the DTMC
unif (C). The effect of these jumps is described by π(s, 0)·Pk. Weighting this
vector with γ(k, q·t) and summing over all possible numbers of jumps in [0, t),
we obtain, by the law of total probability, the probability vector π(s, t).

Given an accuracy ε, the number of terms Rε of the infinite summation in
(2) that have to be considered is the smallest value satisfying:

Rε∑
n=0

(q·t)n

n!
>

1− ε

e−q·t = (1− ε)·eq·t

For large q·t, Rε is of order O(q·t).4 As the first group of Poisson probabilities
are typically very small, the first Lε terms in (2) are negligible and need not be
computed. Lε and Rε are called the left and right truncation point, respectively.

A first algorithm. The algorithm for time-bounded until as suggested in [6] is
based on carrying out a computation according to equation (2) and the fact that
π(s, k) = π(s, 0) ·Pk. The computation is carried out in an iterative manner per
individual state s starting from the initial distribution π(s, 0). The pseudo-code
of this algorithm is presented in Fig. 1. Here, and in the subsequent algorithms
in this paper, the Poisson probabilities are computed using the Fox-Glynn algo-
rithm [15] that avoids overflow for large q·t. The overall time complexity of this
procedure is O(N ·q·t·M), where q is the uniformisation rate of the CTMC at
hand, t the time bound of the until formula, N the number of states and M the
number of non-zero entries in R. This follows directly from the fact that for each
state the number of terms of (2) that needs to be considered is O(q·t), where
each term requires a matrix vector multiplication with O(M) multiplications
given a sparse data structure.

An alternative algorithm. The basic idea of the new algorithm is to use the
iterative matrix vector multiplication of the PCTL bounded until operator as a
basis, and impose the computation of the Poisson probabilities on top of it. This
is suggested by the following observation:

Proposition 2. ProbC(s, ΦU6t Ψ) =
∞∑

k=0

γ(k, q·t) · Probunif(C)(s, ΦU6k Ψ)

Recall that γ(k, q·t) denotes the probability of taking k jumps in the DTMC
unif (C) in the interval [0, t). From Propositions 1 and 2 it follows that the vector
ProbC(ΦU6t Ψ) can be obtained in an iterative manner, cf. the pseudo-code in
Fig. 2. As a result, a global transient analysis is carried out, yielding for each
state s the probability measure ProbC(s, ΦU6t Ψ). Note that, as opposed to the
4 Note that the DTMC unif (C) may reach steady state before Rε and, in this case,

the summation can be truncated at this earlier point [24].

// compute Poisson probabilities
γ, Lε, Rε := FoxGlynn(q · t, ε)
// main loop
foreach s ∈ S

sol := 0
p := π(s, 0)

for k = 1 to Lε − 1
p := p ·P

endfor

for k = Lε to Rε

p := p ·P
sol := sol + γ(k, q·t) · p

endfor

// Prob(s, ΦU6t Ψ) = sol · ιT
Ψ

endfor

Fig. 1. A first algorithm

// compute Poisson probabilities
γ, Lε, Rε := FoxGlynn(q · t, ε)
// main loop
sol := 0
b := ιΨ

for k = 1 to Lε − 1
b := P · b

endfor

for k = Lε to Rε

b := P · b
sol := sol + γ(k, q·t) · b

endfor

// Prob(ΦU6t Ψ) = sol

Fig. 2. An efficient variant

algorithm of Fig. 1, sol is not a probability vector in Fig. 2, i.e. its elements
do not sum up to one. It is evident from the efficiency considerations given just
before, that the time complexity of the adapted algorithm is O(q·t·M), thus
yielding an improvement of O(N) over the previous algorithm.

5 Symbolic model checking CTMCs with PRISM

Due to the recent improvements in verification time – including our suggested im-
provement – space efficiency considerations become more important for CTMC
model checking. In this section, we report on symbolic model checking of CTMCs
(against CSL) using MTBDDs. MTBDDs have the ability to exploit structure
(regularity) in models and can represent them in a far more compact way than
a sparse matrix would. The success of BDD-based model checking in the non-
probabilistic case serves as sufficient motivation to develop the foundations of
MTBDD-based model checking and experiment with these techniques.

MTBDDs. Let x1 < x2 < . . . < xn be distinct, totally ordered state variables.
An MTBDD over (x1, . . . , xn) is a rooted directed graph with vertex set V
containing two types of vertices:

– each non-terminal vertex v is labelled by a state variable var(v) ∈ {x1, . . . ,
xn } and has two children left(v), right(v) ∈ V

– each terminal vertex v is labelled by a real number val(v),

such that var(v) < var(w) for each non-terminal vertex v and non-terminal child
w of v. The constraint requires that on any path from the root to a terminal ver-
tex, the variables respect the ordering <. An MTBDD M over (x1, . . . , xn) repre-
sents the function fM : { 0, 1 }n → IR, whose values are obtained by traversing M

starting at the root vertex as follows. For non-terminal vertex v, the edge from
v to left(v) represents the case when var(v) is false; the edge from v to right(v)
the case var(v) is true. For efficiency reasons, MTBDDs are usually stored in a
reduced form [10]. Note that a BDD is an MTBDD with val(v) ∈ { 0, 1 } for all
terminal vertices v.

Representing CTMCs by MTBDDs. Let C = (S,R, L) be a CTMC with |S| = 2n

and L injective. (Any labelled CTMC may be transformed into one satisfying
these conditions by adding dummy states and new propositions.) Let a1, . . . , an

be an enumeration of the atomic propositions and identify each state s with
the boolean n-tuple (b1, . . . , bn) where bi = 1 iff ai ∈ L(s). This encoding
of states is standard [5,7,13]. Thus, S = { 0, 1 }n where each state s is iden-
tified with its encoding and R with the function F : { 0, 1 }2n → IR where
F (x1, y1, . . . , xn, yn) = R((x1, . . . , xn), (y1, . . . , yn)).

Operations on MTBDDs. Model checking CTMCs can be performed with stan-
dard operations on MTBDDs. For completeness, we briefly describe these here.
The operator Apply allows a point-wise application of the binary operator op
(e.g. + or ×) to two MTBDDs. For MTBDDs M1 and M2, Apply(op,M1,M2)
yields an MTBDD for function fM1 op fM2 . For MTBDDs R and b represent-
ing matrix R and vector b respectively, MTBDD MVMult(R, b) represents
the vector R · b. For q ∈ IR, Const(q) denotes the MTBDD consisting of a
single terminal vertex v with val(v) = q. For an MTBDD M, FindMax(M)
returns the maximum value of the terminal vertices of M. The Comp operator
takes an MTBDD M and an interval I ⊆ IR and returns the BDD represent-
ing the function that equals 1 if fM(x1, . . . , xn) ∈ I and 0 otherwise. Operator
Abstract(op,M, x1, . . . , xn) returns the MTBDD which results from abstract-
ing all of the variables x1, . . . , xn from M by applying op over all possible values
taken by these variables.

MTBDD-based model checking of CSL. The symbolic model checking algorithm
for CSL is identical to the one proposed in [7] except that we use transient analy-
sis and uniformisation rather than numerical integration (which needs dedicated
variants of MTBDDs). Let C = (S,R, L) be a CTMC represented by MTBDD
R as explained above. For each CSL formula Φ a BDD Sat[[Φ]] is defined that
represents the characteristic function of the set Sat(Φ). By applying standard
operators on MTBDDs we determine the MTBDDs P representing the transition
probability matrix P of emb(C), and E the vector of exit rates E. Then:

Sat[[tt]] = Const(1)
Sat[[ai]] = the BDD for the boolean function (x1, . . . , xn) 7→ xi

Sat[[¬Φ]] = Not(Sat[[Φ]])
Sat[[Φ ∧ Ψ]] = And(Sat[[Φ]],Sat[[Ψ]])

Sat[[S./p(Φ)]] = Comp(SteadyState(P,Sat[[Φ]]), ./ p)
Sat[[P./p(ΦU Ψ)]] = Comp(Until(P,Sat[[Φ]],Sat[[Ψ]]), ./ p)

Sat[[P./p(ΦU6t Ψ)]] = Comp(TBUntil(R,E,Sat[[Φ]],Sat[[Ψ]], t, ε), ./ p).

algorithm TBUntil(R, E, Sat[[Φ]], Sat[[Ψ]], t, ε)
// uniformisation
R′ := Apply(×,Not(Or(Not(Sat[[Φ]]), Sat[[Ψ]])), R)
E′ := Apply(×,Not(Or(Not(Sat[[Φ]]), Sat[[Ψ]])), E)
q := FindMax(E′)
Q := Apply(−, R′,Apply(×, E′, Identity))
P := Apply(+, I,Apply(÷, Q,Const(q)))
// compute Poisson probabilities
γ, Lε, Rε := FoxGlynn(q · t, ε)
// main loop
sol := Const(0)
b := Sat[[Ψ]]
for k = 1 to Lε − 1

b := MVMult(P, b)
endfor

for k = Lε to Rε

b := MVMult(P, b)
sol := Apply(+, sol,Apply(×,Const(γ(k, q·t)), b))

endfor

return sol
end.

Fig. 3. MTBDD algorithm for CSL time-bounded until using transient analysis

Here, Sat[[ai]] is a BDD consisting of a single state vertex v labelled with xi

such that left(v) and right(v) are labelled with 0 and 1, respectively. The steady
state and unbounded until operators are treated symbolically as described in [5]
and [7] respectively.

TBUntil assigns to each state s ∈ S the probability (with precision ε) of
the set of paths that start in s fulfilling ΦU6t Ψ , i.e. it represents the function
s 7→ Prob(s, ΦU6t Ψ). The algorithm for TBUntil is shown in Fig. 3, where
Identity denotes the MTBDD representing an identity matrix of the appropriate
size. In the first two lines, the CTMC C[¬Φ ∨ Ψ] is computed. Note that the
Apply operator filters out the states that become absorbing, i.e. the states that
do not satisfy ¬(¬Φ ∨ Ψ). In the subsequent three lines, the uniformisation rate
q and the DTMC unif (C) are determined. The rest of the pseudo-code is the
MTBDD-based counterpart of the algorithm shown earlier in Fig. 2.

PRISM. PRISM is a verifier for discrete probabilistic systems such as DTMCs
(against PCTL) and MDPs (against PCTL [9] with fairness [8]). The tool is
implemented using a combination of Java and C++. The high level parts of
the tool, such as the user interface and the parsers, are written in Java. The
engines and libraries are mostly written in C++. PRISM takes as input a model
description in a probabilistic variant of reactive modules [1], constructs the model
from its description and computes the set of reachable states. Model checking

Modules

Parser

Parser

Hybrid

Engine

Sparse

Engine Engine
Results

(States/Probabilities)

CUDD

MTBDD

PCTL/CSL
Properties

System

Description

PCTL/CSL

Prism Kernel

Fig. 4. The PRISM tool architecture

using different data structures is supported, cf. Fig. 4: symbolic representations
using (MT)BDDs, conventional sparse matrices, and a hybrid approach using
MTBDDs for storing matrices and conventional representations for probability
vectors. For the manipulation of the symbolic data structures, PRISM uses the
CUDD package [27] which is written in C. More information about the tool can
be found at www.cs.bham.ac.uk/~dxp/prism.

The MTBDD based model checking algorithm for CSL has been implemented
in PRISM, thus extending its applicability to continuous probabilistic systems.
The realisation in PRISM includes an “on-the-fly” steady state detection as part
of the transient analysis (as in [19]). For the sake of clarity, this mechanism is
not included in the algorithm in Fig. 3.

6 Experiments

The case studies. To facilitate a comparison with E T MC2 [19], we consider two
case studies that have been verified previously with CSL: a tandem network [20]
and a cyclic server polling system [21].

The tandem network consists of a M/Cox2/1-queue and a M/M/1-queue,
both of capacity K, put in sequence. Jobs arrive at the first station with rate 4·K.
The first server executes jobs in either done or two phases, i.e. with probability
0.9 a job is served once (with rate 2), and with probability 0.1 the job has to
pass an additional phase (with rate 2). Once served by the first station, jobs are
queued in the second station where service takes place with rate 4. The properties
we verify for this model are the following probabilistic path properties:

– 36t full , i.e. the tandem network becomes fully occupied within t time units
– 36t fst , i.e. the first station of the tandem network becomes fully occupied

within t time units

where 36t Φ ≡ tt U6t Φ.
The polling server [21] polls K stations in a cyclic fashion. The times for

generating a message, for polling a station and for serving a job by a station
are all distributed exponentially with rates 1/K, 200 and 1, respectively. If the
server finds a station idle, then the service time is zero. For this system, we check
the property busy1 ⇒ P./p(36tpoll1), i.e. once the first station has a job to be
served it will be polled within t time units with probability ./ p.

www.cs.bham.ac.uk/~dxp/prism

Statistics and assessment. We ran all experiments on a 440 MHz SUN Ultra
10 workstation with 512 Mb memory under the Solaris 2.7 operating system.
All properties were checked with an accuracy ε = 10−6. The verifiers PRISM
and E T MC2 provide the results for the symbolic and sparse implementations
respectively.

sparse matrix implementation

model K # states formula time (in sec)
original improved

tandem 2 15 P./p(362full) 0.07 0.01

network P./p(3610full) 0.13 0.01

P./p(36100full) 0.71 0.03

P./p(361000full) 1.29 0.09

20 861 P./p(362full) 563.94 0.55

P./p(3610full) 1927.59 1.01

P./p(36100full) 1978.22 1.05

P./p(361000full) 1954.01 1.00

polling 3 36 busy1 ⇒ P./p(362poll1) 0.96 0.02

system 5 240 busy1 ⇒ P./p(362poll1) 59.55 0.16

7 1,344 busy1 ⇒ P./p(362poll1) 2637.11 1.71

10 15,360 busy1 ⇒ P./p(362poll1) – 13.48

Table 1. Comparison of the original and improved sparse implementations of
time-bounded until algorithm

Statistics and assessment for the improved method. The statistics in Table 1
compare the verification times of the original sparse implementation of time-
bounded until (Fig. 1) and the improved algorithm (Fig. 2). As expected, the
results confirm that the improved algorithm is a factor of N faster, where N is
the size of the state space. We note that, in several cases, there is an even greater
speed-up. This is possibly due to the different computation steps performed by
the two algorithms: the original works via a forwards exploration of the state
space, whereas the improved version works backwards. To see this, note the
difference between the iteration steps p := p · P in the original as opposed to
b := P · b in the improved.

Statistics and assessment for the symbolic implementation. We now compare our
symbolic implementation of time-bounded until with its sparse counterpart. For
the tandem network and polling system examples, we have constructed efficient
MTBDD representations of the transition matrix using the methods presented
in [14] (for further details see www.cs.bham.ac.uk/~dxp/prism). This allows us
to build and store much larger models with MTBDDs (given regularity) than is
feasible with a sparse implementation.

The results of the comparison of our symbolic implementation with the sparse
implementation are presented in Table 2 and Fig. 5. We have measured time per

www.cs.bham.ac.uk/~dxp/prism

sparse versus symbolic implementation

K # states time per iteration (in sec)

P./p(362full) P./p(362fst)
symbolic sparse symbolic sparse

63 8,128 0.08 0.01 0.02 0.01

127 32,640 0.17 0.04 0.04 0.05

255 130,816 0.37 0.55 0.06 0.15

511 523,776 0.81 1.50 0.10 0.71

1023 2,096,128 – – 0.23 –

2047 8,386,560 – – 0.31 –

4095 33,550,336 – – 0.66 –

Table 2. Comparison of symbolic and sparse verification of the tandem network

0 1 2 3 4 5 6

x 105

0

1

2

3

4

5

6

7

8

Number of states

Ti
m

e
pe

r i
te

ra
tio

n

Symbolic (Polling)
Sparse (Tandem)
Sparse (Polling)
Symbolic (Tandem)

Fig. 5. Comparison of symbolic and sparse verification of both examples

iteration as both implementations follow the improved algorithm given in Fig. 2.
Table 2 summarises the results for the tandem network example based on two
CSL properties. Fig. 5 gives time per iteration plotted against the size of the state
space for both the tandem network and polling system for the CSL properties
P./p(362full) and busy1 ⇒ P./p(362poll1) respectively.

The efficiency of the symbolic time-bounded until implementation depends
on the size of the MTBDDs representing the iteration vectors (b and sol in
Fig. 2). Our experiments show that these are usually significantly larger than
the MTBDD for the transition matrix, because of their relative lack of structure.
For vectors to be represented compactly by MTBDDs the main requirement is
a limited number of distinct elements. This condition is dependent on both
the structure of the model and on the property being verified, and as such it
is difficult to determine when these vectors will be represented compactly. For
example, compare the difference in performance of the symbolic implementation

on two different models, as shown in Fig. 5. The times for the tandem network
are much faster than for the polling system for models of equivalent size.

On the other hand, in the sparse implementation the time complexity is
dependent purely on the number of non-zeros in the matrix used for the com-
putation. In Fig. 5, the times for the sparse approach can be seen to be almost
identical for the tandem network and the polling system (note that in both ex-
amples the number of non-zeros in the rate matrix is linear in the size of the
state space).

Comparing the results for the two implementations confirms, as expected,
that we can verify larger models using a symbolic as opposed to a sparse ap-
proach; for example, we were able to verify systems with 33 million states. A
more surprising observation which we note for the first time is that, for certain
models and certain properties, symbolic analysis is faster than sparse. So far,
see e.g. [14], the sparse implementation has always outperformed the MTBDDs
on quantitative numerical calculations.

We are currently extending PRISM to improve the efficiency further by taking
a hybrid approach which uses an MTBDD representation for storing matrices
and a conventional representation for probability vectors. Early experiments
show that, although slower than a sparse implementation, it is significantly faster
than the pure MTBDD version. Like sparse, its performance is independent of
the regularity of the model being considered, but it retains the advantage of
MTBDDs, in that larger models can be represented. More information will be
available in [26].

7 Concluding remarks

This paper considered both space and time efficiency issues of CSL model check-
ing of CTMCs. We presented an improvement in time efficiency of O(N) for
verifying time-bounded until formulas. The obtained empirical results indicate a
drastic improvement in run times, making model checking of systems of realistic
size feasible. In addition, we reported on symbolic model checking of CSL using
MTBDD based uniformisation and transient analysis. Although, for simplicity,
we have restricted the exposition in this paper to an until operator with time
bounds [0, t], the results of our paper carry over to UI for arbitrary interval
I ⊆ IR>0 in a straightforward manner.

Acknowledgements. Joachim Meyer-Kayser, Hannes Bruchner and Markus
Siegle (all of the University of Erlangen-Nürnberg) are kindly acknowledged for
adapting the model checker E T MC2 to the new algorithm for checking time-
bounded until formulas and for providing us with the new version of the tool.

The last three authors are members of the ARC project 1031 “Stochastic
Modelling and Verification” funded by the British Council and DAAD.

References

1. R. Alur and T.A. Henzinger. Reactive modules. In IEEE Symp. on Logic in
Computer Science, 207–218, 1996.

2. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, LNCS 1102: 269–276, 1996.

3. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Model checking continuous time
Markov chains. ACM Trans. on Computational Logic, 1(1): 162–170, 2000.

4. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo and
F. Somenzi. Algebraic decision diagrams and their applications. Formal Meth-
ods in System Design, 10(2/3): 171–206, 1997.

5. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Automata, Languages and
Programming, LNCS 1256: 430–440, 1997.

6. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Computer Aided Veri-
fication, LNCS 1855: 358–372, 2000.

7. C. Baier, J.-P. Katoen and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In Concurrency Theory, LNCS 1664: 146–162,
1999.

8. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching-time
logic with fairness. Distr. Comp., 11(3): 125–155, 1998.

9. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Found. of Softw. Techn. and Th. Comp. Sc., LNCS 1026: 499–513,
1995.

10. K. Brace, R. Rudell and R. Bryant. Efficient implementation of a BDD package.
In: 27th ACM/IEEE Design Automation Conference, 1990.

11. E. Clarke, E. Emerson and A. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. on Progr. Lang. and
Sys., 8: 244–263, 1986.

12. E. Clarke, M. Fujita, P.C. McGeer and J.C-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representation. In Formal Methods
in System Design, 10(2/3): 149–169, 1997.

13. E. Clarke, O. Grumberg and D. Long. Verification tools for finite-state concurrent
programs. In A Decade of Concurrency, LNCS 803: 124–175, 1993.

14. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker and R. Segala. Symbolic
model checking for probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In Tools and Algorithms for the Analysis and Construction of Systems,
LNCS 1785: 395–410, 2000.

15. B.L. Fox and P.W. Glynn. Computing Poisson probabilities. Comm. of the ACM,
31(4): 440–445, 1988.

16. D. Gross and D.R. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov chains. Oper. Res. 32(2): 343–361, 1984.

17. H.A. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Form. Asp. of Comp., 6(5): 512–535, 1994.

18. V. Hartonas-Garmhausen, S. Campos and E.M. Clarke. ProbVerus: probabilistic
symbolic model checking. In Formal Methods for Real-Time and Prob. Sys., LNCS
1601: 96–111, 1999.

19. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. In Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 1785: 347–362, 2000.

20. H. Hermanns, J. Meyer-Kayser and M. Siegle. Multi-terminal binary decision
diagrams to represent and analyse continuous-time Markov chains. In Proc. 3rd
Int. Workshop on the Num. Sol. of Markov Chains, pp. 188-207, 1999.

21. O.C. Ibe and K.S. Trivedi. Stochastic Petri net models of polling systems. IEEE
J. on Sel. Areas in Comms., 8(9): 1649–1657, 1990.

22. J. Kemeny, J. Snell and A. Knapp. Denumerable Markov Chains. Van Nostrand,
1966.

23. A. Jensen. Markov chains as an aid in the study of Markov processes. Skand.
Aktuarietidskrift, 3: 87–91, 1953.

24. J.K. Muppala and K.S. Trivedi. Numerical transient solution of finite Markovian
queueing systems. In U. Bhat, ed, Queueing and Related Models, Oxford University
Press, 1992.

25. W.D. Obal II and W.H. Sanders. State-space support for path-based reward vari-
ables. Perf. Ev., 35: 233–251, 1999.

26. D. Parker. Implementation of symbolic model checking for probabilistic systems.
Ph.D thesis, School of Computer Science, University of Birmingham, 2001 (to
appear).

27. F. Somenzi. CUDD: CU decision diagram package. Public software, Colorado
University, Boulder, 1997.

28. W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press, 1994.

	Faster and Symbolic CTMC Model Checking
	Introduction
	The discrete-time setting
	The continuous-time setting
	Faster time-bounded until verification
	Symbolic model checking CTMCs with PRISM
	Experiments
	Concluding remarks

