
Verifying Randomized Distributed Algorithms
with PRISM?

Marta Kwiatkowska, Gethin Norman, and David Parker

University of Birmingham, Birmingham B15 2TT, United Kingdom
{M.Z.Kwiatkowska,G.Norman,D.A.Parker}@cs.bham.ac.uk

Abstract. In this paper we describe our experience with model check-
ing randomized distributed algorithms using PRISM, a symbolic model
checker for concurrent probabilistic systems currently being developed.
PRISM uses Multi-Terminal Binary Decision Diagrams (MTBDDs) as
supplied by the CUDD package of Fabio Somenzi. Implemented in Java,
PRISM has a system description language similar to Reactive Modules
and supports model checking of probabilistic temporal logic PCTL (also
under fairness constraints). Our experiments indicate that using the BDD
variable ordering induced from the Kronecker representation yields very
efficient MTBDD representations of randomized distributed algorithms.
In particular, we are able to construct models of up to 1030 states in sec-
onds. Model checking of ‘with probability 1’ PCTL properties is also fast.
The efficiency of numerical computation with MTBDDs, however, and
hence also model checking of quantitative probabilistic temporal logic
properties, is still considerably poorer than e.g. for sparse matrices. De-
scriptions and statistics obtained for several case studies can be found
at http://www.cs.bham.ac.uk/~dxp/prism.

1 Introduction

The use of randomization, i.e. ‘electronic coin flipping’ and random-number
generators, is known to result in elegant, asymmetric and more efficient solutions
to a number of network co-ordination problems, for example, mutual exclusion
[6] and consensus algorithms [2]. Reasoning about correctness of such algorithms
tends to be rather complex [11,6], particularly in the context of distributed
computation, due to the need to combine classical, assertion-based, reasoning
with probabilistic analysis. The situation would be substantially improved if one
could automate, all or in part, the verification process, which could be achieved
by extending the techniques of model checking to the domain of randomized
algorithms.

PRISM (PRobabilistIc Symbolic Model checker) is an experimental symbolic
model checker for concurrent probabilistic systems, such as the randomized dis-
tributed algorithms mentioned above. It has a state-based system description
language similar to Reactive Modules [1], which exhibit both probabilistic and
? Supported in part by EPSRC grant GR/M04617.

Workshop on Advances in Verification (WAVe), 2000.

http://www.cs.bham.ac.uk/~dxp/prism

nondeterministic behaviour, and allows model checking of formulae of the prob-
abilistic temporal logic PCTL [4,3] (with fairness). The models are represented
as Multi-Terminal Binary Decision Diagrams (MTBDDs) implemented using the
Colorado University Decision Diagram (CUDD) package of Fabio Somenzi. This
paper describes the outcome of our experiments with PRISM obtained through
the modelling and verification of several randomized algorithms. Our main ob-
servation is that the use of BDD variable heuristics derived from a Kronecker
representation of systems ensures very compact MTBDDs and yields fast model
construction and model checking of qualitative properties.

2 Overview of the Tool

2.1 System Description Language

A system is defined as a composition of interacting modules. For simplicity, we
omit the global variables and synchronization from the following description.

A module is a pair M = (Var , C), where Var is a set of typed, finite-valued
locally controlled variables (which can be read by all modules but written to
by M only) and C a nondeterministic, guarded probabilistic command. A local
state of M is a valuation of Var . The set of all type-consistent valuations of Var ,
denoted Vals(Var), determines the local state space of M .

The behaviour of M is specified by the command C, a nondeterministic choice
([] denotes nondeterminism) of guarded probabilistic updates of the form

g − > p1 : u1 + · · ·+ pm : um

In the above, g is a predicate over the variables of all modules in the system
(not just the local variables of M), and, for j = 1, · · · ,m, pj are probabilities
in the interval (0,1], and each uj is an update assigning a new value to some
variable x ∈ Var . We use primed variables to distinguish between the new and
old values of variables: if x ∈ Var then x denotes its value at the beginning
and x′ at the end of an execution step of M . Module M proceeds in single
steps, each consisting of a two-phase choice: firstly, one of the enabled guards is
selected nondeterministically, and then the corresponding probabilistic update is
executed, which results in a random assignment of a new value to some of the
locally controlled variables.

A system S is given as a set of n modules, Mi = (Var i, Ci), i = 1, · · · , n,
with Var i pairwise disjoint. The set of variables V of S is the union of Var i.
A global state is a type-consistent valuation of all the variables V, and thus can
be viewed as a vector s = (s1, · · · , sn). The global state space is the product
S =

∏n
i=1 Vals(Var i) of local state spaces.

The behaviour of the system S is defined in terms of an asynchronous con-
current composition of the modules (synchronous composition and action syn-
chronization is also possible, but omitted from this presentation). Formally, the
semantics of S is defined as a concurrent probabilistic system (S,Steps), where
S is the set of global states and Steps : S −→ 2Distr(S) is a mapping from

S to finite nonempty sets of probability distributions on S, each induced by a
probabilistic update. Let Mi be a module and (g, u), where u = p1 : u1 + p2 :
u2 + · · · + pm : um be a guarded probabilistic update within Mi. View each
update uj : S −→ Si as a function from the global states to the local states of
Mi, and define Eni(g) = {s ∈ S | s |= g}, the set of all global states enabling
the guard g in Mi. For any s = (s1, . . . , sn) ∈ Eni(g), the module action of the
probabilistic update u in the global state s can be modelled by the probability
distribution µu,s

i , where for any t = (t1, . . . , tn) ∈ S:

µu,s
i (t) =

∑

1≤j≤m
ti=uj(s)

pj if tk = sk for all 1 ≤ k 6= i ≤ n

0 otherwise.

Putting this together, we obtain

Steps(t) =
n⋃

i=1

Stepsi(t)

where Stepsi(t) = {µu,s
i (t) | (g, u) ∈ Mi, s ∈ Eni(g)}.

2.2 Example

We illustrate the system description language by way of an example. Consider
the following:

module M1

x : [1..3];
[] (x = 1) → 0.8 : (x′ = 1) + 0.2 : (x′ = 2);
[] (x = 2) ∧ (y = 3) → (x′ = 2);
[] (x = 2) ∧ (y 6= 3) → (x′ = 3);
[] (x = 3) → 0.5 : (x′ = 3) + 0.5 : (x′ = 1);
endmodule

module M2

y : [1..3];
[] (y = 1) → 0.8 : (y′ = 1) + 0.2 : (y′ = 2);
[] (y = 2) ∧ (x = 3) → (y′ = 2);
[] (y = 2) ∧ (x 6= 3) → (y′ = 3);
[] (y = 3) → 0.5 : (y′ = 3) + 0.5 : (y′ = 1);
endmodule

It describes a simple system based on two process mutual exclusion. There
are two modules, M1 and M2. Each has a local state space consisting of three
states {1, 2, 3}, denoted by the local variables x and y respectively. State 3 is the
critical section. Both processes cannot be in this state at the same time.

The first update of M1 states that if the module is in state 1, then it will
remain in that state with probability 0.8, and move to state 2 with probability

Model: Breadth-first:
States: NNZ: Nodes:

mutual 3 2, 368 8, 272 10, 317
mutual 4 27, 600 123, 883 109, 096

Model: Kronecker: After reachability:
States: NNZ: Nodes: States NNZ: Nodes:

mutual 3 4, 096 14, 119 1, 063 2, 368 8, 272 1, 632
mutual 4 65, 536 293, 119 2, 916 27, 600 123, 883 4, 179
mutual 5 1, 048, 576 5, 740, 091 6, 643 308, 800 1, 680, 086 8, 510
mutual 8 4.29 × 109 3.61 × 1010 39, 989 3.9 × 108 3.2 × 109 41, 280
mutual 10 1.1 × 1012 1.13 × 1013 93, 933 4.4 × 1010 4.41 × 1011 90, 197

Fig. 1. Statistics for fully probabilistic models and their MTBDD representation.

0.2. The second and third lines describe the behaviour of M1 when it is in state
2. This depends on the state of M2 since the two modules cannot both be in
state 3 simultaneously. Hence the guards for these two lines also contain condi-
tions on the variable y. Note that when the update corresponds to a probability
distribution which selects a single state with probability 1, the probability is
omitted. Module M2 is identical to M1, except that it controls y.

The overall system is defined as an asynchronous parallel composition of all
the modules. The global state space is the product of all the local state spaces.
In the above, the global state space is {1, 2, 3}×{1, 2, 3}. Consider, for example,
the case where the global state is (1, 2), i.e. M1 is in state 1 and M2 is in state 2.
The behaviour of both modules is defined, as a probability distribution over local
states, in this state. If selected, M1 would remain in state 1 with probability 0.8
and move to state 2 with probability 0.2. Likewise, M2 would move to state 3 with
probability 1. We model this situation as a nondeterministic choice between two
probability distributions over the global state space, one of which selects states
(1, 2) and (2, 2) with probability 0.8 and 0.2 respectively, the other selecting
state (1, 3) with probability 1. Note that for each nondeterministic choice (i.e.
probability distribution), the state of one module can change, but the state of
the other cannot.

3 Results

Based on the above representation of a randomized distributed algorithm as
a concurrent probabilistic system, we build the corresponding MTBDD rep-
resentation. We have experimented with two BDD variable orderings, one in-
duced from the breadth-first search of the state space, and the other from
a Kronecker representation of the system. For more details of the construc-

Model: Breadth-first:
States: NNZ: Nodes:

mutual 3 2, 368 20, 160 12, 561
mutual 4 27, 600 471, 232 146, 496

Model: Kronecker: After reachability
States: NNZ: Nodes: States NNZ: Nodes:

mutual 3 4, 096 2.92 × 1011 962 2, 368 20, 160 1, 802
mutual 4 65, 536 9.35 × 1012 1, 989 27, 600 471, 232 4, 100
mutual 5 1, 048, 576 2.99 × 1014 3, 386 308, 800 1.06 × 107 7, 149
mutual 8 4.29 × 109 9.8 × 1018 9, 797 3.9 × 108 1.08 × 1011 20, 736
mutual 10 1.1 × 1012 1.0 × 1022 15, 921 4.4 × 1010 4.89 × 1013 33, 494

Fig. 2. Statistics for concurrent models and their MTBDD representation.

Model: Construction: Reachability: Model checking:
Time (s): Time (s): Iterations: Time (s): Iterations:

mutual 3 0.49 0.13 22 0.78 54
mutual 4 0.56 0.59 28 1.59 72
mutual 5 0.69 1.51 34 6.08 90
mutual 8 1.67 10.08 52 40.02 144
mutual 10 3.25 22.58 64 84.38 180

Fig. 3. Times for construction and model checking of fully probabilistic models

tion see [5]. We have modelled and verified a number of algorithms including
randomized dining philosophers (Pnueli & Zuck ’86, Lehmann & Rabin ’82),
N-process mutual exclusion (Pnueli & Zuck ’86, Rabin ’86), and randomized
consensus protocol (Aspnes & Herlihy ’90). The results are summarised on
http://www.cs.bham.ac.uk/~dxp/prism/, with the statistics for the mutual
exclusion algorithm in [10] and the property eventually process 1 enters the crit-
ical section included in this paper.

References

1. R. Alur and T. Henzinger. Reactive modules. In Proc. 11th Annual IEEE Sym-
posium on Logic in Computer Science (LICS’96), pages 207–218. IEEE Computer
Society Press, July 1996.

2. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Jour-
nal of Algorithms, 15(1):441–460, 1990.

3. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

4. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proceedings, FST&TCS, volume 1026 of Lecture Notes in Computer
Science, pages 499–513. Springer-Verlag, 1995.

5. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic systems using MTBDDs and the Kro-

http://www.cs.bham.ac.uk/~dxp/prism/

Model: Construction: Reachability: Model checking:
Time (s): Time (s): Iterations: Time (s): Iterations:

mutual 3 0.58 0.13 22 0.26 27
mutual 4 0.67 0.48 28 1.4 36
mutual 5 0.82 1.23 34 4.65 45
mutual 8 1.45 9.02 52 42.07 72
mutual 10 2.27 19.59 64 122.05 90

Fig. 4. Times for construction and model checking of concurrent models

necker representation. In Proceedings, TACAS’2000, volume 1785 of Lecture Notes
in Computer Science. Springer-Verlag, 2000.

6. E. Kushilevitz and M. O. Rabin. Randomized mutual exclusion algorithms re-
visited. In Proc. of the ACM Symposium on Principles of Distributed Computing
(PODC). ACM Press, 1992.

7. D. Lehman and M. Rabin. On the advantage of free choice: a symmetric and fully
distributed solution to the Dining Philosophers problem (extended abstract). In
Proceedings, 8th POPL, pages 133–138. ACM CS Press, 1981.

8. B. Plateau. On the Stochastic Structure of Parallelism and Synchronisation Models
for Distributed Algorithms. In Proc. 1985 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 147–153, May 1985.

9. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1:53–72, 1986.

10. A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation,
103:1–29, 1993.

11. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of aspnes and herlihy: a case study. In M. Mavronicolas and P. Tsigas,
editors, Proc. WDAG 1997, volume 1320 of Lecture Notes in Computer Science,
pages 111–125. Springer-Verlag, 1997.

12. M. O. Rabin. N-process mutual exclusion with bounded waiting by 4·log2 N -valued
shared variable. Journal of Computer and System Sciences, 25:66–75, 1982.

	Verifying Randomized Distributed Algorithms with PRISM
	Introduction
	Overview of the Tool
	System Description Language
	Example

	Results

