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Abstract1 

There is a growing demand for cloud storage services such as Dropbox, Box, Syncplicity and 

SugarSync. These public cloud storage services can store gigabytes of corporate and personal data in 

remote data centres around the world, which can then be synchronized to multiple devices. This 

creates an environment which is potentially conducive to security incidents, data breaches and other 

malicious activities. The forensic investigation of public cloud environments presents a number of 

new challenges for the digital forensics community. However, it is anticipated that end-devices such 

as smartphones, will retain data from these cloud storage services. This research investigates how 

forensic tools that are currently available to practitioners can be used to provide a practical solution 

for the problems related to investigating cloud storage environments. The research contribution is 

threefold. First, the findings from this research support the idea that end-devices which have been 

used to access cloud storage services can be used to provide a partial view of the evidence stored in 

the cloud service. Second, the research provides a comparison of the number of files which can be 

recovered from different versions of cloud storage applications. In doing so, it also supports the idea 

that amalgamating the files recovered from more than one device can result in the recovery of a more 

complete dataset. Third, the chapter contributes to the documentation and evidentiary discussion of 

the artefacts created from specific cloud storage applications and different versions of these 

applications on iOS and Android smartphones. 

1. Introduction 

An increase in demand for information technology (IT) resources has prompted many organizations to 

turn their attention to cloud computing. This technology has significant potential to reduce costs and 

increase efficiency in the workplace [1]. Migrating to a cloud computing environment means an 

organization can replace much of its traditional IT hardware with virtualized, remote and on-demand 

infrastructure services such as storage space, processing power and network bandwidth [2].  

Storing corporate data online using cloud-based storage services such as Amazon S3, Google Docs 

and Dropbox has become an effective solution for the business needs of a growing number of 

organizations [3]. Cloud storage services can offer an organization greater flexibility and availability, 

with virtually unlimited storage space, as well as the ability to synchronize data between multiple 

devices. Typically, cloud storage providers will operate on the ‘freemium’ financial model, offering 

customers free storage space with an option to purchase further unlimited storage space as they 

require [4, 5]. This business model has demonstrated to be successful, as the popularity of cloud 

storage services has soared in recent years. For example, Dropbox has seen its customer-base surpass 

300 million users and now claim that over 1 billion files are saved every three days using its services 

[6, 7]. Mozy claim that more than six million individual users and 100,000 businesses are using their 
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services, while Box has reported that implementation of its mobile device application increased 140% 

monthly in 2011 [10, 11]. Forrester Research has predicted that approximately two-thirds of adults 

who use the Internet in the United States are using some form of personal cloud storage service, often 

combining cloud services for both work and personal use [12]. Cloud storage services are also 

increasingly integrating into the retail, financial, legal and healthcare enterprise markets [13, 14]. 

Although the benefits of using cloud storage services are attractive, a major concern is the security 

and privacy of data in these environments [15-18]. For many organizations, there are several reasons 

to decline adoption of cloud storage services, including a necessity to protect mission-critical 

information, legal and regulatory obligations and concerns regarding the confidentiality and integrity 

of their information [19-23]. These reservations are being validated as TrendMicro has reported that 

cloud adopters have witnessed an increase in the number of cloud security incidents as compared to 

traditional IT infrastructure security events [24]. Further complicating matters, researchers have 

demonstrated how cloud storage services, such as Dropbox, can be hijacked and exploited to gain 

access to an unsuspecting user’s account [4, 25]. There is no practical barrier preventing further 

exploitation of cloud storage services by users to access and retrieve files. Security incidents and 

criminal activity involving cloud storage services could require a subsequent forensic investigation to 

be undertaken.  

There is a general consensus from both industry and academia that it may be difficult to investigate 

inappropriate or illegal activity involving cloud computing environments [2, 26-29]. One of the 

biggest challenges for forensic investigators examining cloud-based services is the ability to identify 

and recover digital evidence in a forensically sound manner [2, 28]. This problem is magnified in 

public cloud environments, such as those used by cloud storage providers. The remote, distributed and 

virtualized nature of a public cloud environment means that the conventional, offline approach to 

forensic evidence acquisition is largely invalidated [2]. The tools and methods used to preserve and 

acquire a forensic copy of data stored on a traditional storage device are unlikely to transfer to a 

public cloud environment [2]. The remote and distributed nature of public cloud architectures can also 

make the identification of a single storage device containing relevant data impractical and even 

impossible. This means that an investigator cannot directly obtain a copy of the evidence required for 

analysis. An alternative approach is for the investigator to request the cloud storage provider to obtain 

a forensic copy of the storage device. However, this approach can take a significant amount of time, 

or be obstructed by cross-border jurisdictional disputes [22, 30]. 

This research investigates a practical solution to problems related to investigating cloud storage 

environments using practitioner-accepted forensic tools. This study extends the results from an initial 

investigation, which examined the feasibility of an end-device, providing a proxy view of the 

evidence in a cloud forensics investigation [31]. Relevant information and data from that conference 

publication has been included in this chapter for completeness. The contribution of this chapter is 

threefold. First, the findings from this research further supports the idea that end-devices which have 

been used to access cloud storage services can be used to provide a partial or snap-shot view of the 

evidence stored in the cloud service. Second, the chapter provides a comparison of the files which can 

be recovered from different versions of cloud storage applications. The chapter also supports the idea 

that amalgamating the files recovered from more than one device can result in an investigator 

recovering a more complete ‘dataset’ of files stored in the cloud service. Third, the chapter contributes 

to the documentation and evidentiary discussion of the artefacts created from specific cloud storage 

applications and different versions of these applications on iOS and Android smartphones. 

The chapter is structured as follows: Section 2 discusses the challenges of conducting digital forensic 

investigations in a cloud computing environment and examines what work has been done in relation 

to cloud storage forensics, as well as presenting an overview of smartphone forensics. Section 3 

proposes the hypotheses and research questions which guided this research and describes the 

experimental design undertaken to address the research questions. Section 4 reports the findings, and 

Section 5 is used to discuss the results and their impact on forensic investigations. Finally, Section 6 

draws conclusions from the work conducted and presents future work. 

 



 

 

2. Related Work 

A growing number of researchers have argued that cloud computing environments are inherently 

more difficult to investigate than conventional environments [2, 26-28, 32]. Ruan, et al., [27] defined 

the term ‘cloud forensics’ as a “cross discipline of cloud computing and digital forensics” and 

described cloud forensics as a subset of network forensics. However, this definition does not take into 

consideration the virtualization aspect of the cloud [2]. Ruan, et al., [27] also noted that an 

investigation involving cloud computing would include technical, organizational and legal aspects. 

Grispos, et al., [2] described how traditional digital forensic models and techniques used for 

investigating computer systems could prove to be ineffective in a cloud computing environment. 

Furthermore, Grispos, et al., [2] identified several challenges for forensic investigators including: 

creating adequate forensic images, the recovery of segregated evidence and large data storage 

management. Taylor, et al [28] raised the concern that potential important evidence could be lost in a 

cloud environment. Registry entries in Microsoft Windows platforms, temporary files, and metadata 

could all be lost if the user leaves the cloud [28]. Reilly, et al., [26] speculated that one potential 

benefit of investigating a public cloud environment is that the data being investigated will be located 

in a central location, which means that incidents can, potentially, be investigated quicker. This is 

unlikely to be the case as the very nature of a public cloud service theoretically means that even 

evidence related to individuals within the same organization could be segregated in different physical 

locations and stored alongside data belonging to other organizations and the general public [33]. 

To enable a forensic investigation to be conducted, evidence needs to be collected from cloud 

computing environments, thus introducing a unique set of challenges for forensic investigators [34]. 

Researchers have begun proposing methods of acquiring evidence from a variety of cloud providers 

and services [34, 35]. Delport, et al., [35] proposed the idea of isolating a cloud instance for further 

investigation, however, it is not clear how a forensic image of the instance under investigation is 

obtained after it has been isolated from the rest of the cloud environment. Dykstra and Sherman [34] 

proposed three methods of evidence collection from Infrastructure-as-a-Service (IaaS) instances 

stored in the Amazon EC2 Cloud. The first method evaluated the performance of several forensic 

tools including FTK Imager and Encase Enterprise, which were used to extract evidence directly from 

the cloud instance in the Amazon Cloud. An issue with this method is that the investigator must be in 

possession of Amazon EC2 key pairs used to connect to the instance. The purpose of the key pairs is 

to ensure that only the instance’s owner has access to the instance [36]. These public/private keys are 

created by the owner when the instance is first created using the Amazon Web Services Management 

Console [37]. Unless the investigator can recover these keys, this method of acquisition cannot be 

used. The second proposed method involved acquiring evidence from the virtualization layer of a 

cloud by injecting a remote agent into the hypervisor of the cloud environment. This approach was 

evaluated in a private cloud environment, where the investigator had the ability to write into memory 

the guest virtual instance. However, this is unlikely to be the case in a public cloud environment, 

where the cloud provider will control access to the hypervisor and virtualization layer of a cloud [19]. 

The final method proposed by Dykstra and Sherman involves requesting Amazon EC2 to collect the 

required evidence from the host on behalf of the investigator. Dykstra and Sherman note that the 

limitation of this method is that Amazon does not provide checksums to verify the integrity of the 

forensic image; therefore, the investigator cannot be certain that the data supplied by Amazon and the 

data stored in the cloud are identical [34]. 

Researchers have also attempted to define investigative frameworks specifically addressing cloud 

storage providers [38-42]. Lee, et al. [39] presented a framework for investigating incidents involving 

the Apple iCloud environment. The framework proposes the idea that the forensic investigator can 

examine Windows and Apple OSX-based systems, as well as Apple mobile devices to recover traces 

of data stored in the iCloud service. The research focused on the recovery of email messages, memos, 

contacts, calendar information and bookmarks. The limitation of this research is that Lee, et al. [39] 

did not examine or discuss if the artefacts recovered from the end-devices were representative of the 

data stored in the cloud. There is the possibility that evidence still stored in the iCloud service was not 

recovered from the end-devices. Chung, et al. [38] have also proposed a framework for investigating 

cloud storage services including Amazon S3, Google Docs, Dropbox and Evernote.  



 

 

Quick and Choo [40-42]  have undertaken three separate case studies to investigate the data remnants 

from Dropbox, Google Drive and SkyDrive (now called OneDrive). In all three case studies, a 

Windows 7 personal computer and an Apple 3G iPhone were used to access and view a dataset stored 

in the cloud storage service. A Windows 7 personal computer was emulated using virtual machines. A 

variety of web browsers were used in conjunction with the virtual machine and the specified cloud 

storage client application to collect data [40-42]. The findings from the personal computer analysis 

revealed that usernames, passwords, filename listings, file content, as well as dates and times that files 

were accessed are recoverable from a personal computer which has interacted with the above cloud 

storage services [40-42]. An iPhone device was used to access the dataset through the ‘on-device’ 

web browser in order to interact with the specified iOS cloud storage application. A logical extraction 

using MicroSystemation’s XRY was then performed. Their analysis of the logical extraction revealed 

that a number of artefacts can be recovered from various locations on the device which included the 

account services' username, as well as the filenames of viewed files [40-42]. However, it is worth 

noting that the content of the files stored in the cloud storage services were not recovered from the 

iPhone. Quick and Choo noted that future work should examine the physical acquisition of iPhone 

devices to determine if this method of acquisition can be used to recover the files stored in the cloud 

storage services [40-43]. 

Separately, Quick and Choo [45] investigated the modification of file content and metadata when 

potential evidence is downloaded and collected from a cloud storage account. Quick and Choo [45] 

reported that the cryptographic hashes calculated from file manipulations, like uploading, storing and 

downloading, using Dropbox, SkyDrive (now called OneDrive) and Google Drive reveal that no 

changes were made to the files’ content. Quick and Choo [45] also state that after further analysing 

the downloaded files, notable changes were visible in the timestamp metadata. This was particularly 

evident in the ‘last accessed’ and ‘file creation’ time-stamps which indicated the last interaction with  

the cloud storage client software [45].  

Martini and Choo [46] focused on client and server-side forensic investigations involving the 

‘ownCloud’ service. Martini and Choo reported that forensic artefacts found on the client machine can 

link a user to a particular ‘ownCloud’ instance [46]. Furthermore, Martini and Choo recovered 

authentication and file metadata from the client, which were then used to decrypt files stored on the 

server [46]. Martini and Choo [47] have also examined XtreemFS, a distributed filesystem commonly 

used in cloud computing environments, and documented both client and server-side artefacts which 

may be relevant to forensic investigations. 

As part of the “Cloud Computing and The Impact on Digital Forensic Investigations” (CLOIDIFIN) 

project, Biggs and Vidalis [48] reported that very few High Tech Crime Units in the United Kingdom 

were prepared to deal with crimes involving cloud computing. As a result, Biggs and Vidalis believe a 

‘cloud storm’ will create difficulties and challenges for law enforcement investigators charged with 

investigating such environments [48]. Taylor, et al., [28] have extensively examined the legal issues 

surrounding cloud computing and comment that any evidence gathered from the cloud should be 

conducted within local laws and legislation. Phillips [49] discussed the issue of keeping a chain of 

custody for such an investigation and has argued that the cloud is a dynamic paradigm and physically 

isolating it to conduct an investigation could be a daunting task for the investigator. 

When multiple devices are used to access data in the cloud, the issues with the dynamic paradigm are 

exacerbated. A prime example of this impediment is the increasing use of mobile devices such as 

smartphones to access data stored in a cloud [12, 38]. A smartphone device is distinguishable from a 

traditional mobile phone by its superior processing capabilities, a larger storage capacity, as well as its 

ability to run complex operating systems and applications [50]. From an evidentiary perspective, the 

smartphone potentially contains a considerable amount of forensic evidence. This potential is 

demonstrated in a study where researchers recovered more than 11,000 data artefact’s from 49 

predominately low-end devices [51]. As with a traditional mobile phone, the smartphone not only 

stores call logs, text messages and personal contacts, but it also has the ability to store web-browsing 

artefact’s, email messages, GPS coordinates, as well as third-party application related data [52-54]. 

There are a number of tools that can be used to perform a data acquisition from a smartphone. 

Examples of these tools include Cellebrite’s Universal Forensic Extraction Device (UFED) [55]; 



 

 

MicroSystemation’s XRY tools [56]; The Mobile Internal Acquisition Tool [57]; Paraben’s Device 

Seizure [58] and RAPI Tools [59]. These forensic toolkits make it possible to investigate mobile 

devices that have been used to access cloud storage providers and extract evidence without directly 

accessing the cloud storage provider’s service. However, there is currently a lack of research as to the 

relationship between the residual data retained on multiple mobile devices subsequent to cloud 

interaction. There is also a lack of research into the impact that cloud storage applications have on 

mobile device residual data. 

3. Experiment Design 

The lack of research examining the gap between device residual data and existing cloud data 

prompted research into the following hypothesis: 

H1: Smartphone devices present a partial view of the data held in cloud storage services, which can be 

used as a proxy for evidence held on the cloud storage service itself. 

H2: The manipulation of different cloud storage applications influences the results of data collection 

from a smartphone device. 

H3: Different versions of cloud storage applications implemented on diverse operating systems retain 

varying amounts of residual data. 

To address the hypotheses, the following questions were proposed: 

1. To what extent can data stored in a cloud storage provider be recovered from a smartphone 

device that has accessed the service? 

2. What features of the cloud application influence the ability to recover data stored in a cloud 

storage service from a smartphone device? 

3. Do different versions of a cloud application used on the smartphone devices affect the 

ability to recover data stored in a cloud storage service from a smartphone device? 

4. What metadata concerning the cloud storage service can be recovered from a smartphone 

device and what does the metadata data, recovered from a smartphone device, reveal about 

further files stored in the cloud service? 

5. Does the amalgamation of files recovered from two or more versions of a specific cloud 

storage application provide a more complete dataset of files stored in the cloud service? 

An experiment was devised to support the hypotheses and research questions proposed above. The 

experiment was broken into six stages. The six stages included: 1) preparing the smartphone device 

and installing the cloud application; 2) loading a dataset to a cloud storage provider; 3) connect to the 

data through the application on the smartphone; 4) performing various file manipulations to the 

dataset and smartphone device; 5) processing the device using the Universal Forensic Extraction 

Device (UFED); and 6) using a number of forensic tools to extract the files and artefacts from the 

resulting memory dumps.  

The forensic tools used in this experiment were the Cellebrite Universal Forensic Extraction Device 

(UFED) version 1.8.5.0 and its associated application the ‘Physical Analyzer’ version 3.7.0.352; FTK 

Imager and FTK Toolkit version 4.0. The smartphone devices were processed with the UFED tools. 

The memory card used in the HTC Desire was processed using FTK Imager. The memory dumps 

were examined using a combination of Physical Analyzer and the FTK toolkit. Three smartphone 

devices were selected for use in this experiment: an Apple iPhone 3G and two HTC Desire devices. 

Table 1 – Smartphone Device Features highlights the notable features of these devices. These devices 

were selected for two reasons. First, they are compatible with the choice of forensic toolkit (UFED) 

used to perform a physical dump of the internal memory. Second, the operating systems used on these 

devices represent the two most popular smartphone operating systems in use [60]. Although more 

recent devices with newer versions of both the Android and iOS operating system exist, a lack of 

support from the forensic tools to perform a physical acquisition meant that these newer devices could 

not be included in the experiment. The decision to use these specific devices and tools was a 

pragmatic decision based on practicality and availability to the authors.  



 

 

 

 

 

 

Table 1. Smartphone Device Features 

The selection criteria for the smartphone devices limited the number of cloud storage applications 

available to only the applications compatible with both operating systems. The scope of the 

experiment was limited in the following ways: 

 This experiment was conducted in the United Kingdom, where Global System of Mobile 

(GSM) is the predominant mobile phone type, therefore non-GSM mobile devices were not 

considered;  

 A number of smartphone devices which run either iOS or Android were not considered due to 

compatibility issues with the toolkit; and 

 Various cloud storage applications were not considered because they do not support either or 

both of the chosen operating system platforms.  

The original implementation of this experiment used an iPhone 3G running iOS version 3.0 and an 

HTC Desire running Android version 2.1. The cloud storage applications for iOS included: Dropbox 

v. 1.4.7, Box v. 2.7.1, SugarSync v. 3.0, and Syncplicity v. 1.6. The cloud storage applications for the 

Android device included: Dropbox v. 2.1.3, Box v. 1.6.7, SugarSync v. 3.6, and Syncplicity v. 1.7. 

The experiment was then extended and repeated using an HTC Desire running Android version 2.3. 

Newer versions of the Android cloud storage applications implemented in this portion of the 

experiment included: Dropbox v. 2.2.2, Box v. 2.0.2, SugarSync v. 3.6.2, and Syncplicity v. 2.1.1. 

Extending the experiment provides the opportunity to compare the results obtained between different 

versions of specific cloud storage applications. Updating the operating system and applications used 

on the iPhone device was considered. However, based on discontinued application support for iPhone 

3G, a lack of support, at the time of the experiment, from the forensic tools for newer versions of the 

iPhone, as well as device availability, a pragmatic decision was made not to include an iOS device in 

the extended experiment.  

A pre-defined dataset was created, which was comprised of 20 files, made up of image (JPEG), audio 

(MP3), video (MP4), and document (DOCX and PDF) file types. Table 2 – Experimental Dataset 

defines the files used in this dataset. The same dataset was used in both the original and extended 

experiments. The following steps were used in both the original and extended experiments. These 

steps were repeated every time the experiment was reset for a different cloud storage application. 

1. The smartphone was ‘hard reset’, which involved restoring the default factory settings on the 

device. In the case of the HTC Desire, the SD memory card was forensically wiped using The 

Department of Defence Computer Forensics Lab tool – dcfldd [61]. These steps were done to 

remove any previous data stored on the devices and the memory card. 

2. The device was then connected to a wireless network which was used to gain access to the 

Internet. The cloud storage application was downloaded and installed either via the Android or 

Apple ‘app market’, depending on the device used. The default installation and security 

parameters were used during the installation of the application.  

3. The cloud storage application was executed, and a new user account was created using a 

predefined email address and a common password for that cloud storage application. 

4. After the test account was created, the application was ‘connected’ to the cloud storage 

provider’s services, which meant the device was now ready to receive the dataset. 

5. A personal computer running Windows 7 was used to access the test account created in Step 4 

and the dataset was then uploaded to the cloud storage provider using a web browser. The date 

and time the files were uploaded to the cloud storage provider was noted. The smartphone was 

Feature iPhone 3G HTC Desire HTC Desire 

Operating system iOS v. 3 Android v. 2.1 Android v. 2.3  

Internal memory 8 GB storage 576 MB RAM 576 MB RAM 

Memory card  No Yes (4 GB) Yes (4 GB) 



 

 

synchronized with the cloud storage provider, to ensure the dataset was visible via the 

smartphone application.  

6. When the entire dataset was visible on the smartphone, a number of manipulations were made to 

files in the dataset. Table 2 – Experimental Dataset summarizes these manipulations. These 

included:  

 a file being viewed or played;  

 a file viewed or played then saved for offline access; 

 a file viewed or played then deleted from the cloud storage provider; and 

 some files were neither opened/played nor deleted (no manipulation).  

7. The smartphone and cloud storage application were also manipulated in one of the following 

ways: 

 Active power state - the smartphone was not powered down and the application's cache 

was not cleared; 

 Cache cleared - the applications cache was cleared; 

 Powered off - the smartphone was powered down; and 

 Cache cleared and powered off - the applications’ cache was cleared and the smartphone 

was powered off.  

These manipulations were done to mimic various scenarios a forensic investigator could 

encounter during an investigation. The smartphone was then removed from the wireless network 

to prevent any accidental modification to the dataset.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Experimental Dataset 

8. After the above manipulations, the smartphone device was processed to create a forensic dump of 

its internal memory. In the case of the HTC Desire, the Secure Digital (SD) memory card was 

processed separately from the smartphone. The HTC Desire was processed directly using the 

UFED, while a binary image of the SD card was created using FTK Imager. Before the HTC 

Filename Size (bytes) Manipulation 

01.jpg 43183 File viewed/played 

02.jpg 6265 File viewed/played and saved for offline access 

03.jpg 102448 No manipulation 

04.jpg 5548 File viewed/played and then deleted 

05.mp3 3997696 File viewed/played 

06.mp3 2703360 File viewed/played and saved for offline access 

07.mp3 3512009 No manipulation 

08.mp3 4266779 File viewed/played and then deleted 

09.mp4 831687 File viewed/played 

10.mp4 245779 File viewed/played and saved for offline access 

11.mp4 11986533 No manipulation 

12.mp4 21258947 File viewed/played and then deleted 

13.pdf 1695706 File viewed/played 

14.pdf 471999 File viewed/played and saved for offline access 

15.pdf 2371383 No manipulation 

16.pdf 1688736 File viewed/played and then deleted 

17.docx 84272 File viewed/played 

18.docx 85091 File viewed/played and saved for offline access 

19.docx 14860 No manipulation 

20.docx 20994 File viewed/played and then deleted 



 

 

Desire was processed, the USB debugging option was enabled on the smartphone. This is 

required by the UFED to create the binary images from the device. The default parameters for a 

Physical Extraction on the UFED were selected, and the make and model of the device were 

provided. In the case of the SD card, the default parameters were used to create a binary image of 

the storage card. The resulting binary images were saved to a forensically wiped 16 GB USB 

flash drive. The extraction process for the iPhone differed from that of the HTC Desire as the 

device was processed using the Physical Analyzer ‘add-on’, which is designed to extract binary 

images from the iPhone. A step-by-step wizard provided instructions on how to prepare the 

device for the extraction. From the selection menu, the User partition was selected for extraction 

from the device, and the resulting memory dump was saved to a 16 GB USB flash drive. 

9. The images extracted from the smartphone device were then loaded into Physical Analyzer, 

where the iOS and Android file systems were reconstructed. FTK 4 was used as the primary tool 

for analysis. This involved extracting the partitions from the dumps in Physical Analyzer and 

then examining them using FTK. Analysis techniques used included: string searching for the 

password, filtering by file types and browsing the iOS and Android file systems. 

4. Findings 

A summary of files recovered from the devices is shown in the following tables: Table 3 – Dropbox 

Files Recovered, 4 – Box Files Recovered, 5 – SugarSync Files Recovered and 6 – Syncplicity Files 

Recovered. Several observations can be drawn from these results. Smartphone devices can be used to 

recover artefacts related to cloud storage services. These artefacts can include the files stored in the 

cloud storage service which have been accessed using the smartphone device and metadata associated 

to user and service activity. The exception to this was the recovery of a thumbnail of the JPEG image 

file not viewed on the device (03.jpg), which was recovered from ten of the twelve applications 

examined.  

The chances of recovering a file increase if the file has been saved for offline viewing. Files which 

were marked for offline viewing were recovered from all the applications except from version 2.0.2 of 

the Box Android application. The results also indicate that different versions of the Android 

applications can result in different files being recovered from a smartphone device. This finding was 

particularly evident for the Box and Syncplicity applications. The two different versions of these 

applications resulted in different files from the dataset being recovered. The metadata recovered from 

the devices included SQLite databases, text-based transaction logs, JavaScript Object Notation 

(JSON) and XML files. These metadata artefacts contained information related to user activity; 

account-specific information such as email addresses and described which files are stored in the cloud 

storage service.  

An analysis of the memory dumps revealed that forensic artefacts can be recovered from the 

smartphone devices and in the case of the Android devices, the SD memory card. The Android 

operating system allows files to be stored in either the device’s internal storage memory or on an 

external memory card [52]. The iPhone does not have an external storage device and all artefacts 

recovered from the device were from the internal storage memory. The SD memory card used with 

the Android devices contained files which were either deleted by the user or deleted as a result of the 

cache being cleared. Clearing the application’s cache has an adverse effect on the recovery of files. 

This is more evident on the iPhone, which does not contain an SD card. Powering down the 

smartphone devices did not have an effect on the recovery of data. As a result, the files recovered 

were identical to that of the active power state scenario. 

Artefacts stored in the internal memory of the Android devices can be recovered from a sub-folder 

named after the application name. This sub-folder can be recovered from the path /data/data [52]. 

Unlike the internal storage device, applications can store data in any location on the SD memory card 

[62]. Therefore, the location of evidence on the SD card varies, depending on the application being 

investigated. The iOS file system creates a sub-folder for each installed application under the 

directory /private/var/mobile/Applications in the User partition [53]. The name of the 

application directory installed under this location is assigned a unique 32 character alphanumeric 



 

 

folder name [63]. The folder name is different for each application installed on the device. Artefacts 

related to the iOS applications were stored under this folder location. 

4.1 Detailed Dropbox Findings 

On the HTC Desire, the forensic toolkits recovered nine files from both Android versions of Dropbox. 

Depending on application and device manipulation, either five or seven files were recovered from the 

iOS version of Dropbox. The results of which files were recovered from the Dropbox application are 

shown in Table 3 – Dropbox Files Recovered. 
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02             
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05             

06             

07             

08             

09             

10             

11             

12             
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14             

15             

16 D D D D D D D D     

17  D  D  D  D     

18             

19             

20 D D D D D D D D     

Table 3: Dropbox Files Recovered 

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache 
Cleared and Powered Down;  = File Recovered; D = Deleted File Recovered;                            

T= Thumbnail Recovered 

 



 

 

4.1.1 Android Applications 

Files stored in the Dropbox service can be recovered from two locations on the SD card. These 

locations and their contents are valid for both versions of the Android Dropbox application. First, 

thumbnails of the JPEG images were recovered from the path /Android/data/ 

com.dropbox.android/cache/thumbs/. Second, files which were saved for offline viewing 

and the document files which were viewed and not deleted on the device were recovered from the 

path /Android/data/com.dropbox.android/files/scratch. Analyses of the ‘unallocated 

space’ for both Android applications revealed that the two document files which were deleted (16.pdf 

and 20.docx) were still physically stored on the SD card. These two document files were recovered by 

FTK. 

Metadata related to both versions of the Dropbox application were recovered from the internal 

memory of the smartphone. The metadata recovered were valid for both versions of the Android 

application. This metadata consisted of two SQLite databases and a transaction log. The two 

databases were recovered from the path /data/data/com.dropbox.android/databases/. 

The first database, db.db, has a table called dropbox, which contains metadata related to the files 

currently stored in the service, i.e., files which have not been deleted from the Dropbox service. Fields 

identified from this table are shown in Appendix A.  

The second database, prefs.db, has a table called DropboxAccountPrefs which contains 

metadata related to the end-user. Information hich can be recovered includes the user’s name and 

email address used to register for the Dropbox service. A transactional log called log.txt is created 

by the Dropbox application to record service and user-related events including: the creation of a new 

user account; successful and unsuccessful login attempts; as well as which files are synchronized to 

the Dropbox service. A UNIX epoch timestamp accompanies the documented event. This log can be 

recovered from the path data/data/com.dropbox.android/files.  

Clearing the cache of both versions of the Dropbox Android application, removes the documents 

viewed and not deleted using the smartphone device (13.pdf and 17.docx), which are stored in the 

com.dropbox.android/files/scratch directory. These files were still physically stored on 

the SD card and are recovered by FTK. The files saved for offline access, JPEG thumbnails and 

metadata remain unaltered. 

4.1.2 iOS Application 

On the iOS device, a number of files stored in the Dropbox service were recovered from a sub-folder 

called Dropbox, which can be found in the path /Library/Caches. The following files were 

recovered from this location: thumbnails of three JPEG images (01.jpg, 02.jpg and 03.jpg); five files 

saved for offline access; and PDF and DOCX files, viewed but not deleted from the device (13.pdf 

and 17.docx). No other files stored in the Dropbox service were recovered from the iOS device. 

The metadata artefacts recovered include an SQLite database, property list (plist) files and text-based 

logs. These metadata artefacts described user activity and the files stored in the service. The main 

metadata repository is an SQLite database called Dropbox.sqlite which contains metadata about 

the files stored in the Dropbox service. This database can be recovered from a sub-folder called 

/Documents from the application’s root directory. The ZCACHEDFILE table within this database 

contains metadata related to the files recovered from the directory located at 

/Library/Caches/Dropbox. Fields identified from the ZCACHEDFILE are shown in      

Appendix A. 

Additional metadata related to the files which were saved as ‘favorite’ and user-specific information 

can be recovered from two property list (plist) files. The first plist file located from the path 

/Library/Preferences/com.getdropbox.Dropbox.plist contains the email address used 

for the Dropbox account and information related to files which were saved as ‘favorite’. The second 

plist file called FavoriteFiles.plist located from the path /Library/Caches/ contains 

further information about files which were downloaded and saved as ‘favorite’. Metadata which can 



 

 

be recovered from the FavoriteFiles.plist file includes the size of the file in bytes, the last 

modified time, the file name and if the file has been deleted.  

Two transaction logs were also recovered from the iOS device. The first log called Analytics.log 

records user-related activity and can be recovered from the path /Library/Caches. Each entry in 

the log is accompanied by a UNIX epoch timestamp. Figure 1 shows an example record from the 

Analytics.log file, which describes a PDF file which was viewed and then saved for offline 

access. The second log, run.log, which can be recovered from the path /tmp/ contains additional 

information about service-related transactions performed by Dropbox. When the Dropbox iOS 

application cache is cleared on the device, the only files which remain are those five files saved for 

offline access. This action also affects the Dropbox.sqlite database. When the application’s cache 

is cleared the database only contains metadata for the five files which remain on the device. All other 

metadata artefacts remain unchanged.  

 

Figure 1: Analytics.log file describing a PDF file which was viewed and then saved for offline 
access using the Dropbox iOS application 

4.2 Detailed Box Findings 

From the Android applications, the forensic toolkits recovered fifteen files from version 1.6.7 and 

between four and six from version 2.0.2, depending on application and device manipulation. Five files 

were recovered from the iOS version of the Box application. The files which were recovered from the 

Box application are summarized in Table 4 – Box Files Recovered. 

4.2.1 Android Applications 

On the Android devices, Box-related artefacts varied between the two versions of the application. 

Artefacts related to version 1.6.7 of the Box application were recovered from three locations on the 

SD card. The files saved for offline access (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) were 

recovered from the path /Box/email_address/, where email_address is the email address 

used to register for the service. This version of the application caches any files which have been 

viewed on the device. These can be recovered from the directory 

/Android/data/com.box.android/cache/filecache. Fifteen files from the dataset were 

found in this directory. The files missing are those which are marked as ‘no manipulation’ in Table 2 

– Dataset. Thumbnails of all four JPEG images (01-04.jpg) can be recovered from a sub-folder of the 

above location called /tempfiles/box_tmp_images. 

Artefacts related to version 2.0.2 of the Box application were recovered from four locations on the SD 

card. This version of the Box application encrypts the cache folders used by the service. Three 

encrypted folders called dl_cache, dl_offline and previews were recovered from the path 

/Android/data/com.box.android/cache. No files from the dataset were recovered from 

these three folders. Thumbnails of all four JPEG images can be recovered from the path 

/data/data/com.box.android/cache/tempfiles/box_tmp_images. The six MP3 

(05.mp3, 06.mp3 and 08.mp3) and MP4 (09.mp4, 10.mp4 and 12.mp4) files viewed on the device can 

be recovered from a sub-folder called working located under the path 

/data/data/com.box.android/cache. This version of the Box application creates an 

additional folder of interest called previews which can be recovered from the path 

/data/data/com.box.android/files/. The previews folder contains PNG image files of 



 

 

‘snapshots’ of the text-based documents (DOCX and PDF) and JPEG images from the dataset which 

have been viewed using the device. 

The metadata artefacts for both versions of the Box application can be recovered from the 

smartphone, which unless stated were the same for both versions of the application. The Box 

application creates a JavaScript Object Notation (JSON) file called 

json_static_model_emailaddress_0, where emailaddress is the email address used to 

sign-up to the Box service. This file can be recovered from the path 

/data/data/com.box.android/files/. This JSON file contains property metadata about the 

files stored in this Box service. Fields identified from the JSON file are described in Appendix B. 
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13  D  D         
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15             
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20  D  D         

Table 4: Box Files Recovered 

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache 
Cleared and Powered Down;  = File Recovered; D = Deleted File Recovered;                            

T= Thumbnail Recovered 

A second location containing metadata related to the Box application can be found under the path 

/data/data/com.box.android/shared_prefs. This location contains a number of XML 



 

 

files which contain user and service-specific information. The files created in this location vary 

between the two versions of the application. The files recovered from this path include: 

 myPreference.xml - which contains the authentication token associated with this particular 

account and the email address used to register for the Box service. This can be recovered from 

both versions of the application. 

 Preview_Num_Pages.xml – this file is related to the folder recovered from the path 

/data/data/com.box.android/files/previews and contains metadata such as the 

mId of the file whose ‘preview’ is stored in the folder as well as the number of ‘preview’ 

pages. This file can only be recovered from version 2.0.2 of the application. 

 Downloaded_Files.xml - contains metadata about the files downloaded to the SD card from 

the Box service. Long name is the ID number assigned to that particular file and value is 

the date and time the file was deleted. The data and time is stored as a UNIX epoch 

timestamp. This file name is only valid for version 1.6.7 of the Box application. The file is 

renamed to offlineFileSharedPreferences.xml for version 2.0.2 but contains the 

same metadata related to files saved for offline viewing. 

When the cache is cleared on the version 1.6.7 of the Box application, the contents of the 

Android/data/com.box.android/cache/filecache and the /Box/email_address/ 

directories are deleted and recovered by FTK. All other files and metadata related to the Box service 

are not affected. When the cache is cleared on version 2.0.2 of the application, the three encrypted 

folders, the files stored in the /data/data/com.box.android/cache and working folders as 

well as the PNG ‘snapshot’ files stored on the device are deleted but can be recovered using FTK. All 

other files and metadata related to the Box service are not affected. 

4.2.2 iOS Application 

On the iOS device, the files and metadata related to the Box service can be recovered from three main 

locations under the application’s root directory. The files saved for offline viewing (02.jpg, 06.mp3, 

10.mp4, 14.pdf and 18.docx) can be recovered from a sub-folder located under the path 

/Documents/SavedFiles. The thumbnails of the four JPEG images stored in the Box service can 

be found in the sub-folder /Library/Caches/Thumbnails. No other files from the dataset were 

recovered from the Box service.  Metadata related to files stored in the service can be recovered from 

a SQLite database called BoxCoreDataStore.sqlite found under the sub-folder 

/Documents/. This database contains a table called ZBOXBASECOREDATA, which includes property 

metadata for all twenty files in the dataset. The metadata which can be recovered from this database is 

described in more detail in Appendix B. Additional information which can be recovered from this 

database includes the username and email address used to create the Box account and a unique 

authentication token assigned to the user account. Clearing the cache of the iOS Box application has 

no effect on the data or metadata stored on the device. 

4.3 Detailed SugarSync Findings 

On the HTC Desire, the forensic toolkits recovered eleven files from both Android versions of 

SugarSync and, depending on application and device manipulation, either seven or fifteen were 

recovered from the iOS version of the application. The results of which files were recovered from the 

SugarSync application are shown in Table 5 – SugarSync Files Recovered. 

4.3.1 Android Applications 

Files stored in the SugarSync service can be recovered from three locations on the SD card. These 

locations and their contents are valid for both versions of the Android SugarSync application. First, 

the three PDF files viewed on the smartphone (13.pdf, 14.pdf and 16.pdf) can be recovered from a 

folder called /.sugarsync located in the root directory of the application. Second, the thumbnails 

of all four JPEG images, the three JPEG images viewed on the device (01.jpg, 02.jpg and 04.jpg)  and 

four document files viewed on the device (13.pdf, 16.pdf, 17.docx and 20.docx) can be recovered 

from a sub-folder called /.httpfilecache found in the above location. The third location is a 



 

 

folder called /MySugarSyncFolders located in the root directory of the application where the five 

files saved for offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) can be found. 

Metadata related to the SugarSync service can be recovered from two text-based transaction logs and 

an SQLite database. The metadata artefacts recovered from the device are valid for both versions of 

the Android application. The first transaction log is called sc_appdata and is recovered from the 

path /data/data/com.sharpcast.sugarsync/app_SugarSync/SugarSync/. This log 

contains the user’s email address used to register for the service, the unique ID assigned to the user 

and a hash of the user’s password. 
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Table 5: SugarSync Files Recovered 

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache 
Cleared and Powered Down;  = File Recovered; D = Deleted File Recovered;                            

T= Thumbnail Recovered 

The second transaction log is called sugarsync.log and is recovered from the path 

/data/data/com.sharpcast.sugarsync/app_SugarSync/SugarSync/log. This log 



 

 

contains events related to the SugarSync service. For example, entries in this log include: the user 

authenticating with the service, the user downloading files on the device and an MP4 file being 

‘synced’ from the service and then played on the device. 

The SQLite database relevant to this application is called SugarSyncDB and can be recovered from 

the path /com.sharpcast.sugarsync/databases. This database has a table called 

rec_to_offline_file_X, where X is the unique ID number assigned to the user. This table 

contains metadata related to files saved for offline viewing and a UNIX epoch timestamp of when the 

file was saved for offline viewing.  

When the cache is cleared on both versions of the Android application, the files affected are those 

stored under the location /.sugarsync/.httpfilecache, which are deleted from the SD card 

and recovered by FTK. All other files and metadata artefacts are not affected.  

4.3.2 iOS Application 

Files and metadata related to the iOS version of the SugarSync application can be recovered from four 

locations on the device under the application’s root directory. The SugarSync service caches the files 

viewed on the device in a folder called /tmp. Files from the dataset can be recovered in two sub-

folders within this location. The JPEG, MP4, DOCX and PDF files viewed on the device can be 

recovered from a sub-folder from the path /tmp/http_cache. The three MP3 files (05.mp3, 

06.mp3 and 08.mp3) viewed on the device were recovered from the path /tmp/cache. The files 

which were saved for offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) can be recovered 

from a sub-folder called /MyiPhone located under the /Documents directory. 

The SugarSync service creates two main artefacts containing metadata related to the user and files 

stored in the service. These two artefacts can be recovered from the /Documents sub-folder. 

Account-specific information such as the email address used to register for the service can be 

recovered from a file called ringo.appdata. An SQLite database called Ringo.sqlite, contains 

a table called ZSYNCOBJECT. This table can be used to recover metadata related to the files saved for 

offline access. When the SugarSync application cache is cleared, the contents of the /http_cache 

folder are deleted. No other files and artefacts are affected when the cache is cleared. 

4.4 Detailed Syncplicity Findings 

From the Android Syncplicity applications, the forensic toolkits recovered nine files from version 1.7 

and fifteen from version 2.1.1. Depending on application and device manipulation, either zero or 

fourteen were recovered from the iOS version of the application. The results of which files were 

recovered from the Syncplicity application are shown in Table 6 – Syncplicity Files Recovered. 

4.4.1 Android Applications 

On the Android devices, Syncplicity-related artefacts varied between the two versions of the 

application. For version 1.7 of the application, files were recovered from three locations on the SD 

card. Thumbnails of all four JPEG images can be recovered in the path Android/data/ 

com.syncplicity.android/cache/cachefu/image_cache. The files which were saved for 

offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and 18.docx) can be recovered from a folder called 

/Syncplicity, which is stored in the root directory of the application. Version 1.7 of the 

application encrypts the cache folder used by the application. This folder can be recovered from the 

path /Android/data/com.syncplicity.android/cache/private_syncp_file_cache 

_v3/encrypted/X, where X is the unique ID assigned to the user. No files from the dataset were 

recovered from this location.  

Further, files and metadata related to version 1.7 were recovered from four locations on the 

smartphone device. Files from the dataset can be recovered from the device in a directory located at 

the path /data/data/com.syncplicity.android/files. The files recovered from this 

location have been deleted, however, FTK was used to recover specific files from the dataset. The 

files recovered were the three JPEG files (01.jpg, 02.jpg and 04.jpg) and the three DOCX files 



 

 

(17.docx, 18.docx and 20.docx) viewed and not deleted on the smartphone device. No other files were 

recovered from this location.  

 

 

 

 
Table 6: Syncplicity Files Recovered 

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = 
Cache Cleared and Powered Down;  = File Recovered; D = Deleted File Recovered;                            

T= Thumbnail Recovered 

Metadata artefacts related to version 1.7 which were recovered from the device included a text-based 

log, XML files and an SQLite database. These artefacts contained metadata related to both user 

activity and the files stored in the service. A text-based transaction log called 

0000000000000000000.log.gz.tmp contains metadata about the application and its interaction 

with the cloud service. This log can be recovered from the path /data/data/com.syncplicity. 

android/app_log_syncplicity. An SQLite database called CacheDatabase, can be 

recovered from the path /data/data/com.syncplicity.android/databases. This database 
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contains a table called Files, which can be used to recover property metadata for all twenty files 

stored in the Syncplicity service. The information which can be recovered from the Files table can 

be seen in Appendix C. 

A final source of metadata related to version 1.7 can be recovered from the path 

/data/data/com.syncplicity/shared_prefs. This folder contains the following XML files 

created by the application: 

 auth_prefs.xml – this file contains the email address used to register for the Syncplicity 

service; 

 file_cache_preferences(X).deleted.xml – X is a number and twenty-five different files can be 

found with such a naming convention. The format of the file is shown in Figure 2 below. 

These XML files can be used as a mapping for the encrypted directory found on the SD 

memory card.  

 

Figure 2: Example of file_cache_preferences(X).deleted.xml file mapping retrieved from the 
Syncplicity Android application 

When the cache is cleared on version 1.7 of the application, the contents of the 

cache/cachefu/image_cache and encrypted folders are both deleted and recovered by FTK. No 

other files or artefacts are affected by the cache being cleared.  

For version 2.1.1 of the application, files from the dataset were again recovered from both the SD 

card. Thumbnails of all four JPEG images can be recovered from the directory /Android/data/ 

com.syncplicity.android/cache/cachefu/image_cache. As with the previous version, 

version 2.1.1 of the application also encrypts the cache folder used by the Syncplicity service. This 

folder can be recovered from the path /Android/data/com.syncplicity.android/ 

encrypted_ storage. No files from the dataset were recovered from this location. This version of 

the Syncplicity application also contains a ‘decrypted’ cache folder where fifteen files from the 

dataset which were viewed on the device can be found. This folder can be recovered from the path 

/Android/data/com.syncplicity.android/temporary_decrypted_storage. 

The metadata artefacts recovered from version 2.1.1 of the application included an SQLite database, a 

text-based transaction log and XML files. These artefacts were recovered from the internal memory of 

the device. A text transaction log called 0000000000000000000.log.gz.tmp contains metadata 

about the application and its interaction with the cloud service. This log can be recovered from the 

path /data/data/com.syncplicity.android/app_log_syncplicity. An SQLite 

database called VIRTUAL_FILE_SYSTEM.db was recovered from the path /data/data/com. 

syncplicity.android/databases. This database contains two tables of interest. The first table 

is called Files and contains metadata about all twenty files stored in the Syncplicity service. 

Appendix C shows the metadata which can be extracted from this table. The second table of interest is 

called Files_and_Folders_to_Synchronize which contains the names of the files saved for 

offline viewing. The XML files recovered from version 2.1.1 of the application can be found in the 

same location as the files in version 1.7: /data/data/com.syncplicity/shared_prefs. The 

contents of the XML files recovered from this location are the same for those recovered from     

version 1.7.  

When the cache is cleared on version 2.1.1 of the application, the contents of the 

/cache/cachefu/image_cache and encrypted folders are both deleted and recovered by FTK. 

The files recovered from the temporary_decrypted_storage folder are also affected when the 



 

 

cache is cleared. This folder now contains only the files which were saved for offline access. All other 

files have been deleted and recovered by FTK. The VIRTUAL_FILE_SYSTEM database is also 

affected when the cache is cleared. No other files and artefacts are affected by the cache being 

cleared. 

4.4.2 iOS Application 

Files and metadata related to the iOS version of the Syncplicity application can be recovered from 

four locations on the device under the application’s root directory. The only location where files from 

the dataset can be recovered from the iOS device is a cache folder created by the application under the 

path /Documents. Fourteen out of the fifteen files viewed on the device can be recovered from this 

folder. The MP4 file viewed and then deleted (12.mp4) was the only file viewed on the device and not 

recovered from this location.  

Metadata related to the iOS application consists of an SQLite database, a plist file and a text-based 

log. The SQLite database is called syncplicity.sqlite and can be recovered from the path 

/Documents/. This database contains a table called ZFILES which contains metadata about 

eighteen files from the dataset; the entries which are missing from this table are related to files 04.jpg 

and 08.mp3. The property metadata, which can be recovered from this table, is shown in Appendix C. 

Metadata related to the user account can be recovered from a plist file called syncplicity.plist, 

which can be found in the path /library/preferences/com.syncplicity.ios. This plist 

file can be used to recover information such as the type of account used in the service (free or paid) 

along with the first and last name of the user who registered for the account. The final location of 

metadata related to the iOS Syncplicity application is a transaction log called 

syncplicity_0.log, which can be found in the location /library/caches. This log contains 

user and service related transactions including files that were downloaded to the device and 

authentication token synchronization between the device and the Syncplicity service. 

When the Syncplicity iOS application cache is cleared, the contents of the /Documents folder are 

deleted and no files are recovered from this location. No other files and artefacts are affected when the 

cache is cleared. 

5. Discussion 

The results described in the previous section can be used to provide answers to the research questions 

proposed in Section One. Forensic toolkits, including the Cellebrite UFED, can be used to recover 

data from a smartphone device that has accessed a cloud storage service. The proposed use of forensic 

and analysis toolkits currently available to the forensic community provides a practical solution for 

investigating cloud computing environments. The lack of forensic tools is commonly cited as a 

mainstream challenge for investigating cloud environments [2, 28, 34]. The results from this research 

suggest that end-devices, such as a smartphone, may contain evidence in relation to cloud storage 

services which may be important in an investigation, and that this resource should be considered and 

examined. Furthermore, the tools and methods used in the experiment to recover data from the 

smartphone device are widely used and accepted by the forensic community. It must be acknowledged 

that the files recovered from the smartphone devices present a ‘snapshot in time’ of the dataset stored 

in the cloud storage service. A file which is recovered from a smartphone does not mean that the file 

still exists in the cloud storage service, but provides an indication that at a point in time this file was 

stored in the service.  

The results indicate that it is possible to recover files, providing a snap-shot in time, that  indicates the 

existence of potential data that is stored in cloud services like Dropbox, Box, SugarSync and 

Syncplicity. On the HTC Desire, both deleted and available files were recovered. No deleted files 

were recovered from the iPhone. Certain file types were recovered more than other types. For 

example, the results show that JPEG thumbnail images were produced on all the devices running the 

Android applications. Thumbnail images were also recovered from the Dropbox and Box applications 

on the iOS device. In general, very few MP3 and MP4 files were recovered from all three devices. It 



 

 

is also interesting to note that more deleted files were recovered from the Box and Syncplicity 

applications than Dropbox or SugarSync applications on the HTC Desire.  

The recovery of files from a smartphone device is affected by the user’s manipulation of the device 

and the cloud storage application. The Box iOS application and version 1.7 of the Android Syncplicity 

application were the only applications where there was no difference in the number of files recovered 

from the ‘active power state’ and the ‘cache cleared state’. The results also show that when the cache 

was cleared in all other instances, fewer files were recovered than from the ‘active power state’. In the 

case of the iOS Syncplicity application, no files were recovered when the application’s cache was 

cleared. User actions on specific files have shown to influence the recovery of these files. For 

example if a file has been viewed using the smartphone there is the opportunity for it to be recovered 

using forensic toolkits. This is provided that the user has not deleted the file, or cleared the 

application’s cache. Files saved for offline access by the user can be recovered from the Android and 

iOS applications. There were two exceptions to recovering these files. The first is when the cache was 

cleared for the Syncplicity iOS application, none of the files saved for offline viewing were recovered. 

The second is when the cache was cleared for version 2.0.2 of the Android Box application, none of 

the files for offline viewing were recovered from any of the states. Deleted files were recovered from 

the Android devices. The recovery of these files is dependent upon them not being overwritten by new 

data on the SD memory card. No deleted files were recovered from the iOS device. 

It is interesting to note that there are discrepancies in the number of files recovered depending on the 

version of the cloud storage service implemented on different mobile platforms and operating 

systems. While the versions of Dropbox produced the same number of files, there were vast 

differences between specific versions of Box, SugarSync and Syncplicity. A summary of the total 

number of active power state files recovered from the Android and iOS devices by cloud application 

is shown in Figure 3. This table presents the files recovered from the active power state excluding 

thumbnails and deleted files. 

 

Figure 3 : Total number of active power state recovered files 

Metadata was recovered from all the applications on all three devices. The metadata recovered 

included text-based transaction logs containing user and service activity, SQLite databases and JSON 

files containing property metadata data related to the files in the service, as well as XML files 

containing user-specific metadata such as login credentials. The metadata recovered from the devices 

can also present the investigator with a greater representation of the dataset stored in the cloud. For 

example, depending on the operating system platform, device and application manipulation, between 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 
Files Recovered 



 

 

four and fifteen files were recovered from the iOS and Android Box applications. However, the 

metadata artefacts recovered from these applications run on the Android and iOS devices, revealed 

information about files stored in the Box service which were not recovered from the device. The 

JSON files and SQLite databases recovered from the internal memory of these devices contained 

records for all twenty files stored in the Box service. The information which can be recovered 

includes the file names and unique identification number assigned to each file as well as user-specific 

identification numbers and email addresses used to register for the storage services. This metadata 

could help an investigator justify requesting a court order or warrant for a cloud storage provider to 

recover further files from the account being investigated [38].  

Furthermore, using metadata artefacts recovered from the Box application, it is possible to download 

further files from the Box service. This can include files which were not recovered from the 

smartphone device itself. This information can be recovered from all three versions of the Box 

application which were included in this experiment. This is possible by constructing a direct link to 

the file stored in the Box service using the Box API [64]. This direct link requires three pieces of 

information from the smartphone device, for example from an Android device: 

1. The authentication token, which can be recovered from the myPreference.xml file found 

in the path /data/data/com.box.android/shared_prefs. For example, in Figure 

4, the authentication token is shown as: :<string name=“authToken”> 

u5es7xli4xejrh89kr6xu14tks6grjn3</string>;   

2. The unique file ID number called mId, which is the ID number assigned to each file stored in 

the service. This information can be recovered from the json_static_model_ 

emailaddress_0 file stored in the directory /data/data/com.box.android/ 

files/. The investigator requires the ID number for each file they wish to download from 

the Box service (Figure 5); and 

 

Figure 4 : Metadata artefact containing the authentication token from Box Service 

3. A URL from the Box API [64]: https://www.box.net/api/1.0/download/ 
auth_token/file_id, where auth_token is the authentication token for the account and 

file_id is the mId number of the file to be downloaded. 



 

 

 

Figure 5 : mID value for file 03.jpg 

This information can be combined to reconstruct a direct link, which will result in the file         

associated with the mId being downloaded. For example, the URL: https://mobile-

api.box.com/api/1.0/download/u5es7xli4xejrh89kr6xu14tks6grjn3/2072716499 can be used to recover 

the JPEG image 03.jpg from the dataset. This information is not unique to the Android, and the data 

needed to reconstruct the URL can also be recovered from the iPhone device. Relevant artefacts can 

be found in the BoxCoreDataStore.sqlite database in the directory /Documents/. The 

privacy and legal implications associated with this practice are out of scope for this chapter. 

The ultimate goal of a forensic investigator should be to recover as much evidence as possible from a 

cloud storage service. An analysis of the files recovered from two of the Android applications (Box 

and Syncplicity) has revealed that different files were recovered from different versions of these cloud 

storage applications. Forensic toolkits recovered fifteen files from version 1.6.7 of the Box application 

and only six from version 2.0.2, while five files were recovered from version 1.7 of Syncplicity 

application and fifteen from version 2.1.1. These results suggest that there is an opportunity to recover 

a more complete dataset from the cloud service if multiple devices are examined as part of an 

investigation. The results from the experiment propose the idea that an investigator who analyses 

multiple devices with different versions of an application could recover a more complete dataset than 

that from just a single device. The proportion of artefacts which can be recovered from two or more 

devices are calculated as |m1   m2 m3|, where mn, are the devices which are being analysed as 

part of a forensic investigation of cloud storage services. Preliminary data demonstrated in Table 7 – 

Total Files Recovered from Multiple Devices supports the idea that multiple devices can produce a 

more complete dataset for a forensic investigator. In three out of the four applications examined, a 

bigger dataset was recovered by combining the number of files recovered from each device to create a 

more complete dataset. 

Finally, the results from the experiment can also be used to support the hypotheses proposed in 

Section One. H1, the smartphone devices in this experiment contain a partial view of the data held in 

the cloud storage service. This statement continues to hold when the device is powered down. 

Therefore, a smartphone device potentially presents a forensic investigator with a proxy view of the 

evidence held in the cloud storage service. In support of H2, clearing the application’s cache has an 

adverse effect on evidence collection. The data indicates partial support for H3 in that different files 

are recovered from the same cloud application on different mobile device platforms and operating 

systems for some cloud applications. 
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Cloud 

Storage 

Service 

m1 

{files recovered} 

m2 

{files recovered} 

m3 

{files recovered} 

|m1   m2 m3| 

{total files recovered} 

Dropbox {2,6,10,13,14, 

16,17,18,20} 

{2,6,10,13,14, 

16,17,18,20} 

{2,6,10,13,14, 

17,18} 

{2,6,10,13,14,16,17,18, 

20} = 9 

Box  {1,2,4,5,6,8,9, 

10,12,13,14,16, 

17,18,20} 

{5,6,8,9,10,12} {2,6,10,14,18} {1,2,4,5,6,8,9,10,12,13, 

14,16,17,18,20}= 15 

SugarSync {1,2,4,6,10,13, 

14,16,17,18, 

20} 

{1,2,4,6,10,13, 

14,16,17, 18,20} 

{1,2,4,5,6,8,9, 

 10,12,13,14, 

 16,17,18,20} 

{1,2,4,5,6,8,9,10,12,13, 

14, 16,17,18,20} = 15 

Syncplicity {2,6,10,14,17, 

18,20} 

{1,2,4,5,6,8,9, 

 10,12,13,14, 

16,17,18} 

{1,2,4,5,6,8,9, 

10,13,14,16, 

17,18,20} 

{1,2,4,5,6,8,9,10,12,13, 

14, 16, 17,18,20} = 15 

Table 7 – Total Files Recovered from Multiple Devices 

6. Conclusions and Future Work 

The attractiveness of cloud computing is impacting where individuals and organizations store their 

data. The growing popularity of cloud storage services means that such environments will become an 

attractive proposition for cybercrime. This could result in an increase in demand for investigations of 

cloud storage services. However, the issue of conducting digital forensic investigations of cloud 

computing environments is an increasingly challenging and complex task. One of the biggest 

challenges facing investigators is the ability to identify and recover digital evidence from the cloud in 

a forensically sound manner. The remote and distributed nature of cloud computing environments 

means that the traditional offline approach to forensic evidence acquisition is invalidated. As a result, 

both industry and academia are beginning to examine different methods and techniques to investigate 

cloud computing environments.  

This work presents the examination of end-devices such as smartphones, which have been used to 

access cloud storage services. The data recovered from these devices can be used by investigators as a 

proxy for potential evidence stored in cloud storage services. The effectiveness of this method is 

dependent on the operating system, specific cloud storage application implementation and usage 

patterns. In other words, the potential recovery of data increases if a device has been used to view the 

files through a cloud storage application and the user has not attempted to clear the cache of recently 

viewed files.  

Two advantages become apparent to using this investigative approach. First, the investigator can 

begin the chain of custody process when the device is seized, and does not need to rely on the cloud 

provider to begin this process. Second, the tools and methods which have been used to recover data 

stored in cloud storage services are widely used by the forensic community. The recovery of metadata 

artefacts from the smartphone device can, in some scenarios, provide the investigator with insight into 

further data stored in a cloud service. The information recovered can also help justify a court order 

requesting assistance from the cloud storage provider to recover further files from the specific 

account. 

Future research needs to be conducted to extend the analysis of smartphone hardware and operating 

systems, to increase the size and file types of the dataset and conduct research into other cloud storage 



 

 

services. The methodology proposed in this chapter can be extended to other smartphone devices and 

operating systems such as Windows Mobile and Blackberry devices. In addition, research can also be 

conducted to investigate other cloud storage services such as Google Drive, OneDrive and CloudMe. 

The dataset used in future experiments can also be extended to include additional data types as well 

increasing the overall number of files and files of varied sizes. 

The analytical findings from this research indicated that examining multiple devices and multiple 

versions of cloud storage applications can result in a more complete dataset being recovered. This 

experiment can be extended to examine a number of mobile devices such as tablets, iPads, iPods and 

eBook readers. Other research questions that warrant investigating include the examination of usage 

patterns along with the construction of relevant timelines across multiple devices and cloud 

applications.  

From a corporate security perspective, future work needs to examine the risk of data leakage that 

cloud storage applications can introduce to an organization. This research identifies the implications 

from a corporate policy perspective and determines if cloud applications introduce opportunities for 

data leakage in organizations. If so, what is the most effective way to minimize risk and maximize 

employee productivity? The results from this research provide the foundation for further development 

of security measures and policies for both cloud providers and smartphone users that mitigate the 

potential risk of data leakage. 
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Appendix A: Metadata artefacts recovered Dropbox service 

OS Filename Fields 

Android db.db 

_data: path gives the location of where the file can be recovered from 

the device. 

modified: date and time file was uploaded to Dropbox service. 

is_favorite: boolean field which indicates if file has been saved as a 

‘favorite’, i.e. offline viewing.  

parent_path: parent directory for the file, root directory is the default. 

last_modified: last date and time the file was open/ modified on the 

device, stored as a UNIX epoch timestamp.  

display_name: contains the name of the file as stored in the storage 

service. 

local_hash: MD5 hash of file. 

 iOS Dropbox.sqlite 

ZFAVORITE: boolean field which indicates if file has been saved as a 

‘favorite’.  

ZSIZE: size of the file in bytes 

ZVIEWCOUNT: number of times file has been viewed using the device 

ZISTHUMBNAIL: boolean field which indicates if a thumbnail exists 

for the file.  

ZLASTVIEWEDDATE: date and time file was last viewed stored in 

MAC Absolute time 

ZPATH: path and file name for particular file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B: Metadata artefacts recovered Box service 

OS Filename Fields 

Android 
json_static_model_ 

emailaddress_0 

mThumbnail: The URL of the thumbnail image of the file 

mFileName: Name of the file as stored in the Box service 

mSha1: SHA1 hash of the file 

mUpdated: UNIX epoch timestamp which states the last time the 

file was updated, in this experiment it is the last time the file was 

last viewed on the device. 

mId: Unique ID number assigned to each file 

mSize: Size of the file in bytes 

mCreated: UNIX epoch timestamp which states when the file 

was created, in this experiment this is the time when the file was 

uploaded and stored in the Box service. 

mShared: Boolean (True/False) filed which indicates if file has 

been shared. 

 iOS BoxCoreDataStore.sqlite 

ZBOXID: unique ID number assigned to each file stored in the 

Box service account. 

ZSIZE: size of the file in bytes. 

ZFAVORITEOBJECT: boolean field which indicates if file has 

been saved as a ‘favorite’, i.e. offline viewing.  

ZUPDATED: absolute timestamp showing when file was last 

updated 

ZLASTDOWNLOADDATE: absolute timestamp showing when 

file was last downloaded to device 

ZCREATIONTIME: absolute timestamp showing when file was 

stored in Box service 

ZNAME: name of file 

ZSHA1: SHA1 hash of file in Box service 

ZLOCALURLSTRING: directory location for file stored on the 

device 

ZSTREAMINGURLSTRING: URL location for file which can 

be accessed from Box service 

ZLOCALSHA1: SHA1 hash of file on device 

 

 

 

 

 

 

 

 



 

 

Appendix C: Metadata artefacts recovered Syncplicity service 

OS Filename Fields 

Android 

CacheDatabase.sqlite 

 

 

 

 

 

 

Virtual_File_System.db 

fileId: unique ID number assigned to each file stored in the service. 

name: name of file. 

length: size of the file in bytes. 

fileStatus: boolean value which indicates if file is still stored in the 

service, if the value is 1 then file is still stored in service, if value is 

0 then file has been deleted. 

thumbnailURL: if file has a thumbnail, this is a working URL to 

the thumbnail stored in the service. 

 

File_ID: unique ID number assigned to each file stored in the 

service. 

File_Name: name of file.  

Is_Favorite: boolean field which indicates if file has been saved as 

a ‘favorite’, i.e. offline viewing. 

Server_Length: size of file stored in service, presented in bytes. 

Local_Length: size of file stored in device, presented in bytes. 

Is_Deleted: boolean field which indicates if file has been deleted. 

Thumbnail_URL: if file has a thumbnail, this is a working URL to 

the thumbnail stored in the service. 

 iOS syncplicity.sqlite 

ZLENGTH: size of file in bytes 

ZFILEID: unique ID number assigned to each file stored in the 

service. 

ZDELETED:  boolean field which indicates if file has been 

deleted. 

ZFILENAME: name of file. 

ZEXT: file type. 

ZTHUMBNAILURL: if file has a thumbnail, this is a working 

URL to the thumbnail stored in the service 

 

 

 

 

 

 


