
Mathematical Modelling of Identity, Identity Management
and Other Related Topics

Md. Sadek Ferdous, Gethin Norman, and Ron Poet
School of Computing Science, University of Glasgow

Glasgow, G12 8QQ, Scotland
m.ferdous.1@research.gla.ac.uk, gethin.norman@glasgow.ac.uk,

ron.poet@glasgow.ac.uk

ABSTRACT

There exist disparate sets of definitions with different se-
mantics on different topics of Identity Management which
often lead to misunderstanding. A few efforts can be found
compiling several related vocabularies into a single place to
build up a set of definitions based on a common semantic.
However, these efforts are not comprehensive and are only
textual in nature. In essence, a mathematical model of iden-
tity and identity management covering all its aspects is still
missing. In this paper we build up a mathematical model
of different core topics covering a wide range of vocabular-
ies related to Identity Management. At first we build up a
mathematical model of Digital Identity. Then we use the
model to analyse different aspects of Identity Management.
Finally, we discuss three applications to illustrate the ap-
plicability of our approach. Being based on mathematical
foundations, the approach can be used to build up a solid
understanding on different topics of Identity Management.

Keywords

Identity, Identity Management, Mathematical Modelling.

1 Introduction

With the tremendous expansion of the Internet during the
last twenty years or so, more and more identities and creden-
tials have been issued, making their management challeng-
ing, both for service providers and users. Identity Manage-
ment (denoted IdM thereafter) was introduced initially by
industry to facilitate online management of user identities.
There are currently a number of different incompatible IdM
solutions that resulted from separate isolated projects. The
lack of cohesion and co-operation among these efforts lead
to different notions and semantics for many central topics of
IdM, and some fundamental concepts of IdM such as Iden-
tifiers, (Digital) Identity and Partial Identity have different
definitions in [10, 19, 3, 17, 22]. For example, Identity is
defined as “the equivalent to the physical presence of that
entity” in [10], whereas [3] considers Identity as “the set of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIN ’14, September 09 - 11 2014, Glasgow, Scotland Uk
Copyright 2014 ACM 978-1-4503-3033-6/14/09...$15.00.
http://dx.doi.org/10.1145/2659651.2659729.

permanent or long-lived temporal attributes associated with
an entity”. The same concept of Identity is defined as the
“the dynamic collection of all of the entity’s attributes” in
[19]. The first definition is a mere abstraction, whereas the
second and third have significantly different means. Such
differences in these core topics introduce inconsistencies and
such inconsistencies in turn introduce confusion, making it
difficult to gain an understanding of IdM.

To rectify the situation, an effort has been undertaken to
develop an extensive list of vocabularies [22]. The result of
this work is an evolving document that aims to build up a
common language to remove inconsistencies. Their focus is
somewhat narrow as it only deals with those definitions that
are related to privacy aspects of IdM. The domain of IdM
is much broader, and thus [22] is not comprehensive in na-
ture. A more general effort with the similar goal is [19], this
work provides definitions for different concepts related to
IdM, however the relationships between the definitions is not
considered. In addition, a textual form for the definitions is
used which can lead to misinterpretation. A mathematical
model of IdM can be found in [29]. Unfortunately, similarly
to [22], this work focuses only on the privacy aspects of IdM.
Therefore, as noted in [1], a mathematical model of identity
and IdM covering all its aspects is still missing. In this pa-
per, we aim to fill in that gap by building up a mathematical
model of the central topics of Digital Identity and IdM, and
show how our model can be used to analyse different issues
related to IdM. Moreover, the model provides the founda-
tions for formal analysis of IdM and for an Identity Calculus
which can then be used to study the dynamics of identities
in different systems. The main contributions of this paper
are listed below.

• A formal model of digital identity by mathematically
defining atomic concepts for Entity, Context, Attribute,
Identifier, Partial Identifier, Partial Identity and Data.

• We show how the formal model can be used to char-
acterise different aspects of IdM.

• We give three applications to illustrate how our model
can be used to analyse different scenarios and to char-
acterise two popular IdM models mathematically.

The paper is structured as follows. In Section 2, we build up
our model of digital identity. In Section 3 we use our devised
model of digital identity to characterise the behaviour of
an IdM System and Section 4 provides three applications
to illustrate the applicability of our proposed model. We
conclude in Section 5 with a discussion of future work.

2 Modelling Digital Identity
In this section we develop our Digital Identity model from
atomic concepts.

Entity. An entity is a physical or logical object which has
a separate distinctive existence either in a physical or logi-
cal sense [7]. Different disciplines interpret the term Entity
in different ways and with different meaning. We focus on
digital identities, and therefore assume for the remaining of
this paper that entities are digital and use the symbol E to
denote the set of digital entities.

Context. Like entity, the term context is used with differ-
ent meanings in different disciplines. In the scope of IdM,
a context is the environment under which a (digital) entity
exists and operates. It can be regarded as the application
domain or namespace in which an entity is represented and
identified uniquely. We let CONTEXT denote the set of
contexts and use Ec to denote the set of entities in context
c ∈ CONTEXT .

As a running example, consider two contexts (or systems):
one for blogging (BLOG) and one for emailing (EMAIL).
Assume that each system has two entities (or users): JOHN
and RAHIM in the BLOG, and RAHIM and ALICE in the
EMAIL, then we have: EBLOG = {JOHN ,RAHIM } and
EEMAIL = {ALICE ,RAHIM }.

Attributes. An attribute is a distinct, measurable named
property belonging to an entity in a context whose value
can be used to identify the entity (not necessarily uniquely)
within the context [19]. Here, the term “identify” is used
with its literal meaning. We will define this term more pre-
cisely later. Accordingly, each attribute has a name and
value. The name (or simply the attribute) alone cannot
identify an entity, the value is also needed. In a context, the
value of an attribute is provided either by each entity or a
third party. Another important aspect of an attribute is its
data type which defines the values an attribute can take. For
brevity, we will not consider the data type of attributes and
instead focus on attributes (names) and values. In common
terminologies, values are also known as data. Let Ac denote
the set of attributes and AV c attribute values in context
c ∈ CONTEXT . The attributes in different contexts may
overlap as attributes can exist in different contexts.

Returning to our example, assume the context BLOG
has three different attributes: username, age and postcode
of residence. Furthermore, for entity JOHN the values of
these attributes are john, 32 and G3 respectively, while for
RAHIM the values are rahim, 21 and G3 respectively, then:

ABLOG = {username, age, postcode}
AVBLOG = {john, rahim, 21 , 32 ,G3}

Now we relate attributes and entities in a context.

Definition 1. Let atEntToValc : Ac×Ec → AVc be the
(partial) function that for an entity and attribute returns the
corresponding value of the attribute in context c.

The function is partial as not all entities have a value for each
attribute. We use this definition to introduce the function
atToValSetc : Ac → P(AVc) that, for a given attribute,
returns the set of values associated with at least one entity.
Formally, for a ∈ Ac, we have atToValSetc(a) equals

{atEntToValc(a, e) | e ∈ Ec and atEntToValc(a, e) is defined}

According to our example:

atEntToValBLOG((username,RAHIM)) = rahim
atEntToValBLOG((postcode, JOHN)) = G3

atToValSetBLOG(username) = {john, rahim}

The following functions map attributes and values to the
corresponding entities.

Definition 2. Let atValToEntc : Ac×AV c → P(Ec) be
the function that maps an attribute-value pair to the set of
entities which have the value for the attribute in context c.
Formally, for a ∈ Ac and v ∈ AV c:

atValToEntc(a, v) = {e ∈ Ec | atEntToValc(a, e)=v} .

Returning to our example:

atValToEntBLOG((postcode,G3)) = {JOHN,RAHIM}

We next introduce three classes of attributes. The first
uniquely identify an entity, the second can identify at least
one entity and the third no entities.

Identifier. An identifier is an attribute whose value can
be used to uniquely identify an entity within a context [13].
There may be many attributes in a context that can uniquely
identify an entity at a certain point in time. However, when
more entities are added into the context, it may happen
that the attribute no longer uniquely identifies an entity.
To avoid unnecessary complications, each context considers
one attribute as the identifier and ensures that its value can
always uniquely identify an entity.

Definition 3. The function ident : CONTEXT → Ac

returns the identifier for a context such that if i = ident(c),
then

• atEntToValc(i, e) is defined for all e ∈ Ec;

• atEntToValc(i, e1) 6= atEntToValc(i, e2) for all dis-
tinct e1, e2 ∈ Ec.

for all contexts c ∈ CONTEXT.

The above conditions correspond to the following (required)
properties of an identifier in a context: each entity of the
context must have a value for the identifier and the value
of the identifier uniquely identifies an entity in the context.
These conditions can be ensured during the registration pro-
cess (an essential step of IdM which we will explore later).

Partial Identifier. When the value of an attribute identi-
fies at least one entity within a specific context, the attribute
is defined as a Partial Identifier [13]. An example of a partial
identifier is Surname. Many people may share a surname,
and therefore it can identify more than one person.

Definition 4. The set of partial identifiers in context c
is given by PI c ⊆ Ac\{identifier(c)} such that pi ∈ PI c if
and only if atEntToVal(pi , e) is defined for some e ∈ Ec.

Null Identifier. A Null Identifier are those attributes
which do not have a value for any entities. Formally we
have the following definition.

Definition 5. The set of null identifiers in context c is
given by NI c ⊆ Ac\{ident(c)} such that ni ∈ NI c if and
only if atEntToValc(ni , e) is undefined for all e ∈ Ec.

Figure 1: Relation between user, identifier and par-
tial identifiers.

Figure 2: The (total) identity of an entity.

From the above definitions, it follows that Ac = {ident(c)}∪
PI c ∪NI c and these sets are disjoint.

Returning to our example, let username be the attribute
that has been selected as the Identifier for the BLOG system.
That is ident(BLOG)=username. All other attributes are
partial identifiers, i.e. PIBLOG = {age, postcode}. There are
no null identifiers in our example.

Next, we relate identifiers, partial identifiers and entities.

Definition 6. Let idValToEntc : AV c → Ec be the (in-
jective) function that maps a value of an identifier to the
respective (unique) entity in context c. That is, for any
v ∈ atToValSetc(ident(c)) we have idValToEntc(v)=e where
e is the unique entity with atEntToValc(ident(c), e)=v.

Returning to our example, we have:

idValToEntBLOG(john) = JOHN
idValToEntBLOG(rahim) = RAHIM

We next relate identifiers to partial identifiers.

Definition 7. Let idValToPic : AVc → P(PI c×AV c)
map a value of the identifier in context c to the correspond-
ing set of partial identifiers and values. Formally, for v ∈
atToValSetc(ident(c)), if idValToEntc(v)=e, then

idValToPic(v)={(pi , v) | pi ∈ PI c and atEntToValc(pi , e)=v} .

According to our running example:

idValToPiBLOG(john)={(age, 31), (postcode,G3)}

Figure 1 provides a graphical analogy of the relation between
the user (entity), the identifier and the partial identifiers.

Credentials. We will consider a credential as an attribute
that accompanies an identifier to attest the authority of an
entity over the supplied identifier (known as the authentica-
tion process). The simplest and weakest form of a credential

is a password. Attribute certificates, biometrics such as fin-
gerprints, voice recognition, retina scan or secure hardware
tokens such as the OTP (One Time Password) are examples
of more secure credentials. Let, credc be the attribute that
holds the credential for each entity in context c. Then we
can define the following function that checks the identifiers
and credentials of entities.

Definition 8. For a context c, the function

checkCredc : (ident(c)×AV c)×(credc×AV c)→ B

returns true if the supplied identifier and credential values
match and false otherwise.

Modelling credentials at this abstract, high level means that
we do not need to be specific regarding the type of creden-
tials. For example, the credential attribute (cred) could be
represented using passwords in one system and biometrics
in another system.

Partial Identity, Identity and Profile. The partial iden-
tity of an entity in a context is the set of identifier and partial
identifiers along with their values within that context [22].
Formally, we have the following definition.

Definition 9. For a context c, the partial identity of an
entity e ∈ Ec within context c, denoted parIdentec, is given
by the set:

{(a, v) |a ∈ Ac, atEntToValc(a, e) is defined and equals v} .

For our running example, for example parIdentJOHN
BLOG =

{(username, john), (age, 31), (postcode,G3)}.

The (total) identity of an entity is the union of all its partial
identities in all contexts (Figure 2) [22].

Definition 10. For an entity e ∈ E, the identity of e is
given by the set:

idente = ∪{(c, parIdentec) | c ∈ CONTEXT such that e ∈ Ec}.

Note that such a combined view of identity only makes sense
from the first person perspective of a user. From an organ-
isational point of view, such a combined view would allow
any organisation to gain unlimited control over the user data
and hence is very lucrative, but potentially privacy invasive
as far as the user is concerned. A more privacy-friendly
approach is to share a limited view of a user’s data across
organisational boundaries whenever needed. We define such
a limited view below (see Definition 11). Sometimes, it may
happen that two different contexts are combined (maybe
due to the merging of organisations) into a single context, it
may seem that two entities may end up with the same set
of attributes and therefore the same identity. However, it is
important to remember that, by definition of an identifier
in a context, two entities cannot have the same identifier
value. This ensures that the partial identities of two entities
in a single context are different as they will have at least
one different attribute value. Therefore during such merg-
ing of contexts, the system may need to update their sets of
identifiers to ensure consistency.

Definition 11. For a context c, the profile of an entity
e ∈ Ec is given by PROFILE e

c = {(ident(c), v)} ∪ A where
v=atEntToV alc(i, e) and A ⊆ idValToPic(v).

An example of the profile of the user JOHN in BLOG using
our example is:

PROFILEJOHN
BLOG = {(username, john), (age, 31)}

If a profile is passed between different contexts (which is of-
ten the case in traditional IdM Systems) and the Identifier is
permanent in nature it raises the question of privacy invasion
since the user can be tracked or profiled in another context
with this permanent identifier. In such cases, an Anonym (a
non-identifiable attribute, that cannot be associated with an
entity) or a Pseudonym (an arbitrary one-time identifier of
an entity [19]) can be used instead of a permanent identifier.
Here in PROFILE , the Identifier is treated at an abstract
high-level (without specifying if it is a permanent, anony-
mous or pseudonymous identifier) to allow the modelling of
any implementation of an Identifier.

Digital Identity Model. Having formalised the required
sets and functions to represent a digital identity, we can
combine them into a unified model.

Definition 12. A Digital Identity Model (DIM) consists
of the following basic components:

• E is the set of entities;

• CONTEXT is the set of contexts;

• A is the set of attributes and AV attribute values;

• ident : CONTEXT → A returns the identifier for each
context;

• Ec ⊆ E, Ac ⊆ A and AV c ⊆ AV are the sets of
entities, attributes and attribute values in context c ∈
CONTEXT;

• credc ∈ Ac holds the credential for each entity in the
context c ∈ CONTEXT;

• atEntToValc : Ac×Ec → AV c returns the value of an
attribute of an entity in context c ∈ CONTEXT;

• checkCredc : (ident(c)×AV c) × (credc×AV c) → B
checks if an identifier and credential with values match
in context c ∈ CONTEXT.

Using these basic components the following additional com-
ponents can be defined:

• PI c,NI c ⊆ Ac are the sets of partial and null identi-
fiers respectively in context c ∈ CONTEXT;

• parIdentec ⊆ Ac×AV c is the partial identity of the en-
tity e ∈ E in context c ∈ CONTEXT;

• PROFILE e
c ⊆ Ac×AV c is the profile of the entity e ∈

E in context c ∈ CONTEXT;

• idente ⊆ {(c,P(Ac×AV c)) | c ∈ CONTEXT} is the
total identity of the entity e ∈ E in all contexts;

• atValToEntc : Ac×AV c → P(Ec) maps attribute-value
pairs to the set of Entities which have the value for the
attribute in context c ∈ CONTEXT;

• idValToEntc : AV c → Ec maps a value of the iden-
tifier to the respective (unique) entity in the context
c ∈ CONTEXT;

• idValToPic : AV c → P(PI c×AV c) maps a value of
the identifier to the corresponding partial identifiers
and values in context c ∈ CONTEXT.

Other functions that have been discussed can be constructed
using the basic components of Definition 12.

3 Modelling Identity Management

The ever increasing number of both online services and users
that access each service leads to an even faster increase in
digital identifiers. Therefore the issues of managing these
identifiers and corresponding credentials is becoming a harder
task. IdM was proposed to facilitate management of online
identities [7]. Formally, IdM consists of technologies and
policies for representing and recognising entities with their
digital identities [14]. A system that is used for IdM is called
an IdM System (IMS, in short). Each IMS involves the fol-
lowing parties:

Client/User. A client/user receives services from a service
provider (see below). Any entity can be a client, however
we assume that each client is a user or person.

Service Provider. A service provider (SP, in short) is an
organisation that provides services to the clients or to other
SP. It is also known as the Relying Party. We will use the
notation SP to denote the set of service providers.

Identity Provider. An identity provider (IdP, in short)
is an organisation that provides digital identities to allow
clients to receive services from a SP. We will use the notation
IDP for the set of identity providers.

3.1 Steps in Identity Management Systems

Each IMS, generally, utilises the following set of steps, known
as the life-cycle of an IMS, to allow any user to manage her
identity in that specific context and to access services from
the SP. The contexts of an IMS consist of the sets of IdPs
and SPs, i.e. CONTEXT = IDP ∪ SP . The subscript in
the following operations specifies the context (IdP or SP) in
which each operation is valid.

Registration. Registration is the initial step in which a
user, who wants to access services, registers herself at the
respective IdP by providing personal information. At this
step, the user either chooses a unique value for the identifier
of the service and a value for the corresponding credential
or they are created automatically by the IdP. The user may
also provide values (data) for partial identifiers and then the
IdP updates its respective attributes with the user supplied
data. The process can be modelled in the following way:

E′
idp = {e′} ∪ Eidp

AV ′
idp = AV ′ ∪AV idp

Here, e′ represents the newly joined entity and AV ′ repre-
sents the newly created data for that entity including the
compulsory unique identifier value. E′

idp and AV ′
idp repre-

sent the updated sets of entities and attribute values respec-
tively for the context idp.

After registration, the components of Definition 12 for
context idp whose domain or range contain Eidp or AVidp

are updated to E′
idp and AV ′

idp respectively. For example:

• if the entity e′ supplied value av ′ ∈ AV ′ for attribute
a ∈ Aidp , then atEntToVal idp(a, e′) = av ′;

• if the entity e′ supplied values av ′
1, av ′

2 ∈ AV ′ for
ident idp and cred idp respectively, then:

checkCred idp((ident(idp), av1), (cred idp , av2)) = true

if av1 = av ′
1 and av2 = av ′

2 and false otherwise.

Many systems allow a user to create more than one account
using the same procedures described above. The user must
choose a unique value for the identifier and can add one or
more attribute values. It is important to understand that
the system will treat each registered account as belonging
to a separate digital user even if they are created by the
same physical user. This particular scenario is easy to cap-
ture in our framework. Using our running example, suppose
user JOHN wants to register himself in the Blog System
as a new user with values jack, 26, G11 for the attributes
username, age, postcode respectively. Let us denote this en-
tity as JOHN ′. Even though the system treats JOHN and
JOHN ′ as separate digital entities, in reality they are the
same physical entity. As these two accounts belong to two
separate entities in the system, all previously discussed DIM
components are applicable to them as well.

Identification & Authentication. Before any service can
be accessed, the user needs to be identified and authenti-
cated. Identification is the process of finding an association
between an identifier (or in general an attribute) value and
the entity and authentication is the process of proving the
association. We can use the DIM component idValToEnt
(see Definition 6) for identification. Similarly, the compo-
nent checkCred (see Definition 8) can be used for authenti-
cation. In many systems, the process of identification and
authentication are combined together in a single step.

For authentication, we define an abstract high-level al-
gorithm (see Algorithm 1) that takes as input the user’s
supplied identifier and attribute values and either returns a
successful result if the entity (the user) can be identified and
returns an unsuccessful result otherwise. We let AUTHN idp

denote the set of authenticated entities.

Algorithm 1 IdAuthentication(e, i, v1, v2, cred idp). Au-
thenticates an entity through identifier and attribute values.

Input: e ∈ Eidp , i=ident(idp), v1 ∈ atToValSet idp(i), v2 ∈
atToValSet idp(cred idp)
if (e=idValToEnt idp(v1) and checkCred((i, v1), (cred idp , v2)))
then
return true

else
return false

Authorisation. Authorisation is the process to decide if an
entity can perform a certain action on a specific resource in
a specific context based on an identifier value or partial iden-
tifier values [19]. The authorisation usually takes place in
the SP. We let ACT sp and RES sp denote the sets of actions
and resources respectively in the corresponding SP.

Authorisation only takes place if an entity is authenti-
cated in the IdP, meaning the entity is in the set AUTHN idp .
The SP requires the identifier and/or partial identifiers and
their values for the entity, as well as the relevant action and
resource. A subset of the user profile containing this in-
formation together with the requested action and resource
are transferred to the SP using an Identity Protocol (see
below). Upon receipt, the SP utilises an access control
mechanism to authorise the entity. The mechanism may
include an Access Control List (ACL) [28] or a Role Based
Access Control (RBAC) feature [8]. At an abstract high-
level this is just a set that lists which entity having which
particular identifier or partial identifiers can perform which
actions on what resources. We let ACLsp denote the set of

tuples at the SP that lists which entities and profiles can
perform what actions on which resources. Formally we have
ACLsp ⊆ ∪e∈AUTHN idpP(PROFILE e

idp)×ACT sp×RES sp .
We can now define another abstract high-level algorithm

(see Algorithm 2), that takes the requested inputs and either
returns a successful result if the tuple can be found in ACL
and an unsuccessful result otherwise.

Algorithm 2 CheckAuthorisation(ACLsp, e, p, act , res).
Checks if an authenticated entity can perform an action on
a resource.
Input: ACLsp, e ∈ AUTHN idp , a ∈ ACT sp, r ∈

RES sp, p ⊆ PROFILE e
idp

if ((p, a, r) ∈ ACL) then
return true

else
return false

Service Provisioning. Once the user is identified, authen-
ticated and authorised to access a particular service, they
can access the service. In terms of IdM, accessing a service
is known as service provisioning. An example service is that
of an entity e being able to retrieve and update attribute
values. Formally, when authorised to access this service in
context e, an entity e will have partial control over the basic
DIM component atEntToValc (see Definition 1), in being
able to view and update entries atEntToValc(a, e) for all
a ∈ AV c. On the other hand, if the entity is not authenti-
cated it will not able to either view or update its attribute
values, meaning formally the entity has neither access nor
control over the component atEntToValc.

De-registration. The final step is the de-registration pro-
cess which allows users to de-register from an IdP. This pro-
cess usually removes the entity and the association between
the entity and both the identifier and attributes from a spe-
cific context (IdP). It is the reverse process of registration
and is modelled in the following way. For idp ∈ IDP :

AV ′
idp = AV idp \ AV ′

E′
idp = Eidp \ {e′}

where E′
idp and AV ′

idp represent the updated set of entities
and attribute values. Similarly to registration, the compo-
nents of Definition 12 for context idp are updated if their
domains/ranges change.

From the discussion above, the operations of registration,
identification, authentication and de-registration take place
at the IdP while authorisation and service provisioning take
place at the SP. We will use the notation IdmOP to denote
the combined set of operations.

3.2 Identity Protocol

Careful readers will have noticed a discrepancy in the Autho-
risation step where inputs from different contexts are used
in Algorithm 2. In particular, the authenticated entity and
profile information is from the context of the IdP, while the
remaining inputs relate to the SP. In reality, the SP receives
the relevant information from the IdP during the autho-
risation phase using a secure transport mechanism called
the Identity Protocol and is part of every IMS. Different
IMSs have different Identity Protocols. Examples of widely
used identity protocols include SAML (Security Assertion
Markup Language) [27], OAuth [20] and OpenID [21].

4 Applications
In this section, we will explore three possible scenarios where
our model can be applied. In the first scenario, we will
analyse the effect of multiple partial identities of a user. In
the second scenario, we analyse the cause of identity theft.
In the last scenario, we will show how our models can be used
to characterise the behaviour of two popular IdM models.

4.1 Effect of Multiple Partial Identities

The typical use of online services requires a user to register
with multiple identity (or service) providers by providing
different attribute values during the registration process as
explained above. This means the user ends up with mul-
tiple partial identities scattered across multiple providers.
If ne,c denotes the number of attribute values provided by
the entity (user) e in the context (provider) c, then ne,c =
|parIdentec|. Now, supposing c1, . . . , cm are all the contexts
(providers) in which e has partial identities, the total num-
ber of attributes for the user e is given by:

Ne =
∑m

i=1 ne,ci .

The value Ne signifies the number of attributes that need to
be managed by the user e. Note that some attributes and
their values may overlap in different contexts. Nevertheless,
they must all be accounted for when calculating the total
number of attributes as they need to be managed separately
in different contexts. Ideally, Ne will have a small value
allowing the user to manage its attributes in a convenient
way. Unfortunately, with the proliferation of novel online
services requiring users to register to access those services,
the value of Ne keeps increasing. One of the central focuses
in IdM research is to reduce Ne for every entity e. There
are two ways it can be reduced: i) by lowering ne,c in each
context c, i.e. only storing smaller number of attributes at
each provider and ii) by lowering m so that attributes are
stored by a small number of providers. The second option is
more suitable for two reasons. Firstly, it may not be always
possible to know beforehand which attributes might be re-
quired/requested by the SP later on, hence the IdP might
prefer to store as many attributes as possible. Secondly,
when attributes are scattered across many IdP, it becomes
increasingly difficult for the user to effectively manage at-
tributes stored in those IdP. Minimising m would enable the
user to manage attributes efficiently and hence is the focus
of existing identity management systems.

Ideally, m=1 would be the most suitable choice as far as
the user is concerned. It means that there is only one IdP
storing all attributes of the user and providing them to the
SP. With this goal, Microsoft introduced the passport sys-
tem as the IdP of the Internet [4]. However, the attempt
failed and the reason behind this failure was that the pass-
port was included in each interaction between a user and the
SP was not properly justified and users were not very con-
fident and comfortable about a third party holding all their
attributes [2]. Since then, it has been predicted and envi-
sioned that there will exist a number of IdPs each with their
specific purpose. For example, a bank IdP can be used for
financial activities and the governmental IdP for accessing
governmental services. This probably means that the value
of m will always be more than 1. The optimal value of m
that will enable users to manage their attributes in the most
efficient manner is yet to be found and might vary from user
to user.

4.2 Analysing Identity Theft

Identity theft is one of the major online fraudulent activities.
It has been a source of huge financial losses in recent years,
for example, in 2013 the financial loss due to the identity
theft reached nearly $21 billion in the USA [11]. Identity
theft has been a difficult issue to tackle and many attempts
have been proved fruitless so far. Before we use our model
to analyse the root cause of identity theft, let us look at a
suitable textual definition of identity theft.

The term identity theft has been defined in many ways in
the literature [12, 18]. Consider Koops et. al. [16] defini-
tion: “Identity ‘theft’ is fraud or another unlawful activity
where the identity of an existing person is used as a target
or principal tool without that person’s consent”. The person
whose identity is being abused is the victim and the person
who abuses the victim’s identity is the attacker. This defini-
tion is too literal, there is no mention if the term identity in
the definition means the total identity or the partial identity
in a particular context.

For the time being, let us assume that it refers to the par-
tial identity of an entity e in a particular context c. Now,
to steal the entity’s partial identity in a context, an attacker
needs to get hold of all the attribute values provided by the
victim in the context c which is represented by set parIdentec.
This set can be generated if one has access to the basic DIM
component atEntToValc (see Definition 1). As discussed in
the Service Provisioning step of Section 2, an attacker will
have sufficient access to this component to obtain e’s profile,
if the attacker is identified, authenticated and authorised as
e in context c. Furthermore, as explained in the Identifi-
cation & Authentication step of Section 2, achieving this is
dependent on the attacker getting hold of the values of both
the identifier (e.g. a username) and credential of e for con-
text c. There are numerous ways an attacker can get hold of
these two pieces of information such as using simple or com-
plex social engineering techniques, having access to a piece
of paper containing such information in written format, de-
ploying advanced phishing techniques, by guessing or brute
forcing a password.

There have been many attempts to tackle this problem,
mostly focus on hardening the credential (e.g. strong pass-
words which are difficult to guess or brute force, biometrics
which are difficult to forge or hardware tokens to generate
one time password), using secure hardware (e.g. smartcard)
or using multi-factor authentication (e.g. using a fixed pass-
word at first and then providing a secondary password in
the mobile phone). Nonetheless, except for biometrics, it
does not matter how strong the credential is, if the attacker
gets hold of it, there are always chances of identity theft.
It seems that the root cause might be something else. To
analyse that, let us introduce the following function.

Definition 13. Let the following function return the en-
tity who has supplied the value of an identifier and credential
pair in the context c:

suppliedByc : (ident(c)×AV c)×(credc×AV c)→ E

Notice, suppliedBy can return an entity who may not exist
in that context.

It is assumed in the setting of current online services that:

idValToEntc(v)=suppliedByc((ident(c), v), (credc, v
′))

Figure 3: SILO Model.

where v ∈ atToValSetc(ident(c)) and v′ ∈ atToValSetc(credc).
However, in case of an identity theft, we have:

idValToEntc(v) 6= suppliedByc((ident(c), v), (credc, v
′)) .

Therefore to tackle identity theft we just need a function
with the capability of Definition 13. Unfortunately, devel-
oping and deploying such a function is extremely difficult,
if not impossible, with the current structure of the Internet
where anybody can be anything.

4.3 Modelling Identity Management Models

Finally, we show how our IdM Model can be extended to
characterise the behaviour of two popular IdM Models: the
Isolated User Identity (SILO) Model and the Federated User
Identity (FED) Model. For this we need to define an Iden-
tity Domain. An Identity Domain is the set of application
domains in which an Identifier is unique [15]. Different mod-
els utilise different types of identity domains which act as
the context for those models. We will use the notation
IDDommi to denote a single identity domain i of an IdM
Model m. Additionally, the notation IDPm and SPm will
be used to denote the sets of all IdPs and SPs respectively in
a model m. In addition, we require a function that returns
the set of SPs shared by an IdP in a specific IdM Model.

Definition 14. Let sharedBym : IDPm → P(SPm) be
the function that maps an IdP to the set of SP that utilise
the service of the IdP for operations in IdM model m.

4.3.1 Isolated User Identity (SILO) Model.

The Isolated User Identity (SILO) Model represents the most
common and the simplest IdM model [15]. There are only
two parties involved: a SP (combined with its own IdP) and
the clients. As the SP and IdP are the same entity, they
will be used interchangeably. Each SP maintains its own
identity domain and the identity operations performed in
one domain are not valid in any other. Formally, we have
CONTEXT = {SILO1, . . . ,SILOn} for some n ∈ N where:

• IDPSILOi = {idpi} = {spi} = SPSILOi for 1≤i≤n;

• IDDomSILOi = IDPSILOi for 1≤i≤n.

The requirements above signify that each identity domain
in the SILO Model, denoted SILO i, consists of an IdP idpi

which can also be regarded as the SP since they are the
same entity. Figure 3 illustrates the SILO Model for n=4.
Moreover, for any 1 ≤ i 6= j ≤ n:

• |sharedBySILOi (idpi)| = 1 for idpi ∈ IDPSILOi ;

Figure 4: Federated Model.

• sharedBySILOi (idpi)∩sharedBySILOj (idpj) = ∅ for idpi ∈
IDPSILOi and idpj ∈ IDPSILOj .

That is, each IdP is used by precisely one SP and two IdP
belonging to different identity domains use different SPs.
IdM operations in one domain (inside one IdP or SP) is com-
pletely separate from the operations in other domains. More
formally, we have IdmOP IDDomSILOi

∩IdmOP IDDomSILOj
= ∅

for 1 ≤ i 6= j ≤ n.

4.3.2 Federated User Identity (FED) Model.

In the FED Model each identity domain is shared between a
number of previously agreed SPs [15]. The unified identity
domain is commonly known as the Federated Domain and
the SPs and together with their IdP are said to be a part
of the so-called Circle of Trust (CoT). The client of one
SP can authenticate herself with her corresponding IdP and
then enjoy the services of other SPs that are inside the same
CoT. Shibboleth is an example of a system based on this
model [25].

In this model (see Figure 4) we have

CONTEXT={SILOj
i | 1≤i≤n ∧ 1≤j≤ni}

for some n ∈ N and ni ∈ N where:

• IDDomFEDi=COT i =
⋃ni

j=1 IDDom
SILO

j
i

for 1≤i≤n;

• |sharedByFEDi (idp)| = ni for idp ∈ COT i and 1≤i≤n.

The first property signifies that each federated domain or
each CoT (COT i), in essence, consists of several SILO iden-
tity domains (denoted as SILOi). However, unlike the SILO
model, this model offers interoperability among different
SILO domains, meaning that IdM operations such as iden-
tification and authentication that take place inside an IdP
are shared among several SP inside the same CoT and is
indicated by the second property above. To ensure interop-
erability, an agreement is signed among participating organ-
isations to create a CoT. The combined federated identity
domain consists of several CoTs.

In the FED model, IdM operations are different in differ-
ent CoTs. That is, for any 1 ≤ i 6= j ≤ n:

IdmOPCOTi ∩ IdmOPCOTj = ∅ .

However, once the user is authenticated in one IdP, she will
also be considered authenticated at all IdP belonging to the
same CoT. So, for any 1 ≤ i ≤ n and idpi, idp′

i ∈ COT i we
have AUTHNidpi

= AUTHNidp′
i
.

5 Conclusion

In this paper, we have built up a mathematical framework
to formally model the central aspects of IdM and used the
framework to model several aspects of IMS. We have pro-
vided three application scenarios showing how our model
can be applied. Being based on formal mathematical foun-
dations, the framework can be used to build a deep under-
standing of the central issues of IdM. This is the first model
of its kind and we believe it has the potential for rigorous
reasoning and formal analysis of IdM. In particular, it can be
used as the framework for an Identity Calculus which can be
used to study the change of identities that users go through
from systems to systems and its effect in those systems. One
limitation of our approach is that it does not deal with pri-
vacy properties. This is intentional as there are other works,
e.g. [22, 29], that have formalised the privacy properties of
IdM systems. One next step is to investigate how our model
can be integrated with these works. Currently the model
is static in nature and is not able to capture the dynamics
of practical IMS. In future we plan to extend the model to
capture the dynamics of practical systems using the state-
based Z language [26] and the event-based Process Algebra
CSP [23]. This will help not only to provide a rigorous un-
derstanding of these practical systems, but also to formally
compare the behaviour of two systems. For example, if the
dynamics are captured using CSP, then the tool FDR3 [9]
can be used for automated verification (e.g. using refinement
checking to compare specifications of IMSs with their imple-
mentations). We would also like to extend our framework
to accommodate advanced features of IMS such as attribute
aggregation [6] and account linking [5] and to give formal
models of extensions of IdM such as Mobile IdM [24].

6 References

[1] G. Alpár, J.-H. Hoepman, and J. Siljee. The Identity
Crisis. Security, Privacy and Usability Issues in
Identity Management. CoRR, abs/1101.0427, 2011.

[2] K. Cameron. The Laws of Identity. 14th May, 2005.
http://www.identityblog.com/stories/2005/05/

13/TheLawsOfIdentity.pdf.

[3] J. Camp. Digital identity. Technology and Society
Magazine, IEEE, 23(3):34–41, 2004.

[4] D. Chadwick. Federated Identity Management. In
FOSAD’08/09, volume 5705 of LNCS, pages 96–120,
Springer, 2009.

[5] D. Chadwick, G. Inman, K. Siu, and Md. S. Ferdous.
Leveraging social networks to gain access to
organisational resources. In DIM’11, pages 43–52, 2011

[6] D. Chadwick and G. Inman. Attribute aggregation in
federated identity management. Computer,
42(5):33–40, 2009.

[7] Md. S. Ferdous, Audun Jøsang, K. Singh, and R.
Borgaonkar. Security Usability of Petname Systems.
In NordSec’09, volume 5838 of LNCS, pages 44–59,
Springer, 2009.

[8] D. Ferraiolo and R. Kuhn. Role-Based Access Control.
In In 15th NIST-NCSC National Computer Security
Conference, pages 554–563, 1992.

[9] T. Gibson-Robinson, P. Armstrong, A. Boulgakov,
and A. Roscoe. FDR3 - A Modern Refinement
Checker for CSP. In TACAS’14, volume 8413 of

LNCS, pages 187–201, Springer, 2014.

[10] U. Glasser and M. Vajihollahi. Identity management
architecture. In ISI’08, pages 137–144, 2008.

[11] Identity Fraud Report: Data Breaches Becoming a
Treasure Trove for Fraudsters. 2013.

[12] Identity Theft and Assumption Deterrence Act of
1998: Title 18 USC 1028. Accessed 1 April, 2014,
1998. http://www.ckfraud.org/title_18.html.

[13] D.-O. Jaquet-Chiffelle, E. Benoist, R. Haenni, F.
Wenger, and Harald Zwingelberg. Virtual Persons and
Identities. In FIDIS’09, pages 75–122, 2009.

[14] A. Jøsang, M. Al, and Z. Suriadi. Usability and
privacy in identity management architectures. In
ACSW’07, pages 143–152, 2007.

[15] A. Jøsang and S. Pope. User Centric Identity
Management. In AusCERT’05, pages 77–89, 2005.

[16] B.-J. Koops and R. Leenes. Identity theft, identity
fraud and/or identity-related crime. Datenschutz und
Datensicherheit-DuD, 30(9):553–556, 2006.

[17] T. El Maliki and J.-M. Seigneur. User-centric Mobile
Identity Management Services. Management, pages
33–76, 2008.

[18] N. Mitchison, M. Wilikens, L. Breitbach, R. Urry, and
S. Portesi. Identity Theft - A Discussion Paper.
Technical report, 2004.

[19] Modinis - Common Terminological Framework for
Interoperable Electronic Identity Management.
Accessed 28th June, 2011. https:
//www.cosic.esat.kuleuven.be/modinis-idm/

twiki/bin/view.cgi/Main/GlossaryDoc.

[20] OAuth 2.0. http://oauth.net/2.

[21] OpenID Authentication 2.0 - Final. 5 December, 2007.
http://openid.net/specs/

openid-authentication-2_0.html.

[22] A. Pfitzmann and M. Hansen. A terminology for
talking about privacy by data
minimization:Anonymity, Unlinkability,
Undetectability, Unobservability, Pseudonymity, and
Identity Management. V0.34, August 10 2010.
http://dud.inf.tu-dresden.de/literatur/Anon_

Terminology_v0.34.pdf.

[23] A. Roscoe. The theory and practice of concurrency.
Prentice Hall, 1998.

[24] G. Roussos, D. Peterson, and UY. Patel. Mobile
Identity Management: An Enacted View. INT. JOUR.
E-COMMERCE, VOL, 8:81–100, 2003.

[25] Shibboleth. http://shibboleth.internet2.edu/.

[26] J. Spivey and J. Abrial. The Z notation. Prentice Hall
Hemel Hempstead, 1992.

[27] OASIS Standard. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML)
V2.0. 15 March, 2005. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf.

[28] Using Access Control Lists (ACLs).
http://www.hp.com/rnd/support/manuals/pdf/

release_06628_07110/Bk2_Ch3_ACL.pdf.

[29] M. Veeningen, B. De Weger, and N. Zannone.
Modeling identity-related properties and their privacy
strength. In FAST’10, pages 126–140, 2011.

http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.ckfraud.org/title_18.html
https://www.cosic.esat.kuleuven.be/modinis-idm/twiki/bin/view.cgi/Main/GlossaryDoc
https://www.cosic.esat.kuleuven.be/modinis-idm/twiki/bin/view.cgi/Main/GlossaryDoc
https://www.cosic.esat.kuleuven.be/modinis-idm/twiki/bin/view.cgi/Main/GlossaryDoc
http://oauth.net/2
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://shibboleth.internet2.edu/
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.hp.com/rnd/support/manuals/pdf/release_06628_07110/Bk2_Ch3_ACL.pdf
http://www.hp.com/rnd/support/manuals/pdf/release_06628_07110/Bk2_Ch3_ACL.pdf

	Introduction
	Modelling Digital Identity
	Modelling Identity Management
	Steps in Identity Management Systems
	Identity Protocol

	Applications
	Effect of Multiple Partial Identities
	Analysing Identity Theft
	Modelling Identity Management Models
	Isolated User Identity (SILO) Model.
	Federated User Identity (FED) Model.

	Conclusion
	References

