
Evaluating the Reliability of Defect-Tolerant Architectures for Nanotechnology
with Probabilistic Model Checking

Gethin Norman, David Parker, Marta Kwiatkowska
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

Sandeep K. Shukla
Bradley School of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA

Abstract

As we move from deep submicron technology to nanotech-
nology for device manufacture, the need for defect-tolerant
architectures is gaining importance. This is because, at the
nanoscale, devices will be prone to errors due to manufac-
turing defects, ageing, and transient faults. Micro-architects
will be required to design their logic around defect toler-
ance through redundancy. However, measures of reliabil-
ity must be quantified in order for such design methodolo-
gies to be acceptable. We propose a CAD framework based
on probabilistic model checking which provides efficient
evaluation of the reliability/redundancy trade-off for defect-
tolerant architectures. This framework can model proba-
bilistic assumptions about defects, easily compute relia-
bility figures and help designers make the right decisions.
We demonstrate the power of our framework by evaluating
the reliability/redundancy trade-off of a canonical example,
namely NAND multiplexing. We not only find errors in an-
alytically computed bounds published recently, but we also
show how to use our framework to evaluate various facets
of design trade-off for reliability.

1. Introduction

With the continuing advances in the miniaturisation of de-
vices, we are already at the deep submicron scale of device
manufacture. However, nanotechnology is emerging as the
technology of the not too distant future. In the nano era, de-
vice sizes will be in the range of several nanometres, lead-
ing to a high degree of failures, due to manufacturing de-
fects, transient faults resulting from reduced noise tolerance
at low voltage and current levels, and faults due to age-
ing because of molecular and other kinds of techniques for
creating nano-devices. Although nano-scale manufacturing
will allow us to pack more devices on a chip, we have to live
with the possibilities of defects in the nano-substrate. As a

result, ‘defect-tolerant architecture’ is being posed as a way
to mitigate the challenge of the inherent unreliability at the
nano-scale [6, 4, 9, 12]. Defect-tolerance is built into the ar-
chitecture in the form of redundancy of devices and func-
tional units. The resulting abundance of devices is accept-
able due to their miniaturisation. However, it turns out that
the redundancy level must be properly designed in order to
obtain reliable computation from defect-prone devices.

Several theoretical models have been proposed in the
past [4, 9] and results from information theory [10, 3]
have been used to obtain some theoretical insight into these
redundancy-reliability trade-offs. In contrast, our work is
based on formal methods. With the help of PRISM [7, 11],
a probabilistic model checking tool, we present a robust ex-
perimental platform that will allow us to gain insight into
defect-tolerant designs and their reliability measures.

We present results which demonstrate the advantages
of using probabilistic model checking, to analyse defect-
tolerant architectures. We chose to investigate NAND mul-
tiplexing [13], but this approach can be applied to other
defect-tolerant architectures such asR-fold Modular Re-
dundancy [13] and Reconfiguration [6, 8]. One difference
between this work and the standard approaches is that we
evaluate the reliability of specific cases as opposed a gen-
eral framework, and hence are not restricted by the analyti-
cal bounds of reliability, e.g., see [13, 10]. Our results also
show that, using this approach, it is straightforward to inves-
tigate the effect on reliability of slight variations in the be-
haviour of the system’s components, e.g. the change in reli-
ability as the probability of gate failure varies. Also, through
the construction of a formal specification, required in the
probabilistic model checking approach, we found a flaw in
the the analytical approach of [4].

The next section introduces the background material and
Section 3 describes how we use PRISM to model NAND
muliplexing. Section 4 reports on the results obtained for
this case study and Section 5 concludes the paper.



2. Background

In this section, we briefly outline concepts from defect-
tolerant architectures for nanotechnology, NAND multi-
plexing, probabilistic model checking and the PRISM tool.

2.1. Defect-tolerant computing

In 1952, von Neumann studied the problem of construct-
ing reliable computation from unreliable devices (due to un-
reliable valve based computers at that time), introducing
a redundancy technique called NAND multiplexing [13].
He showed that, if the failure probabilities of the gates are
sufficiently small and failures are independent, then com-
putations may be done with a high probability of correct-
ness. Later, in [2], it was shown that a logarithmic redun-
dancy is necessary for some Boolean function computa-
tions, and sufficient for all Boolean functions. Pippenger
[10] showed that von Neumann’s construction works only
when the probability of failure per gate is strictly less than
1/2, and that computation in the presence of noise (which
can be seen as the presence of defect), requires more lay-
ers of redundancy. In [4, 9], NAND multiplexing was com-
pared to other techniques for fault-tolerance and theoreti-
cal calculations showed that the redundancy level must be
quite high to obtain acceptable levels of reliability.

Formally, a defect-tolerant architectureis one which
uses techniques to mitigate the effects of defects in the de-
vices that make up the architecture, and guarantees a given
level of reliability.

2.2. Multiplexing

The basic technique of multiplexing is to replace a process-
ing unit by a multiplexed unit withN copies of every input
and output of the processing unit. In a multiplexing unit,
there areN devices which in parallel process the copies of
the inputs to giveN outputs. If the inputs and devices are
reliable, then each element of the output set will be identi-
cal and equal to that of the processing unit. However, when
there are errors in the inputs and devices are faulty, the out-
puts will not be identical. Instead, after defining some criti-
cal level∆ ∈ (0,0.5), the output of the multiplexing unit is
considered stimulated (taking logical valuetrue) if at least
(1−∆)·N of the outputs are stimulated and non-stimulated
(taking logical valuefalse) if no more than∆·N outputs
are stimulated. In cases where the number of stimulated out-
puts does not meet either criteria, i.e. the number of stimu-
lated outputs is in the interval(∆·N,(1−∆)·N), then the out-
put is undecided, and hence a malfunction will occur.

The basic design of a multiplexing unit consists of two
stages: theexecutive stagewhich performs the basic func-
tion of the processing unit to be replaced, and therestora-

Z

X

Y

U U

executive stage restorative stage

U

Figure 1: A NAND multiplexing unit

tive stagewhich reduces the degradation in the executive
stage caused by errors in both the inputs and faulty devices.

2.2.1. NAND multiplexing We now consider multiplex-
ing when the processing unit is a single NAND gate. We
therefore replace the inputs and output of the gate withN
copies and in the executive stage duplicate the NAND gate
N times, as in Figure 1. The unitU represents arandom per-
mutationof the input signals, that is, each signal of the first
input is randomly paired with a signal from the second in-
put to form an input pair for one of the copies of the gate.
Also shown in Figure 1 is the restorative stage which takes
the output of the executive stage as its inputs. Note that, ap-
plying this approach only once will invert the result, there-
fore two steps are required. To give a more effective restora-
tion mechanism these stage can be iterated [13].

In [13], von Neumann concluded that, for extremely
large N, the number of stimulated outputs of the execu-
tive stage is a stochastic variable, approximately normally
distributed, and gave an upper bound of 0.0107 for the
probability of gate failure that can be tolerated. In other
words, according to von Neumann, if the failure probabil-
ity is greater than this threshold, then the probability of the
NAND multiplexing system failing will always be larger
than a fixed, positive lower bound. Recently, it was shown
that, if each NAND gate fails independently, the tolerable
threshold probability of each gate is 0.08856 [3]. In [4] it is
shown that, for smallN, the number of outputs of the exec-
utive stage is theoretically a binomial distribution.

2.3. Probabilistic model checking and PRISM

Probabilistic model checkingrefers to a range of techniques
for calculating the likelihood of the occurrence of certain
events during the execution of systems, and can be useful
to establish performance measures such as ‘shutdown oc-
curs with probability at most 0.1’ and ‘the video frame is
delivered within 5ms with probability at least 0.9’.

We use PRISM [7, 11], a probabilistic model checker de-
veloped at the University of Birmingham. It supports analy-
sis of: discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs) and Markov decision pro-
cesses (MDPs). The models used here are DTMCs, which
specify the probability of transitions between states, such
that the probabilities of transitions from a given state sum



up to 1. We also mention MDPs which extend DTMCs
by allowing non-deterministic behaviour. Non-determinism
enables the modelling of the asynchronous parallel com-
position of probabilistic systems and permits the under-
specification of certain aspects of a system’s behaviour.

In PRISM, these models are described in a high-level
language based on guarded commands. A system is con-
structed as a number of modules which interact by means of
standard process algebraic operations. A module contains a
number of variables which represents its state. Its behaviour
is given by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system
and the command describes a transition which the module
can make if the guard is true If a transition is probabilis-
tic, then the command is specified as:

<prob> : <command>+ · · · + <prob> : <command>

PRISM accepts specifications in the temporal logics PCTL
[5] and CSL [1]. In the case of DTMCs, the model type used
in this paper, specifications are written in PCTL, and for the
analysis PRISM implements the algorithms of [5].

3. NAND multiplexing and PRISM

In this section we outline our approach of using probabilis-
tic model checking to investigate the reliability of defect-
tolerant architectures for nanotechnology. More precisely,
we explain how PRISM can be used to model and analyse
the performance of NAND multiplexing. We obtain very in-
teresting results that not only uncover a bug in the analyti-
cal methods of [4], but also reveal interesting trends as the
gate failure probability varies. This demonstrates that, we
can not only quickly evaluate performance, but can also eas-
ily find counter-intuitive phenomena.

Note that the results presented here differ from theoreti-
cal lower bounds on the failure rates for correctness, since
our results are with respect to fixed configurations. The ad-
vantage of our approach is thatexactfigures for the config-
uration are obtained. The disadvantage is that the results do
not carry over to architectures with different configurations.
However, one can simply construct a PRISM model for a
different configuration and run experiments on this model.

3.1. Model construction

In this section we explain the PRISM model. We first note
that it was during this phase that we noticed the error made
by [4] in modelling the random permutation made by the
unitU : in their analysis techniqueU in fact performs a ran-
dom choicewith replacement. More precisely, in the ap-
proach of [4], if in the previous stage there arek stimulated

const N=20; // number of inputs in each bundle
const M=3; // number of restorative stages equals(M−1)/2
prob perr=0.01; // probability gate has von Neumann error
prob pin=0.9; // probability an input is stimulated

module multiplex system

u : [1..M]; // current stage
c : [0..N] init N; // counter
s : [0..3]; // local state
nx : [0..N]; // number of stimulated X inputs
ny : [0..N]; // number of stimulated Y inputs
x : [0..1]; // value of first input
y : [0..1]; // value of second input
z : [0..N]; // number of stimulated outputs

// move to next NAND gate of current stage
[] s=0∧c>0→(s′=1);
// move onto next stage
[] s=0∧c=0∧u<M→

(s′=1)∧(nx
′=z)∧(ny

′=z)∧(z′=0)∧(u′=u+1)∧(c′=N);
// initial choice of x and y: random choice
[] s=1∧u=1→ pin : (x′=1)∧(s′=2)+(1−pin) : (x′=0)∧(s′=2);
[] s=2∧u=1→ pin : (y′=1)∧(s′=3)+(1−pin) : (y′=0)∧(s′=3);
// choice x and y: random permutation
[] s=1∧u>1→ nx/c : (x′=1)∧(s′=2)∧(nx

′=nx−1)
+(c−nx)/c : (x′=0)∧(s′=2);

[] s=2∧u>1→ ny/c : (y′=1)∧(s′=3)∧(ny
′=ny−1)

+(c−ny)/c : (y′=0)∧(s′=3);
// NAND gate (with von Neumann error)
[] s=3→ perr : (z′=z+(x∧y))∧(s′=0)∧(c′=c−1)

+(1−perr) : (z′=z+!(x∧y))∧(s′=0)∧(c′=c−1);

endmodule

Figure 2: PRISM description of the unit

outputs, then after passing through the unitU the proba-
bility that any one of the resulting inputs is stimulated is
k/N. As our analysis will demonstrate, these different ap-
proaches will lead to different conclusions about reliabil-
ity. We should note however, that, as the bundle size in-
creases, the differences between the results obtained by the
approaches will converge and, in fact, if the bundle sizes
were infinite then these approaches would be equivalent.

Note that, unlike whenU performs a random choice with
replacement, ifU performs a random permutation, the in-
puts of each gate in a stage are dependent on one other.
Therefore, in this scenario, is not as straightforward to cal-
culate the reliability of a NAND multiplexing unit by ana-
lytical techniques as, e.g. in [4]. However, as far as a proba-
bilistic model checker is concerned, the only requirement is
that the user correctly specifies the behaviour.

We now explain the main steps in the construction of our
PRISM model. The first approach was to directly model the



system as in Figure 1: for each stage construct a PRISM
module for each gate and combine the modules through syn-
chronous parallel composition. However, following this ap-
proach leads to the well know state space explosion prob-
lem, e.g. for a I/O bundle size of 20, modelling just the ex-
ecutive stage requires more than 1014 states.

The main observation, which allowed us to overcome
this problem, was that the actual value of each input and out-
put is not important: one need only store the total number of
stimulated inputs and outputs. Furthermore, to allow us to
compute these values, without having to store the output of
each gate, we replace theN gates working inparallel with
N gates working insequence. This allows us to fold space
into time, i.e. reuse the same gate over time rather than mak-
ing redundancy over space. Furthermore, one can apply the
same methodology to the stages, i.e. reuse the same module
for each stage while keeping track of the outputs from the
previous stage. Note that taking this approach does not in-
fluence performance since each gate works independently.

Following these observations, the PRISM model of the
NAND multiplexing system, is given in Figure 2. To change
the number of stages, bundle size, input distribution or gate
failure probability requires only modification of the con-
stants given in the description. Since PRISM can also rep-
resent non-determinism, one could set bounds on the prob-
ability of gate failure and then obtain (best and worst case)
reliability characteristics for the system under these bounds.

4. Experimental results

In this section we study the performance of NAND multi-
plexing systems when the I/O bundles size is 20 and 40. In
all the experiments, we assume that the inputsX andY are
identical (this is often true in circuits containing similar de-
vices) and that initially 90% of the inputs are stimulated.
We suppose the failure in each gate is a von Neumann fault,
i.e. when a gate fails, the value of its output is inverted.

The properties we consider are the probability of there
beingk stimulated outputs (which in terms of the PRISM
model in Figure 2, corresponds to the probability of reach-
ing the state with z=k, u=M and c=N). By performing this
analysis we in fact compute the output distribution of the
system, and hence any measure of reliability can be calcu-
lated from these results. Note that PRISM can be used di-
rectly for computing the measures of reliability we consider.

Experiments were run on a PC running Linux, with a
1400 MHz processor and 512 MB of RAM. For a bundle
size of 20 (model size: 78,311 states), it took PRISM 1.4
seconds to construct the model and 3.3 seconds to calculate
the probability of there being 0 stimulated outputs. When
the bundle size is 40 (model size: 1,004,821 states), model
construction required 5.4 seconds and calculating the prob-
ability of there being 0 stimulated outputs took 28 seconds.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

bundle size 20

number of stimulated outputs

pr
ob

ab
ili

ty

gate failure rate 0.1
gate failure rate 0.04
gate failure rate 0.02
gate failure rate 0.0001

0 10 20 30 40
0

0.1

0.2

0.3

0.4

number of stimulated outputs

pr
ob

ab
ili

ty

bundle size 40

gate failure rate 0.1
gate failure rate 0.04
gate failure rate 0.02
gate failure rate 0.0001

Figure 3: Output distributions

Our analysis of the reliability of the NAND multiplexing
system concentrates on the effects of changing the failure
probabilities of the NAND gates and the number of restora-
tive stages. The results we present show:

• the shape of the output distribution as the probability
of gate failure varies (Figure 3);

• an analysis of reliability, in terms of the probability
that at most 10% of the outputs are incorrect, as the
probability of gates failure varies (Figure 4);

• for different probabilities of gate failure, the resulting
change in shape of the output distribution when addi-
tional restorative stages are added (Figure 5);

• how, in the case when the probability of gate failure is
very small, the reliability can be improved by increas-
ing the number of restorative stages (Figure 4);

• by comparing the probability that at most 10% of the
outputs are incorrect and the expected percentage of
incorrect outputs for different numbers of stages, the
maximum probability of gate failure allowed for the
system to function reliably (Figures 6 and 7).

Where appropriate, we also compare the results with those
obtained when, as in [4], the unitU performs a random
choice with replacement (referenced ‘UR’).

4.1. Basic system reliability

Initially, we consider the basic version of the NAND mul-
tiplexing system shown in Figure 1. We first investigate the
effect of changing the failure probabilities of the gates has
on the reliability of the system. Figure 3 presents the out-
put distribution of the system in the cases when the bundle
size is 20 and 40 and the probability of gate failure equals
0.1, 0.04, 0.02 and 0.0001. Note that the system is supposed
to model a correctly functioning NAND gate and we assume
that the inputs are correct when stimulated. Hence, the more
outputs that are non-stimulated, the greater the reliability.

Using the distributions, in Figure 4 (1 restorative stage),
we have plotted the probability that less than 10% of the
outputs are incorrect. We also plot the results whenU per-
forms a random choice with replacement (‘UR’). As ex-
pected, both the distributions in Figure 3 and the results in



−8 −6 −4 −2

0.2

0.4

0.6

0.8

1
bundle size 20

error of individual nand (10x)

pr
ob

ab
ili

ty
 o

f e
rr

or
 le

ss
 th

an
 1

0%

7 rest. stages
UR: 7 rest. stages
5 rest. stages
UR: 5 rest. stages
2 rest. stages
UR: 2 rest. stages
1 rest. stage
UR: 1 rest stage

−8 −6 −4 −2

0.2

0.4

0.6

0.8

1
bundle size 40

error of individual nand (10x)
pr

ob
ab

ili
ty

 o
f e

rr
or

 le
ss

 th
an

 1
0%

7 rest. stages
UR: 7 rest. stages
5 rest. stages
UR: 5 rest. stages
2 rest. stages
UR: 2 rest. stages
1 rest. stage
UR: 1 rest stage

Figure 4: Reliability versus gate failure

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

number of stimulated outputs

pr
ob

ab
ili

ty

bundle size 20

gate failure rate 0.1
gate failure rate 0.04
gate failure rate 0.02
gate failure rate 0.0001

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
bundle size 40

number of stimulated outputs

pr
ob

ab
ili

ty

gate failure rate 0.1
gate failure rate 0.04
gate failure rate 0.02
gate failure rate 0.0001

Figure 5: Output dist. (4 restorative stages)

Figure 4 show that, as the gate failure probability decreases,
reliability increases. Also, Figure 4 demonstrates that in-
creasing the bundle size decreases the chance of error.

Considering Figure 4 in the case whenU performs a ran-
dom choice with replacement (denoted ‘UR’), we see that
this leads to an over approximation of the reliability of the
multiplexing system: the chance of correct outputs is higher
than whenU is modelled correctly. Note that, as our results
will demonstrate, modellingU in this way does not always
lead to upper bounds on the reliability.

4.2. Adding restorative stages

Next, we investigate the change in reliability of a NAND
multiplexing system as more restorative stages are added to
the system. In Figure 5, we present the output distribution
of the system with 4 restorative stages. Comparing these
distributions with those in Figure 3, we see that, when the
gate failure probability is sufficiently small (0.0001), adding
restorative stages results in a far more reliable system (the
probability of any stimulated outputs is very small). On the
other hand, if the probability of gate failure is large (0.1),
then adding stages does not increase reliability and, in fact,
can actually decrease the reliability of the system.

4.2.1. Small probabilities of gate failure To emphasise
the first observation in the previous paragraph, Figure 4
presents, for small gate failure probabilities, the probability
that at most 10% of the outputs of the overall system are in-
correct against the gate failure probability. The results again
demonstrate that increasing the number of restorative stages

2 4 6 8 10 12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of restorative stages

pr
ob

ab
ili

ty
 o

f e
rr

or
 le

ss
 th

an
 1

0%

UR: failure 0.01
failure 0.01
UR: failure 0.02
failure 0.02
UR: failure 0.03
failure 0.03
UR: failure 0.04
failure 0.04

2 4 6 8 10 12
5

10

15

20

25

30

number of restorative stages

ex
pe

ct
ed

 %
 o

f i
nc

or
re

ct
 o

ut
pu

ts

UR: failure 0.04
failure 0.04
UR: failure 0.03
failure 0.03
UR: failure 0.02
failure 0.02
UR: failure 0.01
failure 0.01

Figure 6: Reliability versus stages (N = 20)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

number of restorative stages

pr
ob

ab
ili

ty
 o

f e
rr

or
 le

ss
 th

an
 1

0%

UR: failure 0.01
failure 0.01
UR: failure 0.02
failure 0.02
UR: failure 0.03
failure 0.03
UR: failure 0.04
failure 0.04

1 2 3 4 5 6 7
4

6

8

10

12

14

16

18

number of restorative stages

ex
pe

ct
ed

 %
 o

f i
nc

or
re

ct
 o

ut
pu

ts

UR: failure 0.04
failure 0.04
UR: failure 0.03
failure 0.03
UR: failure 0.02
failure 0.02
UR: failure 0.01
failure 0.01

Figure 7: Reliability versus stages (N = 40)

can enhance the reliability. However, they also show that the
rate of increase in reliability decreases as more stages are
added, and that there is a limit to the reliability which can
be gained by adding stages: compare the plots presented in
Figure 4 when the number of restorative stages is 5 and 7.
We should also mention that this result corresponds to the
observation made in [4] that, as the number of stages in-
creases, the output distribution of the system will eventually
become stable and independent of the number of stages.

In Figure 4, we have also included the statistics obtained
when the unitU performs a random choice with replace-
ment instead of a random permutation. In this case, unlike
in our earlier results, the approach no longer gives either an
upper or lower bound on the reliability of the system. As
mentioned earlier, for the larger bundle size (40), the differ-
ence between the results with the two approaches decreases.

4.2.2. Large probabilities of gate failure We now con-
sider the case when the probability of gate failure of the
NAND gates becomes too large for the system to function
reliably. In Figures 6 and 7, we have plotted both the prob-
ability that system error is less than 10% and the expected
percentage of incorrect inputs against the number of restora-
tive stages when the failure rate of the NAND gates is be-
tween 0.04 and 0.01.

As can be seen from Figure 6, when the bundle size is 20,
and the probability of gate failure equals 0.04, increasing
the number of restorative stages cannot make the computa-
tion reliable and, in fact, if one keeps increasing the stages,
the reliability actually starts to decrease. This anomalous
behaviour can be understood as follows: when the failure
rate is 0.04, the restorative stages are sufficiently affected



by the probability of gate failures to be unable to reduce the
degradation, and hence increasing number of stages makes
the system more amenable to error. From the results we
therefore conclude that, for a bundle size of 20, if the gate
failure probability is 0.04, then the system cannot be made
reliable. While, if the failure probability is 0.01, then, for
certain criteria, the system can be made reliable once a suf-
ficient number of restorative stages have been added.

When the bundle size is 40, Figure 7 show that, if the gate
failure probability is 0.04, then the system can be classi-
fied as unreliable no matter how many restorative stages are
added. However, when the failure probability is 0.01 (and
for certain criteria 0.02), the system can be considered reli-
able once a sufficient number of stages are added.

In Figures 6 and 7, statistics when the unitU performs a
random choice with replacement are again included. The re-
sults show that, this approach can lead to different results,
e.g. in Figure 6 when the gate failure probability equals
0.03, ifU performs a random choice with replacement, then
adding stages increases reliability, whereas ifU (correctly)
performs a permutation, reliability decreases. Considering
the results in Figure 7, when the probability of gate failure
is 0.01 or 0.02 and the number of stages is small, suppos-
ingU performs a random choice with replacement leads one
to assume that the system is more reliable than it is, how-
ever, as the number of stages increases, the converse holds.

5. Conclusion and future work

In this work, we have demonstrated how probabilistic model
checking can be used for the evaluation of the redun-
dancy/reliability trade-off in defect-tolerant architectures
for nanotechnology. In particular, we have shown how, for a
given probability of gate failure, probabilistic model check-
ing can find the minimum level of redundancy (I/O bundle
size and number of stages) to enable reliable computation.

We have reported on the results obtained for NAND mul-
tiplexing and investigated the performance as the error rate
of the individual NAND gates and the number of stages
varies. The first step in this approach involved construct-
ing a system model in PRISM’s input description language,
and we described an approach which reduced the effect of
the well known state space explosion problem, and hence al-
lowed for the analysis of larger configurations. In the anal-
ysis using PRISM, we were able to compute the exact out-
put distribution of the system, and hence construct a com-
plete picture of the reliability of the system under study.

We chose to analyse NAND multiplexing as it is a canon-
ical example which is standard in the literature, and enabled
us to compare the techniques and results with others. How-
ever, as explained, this approach can equally be applied to
alternative fault-tolerant architectures for nanotechnology.

In conclusion, this paper shows how probabilistic model
checking offers a complementary approach to the theoret-
ical results present in the literature for analysing defect-
tolerant architectures for nanotechnology. More precisely,
our analysis technique allows us to obtain sharp bounds and
study probabilistic anomalies for a fixed architecture, as op-
posed to establishing bounds in the generic case.

Acknowledgements

This work was supported by NSF grants CCR-0237947,
CCR-0340740 EPSRC grants GR/N22960 and GR/S11107,
FORWARD and SRC.

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying
continuous time Markov chains. InProc. CAV’96, volume
1102 ofLNCS, pages 269–276. Springer, 1996.

[2] R. Dobrushin and E. Ortyukov. Upper bound on the re-
dundancy of self-correcting arrangements of unreliable func-
tional elements. Problems of Information Transmission,
13(3):203–218, 1977.

[3] W. Evans and N. Pippenger. On the maximum tolerable noise
for reliable computation by formulas.IEEE Transactions on
Information Theory, 44(3):1299–1305, 1998.

[4] J. Han and P. Jonker. A system architecture solution for un-
reliable nanoelectronic devices.IEEE Transactions on Nan-
otechnology, 1:201–208, 2002.

[5] H. Hansson and B. Jonsson. A logic for reasoning about time
and probability. Formal Aspects of Computing, 6(5):512–
535, 1994.

[6] J. Heath, G. S. P. Kuekes, and R. Williams. A defect tol-
erant computer architecture: Opportunities for nanotechnol-
ogy. Science, 80:1716–1721, 1998.

[7] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Prob-
abilistic symbolic model checker. InProc. TOOLS’02, vol-
ume 2324 ofLNCS, pages 200–204. Springer, 2002.

[8] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Towards
robust integrated circuits: The embryonics approach.Proc.
IEEE, 88(4):516–541, 2000.

[9] K. Nikolic, A. Sadek, and M. Forshaw. Architectures for reli-
able computing with unreliable nanodevices. InProc. IEEE-
NANO’01, pages 254–259. IEEE, 2001.

[10] N. Pippenger. Reliable computation by formulas in the pres-
ence of noise. IEEE Transactions on Information Theory,
34(2):194–197, 1988.

[11] PRISM web page:www.cs.bham.ac.uk/∼dxp/prism.
[12] M. Ratner and D. Ratner.Nanotechnology: Gentle Introduc-

tion to the Next Big Idea. Prentice Hall, 2003.
[13] J. von Neumann. Probabilistic logics and synthesis of reli-

able organisms from unreliable components.Automata Stud-
ies, pages 43–98, 1956.


	Introduction
	Background
	Defect-tolerant computing
	Multiplexing
	NAND multiplexing

	Probabilistic model checking and PRISM

	NAND multiplexing and PRISM
	Model construction

	Experimental results
	Basic system reliability
	Adding restorative stages
	Small probabilities of gate failure
	Large probabilities of gate failure


	Conclusion and future work

