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Abstract. The international standard IEEE 802.11 was developed re-
cently in recognition of the increased demand for wireless local area net-
works. Its medium access control mechanism is described according to
a variant of the Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) scheme. Although collisions cannot always be pre-
vented, randomized exponential backoff rules are used in the retrans-
mission scheme to minimize the likelihood of repeated collisions. More
precisely, the backoff procedure involves a uniform probabilistic choice
of an integer-valued delay from an interval, where the size of the interval
grows exponentially with regard to the number of retransmissions of the
current data packet. We model the two-way handshake mechanism of the
IEEE 802.11 standard with a fixed network topology using probabilistic
timed automata, a formal description mechanism in which both nonde-
terministic choice and probabilistic choice can be represented. From our
probabilistic timed automaton model, we obtain a finite-state Markov
decision process via a property-preserving discrete-time semantics. The
Markov decision process is then verified using Prism, a probabilistic
model checking tool, against probabilistic, timed properties such as “at
most 5,000 microseconds pass before a station sends its packet correctly.”

1 Introduction

Wireless communication devices are increasingly becoming part of our daily lives.
In particular, Wireless Local Area Networks (WLANs) are often used in cases
when data communication over a small area is required, but a wired network is
not practical or economic. The international standard IEEE 802.11 was devel-
oped recently to cater for the burgeoning use of WLANs, and has enabled the use
of heterogeneous communication devices from different vendors within the same
network. In contrast to wired devices, stations of a wireless network cannot listen
to their own transmission, and are therefore unable to employ medium access
control schemes such as Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) in order to prevent simultaneous transmission on the channel. In-
stead, the IEEE 802.11 standard describes a Carrier Sense Multiple Access with
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Collision Avoidance (CSMA/CA) mechanism, using a randomized exponential
backoff rule to minimize the likelihood of transmission collision. The backoff pro-
cedure is implemented by first choosing an integer valued delay from a bounded
interval, where the choice is made according to the uniform probability distribu-
tion over the interval. Then the station is required to wait for a length of time
dependent on this integer-valued delay. An important characteristic of the back-
off procedure, which results in the probability of repeated transmission collisions
decreasing as the number of transmission collisions of a particular data packet
increases, is that the size of the interval grows exponentially in the number of
retransmissions.

Previous studies of the IEEE 802.11 standard have either concerned simula-
tion [15] or analytic approaches from the field of performance evaluation [4,11].
In this paper, we consider automatic verification of a medium access control sub-
protocol of the IEEE 802.11 WLAN standard using probabilistic model checking
[10,5]. Given a probabilistic model, expressed as a stochastic process such as
a Markov decision process [9], and a (probabilistic) specification, such as “a
data packet is delivered with probability 1”, the probabilistic model checking
algorithm determines which states of the model satisfy the specification.

We model a two-way handshake mechanism of the IEEE 802.11 medium
access control scheme, operating in a fixed network topology consisting of two
sending stations and two destination stations. Our modelling formalism is that of
probabilistic timed automata [17], which, like Markov decision processes, allows
both nondeterministic choice (used for example, to model asynchrony between
sub-components of the system) and probabilistic choice (which, for example,
is present in the randomized backoff procedure) to coexist in the same model.
Probabilistic timed automata are an extension of timed automata [1]; that is,
they are timed automata for which discrete probability distributions range over
the edges of the control graph. Equivalently, probabilistic timed automata can
be thought of as an extension of Markov decision processes for which the values
of a set of real-valued clocks can influence the transitions from each state.

The initial stages of the modelling process employ the timed automata model
checking tool Uppaal [20] to automatically verify the soundness of several ab-
stractions applied to our probabilistic timed automaton model, in order to reduce
its complexity in anticipation of probabilistic model checking. The correctness of
this process relies on equipping the non-probabilistic Uppaal model with addi-
tional event labels to represent probabilistic choice. From the resulting, smaller
probabilistic timed automaton, which nevertheless has an infinite number of
states due to the presence of real-valued clock variables, we use a property pre-
serving discrete time semantics to obtain a finite state Markov decision process.
We then use the probabilistic model checking tool Prism [16,21] to verify prop-
erties referring both to the likelihood of repeated transmission collision, and to
the probability that a station sends a packet correctly within a certain deadline.
In contrast to previous numerical analyses of the IEEE 802.11 medium access
control scheme, such as [11], we use nondeterminism to model the interleaving
which results from asynchronous parallel composition of system components, to



model unspecified time delays, and as a conservative over-approximation mech-
anism when constructing abstractions. Following this methodology, the results
we compute through probabilistic model checking give upper and lower bounds
on the probability of satisfying the properties of interest.

The paper proceeds by first giving an informal description of a two-way hand-
shake sub-protocol of the IEEE 802.11 standard in the next section. In Section 3,
we introduce probabilistic timed automata, defining both their continuous and
discrete-time semantics. Section 4 then explains how probabilistic timed au-
tomata can be used to model the sub-protocol, describes the construction of the
abstract models, and presents the probabilistic model checking results. Section 5
concludes the paper.

2 The Basic Access mechanism of the IEEE 802.11 DCF

Our focus is on a contention resolution protocol of a basic class of IEEE 802.11
WLAN. The class, referred to as the Independent Basic Service Set or “ad
hoc networks”, comprises a number of stations communicating over a shared
channel in a peer-to-peer manner, without a centralized medium access con-
trol (MAC) protocol arbitrating requests to transmit on the channel. Instead,
the aim of MAC schemes for such networks is to keep the number of collisions
(simultaneous transmissions) on the channel to a minimum. For this purpose,
the IEEE 802.11 standard defines a Distributed Coordination Function (DCF)
based on a CSMA/CA protocol. An important feature of the DCF is that of
a randomized, slotted exponential backoff, which is designed to break the sym-
metry between stations that are repeating previously failed transmissions i.e.
transmissions which collided.

As the IEEE 802.11 standard specifies that a sending station monitors the
channel prior to transmitting, collisions can occur if multiple stations are simul-
taneously in their vulnerable period. If a station is in this period, which occurs
when it starts to send its data, then this transmission can only be detected by
other stations after some delay (equal to the length of the vulnerable period);
hence, another station may also decide to begin transmitting, resulting in a col-
lision. The duration of the vulnerable period is given by the sum of (1) the time
taken for a station to assess the channel and deliver its state to the MAC layer,
(2) the time taken for the destination station to change from a receiving to a
transmitting state, and (3) the air propagation time.

The standard defines two transmission mechanisms, of which we focus on
Basic Access (BA). In this scheme, when a station in a WLAN is ready to
transmit a new data packet, it must sense that the channel is free for a duration
given by the DCF Interfame Space (DIFS), the length of which depends on the
physical layer, and which should be at least as long as the vulnerable period. If
the channel is free for this period, then the station can commence transmission of
its frame to another station. Upon termination of the transmission, the sending
station listens immediately to the channel, in order to detect whether another
station is currently transmitting. If so, the sending station decides that a collision
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Fig. 1. An example of the backoff procedure.

has occurred; if not, it then waits for an acknowledgement to be sent from the
destination station. The importance of the acknowledgement in the context of
wireless devices can be seen on consideration that a sending station cannot listen
to its own transmission; if this was instead possible, then the station could detect
that a transmission was successful.

The sending station enters the backoff procedure if either:

– the channel is not sensed idle for a DIFS;
– the channel is sensed busy after the station finishes a data transmission;
– a positive acknowledgement of successful transmission is not received from

the destination station before a timeout; or
– the station receives an acknowledgement and wishes to send another packet.

The backoff procedure first consists of the station monitoring the channel; if
it is busy, the station waits until it is free, after which it must continue to be
sensed free for a DIFS. Next, there is a random choice of backoff value, which
indicates the number of time periods called “slots” which must be passed through
before the station can start transmitting. The duration of the slot is given by
ASLOTTIME, and must be at least as large as the vulnerable period. If the
channel is detected idle for an ASLOTTIME, the backoff value is decremented
by 1. This decrementing procedure is temporarily suspended if a transmission is
detected, and is resumed only after the channel is sensed free for DIFS time units.
When the backoff value reaches 0, the station can commence its transmission.

An example of a backoff procedure is illustrated in Figure 1, which is adapted
from [4]. We consider the case in which station 2 has just finished sending a data
packet, whereas station 1 has yet to send a packet. After station 2 has finished
transmission, its waits for DIFS time units before selecting randomly the backoff
value of 6. Station 2 then proceeds to decrement the value of its backoff value
by 1 for each duration of length ASLOTTIME passed through. However, after



detecting that the channel is free for DIFS time units, station 1 decides to send its
data packet before station 2 has finished its backoff countdown. The figure shows
how the backoff value of station 2 is frozen while the channel is occupied, both
when the data packet and the accompanying acknowledgement are sent, and also
during the Short Interframe Space1 (SIFS) which separates these transmissions.
That the backoff countdown is frozen during SIFS follows from the fact that the
timing parameters of the IEEE 802.11 standard specify that SIFS < DIFS, and
that the channel must be detected free for DIFS time units before the backoff
countdown can be resumed.

The random selection of backoff value is implemented as a uniform dis-
tribution over integers in the range [0,CW ] (the contention window), where
CW = (aCWmin + 1) · 2bc − 1; the value aCWmin is a constant given by the
physical layer, whereas bc is a variable called the backoff counter, which repre-
sents the number of unsuccessful retransmissions of the pending data packet that
have been made (therefore bc is initially 0). The backoff counter can increase to
a ceiling imposed by MAX BACKOFF, which again is a constant given by the
physical layer (more precisely, it is calculated through the constant aCWmax ,
given by the physical layer, which defines the maximal contention window).

We impose a number of restrictions and assumptions when modelling the
IEEE 802.11 Basic Access DCF mechanism. A fixed network topology, consisting
of two sending stations and two destination stations is assumed, meaning that the
Extended Interfame Space is not modelled. We also do not consider the Timing
Synchronization Function, which stipulates that short frames are periodically
broadcast by a designated station in order to synchronize the local clocks of all
other stations. Finally, for simplicity we assume that retry limits, which bound
the number of retransmissions of a data packet, are set to infinity. However, we
anticipate that these features could be included in our model in the future.

3 Probabilistic Timed Automata

3.1 Syntax of probabilistic timed automata

Time, clocks, zones and distributions. Let T ∈ {R, N} be the time domain
of either the non-negative reals or naturals. Let X be a finite set of variables
called clocks which take values from the time domain T. A point v ∈ T|X | is
referred to as a clock valuation. Let 0 ∈ T|X | be the clock valuation which
assigns 0 to all clocks in X . For any v ∈ T|X | and t ∈ T, the clock valuation v⊕ t
denotes the time increment for v and t (we present two alternatives for ⊕ in
Section 3.2; for the time domain R it is standard addition +). We use v[X := 0]
to denote the clock valuation obtained from v by resetting all of the clocks in
X ⊆ X to 0, and leaving the values of all other clocks unchanged.

1 The Short Interframe Space is the time the IEEE 802.11 standard specifies that a
destination station should wait for after successfully receiving data.



Let Zones(X ) be the set of zones over X , which are conjunctions of atomic
constraints2 of the form x ∼ c for x ∈ X , ∼∈ {≤,=,≥}, and c ∈ N. The clock
valuation v satisfies the zone ζ, written v / ζ, if and only if ζ resolves to true
after substituting each clock x ∈ X with the corresponding clock value from v.

A discrete probability distribution over a countable set Q is a function µ :
Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a possibly uncountable set Q′, let

Dist(Q′) be the set of distributions over countable subsets of Q′. For some element
q ∈ Q, let µq ∈ Dist(Q) be the distribution which assigns probability 1 to q.

Syntax of probabilistic timed automata. We review the definition of prob-
abilistic timed automata [17]. An added feature is that of urgent events, which
are a well-established concept for classical timed automata [12,7].

Definition 1. A probabilistic timed automaton is a tuple (L, l̄,X , Σ, inv , prob)
where: L is a finite set of locations including the initial location l̄ ∈ L; Σ
is a finite set of events, of which Σu ⊆ Σ are declared as being urgent; the
function inv : L → Zones(X ) is the invariant condition; the finite set prob ⊆
L× Zones(X )×Σ × Dist(2X × L) is the probabilistic edge relation.

A state of a probabilistic timed automaton is a pair (l, v) where l ∈ L and
v ∈ T|X | are such that v / inv(l). Informally, the behaviour of a probabilistic
timed automaton can be understood as follows. The model starts in the initial
location l̄ with all clocks set to 0, and hence the initial state is (l̄,0). In this,
and any other state (l, v), there is a nondeterministic choice of either (1) making
a discrete transition or (2) letting time pass. In case (1), a discrete transition
can be made according to any (l, g, σ, p) ∈ prob with source location l which
is enabled; that is, g is satisfied by the current clock valuation v. Then the
probability of moving to the location l′ and resetting all of the clocks in X to 0
is given by p(X, l′). In case (2), the option of letting time pass is available only if
the invariant condition inv(l) is satisfied while time elapses and there does not
exist an enabled probabilistic edge with an urgent event.

Note that a timed automaton [1] is a probabilistic timed automaton for which
every probabilistic edge (l, g, σ, p) is such that p = µ(X,l′) for some (X, l′) ∈
2X × L.

Higher-level modelling. To aid higher-level modelling, a notion of urgency
can be associated with locations, in addition to events. Once an urgent location
is entered, it must be left immediately, without time passing. Urgent locations
can be represented syntactically using an additional clock [7,26].

Integer variables with bounded ranges, which can be tested within enabling
conditions and reset by edge distributions, can also be represented syntactically
within the probabilistic timed automaton framework above by encoding the val-
ues of such variables within locations [25]. Indeed, the probabilistic choice of the
2 Readers familiar with timed automata will note that we consider the syntax of closed

zones, which do not feature atomic constraints of the form x > c or x < c.



backoff procedure in the IEEE 802.11 WLAN sub-procedure that we study takes
the form of a random assignment to an integer variable; hence notation such as
backoff := RANDOM (), for an integer variable backoff, should be interpreted as
a probabilistic choice between locations, as is standard for probabilistic timed
automata.

It is often useful to define complex systems as the parallel composition of a
number of interacting sub-components. The definition of the parallel composition
operator ‖ uses ideas from the theory of (untimed) probabilistic systems [23] and
classical timed automata [1]. Let PTAi = (Li, l̄i,Xi, Σi, inv i, probi) for i ∈ {1, 2}.

Definition 2. The parallel composition of two probabilistic timed automata PTA1

and PTA2 is the probabilistic timed automaton PTA1‖PTA2 = (L1 × L2, (l̄1, l̄2),
X1 ∪ X2, Σ1 ∪ Σ2, inv , prob) where inv(l, l′) = inv1(l) ∧ inv2(l′) for all (l, l′) ∈
L1×L2 and ((l1, l2), g, σ, p) ∈ prob if and only if one of the following conditions
holds:

– σ ∈ Σ1 \Σ2 and there exists (l1, g, σ, p1) ∈ prob1 such that p = p1⊗µ(∅,l2);
– σ ∈ Σ2 \Σ1 and there exists (l2, g, σ, p2) ∈ prob2 such that p = µ(∅,l1)⊗p2;
– σ ∈ Σ1 ∩Σ2 and there exists (l1, g1, σ, p1) ∈ prob1 and (l2, g2, σ, p2) ∈ prob2

such that g = g1 ∧ g2 and p = p1⊗p2

where for any l1 ∈ L1, l2 ∈ L2, X1 ⊆ X1 and X2 ⊆ X2: p1⊗p2(X1∪X2, (l1, l2)) =
p1(X1, l1) · p2(X2, l2).

3.2 Semantics of probabilistic timed automata

Probabilistic systems. The semantics of probabilistic timed automata is de-
fined in terms of transition systems exhibiting both nondeterministic and prob-
abilistic choice. We call such models probabilistic systems; they are essentially
equivalent to Markov decision processes [9], simple probabilistic automata [23],
and probabilistic-nondeterministic systems [5].

Definition 3. A probabilistic system PS = (S, s̄,Act ,Steps) consists of a set
S of states, an initial state s̄ ∈ S, a set Act of actions, and a probabilistic
transition relation Steps ⊆ S ×Act × Dist(S).

A probabilistic transition s
a,µ−−→ s′ is made from a state s ∈ S by first nondeter-

ministically selecting an action-distribution pair (a, µ) such that (s, a, µ) ∈ Steps,
and second by making a probabilistic choice of target state s′ according to
the distribution µ, such that µ(s′) > 0. We refer to probabilistic transitions
of the form s

a,µs′−−−→ s′ (recall µs′(s′) = 1) as transitions. A transition system
TS = (S, s̄,Act ,Steps) is a probabilistic system for which every probabilistic
transition is a transition.

We consider two ways in which a probabilistic system’s computation may be
represented. A path represents a particular resolution of both nondeterminism
and probability. Formally, a path of a probabilistic system is a non-empty finite or
infinite sequence of probabilistic transitions ω = s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · such that



s0 = s̄. We denote by ω(i) the (i+1)th state of ω and last(ω) the last state of ω
if ω is finite. On the other hand, an adversary represents a particular resolution
of nondeterminism only. Formally, an adversary of a probabilistic system is a
function A mapping every finite path ω to a pair (a, µ) such that (last(ω), a, µ) ∈
Steps [27]. Let AdvPS be the set of adversaries of PS. For any A ∈ AdvPS, let
PathA

ful denote the set of infinite paths associated with A. Then, we define the
probability measure ProbA over PathA

ful according to classical techniques [14].
The maximal (minimal) reachability probability is the maximum (minimum)

probability with which a given set of states can be reached from the initial state.
Formally, for a probabilistic system PS = (S, s̄,Act ,Steps), set F ⊆ S of target
states, and adversary A ∈ AdvPS, let:

ProbReachA(F ) def= ProbA{ω ∈ PathA
ful | ∃i ∈ N . ω(i) ∈ F} .

Then the maximal and minimal reachability probabilities MaxProbReachPS(F )
and MinProbReachPS(F ), respectively, are defined as follows:

MaxProbReachPS(F ) def= supA∈AdvPS
ProbReachA(F )

MinProbReachPS(F ) def= infA∈AdvPS
ProbReachA(F ) .

Semantics of probabilistic timed automata. We now give the semantics of
probabilistic timed automata defined in terms of probabilistic systems. Observe
that the definition is parameterized both by the time domain T and the time
increment ⊕.

Definition 4. Let PTA = (L, l̄,X , Σ, inv , prob) be a probabilistic timed au-
tomaton. The semantics of PTA with respect to the time domain T and the
time increment ⊕ is the probabilistic system [[PTA]]⊕T = (S, s̄,Act ,Steps) where:
S ⊆ L × T|X | and (l, v) ∈ S if and only if v / inv(l); s̄ = (l̄,0); Act = T ∪ Σ;
and ((l, v), a, µ) ∈ Steps if and only if one of the following conditions holds:

Time transitions. a ∈ T and µ = µ(l,v⊕t) such that:
1. v ⊕ t′ / inv(l) for all 0 ≤ t′ ≤ t, and,
2. for all probabilistic edges of the form (l, g, σ,−) ∈ prob, if v / g, then

σ 6∈ Σu;
Discrete transitions. a ∈ Σ and there exists (l, g, σ, p) ∈ prob such that v / g

and for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′) .

The summation in the definition of discrete transitions is required for the cases
in which multiple clock resets result in the same target state (l′, v′). Note that
the semantics of timed automata is given in terms of transition systems.

In our setting, the semantics falls into two classes, depending on whether the
underlying model of time is the positive reals or the naturals. If T = R we let



⊕ equal + and refer to [[PTA]]+R as the continuous semantics of the probabilistic
timed automaton PTA. In contrast, if T = N, we let ⊕ equal ⊕N which is defined
below and refer to [[PTA]]⊕N

N as the integer semantics of PTA. Let PTA be a
probabilistic automaton; for any x ∈ X , let kx denote the greatest constant the
clock x is compared to in the zones of PTA. Then, for any clock valuation v ∈ N|X |
and time duration t ∈ N, let v⊕Nt be the clock valuation of X which assigns
the value min{vx + t,kx + 1} to all clocks x ∈ X (although the operator ⊕N is
dependent on PTA, we elide a sub- or superscript indicating this for clarity).

Note that the definition of integer semantics for probabilistic timed automata
is a generalization of the analogous definition for the classical model in [3]. As
we henceforth use the same type of time increment for a particular choice of
time domain, we omit the + and ⊕N superscripts from the notation. The fact
that the integer semantics of a probabilistic timed automaton is finite, and the
continuous semantics of probabilistic timed automaton is generally uncountable,
can be derived from the definitions. As noted by [18], the semantics of the parallel
composition of two probabilistic timed automata corresponds to the semantics
of the parallel composition of their individual semantic probabilistic systems, for
both the continuous and integer semantics.

The following theorem is key to establishing the correctness of the integer
semantics with regard to the probability of reaching a certain set of target lo-
cations of a probabilistic timed automaton. The theorem3 states that both the
maximal and minimal probabilities of reaching a target location are equal in the
continuous and integer semantics, and is a probabilistic extension of a similar
result established in [3]. The proof of the theorem appears in [19]. Let L′ ⊆ L
be a set of target locations of a probabilistic timed automaton PTA, and let
the set of all states in [[PTA]]T corresponding to locations in L′ be denoted by
FL′

T =
⋃
{(l, v) | l ∈ L′, v ∈ T|X | ∧ v / inv(l)}.

Theorem 1. For every probabilistic timed automata PTA and target set L′ ⊆ L
of locations:

MaxProbReach [[PTA]]R
(FL′

R ) = MaxProbReach [[PTA]]N
(FL′

N )

MinProbReach [[PTA]]R
(FL′

R ) = MinProbReach [[PTA]]N
(FL′

N ).

Traces and trace distributions. A trace of a transition system is a sequence
of actions which is obtained from a path by projecting all information except the
actions. The notion of (finite or infinite) traces can be lifted to paths of proba-
bilistic systems in a natural manner; for example, the trace of the infinite path
s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · is the infinite sequence a0a1 · · · . Let A be an adversary of

the probabilistic system PS = (S, s̄,Act ,Steps), and let f : PathA
ful → Actω be

a function assigning the trace to each infinite path of A. The trace distribution
[22] of A is a probability measure over traces characterized by f(ProbA). The
set of trace distributions of PS, denoted by tdist(PS) ⊆ Actω → [0, 1], comprises
3 As in the non-probabilistic case [3], the theorem relies on the fact that only closed

zones are used within the description of the probabilistic timed automaton.



the trace distributions corresponding to all of the adversaries of PS. Given two
probabilistic systems PS1, PS2, we say that PS1 trace distribution refines PS2,
denoted by PS1 �D PS2, if and only if tdist(PS1) ⊆ tdist(PS2).

We next establish a result that is used to bridge the divide between reasoning
about sets of states, as done in reachability analysis, and reasoning about actions,
as done in trace-theoretic approaches.

Lemma 1. Let PS1 = (S1, s̄1,Act1,Steps1) and PS2 = (S2, s̄2,Act2,Steps2)
be two probabilistic systems such that PS1 �D PS2. If both of the following
conditions hold:

1. F1 ⊆ S1 \ {s̄1}, F2 ⊆ S2 \ {s̄2}, and
2. there exists ReachActs ⊆ Act1∩Act2 such that for any i ∈ {1, 2}, si ∈ Si\Fi

and s′i ∈ Fi, we have si
a,µ−−→ s′i if and only if a ∈ ReachActs,

then we have:

MaxProbReachPS1(F1) ≤ MaxProbReachPS2(F2)
MinProbReachPS1(F1) ≥ MinProbReachPS2(F2) .

We lift the notion of trace distributions, sets of trace distributions and trace
distribution refinement from probabilistic systems to probabilistic timed au-
tomata. For example, for two probabilistic timed automata PTA1 and PTA2,
we say that PTA1 trace distribution refines PTA2, written PTA1 �D PTA2, if
and only if [[PTA1]]R �D [[PTA2]]R.

The analogue of trace distribution refinement for transition systems and
timed automata is trace refinement. Given two transition systems TS1, TS2,
we say that TS1 trace refines TS2, denoted by TS1 �T TS2, if the set of traces of
TS1 is included in the set of traces of TS2. Furthermore, for two timed automata
TA1 and TA2, we say that TA1 trace refines TA2, written TA1 �T TA2, if and
only if [[TA1]]R �T [[TA2]]R.

In the presence of urgent events, trace refinement is not a precongruence [13].
As the timed ready simulation preorder proposed by Jensen et al. is too fine a
notion to imply a refinement relation for our models of the IEEE 802.11 BA
protocol, we instead drop the requirement of urgency on events; then the set of
traces of a timed automaton with urgency is contained within the set of traces of
the timed automaton obtained by changing urgent actions to non-urgent actions.
Formally, for a timed automaton TA = (L, l̄,X , Σ, inv , prob), let its lazy timed
automaton LTA = (L, l̄,X , Σ′, inv , prob) be such that Σ′ = Σ but Σ′

u = ∅. This
gives us the following result; observe that the converse of the lemma does not
hold.

Lemma 2. Let TA1 and TA2 be two timed automata such that Σu,2 ⊆ Σu,1, and
let LTA1 and LTA2 be their lazy timed automata counterparts, respectively. Then:

LTA1 �T LTA2 ⇒ TA1 �T TA2 .



Formerly probabilistic timed automata. For a probabilistic timed automa-
ton PTA = (L, l̄,X , Σ, inv , prob), its formerly probabilistic timed automaton, de-
noted by FPTA = (L, l̄,X , Σ′, inv , prob′), is the timed automaton which agrees
with PTA on all of its elements apart from the event set Σ′ and the edge re-
lation prob′, which are defined in the following manner. For each probabilistic
edge e = (l, g, σ, p) ∈ prob, we define the set Σ′

e of events comprising of tuples
〈〈l, g, σ, p,X, l′〉〉 for each (X, l′) such that µ(X, l′) > 0, and let Σ′ =

⋃
e∈prob Σ′

e.
The edge relation prob′ is defined to be the smallest set such that, for each event
〈〈l, g, σ, p,X, l′〉〉 ∈ Σ′, there exists an edge (l, g, 〈〈l, g, σ, p,X, l′〉〉, p(X,l′)) ∈ prob′.
The following lemma states formally a property first introduced in [18].

Lemma 3. Let PTA1 and PTA2 to be two probabilistic timed automata, and let
FPTA1 and FPTA2 be their formerly probabilistic timed automata. If FPTA1 �T

FPTA2 then PTA1 �D PTA2.

The intuition underlying the proof is that traces of FPTA1 can be assembled into
sets which define an adversary A of PTA1; from FPTA1 �T FPTA2, an adversary
of PTA2 with the same trace distribution of A can also be constructed.

In practice, we would not construct a formerly probabilistic timed automa-
ton as outlined above, because even for relatively small models the construc-
tion process would be laborious when done by hand. First, note that it suf-
fices to include information of the form 〈〈l, g, σ, p,X, l′〉〉 only for probabilistic
edges not made with probability 1; for all other probabilistic edges of the form
(l, g, σ, p(X,l′)) ∈ prob, we include the edge (l, g, 〈〈σ〉〉, p(X,l′)) ∈ prob′. Lemma 3
continues to hold in this case, because we can nevertheless assemble sets of paths
of FPTA1 and FPTA2 that result in the same trace distributions.

Let PTA1‖2 = PTA1‖PTA2. Observe that, in general, FPTA1‖FPTA2 6= FPTA1‖2,
because probabilistic edges which do not assign probability 1 to a single outcome
may synchronize in PTA1‖2, creating new product distributions of the form p⊗p′

which do not have an analogue in FPTA1‖FPTA2. For our case study, this does
not cause a problem, since all transitions which do not occur with probability 1
(the transitions for setting the values of backoff) do not synchronize.

4 Modelling and verification

4.1 Modelling using Uppaal

Detailed model. Our initial step in modelling the IEEE 802.11 BA mecha-
nism was to design a detailed model intended to represent the behaviour of the
protocol when there is a collision; that is, when two stations send data packets
at the same time. The model WLAN consists of five components operating in
parallel, namely Send1, Send2 (sending stations), Dest1, Dest2 (destination
stations), and Chan (the channel). In the following, we assume familiarity with
the conventions for the graphical representation of timed automata. Note that we
use the parameters of the Frequency Hopping Spread Spectrum (FHSS) physical
layer, with a transmission bit rate of 2Mbps for the data payload.
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Fig. 2. Template for the sender stations.

The template for the senders is shown in Figure 2. Unless indicated otherwise,
all transitions are made with probability 1. Note that the events busy and free
are the urgent events of the sender. The initial location is indicated by the dou-
ble circle. The sender begins with a data packet to send, and senses the channel.
If the channel remains free for DIFS = 128µs, then the sender enters its vul-
nerable period (explained in Section 2) and starts sending a packet, otherwise
the station enters backoff. The time taken to send a packet is nondeterminis-
tic (within TRANS TIME MIN = 224µs and TRANS TIME MAX = 15, 717µs)
and the success of the transmission – whether the event f correct (successful)
or f collide (unsuccessful) is performed – depends on whether a collision has oc-
curred and is recorded by the channel. The sender then immediately tests the
channel (represented by the urgent location Test Channel). If the channel is busy,
the sender enters the backoff procedure, otherwise it waits for an acknowledge-
ment. If the acknowledgement arrives within ACK TO = 300µs, then the packet
has been sent correctly and the sender finishes; otherwise it times-out and en-
ters the backoff procedure. In the backoff procedure the sender first waits for
the channel to be free for DIFS and then sets its backoff value according to the
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y:=0

end_ack
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Fig. 3. Template for the destination stations.

random assignment4 backoff := RANDOM (bc), where bc, the backoff counter, is
updated if its current value is less than its maximal value (MAX BACKOFF = 6
since aCWmax = 1023). The sender then decrements backoff by 1 if the channel
remains free for ASLOTTIME = 50µs. However, if the channel is sensed busy
within this slot, it waits until the channel becomes free and then waits for DIFS
before resuming its backoff procedure. When the value of backoff reaches 0 the
sender starts re-sending its data packet.

The template for the destinations is shown in Figure 3. Each destination waits
for an incoming packet. If a packet arrives correctly (event f correct), then the
destination waits for SIFS = 28µs and subsequently sends the acknowledgement,
which takes ACK = 205µs time units to send. On the other hand, if the message
arrives garbled (event f collide), the destination does nothing.

The probabilistic timed automaton Chan, which represents the channel, is
shown in Figure 4. The location FREE corresponds to the case in which the
channel is available. From this location, receipt of a data packet from station 1
(event send1, sent by Send1) triggers the transition to location RCV1; then
this packet can either finish successfully (event f correct1, sent by Send1 again)
and return the channel to the location FREE, or collide with a transmission
by station 2 (event send2 sent by Send2) and make the channel proceed to
RCV1RCV2. From the latter location only f collidei events can remove the data
packets from the channel. The left-hand side of the figure shows the part of
the model used to represent the receipt of the acknowledgement on the channel.
Note that the situations in which an acknowledgement is sent at the same time
as a data packet, and in which two acknowledgements collide, are not modelled
in this automaton. Although our original channel model did include locations
to cater for this possibility, they were removed after reachability analysis of our
model using the timed automata model checker Uppaal [20] (with the FHSS
timing parameters) established that such collisions are not possible.

Abstract model. Before constructing discrete-time models of our probabilistic
timed automata, we first apply a number of abstractions. In particular, the
4 A uniform choice over integers in the range [0, (aCWmin + 1) · 2bc − 1] where

aCWmin = 15.
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Fig. 4. Template for the channel.

destination, the behaviour of which is deterministic, is incorporated into the
sender stations to obtain the probabilistic timed automata AbsSendi, for i ∈
{1, 2}. Furthermore, using the result that acknowledgements can never collide,
the same locations of the channel are used for the receipt of data packets and
acknowledgements, resulting in the probabilistic timed automaton AbsChan.
Our aim is to verify the soundness of the above abstraction with respect to
trace distribution refinement. That is, for the concrete and abstracted systems,
denoted by

WLAN = Send1‖Dest1‖Chan‖Dest2‖Send2

AbsWLAN = AbsSend1‖AbsChan‖AbsSend2

respectively, we show that WLAN �D AbsWLAN.
Our abstraction methodology is illustrated in Figure 5. We first construct

lazy formerly probabilistic timed automata models for each sub-component of
the detailed and abstract models using the methodology in Section 3, which are
denoted by a prime. Then, using the timed automata model checker Uppaal,
together with the methodology for testing trace refinement of timed automata
presented in [24], we establish that Send′i‖Dest′i‖Chan′ �T AbsSend′i for
i ∈ {1, 2}, and Chan′ �T AbsChan′. This is illustrated in Figure 5 by the
dashed lines from the sub-components of WLAN′ to the sub-components of
AbsWLAN′ shown in the right-most box. As trace refinement is compositional,
and as the set of traces of (TA1‖TA2)‖TA2 equals that of TA1‖TA2 for any timed
automata TA1, TA2, we conclude that:

Send′1‖Dest′1‖Chan′‖Dest′2‖Send′2 �T AbsSend′1‖AbsChan′‖AbsSend′2 ,

as denoted by the dashed line from WLAN′ to AbsWLAN′ in the central box
of Figure 5. Hence, using Lemma 2 and Lemma 3, it follows that:

Send1‖Dest1‖Chan‖Dest2‖Send2 �D AbsSend1‖AbsChan‖AbsSend2 .
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Fig. 5. A diagram illustrating the abstraction procedure.

Thus, WLAN �D AbsWLAN as required, as shown in Figure 5 by the dashed
line from WLAN to AbsWLAN in the left-most box.

Note that, as the probabilistic choice involved in setting the backoff value
involves 1024 possibilities, instead of constructing up to 1024 edges in the for-
merly probabilistic timed automata Send′i and AbsSend′i, we model the choice
of backoffi using a “widget”: a sub-automaton that determines the range of the
choice of backoffi, sets backoffi to the maximal value of the range, and then
permits a nondeterministic choice between decrementing the value of backoffi

or proceeding to the location Backoff. The transitions of the widget are labelled
appropriately to ensure correspondence between the values of backoffi chosen by
the formerly probabilistic timed automata Send′i and AbsSend′i. Naturally, no
time is permitted to elapse while in the widget.

A final abstraction step comprises an adjustment to the time scale of the
model, in anticipation of analysis using probabilistic model checking in Prism.
Thus far, we have assumed that a time unit is equal to 1µs; however, this
leads to the model having a largest constant of 15,717, which results in a pro-
hibitively large model size when using the discrete-time semantics introduced
in Section 3.2. Therefore, we choose a new time unit of ASLOTTIME = 50µs,
rounding upper bounds on the values of the clocks up, lower bounds down, and
let AbsWLANt be the resulting probabilistic timed automaton, the largest
constant of which is now 315. For a timed automaton TA, it is established in
[2] that the trace set of a timed automaton TAt after such a transformation in-
cludes that of the original model, denoted by TA �T TAt. Therefore, we have
AbsWLAN′ �T AbsWLANt

′, and, by Lemma 3, also that AbsWLAN �D

AbsWLANt. By the transitivity of �D, we know that WLAN is a trace dis-
tribution refinement of our final abstract model AbsWLANt.



k Iterations Time per iteration (s) Probability

1 18 0.052 1
2 89 0.206 0.183593
3 208 0.366 0.017032
4 423 0.549 7.942e-4
5 816 0.819 1.85e-5
6 1,571 1.32 2.17e-7

Table 1. Maximum probability of either station’s backoff counter reaching k.

4.2 Verification using Prism

In this section, we use the probabilistic model checking tool Prism to automat-
ically verify the satisfaction of probabilistic reachability properties. The model
that we build with Prism is the discrete-time semantic model of the final ab-
straction given in the previous section ([[AbsWLANt]]N). Note that, for all the
properties considered, the correspondence between WLAN and AbsWLAN re-
quired by Lemma 1 holds, and hence the results obtained for the abstract model
are upper (lower) bounds for maximal (minimal) reachability probabilities of the
full model.

Due to the size of the models, all experiments were performed with Prism’s
most space efficient model checking engine, which uses Multi-Terminal Binary
Decision Diagrams (MTBDDs) [6]. We ran all experiments on a 440 MHz SUN
Ultra 10 workstation with 512 MB memory under the Solaris 2.7 operating
system. All properties were checked with an accuracy of ε = 10−6. Further
details on the Prism model and the model checking results are available from
the Prism web page [21].

The model took 72.1 seconds to construct and has 5,958,233 states. We then
calculated the minimal probability of both stations eventually sending their
packet correctly. As expected, this has probability 1, and hence the probabil-
ity is also 1 for the detailed model. This calculation took 7,137 iterations and
the time per iteration was 14.1 seconds. Furthermore, we calculated the max-
imum probability of either station’s backoff counter reaching k, the results of
which are presented in Table 1. Observe that the greater the value of the backoff
counters, the greater the number of collisions, and hence the longer it takes for
a data packet to be sent correctly. We observe that the probability of reaching
k falls rapidly as k increases. Note that for k = 1 the probability is 1, which
corresponds to the fact that we model the case where stations initially collide.

We then investigated soft deadline properties, namely calculating the mini-
mum probability of a station delivering a packet within some deadline. In partic-
ular, we considered this property for a variety of deadlines and different values
of TRANS TIME MAX. For example, for the case when TRANS TIME MAX =
2, 500 and the deadline equals 10, 000µs, the model has 583,661,380 states, took
658 seconds to construct and the minimum probability of a station sending a
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Fig. 6. A graph showing the results for the deadline properties.

packet within the deadline is 0.918914, where the verification procedure required
354 iterations and the time per iteration was 3.22 seconds.

In Figure 6 we have plotted the minimum probability of a packet being sent
for different deadlines and values of TRANS TIME MAX. Note that since stations
initially collide with probability 1, the probability will be zero for any deadline
which does not allow the stations to collide, enter the backoff procedure and
then resend their data packets. This can be seen in the graph by noting that the
probability is zero for all deadlines less than or equal to 2 ·TRANS TIME MAX+
1, 000, i.e. the time for a station to send its packet twice plus a constant which
includes the time to wait for an acknowledgement and enter backoff.

The dotted line in the graph corresponds to the minimum probability of a
station sending a packet correctly while not entering backoff more than once;
the results below this line correspond to deadlines where only the first backoff
procedure can influence the outcome (that is, for these deadlines there is insuffi-
cient time for a station to enter the backoff procedure more than once and send
its data correctly). Furthermore, the portions of the graph where the probability
does not increase correspond to deadlines which are not large enough for a sta-
tion to enter backoff more than once and successfully send its data packet, but
are sufficient for all cases when backoff is entered at most once. We note that,
for each deadline and value of TRANS TIME MAX, the minimum probability
corresponds to the case when the adversary chooses TRANS TIME MAX as the
time it takes to send each data packet.

5 Conclusions

We have presented an application of probabilistic model checking to a sub-
protocol the IEEE 802.11 standard for WLANs, also using non-probabilistic
analysis in a “proof assistant” role to verify the soundness of several abstrac-
tions of our original protocol model. The use of nondeterminism allows us to
model asynchronous behaviour of stations, in addition to providing a conser-
vative approximation mechanism when constructing smaller abstract models.



Future work could lift several simplifying assumptions that were made in this
work, such as the fixed network topology in which sending stations cannot also be
destination stations, and the absence of the Timing Synchronization Function.
It is straightforward to increase the number of sending and destination stations
in our framework, although naturally such verification attempts may suffer from
the state-explosion problem commonly encountered in model checking.

We considered probabilistic reachability properties, which are counter-parts
of transient properties of stochastic processes. It is intended to extend the range
of properties that can be verified by the tool Prism, to include for example
expected-time properties [8].
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