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Evaluating the Reliability of NAND Multiplexing
with PRISM

Gethin Norman, David Parker, Marta Kwiatkowska and Sandeep Shukla

Abstract— Probabilistic model checking is a formal verification
technique for analysing the reliability and performance of systems
exhibiting stochastic behaviour. In this paper, we demonstrate the
applicability of this approach and, in particular, the probabilistic
model checking tool PRISM to the evaluation of reliability and
redundancy of defect-tolerant systems in the field of computer-
aided design. We illustrate the technique with an example due to
von Neumann, namely NAND multiplexing. We show how, having
constructed a model of a defect-tolerant system incorporating
probabilistic assumptions about its defects, it is straightforward
to compute a range of reliability measures and investigate how
they are affected by slight variations in the behaviour of the
system. This allows a designer to evaluate, for example, the
trade-off between redundancy and reliability in the design. We
also highlight errors in analytically computed reliability bounds,
recently published for the same case study.

Index Terms— Probabilistic model checking, reliability, defect-
tolerant architectures, multiplexing

I. I NTRODUCTION

PROBABILISTIC MODEL checking is a formal verifi-
cation technique which has already been successfully

used to analyse the performance and reliability of a wide
range of real-life systems, including dynamic power manage-
ment schemes [1], embedded systems [2], computer networks,
queueing systems and manufacturing processes. It has also
been used to study “quality of service” properties of real-time
probabilistic communication protocols, such as IEEE 1394
FireWire [3], IEEE 802.3 CSMA/CD [4], Zeroconf [5], IEEE
802.11 wireless LANs [6] and Bluetooth [7], and to verify
both probabilistic security protocols (e.g. [8]) and randomised
distributed algorithms (e.g. [9]).

In this paper we present results which demonstrate the
advantages of using probabilistic model checking and, in
particular, the probabilistic model checking tool PRISM [10],
to model and analyse defect-tolerant systems. We have chosen
to investigate the reliability of NAND multiplexing [11], but
this approach can be applied to other defect-tolerant systems
such asR-fold Modular Redundancy [11] and Reconfiguration
[12], [13]. This work differs from the standard approaches in
the literature to analysing multiplexing in that we evaluate
the reliability of specific cases as opposed to considering the
general framework, and hence are not necessarily restricted

This work was supported by NSF grants CCR-0098335 and CCR-
0340740, EPSRC grants GR/N22960 and GR/S11107, FORWARD, SRC, and
DARPA/ITO supported PADS project under the PAC/C program.

Gethin Norman, David Parker and Marta Kwiatkowska are with the School
of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK.

Sandeep Shukla is with the Bradley School of Electrical & Computer
Engineering, Virginia Tech, Blacksburg, VA 24060, USA.

by the analytical bounds of reliability of, for example, von
Neumann [11] and Pippenger [14].

Our results demonstrate that, by applying probabilistic
model checking, it is straightforward to investigate the effect
on reliability of slight variations in the behaviour of the sys-
tem’s components, for example the change in reliability as the
probability of gate failure varies. In addition, the construction
of a formal specification of a NAND multiplexing system,
a step required in the probabilistic model checking approach,
enabled us to find a flaw in the the analytical approach of Han
and Jonker [15]. We must note here that the flaw in the analysis
in [15] does not invalidate their results on the suitability of
NAND multiplexing, but does change the characteristic curves
presented slightly. However, we use the error to illustrate that
analytical modelling for such a complex combinatorial system
with probabilistic quantification is error prone, and hence
automating the construction of the probabilistic model and its
analysis is desirable to obtain accurate results. Furthermore,
using PRISM, we show that this flaw can lead to both an
under- and over-approximation of reliability.

In the next section, we introduce the basic concepts of
NAND multiplexing, probabilistic model checking and the
PRISM tool. In Section III, we describe how we use the
PRISM framework to model NAND multiplexing. Section IV
reports on the results obtained for this case study and Sec-
tion V concludes the paper.

II. BACKGROUND

A. NAND Multiplexing

In 1952, von Neumann studied the problem of performing
reliable computations with unreliable devices (due to the un-
reliable valve-based computers in use at that time), introducing
a redundancy technique calledmultiplexing[11]. Today, such
methods are again gaining significance, for example in the
field of nanotechnology, where manufacturing devices at an
extremely small scale suffers from unavoidable problems of
defects in their components.

The basic technique of multiplexing is to replace a single
processing unit by amultiplexing unit, which hasN copies of
every input and output of the original unit. The multiplexing
unit, using multiple instances of the original unit, processes
the N inputs in parallel, givingN outputs which represent
the output of the original processing unit. If the inputs and
devices are reliable, then each element of the output set should
be identical and equal to the output of the corresponding
processing unit. However, in the case where there are errors,
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either in the inputs or in the processing devices, the outputs
will not all take the same value. Instead, after defining some
critical level ∆ ∈ (0, 0.5), the output of the multiplexing unit
is considered to bestimulated(taking logical valuetrue or
‘1’) if at least (1−∆)·N of the outputs are stimulated, and
is said to benon-stimulatedif no more than∆·N lines are
stimulated. In cases where the number of stimulated outputs
does not meet either of these criteria, i.e. the number of
stimulated outputs is in the interval(∆·N, (1−∆)·N), the
output is undecided, and a malfunction occurs.

The design of a multiplexing unit consists of two stages:
the executivestage and therestorativestage. The executive
stage carries out the basic function of the unit to be replaced,
while the restorative stage is used to reduce the degradation in
the executive stage caused by errors in the inputs and faulty
devices.
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executive stage restorative stage

U

Fig. 1. A NAND multiplexing unit

The specific instance ofNAND multiplexing, i.e. when the
original processing unit is a NAND gate, is illustrated in
Figure 1. In this case, the executive stage consists ofN copies
of a NAND gate and a unitU which perform arandom
permutationof the input signals, that is, each signal of the
first input bundle (X) is randomly paired with a signal from
the second input bundle (Y ) to form an input pair for one
of the copies of the NAND gate. Also shown in Figure 1 is
the restorative stage which is derived using the same technique
as the executive stage, duplicating the outputs of the executive
stage to use as its inputs. Note that applying this approach only
once will invert the result, and therefore two steps are required.
To give a more effective restoration mechanism the restorative
stage can be iterated [11]. A more detailed description of
NAND multiplexing can be found in [15].

In [11], von Neumann concluded that, for extremely large
N , the number of stimulated outputs of the executive stage
is a stochastic variable, approximately normally distributed,
and he gave an upper bound of 0.0107 for the probability of
gate failure that can be tolerated given the value of∆ equal
to 0.07, which is most favourable to restoration. Recently, it
was shown that, if each NAND gate fails independently, the
tolerable threshold probability of each gate will be 0.08856
[16]. However, this particular result is independent of the
NAND multiplexing construction, applying to general Boolean
functions. It is shown in [15] that, for smallerN , the number
of outputs of the executive stage is theoretically a binomial
distribution. The authors then go on to demonstrate how
additional restorative stages improve fault-tolerance and that
the error distribution of the system evolves as a stochastic
homogeneous Markov chain.

B. Probabilistic Model Checking and PRISM

Probabilistic model checking is a formal verification technique
for analysing reliability and performance measures of systems
exhibiting randomised behaviour. For example, using this
approach, one can establish properties such as “shutdown
eventually occurs with probability at most 0.01” and “with
probability 0.95 or greater, the process will successfully com-
plete within 200 steps and without requiring any repairs”.

The process of probabilistic model checking involves con-
struction of a formal model of the real-life system which is to
be analysed. This is usually a labelled state transition system
enriched with probabilistic information, which represents all
the possible configurations which the system can be in and all
the transitions which can occur between them. Three types of
probabilistic models commonly used are discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs)
and Markov decision processes (MDPs). The models used in
this paper are DTMCs, which comprise a set of statesS and
a transition probability matrixP : S × S → [0, 1] such that∑

s′∈S P(s, s′) = 1 for all s ∈ S. Each elementP(s, s′) of the
transition probability matrix gives the probability of making a
transition from states to states′.

Properties of probabilistic models to be analysed are speci-
fied formally. Traditionally, in the model checking paradigm,
this is done using temporal logic, which provides a concise
and unambiguous specification. For DTMCs and MDPs, an
appropriate logic is PCTL (Probabilistic Computation Tree
Logic) [17], and for CTMCs, the logic CSL (Continuous
Stochastic Logic) [18], [19] is often used. Since we focus
on DTMCs, we write properties in PCTL. Some example
specifications in this logic are as follows:

• P≤0.01[♦ shutdown] – “shutdown eventually occurs with
probability at most 0.01”;

• P≥0.95[¬repair U≤200 complete] – “with probability
0.95 or greater, the process will successfully complete
within 200 steps and without requiring any repairs”.

The labels such asshutdown and repair are atomic proposi-
tions which are assigned to states of the model at the time of
its construction. The use of probability bounds (≤0.01,≥0.95)
ensures that the properties above constitute questions which
can be verified either to be true or false, as is traditionally the
case in formal verification. In practise, though, it is often more
useful to request the actual values by writing for example:

• P=?[♦ shutdown] – “what is the probability that the
system shuts down?”

A probabilistic model checker applies algorithmic techniques
to construct and analyse a probabilistic model and determine
whether the given specifications are satisfied. We use the
probabilistic model checker PRISM [10], [20] developed at
the University of Birmingham. This provides support for the
three types of models (DTMCs, MDPs and CTMCs) and the
two logics (PCTL and CSL) described above. Probabilistic
models are specified in the high-level PRISM modelling
language, a variant of Reactive Modules [21], which is based
on guarded commands. More details on this language are given
in Section III-A.
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For the specific scenario of verifying DTMCs against PCTL
specifications, as is the case in this paper, probabilistic model
checking constitutes a combination of graph-based analysis
and solving linear equation systems. In PRISM, the latter is
performed using iterative numerical solution techniques, for
example Jacobi and Gauss-Seidel (see e.g. [22]). Furthermore,
for both types of analysis, PRISM incorporates sophisticated
symbolic implementation techniques, using Binary Decision
Diagrams (BDDs) and related data structures [23], [24]. The
principal advantage of these methods is that that they allow ef-
ficient compact storage and efficient manipulation of extremely
large probabilistic models, by exploiting high-level regularity
from the PRISM language description.

For a detailed overview of probabilistic model checking, see
for example [25]. For more information about the PRISM tool
and the range of case studies to which it has been applied, see
the tool website [20].

III. NAND M ULTIPLEXING AND PRISM

In this section, we explain how probabilistic model checking,
and in particular PRISM, can be used to model and analyse the
performance of von Neumann’s NAND multiplexing system.
We have chosen the NAND multiplexing system as it is a typ-
ical example of a fault-tolerant architecture from the literature.
Note, however, that it is straightforward to construct models
where the NAND gates have different faults (in our analysis
we restricted our attention to von Neumann faults, where the
output of a gate is inverted with a given probability) or to
consider different architectures for reliable computing with
unreliable devices, for exampleR-fold modular redundancy,
Cascaded Triple Modular redundancy and Reconfiguration
[26].

We obtain results that not only uncover a bug in the previous
computations of [15], based on analytical methods, but also
reveal an interesting trend as the probability of gate failure
varies. More precisely, our results show that, for large prob-
abilities of gate failure, increasing the number of restorative
stages decreases reliability, while, for small probabilities of
gate failure, it has the opposite effect. This demonstrates that,
with our framework, we can not only quickly evaluate these
measures, but can also easily find counter-intuitive phenomena.

It is important to note that the results presented here differ
from the theoretical results which give a lower bound of the
failure rates required for correctness (for example [11], [14]),
since our results are with respect to a multiplexing system
with a fixed configuration. The advantage of this approach
is that we obtainexact values for the configuration under
study. The disadvantage is that the results do not mechanically
carry over to the performance of an architecture with a
different configuration. However, one can simply construct
a PRISM model for the different configuration and then re-
run experiments on this model. For example, as shown in
Section IV, we have considered configurations with varying
gate failures probabilities and varying numbers of restorative
stages.

A. Model Construction

In this section we explain our PRISM model. We first note
that it was during this phase that we noticed the error made
by [15] in modelling the random permutation made by the unit
U . In the analysis technique of [15], the random permutation
made byU is instead modelled by a random choicewith
replacement. More precisely, in the approach of [15], if in
the previous stage there arek stimulated outputs, then after
passing through the unitU the probability that any one of the
resulting inputs of the current stage is stimulated isk/N .

To illustrate the difference that this modelling error can
cause to the behaviour of the system, consider the case when
k outputs from the previous stage are stimulated for some
0 < k < N . In the approach used by [15], the probability,
in the current stage after passing through the unitU , of all
inputs being stimulated is(k/N)N , and of no inputs being
stimulated is((N − k)/N)N . On the other hand, since there
arek stimulated outputs to begin with, if we suppose that the
unit U does in fact perform a random permutation, then there
will be k of the inputs stimulated, and hence the probability
of either all or none of inputs are stimulated is 0.

As our analysis will demonstrate, these two approaches to
modelling the unitU can lead to different conclusions about
the reliability of the system under study. We will also illustrate,
however, that, as the bundle size increases, the results obtained
by these modelling approaches converge. In fact, if the bundle
sizes were infinite, then the models ofU would be equivalent.

Note that, unlike in the case when the unitU is modelled as
a random choice with replacement, when (correctly) modelling
U as a random permutation the inputs of each of the NAND
gates in a stage are dependent on one another; for example,
if one NAND has a stimulated input, then the probability of
another having the same input stimulated decreases. Therefore,
in this scenario, it is not as straightforward to calculate the
reliability of a NAND multiplexing unit by means of analytical
techniques as, for example, in [15]. However, as far as a
probabilistic model checker is concerned, there is no difference
between the two approaches; the only requirement is that the
user correctly specifies the behaviour of the unitU .

We now explain the main steps in the construction of our
PRISM model of a NAND multiplexing system. The basic
components of PRISM’s input language aremodules and
variables. A system is described as the parallel composition
of a number of interacting modules. Each module contains a
number of variables which represent its state. Its behaviour is
given by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and
the command describes a transition which the module can
make if the guard is true (using primed variables to denote
the next values of variables). If a transition is probabilistic,
then the command is specified as:

<prob> : <update> + · · · + <prob> : <update>

See Figure 2 for examples of this notation.
The first approach was to directly model the system as given

in Figure 1: for each stage construct a PRISM module for each
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const int N=20; // number of inputs in each bundle
const int M=3; // number of restorative stages equals(M−1)/2
const double perr=0.01; // probability gate has von Neumann error
const double pin=0.9; // probability an input is stimulated

module multiplex system

u : [1..M ] init 1; // current stage (initially 1 - start with first stage)
c : [0..N ] init N ; // counter: number of gates to perform in current stage (initiallyN - no gates performed yet)
s : [0..3] init 0; // local state (initially 0 - ready to choose inputs to first stage)
nx : [0..N ]; // number of stimulated X inputs (value not instantiated initially)
ny : [0..N ]; // number of stimulated Y inputs (value not instantiated initially)
x : [0..1]; // value of currentX input (value not instantiated initially)
y : [0..1]; // value of currentY input (value not instantiated initially)
z : [0..N ] init 0; // number of stimulated outputs (initially 0 - no ouputs determined)

// move to next NAND gate of current stage
[] (s=0) ∧ (c>0) → (s ′=1);
// move onto next stage (copy output to inputs, update the stage and reset other variables)
[] (s=0) ∧ (c=0) ∧ (u<M ) → (s ′=1) ∧ (nx

′=z ) ∧ (ny
′=z ) ∧ (z ′=0) ∧ (u ′=u+1) ∧ (c′=N );

// initial choice of x and y: random choice
[] (s=1) ∧ (u=1) → pin : (x ′=1) ∧ (s ′=2) + (1−pin) : (x ′=0) ∧ (s ′=2);
[] (s=2) ∧ (u=1) → pin : (y ′=1) ∧ (s ′=3) + (1−pin) : (y ′=0) ∧ (s ′=3);
// select x performed byU : random permutation (randomly pick inputs from those available)
[] (s=1) ∧ (u>1) → nx/c : (x ′=1) ∧ (s ′=2) ∧ (nx

′=nx−1) // select stimulated input
+ (c−nx )/c : (x ′=0) ∧ (s ′=2); // select non-stimulated input

// select y performed byU : random permutation (randomly pick inputs from those available)
[] (s=2) ∧ (u>1) → ny/c : (y ′=1) ∧ (s ′=3) ∧ (ny

′=ny−1) // select stimulated input
+ (c−ny)/c : (y ′=0) ∧ (s ′=3); // select non-stimulated input

// NAND gate (update number of simulated outputs)
[] (s=3) → (1−perr ) : (z ′=z+!(x ∧ y)) ∧ (s ′=0) ∧ (c′=c−1) // gate behaves correct

+ perr : (z ′=z+(x∧y)) ∧ (s ′=0) ∧ (c′=c−1); // gate suffers von Neumann error

endmodule

Fig. 2. PRISM description of a NAND multiplexing unit

of the N NAND gates in the stage, and then combine these
modules through synchronous parallel composition. However,
this leads to the well known state space explosion problem,
where the size of the probabilistic model constructed grows
to an unfeasible level. For example, in the case when the I/O
bundle size equals 20, modelling the executive stage of the
NAND multiplexing unit required more than1014 states.

An important observation, which allowed us to overcome
this problem, was that the actual value of each input and output
is not important: instead one need only store the total number
of stimulated (and non-stimulated) inputs and outputs. This
observation is a result of the following two facts:

1) Since each unitU performs a random permutation, the
output of a unitU depends only on the number of
stimulated (and non-stimulated) inputs in the bundle
which U takes as input, and not on the actual values
of each input in the bundle.

2) Reliability concerns only the number of stimulated (and
non-stimulated) outputs in the final bundle.

Taking this approach, we replace, in each stage, the set ofN
NAND gates working inparallel with N NAND gates working
in sequenceand keep track of the number of stimulated outputs
generated by these gates. Furthermore, one can apply the
same methodology to the stages of the system, i.e. reuse the

same module for each stage after recording the number of
stimulated outputs from the previous stage. This allows us
to fold space into time, or in other words reuse the same
gate/stage over time, rather than modelling explicit redundancy
over space. Note that taking this approach does not influence
the performance of the system since each NAND gate works
independently, and the probability of each NAND gate failing
is also independent.

Following these observations, the PRISM description of the
NAND multiplexing system, for the case when the bundle size
equals 20, is given in Figure 2. In this model we have assumed
that the inputsX and Y are identically distributed (each
having probability0.9 of being stimulated), and the NAND
gates suffer from a von Neumann fault (inverted output) with
probability 0.01. We use the variableu to record the current
stage and the variablec to keep track of the number of
gates that still need to be performed in the current stage.
The variables represents the current step in the process of
completing a stage. The actions performed in each step are
detailed in the comments (prefixed “//”) included in Figure 2.
For example, consider the second guarded command in the
model description. This command corresponds to the case
where all the gates have been completed in the current stage
(c=0) but there remain stages to perform (u<M ). In this
command, we proceed to the next stage (u ′=u+1), reset the
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number of gates that need to be performed toN (c′=N ) and
move onto the next step (i.e. the variables changes from 0
to 1). The remaining updates correspond to the fact that the
outputs of the “old” stage become the inputs of the “new” stage
and the outputs of the “new” stage are as yet uncomputed.

This model is a DTMC and has 78,311 states. In the case
when the bundle size is 40 (the constantN is set equal to 40),
the number of states equals 1,004,821, and when the bundle
size is 60 the model has 4,717,531 states. Note that, in the
executive stage, a random permutation of the inputs cannot be
performed as we only know the probability of each individual
input being stimulated. However, for a given a distribution over
the initial inputs, one can easily modify the PRISM model so
that the system performs a random permutation of the initial
inputs. To change the number of restorative stages, bundle
size, input probabilities or probability of the NAND gates
failing requires only modification of the constants given at
the start of the description. Furthermore, since PRISM can
also represent nondeterministic behaviour, one can set upper
and lower bounds on the probability of gate failure and then
obtain (best and worst case) reliability characteristics for the
system under these bounds. Lastly we note that, to model the
units U performing a random permutation with replacement
(as in [15]), the only modifications that need to be made are
to the probabilities with which the variablesx and y are set
(when the local states equals 1 and 2 respectively).

IV. EXPERIMENTAL RESULTS

In this section we study the performance of NAND multiplex-
ing systems when the I/O bundles are of size 20, 40 and 60.
In all the experiments, we assume that the inputsX and Y
are identical (this is often true in circuits containing similar
devices) and that initially 90% of the inputs are stimulated
(correct). We suppose that the gate failure in each NAND is
a von Neumann fault, i.e. when a gate fails, the value of its
output is inverted.

The properties we consider are the probability of there being
k stimulated outputs (which, in terms of the PRISM model
presented in Figure 2, corresponds to verifying the PCTL
formula P=?[♦ (z=k ∧ u=M ∧ c=N ]), for k = 0, . . . , N
whereN is the system’s I/O bundle size. By performing this
analysis we have in fact computed the output distribution of the
system, and hence any measure of reliability can be calculated
from these results. Note that PRISM can be used directly
for computing these measures of reliability, for example, “the
probability of errors being less than thanK%” and “the
expected number of incorrect outputs of the system”.

All experiments were run on a PC running Linux, with a
1400 MHz processor and 512 MB of RAM, using PRISM’s
hybrid engine [23]. In the case where the bundle size equals
20 (number of states: 78,311 states), PRISM requires 1.37
seconds to construct the model and 3.29 seconds to calculate
the probability of there being0 stimulated outputs. When the
bundle size is 40 and 60 (number of states: 1,004,821 states
and 4,717,531 respectively), model construction requires 5.42
and 11.7 seconds, while calculating the probability of there
being 0 stimulated outputs requires 28.4 and 48.7 seconds

respectively. Further details relating to the construction and
verification statistics are available from the PRISM web page
[20].

Our analysis of the reliability of the NAND multiplexing
system using probabilistic model checking concentrates on the
effects of the failure probabilities of the NAND gates and of
the number of restorative stages. Recall that, to change either
of these in the PRISM language description of the system (see
Figure 2), one needs only to change the parameterperr or the
parameterM . The results we present show:

• the shape of the output distribution as the probability of
gate failure varies (Figure 3);

• for different probabilities of gate failure, the resulting
change in shape of the output distribution when additional
restorative stages are added (Figure 4);

• an analysis of reliability, in terms of the probability that at
most 10% of the outputs are incorrect, as the probability
of gate failure varies (Figure 5);

• how, in the case when the probability of gate failure is
very small, the reliability can be improved by increasing
the number of restorative stages (Figure 5);

• by comparing the probability that at most 10% of the
outputs are incorrect and the expected percentage of
incorrect outputs for different numbers of restorative
stages, the maximum probability of gate failure allowed
for the system to function reliably (Figures 6 and 7).

Where appropriate, we also compare these results with those
obtained when the random permutation performed by the unit
U is replaced by a random choice with replacement as used
by [15]. The results corresponding to this case are referenced
‘UR’.

A. Basic System Reliability

Initially, we consider a basic version of the NAND multiplex-
ing system, as shown in Figure 1 (i.e. with a single restorative
stage), where the I/O bundle size equals 20, 40 and 60. We
first investigate the effect that changing the failure probabilities
of the NAND gates has on the reliability of the system. In
Figure 3 we present the output distribution of the system in
the cases when the probability of gate failure equals0.1, 0.04,
0.02 and 0.0001. Note that the system is supposed to model
a correctly functioning NAND gate and we assume that the
inputs are correct when stimulated. Hence, the less outputs
that are stimulated, the greater the reliability of the system.

As can be seen in Figure 3, when the probability of gate
failure is 0.0001 (one sees a similar pattern whenever the prob-
ability of gate failure is very small or even 0) there is a sharp
oscillation in the distribution, with the probabilities for even
numbers of stimulated outputs being higher. This phenomenon
is due to the random permutation performed by the second
unit U of the restorative stage and the fact that, because the
probability of gate failure is very low, the probability of any
input to this second unit being non-stimulated is very low.
More precisely, supposing thatk (where k is small) inputs
to the second unit of the restorative stage are non-stimulated,
then, when this unit performs the random permutation, there
is a very high probability that no non-stimulated inputs are
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Fig. 3. Output distribution of NAND multiplexing unit with 1 restorative stage under different gate failure rates and I/O bundle sizes
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Fig. 4. Output distributions of NAND multiplexing unit with 4 restorative stages under different gate failure rates and I/O bundle sizes

paired together (becausek is small), and hence there is a very
high probability that there are2·k stimulated outputs (since the
probability of any gate functioning incorrectly is very small).

Using these output distributions, in Figure 5 (1 restorative
stage), we have plotted the probability that less than 10% of the
outputs are incorrect against the probability of gate failure. We
also plot the same results for the case where the behaviour of
the unitU is replaced with a random choice with replacement
(denoted ‘UR’).

As expected, the output distributions given in Figure 3 and
the results presented in Figure 5 show that, as the probability
of gate failure decreases, the reliability of the multiplexing sys-
tem increases, i.e. the chance of the system returning incorrect
results diminishes. Furthermore, Figure 5 demonstrates that
increasing the bundle size leads to a decrease in the probability
of error, i.e. an increase in the reliability of the system, and
that the rate of increase decreases as the bundle size increases
(compare the difference between the results for bundle sizes
of 20 and 40 with those for sizes of 40 and 60).

Considering the results given in Figure 5 (1 restorative
stage) for the case when the behaviour of the unitU is replaced
with a random choice with replacement (denoted ‘UR’), we
see that this leads to an over-approximation of the reliability
of the multiplexing system: the chance of correct outputs
is higher than when the unitU is modelled correctly. As
mentioned in Section III-A, the difference between the results
obtained with the two approaches decreases as the bundle
size increases. Note that, as our later results will demonstrate,

modelling U in this way does not always result in upper
bounds on the reliability of the system.

B. Adding Restorative Stages

Next, we investigate the change in reliability of a NAND
multiplexing system as the number of multiplexing stages
increases, i.e. when additional restorative units are added to the
system. In Figure 4 we present the output distribution of the
system with 4 restorative stages. The gate failure probabilities
are as in Figure 3. To improve readability, they axes in these
graphs have been truncated, which has removed the probability
of 0 outputs being stimulated when the gate failure rate is
0.0001. This value is approximately0.969 when the bundle
size equals 20,0.981 when the bundle size is 40 and0.981
when the bundle size is 60.

Comparing these output distributions with those presented
in Figure 3, we see that, when the NAND gate failure probabil-
ity is sufficiently small (e.g. 0.0001), adding additional stages
results in a much more reliable system (the probability of any
outputs being stimulated is very small). On the other hand, in
the cases when the probability of gate failure is sufficiently
large, adding additional stages does not increase reliability
and, in fact, can actually decrease the reliability of the system
(compare the distributions when the failure probability equals
0.1 for each bundle size).

1) Small Probabilities of Gate Failure:To emphasise the
first observation in the previous paragraph, in Figure 5, which
shows the probability that at most 10% of the outputs of the
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Fig. 5. Probability that at most 10% of the outputs of the overall system are incorrect for different I/O bundle sizes

overall system are incorrect (stimulated) against the failure
probability of the gates, we have also plotted results as the
number of restorative stages varies between 2 and 7.

These results again demonstrate that, for small probabilities
of gate failure, increasing the number of stages can greatly
enhance the reliability of the system. However, the results also
show that the rate of increase in reliability decreases as more
restorative stages are added to the system. Moreover, there
is a limit to the reliability which can be gained by adding
additional stages: compare, for example the plots presented
in Figure 5 when the number of restorative stages equals 5
and 7. We should also mention that this result corresponds to
the observation made in [15] that, as the number of stages
increases, the output distribution of the system will eventually
become stable and independent of the number of stages.

In Figure 5, we have also included the statistics obtained
when the unitU performs a random choice with replacement
instead of a random permutation. In this case, unlike in
the case of 1 restorative stage (discussed previously), the
approach can now give either an over-approximation or an
under-approximation of reliability.

2) Large Probabilities of Gate Failure:We now consider
in more detail the case when the probability of gate failure
of the NAND gates becomes too large for the multiplexing
system to function reliably. In Figure 6 we have plotted the
probability that system error is less than 10% against the
number of restorative stages, for the cases when the failure
rate of the NAND gates is between0.04 and0.01. In Figure 7,
we have plotted the expected percentage of incorrect inputs for
the same configurations.

As can be seen from the results, especially in Figure 7(a),
when the bundle size equals 20 and the probability of gate
failure equals 0.04, even increasing the number of restorative
stages cannot make the computation reliable. In fact, in this
case, if one keeps increasing the number of stages, the system’s
reliability will actually start to decrease. This anomalous
behaviour can be understood as follows: when the failure rate
is 0.04 (or higher), each restorative stage is sufficiently affected
by the probability of gate failure as to actually increase the
error, and hence increasing the number of stages in this case
makes the system more unreliable.

From these results, we therefore conclude that, in the case
of a bundle size equal to 20, if the gate failure probability

of the gates is greater than or equal to 0.04, then the system
cannot be made reliable. On the other hand, in the case where
the failure probability is 0.01, for certain criteria of reliability,
the results demonstrate that the system can be made reliable
once a sufficient number of restorative stages have been added.

When the bundle size equals 40 or 60, the results presented
in Figures 6(b–c) and 7(b–c) show that, if the gate failure prob-
ability is 0.04, then adding even large numbers of restorative
stages has little effect on the reliability. However, when the
gate failure probability equals 0.01 (and for certain criteria,
when it equals 0.02), the system can be considered as reliable
once a sufficient number of restorative stages have been added.

It is important to note that there is a difference between
the bounds on the probability of gate failure required here
for reliable computation and the theoretical bounds presented
in the literature. This difference is to be expected: in this
paper we evaluate the performance of the system under a fixed
configuration (bundle size and number of restorative stages),
whereas the bounds presented in the literature correspond to
the scenario where the bundle size or number of restorative
stages can be increased arbitrarily in order to achieve a reliable
system.

In Figures 6 and 7, statistics for the case where when the
unit U performs a random choice with replacement (denoted
‘UR’) are again included. These results show that using ran-
dom choice with replacement can lead to very different results.
For example, in Figure 7(a), for a gate failure probability equal
to 0.03, when the unitU is modelled by a random choice with
replacement, adding additional restorative stages decreases
reliability, whereas ifU is modelled (correctly) as a random
permutation, this actually increases reliability. Furthermore,
if we consider the results presented in Figure 6(b–c), when
the probability of gate failure equals 0.01 or 0.02 and the
number of stages is small, modellingU as a random choice
with replacement leads one to assume that the system is
more reliable than it actually is. However, as the number of
restorative stages increases, the converse holds: one would
believe the system to be less reliable than it actually is.

V. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated how probabilistic model
checking can be used for an evaluation of the redundancy and
reliability trade-off for defect-tolerant systems. In particular,
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Fig. 6. Probability that at most 10% of the outputs of the overall system are incorrect for different I/O bundle sizes (large probability of failure)
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Fig. 7. Expected percentage of incorrect outputs of the overall system for different I/O bundle sizes (large probability of failure)

we have shown how, for a given probability of gate failure (or
bound on the probability of gate failure), probabilistic model
checking can find the minimum level of redundancy (I/O
bundle size and, in the case of multiplexing units, the number
of restorative stages) which enables reliable computation.

We have reported on the results obtained for a NAND
multiplexing system and investigated the performance of the
system as the error rate of the individual NAND gates and
the number of stages varies. The first step in this approach
involved constructing a system model in PRISM’s model
description language, and we described an approach used to
allow for the analysis of large configurations. In the analysis
using PRISM, we were able to compute the exact output
distribution of the system, and hence construct a complete
picture of the reliability of the system under study for a range
of bundle sizes, restorative stages and gate failure rates. Note
that the results included here are only a representative selection
to demonstrate the applicability of this approach.

We chose to analyse von Neumann’s NAND multiplexing
approach since it is a canonical example used in the literature,
and it therefore enabled us to compare the techniques and
results with those of others. One can argue that the amount
of redundancy in the NAND multiplexing technique would
need to be extremely high to be of use for realistic designs.
Nonetheless, this remains a good example for the demon-
stration of our approach. Furthermore, our methodology is
not limited to this particular redundancy architecture, but is
equally applicable to alternative fault-tolerant architectures.

In conclusion, this paper shows how the probabilistic model
checking framework offers a complementary approach to the
theoretical results present in the literature. More precisely,
our analysis technique based on probabilistic model checking
allows us to obtain sharp bounds and study probabilistic
anomalies for a fixed architecture that is relevant in practise, as
opposed to establishing general bounds which are independent
of the configuration.
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