

Recovering Residual Forensic Data from Smartphone

Interactions with Cloud Storage Providers

George Grispos

University of Glasgow

g.grispos.1@research.gla.ac.uk

William Bradley Glisson

University of South Alabama

bglisson@southalabama.edu

Tim Storer

University of Glasgow

Timothy.Storer@glasgow.ac.uk

Abstract1

There is a growing demand for cloud storage services such as Dropbox, Box, Syncplicity and

SugarSync. These public cloud storage services can store gigabytes of corporate and personal data in

remote data centres around the world, which can then be synchronized to multiple devices. This

creates an environment which is potentially conducive to security incidents, data breaches and other

malicious activities. The forensic investigation of public cloud environments presents a number of

new challenges for the digital forensics community. However, it is anticipated that end-devices such

as smartphones, will retain data from these cloud storage services. This research investigates how

forensic tools that are currently available to practitioners can be used to provide a practical solution

for the problems related to investigating cloud storage environments. The research contribution is

threefold. First, the findings from this research support the idea that end-devices which have been

used to access cloud storage services can be used to provide a partial view of the evidence stored in

the cloud service. Second, the research provides a comparison of the number of files which can be

recovered from different versions of cloud storage applications. In doing so, it also supports the idea

that amalgamating the files recovered from more than one device can result in the recovery of a more

complete dataset. Third, the chapter contributes to the documentation and evidentiary discussion of

the artefacts created from specific cloud storage applications and different versions of these

applications on iOS and Android smartphones.

1. Introduction

An increase in demand for information technology (IT) resources has prompted many organizations to

turn their attention to cloud computing. This technology has significant potential to reduce costs and

increase efficiency in the workplace [1]. Migrating to a cloud computing environment means an

organization can replace much of its traditional IT hardware with virtualized, remote and on-demand

infrastructure services such as storage space, processing power and network bandwidth [2].

Storing corporate data online using cloud-based storage services such as Amazon S3, Google Docs

and Dropbox has become an effective solution for the business needs of a growing number of

organizations [3]. Cloud storage services can offer an organization greater flexibility and availability,

with virtually unlimited storage space, as well as the ability to synchronize data between multiple

devices. Typically, cloud storage providers will operate on the ‘freemium’ financial model, offering

customers free storage space with an option to purchase further unlimited storage space as they

require [4, 5]. This business model has demonstrated to be successful, as the popularity of cloud

storage services has soared in recent years. For example, Dropbox has seen its customer-base surpass

300 million users and now claim that over 1 billion files are saved every three days using its services

[6, 7]. Mozy claim that more than six million individual users and 100,000 businesses are using their

1 Please cite this paper as: George Grispos, William Bradley Glisson and Tim Storer. (2015) Recovering

residual forensic data from smartphone interactions with cloud storage providers, In The Cloud Security

Ecosystem, edited by Ryan Ko and Kim-Kwang Raymond Choo, Syngress, Boston, Pages 347-382.

mailto:g.grispos.1@research.gla.ac.uk
mailto:bglisson@southalabama.edu
mailto:Timothy.Storer@glasgow.ac.uk

services, while Box has reported that implementation of its mobile device application increased 140%

monthly in 2011 [10, 11]. Forrester Research has predicted that approximately two-thirds of adults

who use the Internet in the United States are using some form of personal cloud storage service, often

combining cloud services for both work and personal use [12]. Cloud storage services are also

increasingly integrating into the retail, financial, legal and healthcare enterprise markets [13, 14].

Although the benefits of using cloud storage services are attractive, a major concern is the security

and privacy of data in these environments [15-18]. For many organizations, there are several reasons

to decline adoption of cloud storage services, including a necessity to protect mission-critical

information, legal and regulatory obligations and concerns regarding the confidentiality and integrity

of their information [19-23]. These reservations are being validated as TrendMicro has reported that

cloud adopters have witnessed an increase in the number of cloud security incidents as compared to

traditional IT infrastructure security events [24]. Further complicating matters, researchers have

demonstrated how cloud storage services, such as Dropbox, can be hijacked and exploited to gain

access to an unsuspecting user’s account [4, 25]. There is no practical barrier preventing further

exploitation of cloud storage services by users to access and retrieve files. Security incidents and

criminal activity involving cloud storage services could require a subsequent forensic investigation to

be undertaken.

There is a general consensus from both industry and academia that it may be difficult to investigate

inappropriate or illegal activity involving cloud computing environments [2, 26-29]. One of the

biggest challenges for forensic investigators examining cloud-based services is the ability to identify

and recover digital evidence in a forensically sound manner [2, 28]. This problem is magnified in

public cloud environments, such as those used by cloud storage providers. The remote, distributed and

virtualized nature of a public cloud environment means that the conventional, offline approach to

forensic evidence acquisition is largely invalidated [2]. The tools and methods used to preserve and

acquire a forensic copy of data stored on a traditional storage device are unlikely to transfer to a

public cloud environment [2]. The remote and distributed nature of public cloud architectures can also

make the identification of a single storage device containing relevant data impractical and even

impossible. This means that an investigator cannot directly obtain a copy of the evidence required for

analysis. An alternative approach is for the investigator to request the cloud storage provider to obtain

a forensic copy of the storage device. However, this approach can take a significant amount of time,

or be obstructed by cross-border jurisdictional disputes [22, 30].

This research investigates a practical solution to problems related to investigating cloud storage

environments using practitioner-accepted forensic tools. This study extends the results from an initial

investigation, which examined the feasibility of an end-device, providing a proxy view of the

evidence in a cloud forensics investigation [31]. Relevant information and data from that conference

publication has been included in this chapter for completeness. The contribution of this chapter is

threefold. First, the findings from this research further supports the idea that end-devices which have

been used to access cloud storage services can be used to provide a partial or snap-shot view of the

evidence stored in the cloud service. Second, the chapter provides a comparison of the files which can

be recovered from different versions of cloud storage applications. The chapter also supports the idea

that amalgamating the files recovered from more than one device can result in an investigator

recovering a more complete ‘dataset’ of files stored in the cloud service. Third, the chapter contributes

to the documentation and evidentiary discussion of the artefacts created from specific cloud storage

applications and different versions of these applications on iOS and Android smartphones.

The chapter is structured as follows: Section 2 discusses the challenges of conducting digital forensic

investigations in a cloud computing environment and examines what work has been done in relation

to cloud storage forensics, as well as presenting an overview of smartphone forensics. Section 3

proposes the hypotheses and research questions which guided this research and describes the

experimental design undertaken to address the research questions. Section 4 reports the findings, and

Section 5 is used to discuss the results and their impact on forensic investigations. Finally, Section 6

draws conclusions from the work conducted and presents future work.

2. Related Work

A growing number of researchers have argued that cloud computing environments are inherently

more difficult to investigate than conventional environments [2, 26-28, 32]. Ruan, et al., [27] defined

the term ‘cloud forensics’ as a “cross discipline of cloud computing and digital forensics” and

described cloud forensics as a subset of network forensics. However, this definition does not take into

consideration the virtualization aspect of the cloud [2]. Ruan, et al., [27] also noted that an

investigation involving cloud computing would include technical, organizational and legal aspects.

Grispos, et al., [2] described how traditional digital forensic models and techniques used for

investigating computer systems could prove to be ineffective in a cloud computing environment.

Furthermore, Grispos, et al., [2] identified several challenges for forensic investigators including:

creating adequate forensic images, the recovery of segregated evidence and large data storage

management. Taylor, et al [28] raised the concern that potential important evidence could be lost in a

cloud environment. Registry entries in Microsoft Windows platforms, temporary files, and metadata

could all be lost if the user leaves the cloud [28]. Reilly, et al., [26] speculated that one potential

benefit of investigating a public cloud environment is that the data being investigated will be located

in a central location, which means that incidents can, potentially, be investigated quicker. This is

unlikely to be the case as the very nature of a public cloud service theoretically means that even

evidence related to individuals within the same organization could be segregated in different physical

locations and stored alongside data belonging to other organizations and the general public [33].

To enable a forensic investigation to be conducted, evidence needs to be collected from cloud

computing environments, thus introducing a unique set of challenges for forensic investigators [34].

Researchers have begun proposing methods of acquiring evidence from a variety of cloud providers

and services [34, 35]. Delport, et al., [35] proposed the idea of isolating a cloud instance for further

investigation, however, it is not clear how a forensic image of the instance under investigation is

obtained after it has been isolated from the rest of the cloud environment. Dykstra and Sherman [34]

proposed three methods of evidence collection from Infrastructure-as-a-Service (IaaS) instances

stored in the Amazon EC2 Cloud. The first method evaluated the performance of several forensic

tools including FTK Imager and Encase Enterprise, which were used to extract evidence directly from

the cloud instance in the Amazon Cloud. An issue with this method is that the investigator must be in

possession of Amazon EC2 key pairs used to connect to the instance. The purpose of the key pairs is

to ensure that only the instance’s owner has access to the instance [36]. These public/private keys are

created by the owner when the instance is first created using the Amazon Web Services Management

Console [37]. Unless the investigator can recover these keys, this method of acquisition cannot be

used. The second proposed method involved acquiring evidence from the virtualization layer of a

cloud by injecting a remote agent into the hypervisor of the cloud environment. This approach was

evaluated in a private cloud environment, where the investigator had the ability to write into memory

the guest virtual instance. However, this is unlikely to be the case in a public cloud environment,

where the cloud provider will control access to the hypervisor and virtualization layer of a cloud [19].

The final method proposed by Dykstra and Sherman involves requesting Amazon EC2 to collect the

required evidence from the host on behalf of the investigator. Dykstra and Sherman note that the

limitation of this method is that Amazon does not provide checksums to verify the integrity of the

forensic image; therefore, the investigator cannot be certain that the data supplied by Amazon and the

data stored in the cloud are identical [34].

Researchers have also attempted to define investigative frameworks specifically addressing cloud

storage providers [38-42]. Lee, et al. [39] presented a framework for investigating incidents involving

the Apple iCloud environment. The framework proposes the idea that the forensic investigator can

examine Windows and Apple OSX-based systems, as well as Apple mobile devices to recover traces

of data stored in the iCloud service. The research focused on the recovery of email messages, memos,

contacts, calendar information and bookmarks. The limitation of this research is that Lee, et al. [39]

did not examine or discuss if the artefacts recovered from the end-devices were representative of the

data stored in the cloud. There is the possibility that evidence still stored in the iCloud service was not

recovered from the end-devices. Chung, et al. [38] have also proposed a framework for investigating

cloud storage services including Amazon S3, Google Docs, Dropbox and Evernote.

Quick and Choo [40-42] have undertaken three separate case studies to investigate the data remnants

from Dropbox, Google Drive and SkyDrive (now called OneDrive). In all three case studies, a

Windows 7 personal computer and an Apple 3G iPhone were used to access and view a dataset stored

in the cloud storage service. A Windows 7 personal computer was emulated using virtual machines. A

variety of web browsers were used in conjunction with the virtual machine and the specified cloud

storage client application to collect data [40-42]. The findings from the personal computer analysis

revealed that usernames, passwords, filename listings, file content, as well as dates and times that files

were accessed are recoverable from a personal computer which has interacted with the above cloud

storage services [40-42]. An iPhone device was used to access the dataset through the ‘on-device’

web browser in order to interact with the specified iOS cloud storage application. A logical extraction

using MicroSystemation’s XRY was then performed. Their analysis of the logical extraction revealed

that a number of artefacts can be recovered from various locations on the device which included the

account services' username, as well as the filenames of viewed files [40-42]. However, it is worth

noting that the content of the files stored in the cloud storage services were not recovered from the

iPhone. Quick and Choo noted that future work should examine the physical acquisition of iPhone

devices to determine if this method of acquisition can be used to recover the files stored in the cloud

storage services [40-43].

Separately, Quick and Choo [45] investigated the modification of file content and metadata when

potential evidence is downloaded and collected from a cloud storage account. Quick and Choo [45]

reported that the cryptographic hashes calculated from file manipulations, like uploading, storing and

downloading, using Dropbox, SkyDrive (now called OneDrive) and Google Drive reveal that no

changes were made to the files’ content. Quick and Choo [45] also state that after further analysing

the downloaded files, notable changes were visible in the timestamp metadata. This was particularly

evident in the ‘last accessed’ and ‘file creation’ time-stamps which indicated the last interaction with

the cloud storage client software [45].

Martini and Choo [46] focused on client and server-side forensic investigations involving the

‘ownCloud’ service. Martini and Choo reported that forensic artefacts found on the client machine can

link a user to a particular ‘ownCloud’ instance [46]. Furthermore, Martini and Choo recovered

authentication and file metadata from the client, which were then used to decrypt files stored on the

server [46]. Martini and Choo [47] have also examined XtreemFS, a distributed filesystem commonly

used in cloud computing environments, and documented both client and server-side artefacts which

may be relevant to forensic investigations.

As part of the “Cloud Computing and The Impact on Digital Forensic Investigations” (CLOIDIFIN)

project, Biggs and Vidalis [48] reported that very few High Tech Crime Units in the United Kingdom

were prepared to deal with crimes involving cloud computing. As a result, Biggs and Vidalis believe a

‘cloud storm’ will create difficulties and challenges for law enforcement investigators charged with

investigating such environments [48]. Taylor, et al., [28] have extensively examined the legal issues

surrounding cloud computing and comment that any evidence gathered from the cloud should be

conducted within local laws and legislation. Phillips [49] discussed the issue of keeping a chain of

custody for such an investigation and has argued that the cloud is a dynamic paradigm and physically

isolating it to conduct an investigation could be a daunting task for the investigator.

When multiple devices are used to access data in the cloud, the issues with the dynamic paradigm are

exacerbated. A prime example of this impediment is the increasing use of mobile devices such as

smartphones to access data stored in a cloud [12, 38]. A smartphone device is distinguishable from a

traditional mobile phone by its superior processing capabilities, a larger storage capacity, as well as its

ability to run complex operating systems and applications [50]. From an evidentiary perspective, the

smartphone potentially contains a considerable amount of forensic evidence. This potential is

demonstrated in a study where researchers recovered more than 11,000 data artefact’s from 49

predominately low-end devices [51]. As with a traditional mobile phone, the smartphone not only

stores call logs, text messages and personal contacts, but it also has the ability to store web-browsing

artefact’s, email messages, GPS coordinates, as well as third-party application related data [52-54].

There are a number of tools that can be used to perform a data acquisition from a smartphone.

Examples of these tools include Cellebrite’s Universal Forensic Extraction Device (UFED) [55];

MicroSystemation’s XRY tools [56]; The Mobile Internal Acquisition Tool [57]; Paraben’s Device

Seizure [58] and RAPI Tools [59]. These forensic toolkits make it possible to investigate mobile

devices that have been used to access cloud storage providers and extract evidence without directly

accessing the cloud storage provider’s service. However, there is currently a lack of research as to the

relationship between the residual data retained on multiple mobile devices subsequent to cloud

interaction. There is also a lack of research into the impact that cloud storage applications have on

mobile device residual data.

3. Experiment Design

The lack of research examining the gap between device residual data and existing cloud data

prompted research into the following hypothesis:

H1: Smartphone devices present a partial view of the data held in cloud storage services, which can be

used as a proxy for evidence held on the cloud storage service itself.

H2: The manipulation of different cloud storage applications influences the results of data collection

from a smartphone device.

H3: Different versions of cloud storage applications implemented on diverse operating systems retain

varying amounts of residual data.

To address the hypotheses, the following questions were proposed:

1. To what extent can data stored in a cloud storage provider be recovered from a smartphone

device that has accessed the service?

2. What features of the cloud application influence the ability to recover data stored in a cloud

storage service from a smartphone device?

3. Do different versions of a cloud application used on the smartphone devices affect the

ability to recover data stored in a cloud storage service from a smartphone device?

4. What metadata concerning the cloud storage service can be recovered from a smartphone

device and what does the metadata data, recovered from a smartphone device, reveal about

further files stored in the cloud service?

5. Does the amalgamation of files recovered from two or more versions of a specific cloud

storage application provide a more complete dataset of files stored in the cloud service?

An experiment was devised to support the hypotheses and research questions proposed above. The

experiment was broken into six stages. The six stages included: 1) preparing the smartphone device

and installing the cloud application; 2) loading a dataset to a cloud storage provider; 3) connect to the

data through the application on the smartphone; 4) performing various file manipulations to the

dataset and smartphone device; 5) processing the device using the Universal Forensic Extraction

Device (UFED); and 6) using a number of forensic tools to extract the files and artefacts from the

resulting memory dumps.

The forensic tools used in this experiment were the Cellebrite Universal Forensic Extraction Device

(UFED) version 1.8.5.0 and its associated application the ‘Physical Analyzer’ version 3.7.0.352; FTK

Imager and FTK Toolkit version 4.0. The smartphone devices were processed with the UFED tools.

The memory card used in the HTC Desire was processed using FTK Imager. The memory dumps

were examined using a combination of Physical Analyzer and the FTK toolkit. Three smartphone

devices were selected for use in this experiment: an Apple iPhone 3G and two HTC Desire devices.

Table 1 – Smartphone Device Features highlights the notable features of these devices. These devices

were selected for two reasons. First, they are compatible with the choice of forensic toolkit (UFED)

used to perform a physical dump of the internal memory. Second, the operating systems used on these

devices represent the two most popular smartphone operating systems in use [60]. Although more

recent devices with newer versions of both the Android and iOS operating system exist, a lack of

support from the forensic tools to perform a physical acquisition meant that these newer devices could

not be included in the experiment. The decision to use these specific devices and tools was a

pragmatic decision based on practicality and availability to the authors.

Table 1. Smartphone Device Features

The selection criteria for the smartphone devices limited the number of cloud storage applications

available to only the applications compatible with both operating systems. The scope of the

experiment was limited in the following ways:

 This experiment was conducted in the United Kingdom, where Global System of Mobile

(GSM) is the predominant mobile phone type, therefore non-GSM mobile devices were not

considered;

 A number of smartphone devices which run either iOS or Android were not considered due to

compatibility issues with the toolkit; and

 Various cloud storage applications were not considered because they do not support either or

both of the chosen operating system platforms.

The original implementation of this experiment used an iPhone 3G running iOS version 3.0 and an

HTC Desire running Android version 2.1. The cloud storage applications for iOS included: Dropbox

v. 1.4.7, Box v. 2.7.1, SugarSync v. 3.0, and Syncplicity v. 1.6. The cloud storage applications for the

Android device included: Dropbox v. 2.1.3, Box v. 1.6.7, SugarSync v. 3.6, and Syncplicity v. 1.7.

The experiment was then extended and repeated using an HTC Desire running Android version 2.3.

Newer versions of the Android cloud storage applications implemented in this portion of the

experiment included: Dropbox v. 2.2.2, Box v. 2.0.2, SugarSync v. 3.6.2, and Syncplicity v. 2.1.1.

Extending the experiment provides the opportunity to compare the results obtained between different

versions of specific cloud storage applications. Updating the operating system and applications used

on the iPhone device was considered. However, based on discontinued application support for iPhone

3G, a lack of support, at the time of the experiment, from the forensic tools for newer versions of the

iPhone, as well as device availability, a pragmatic decision was made not to include an iOS device in

the extended experiment.

A pre-defined dataset was created, which was comprised of 20 files, made up of image (JPEG), audio

(MP3), video (MP4), and document (DOCX and PDF) file types. Table 2 – Experimental Dataset

defines the files used in this dataset. The same dataset was used in both the original and extended

experiments. The following steps were used in both the original and extended experiments. These

steps were repeated every time the experiment was reset for a different cloud storage application.

1. The smartphone was ‘hard reset’, which involved restoring the default factory settings on the

device. In the case of the HTC Desire, the SD memory card was forensically wiped using The

Department of Defence Computer Forensics Lab tool – dcfldd [61]. These steps were done to

remove any previous data stored on the devices and the memory card.

2. The device was then connected to a wireless network which was used to gain access to the

Internet. The cloud storage application was downloaded and installed either via the Android or

Apple ‘app market’, depending on the device used. The default installation and security

parameters were used during the installation of the application.

3. The cloud storage application was executed, and a new user account was created using a

predefined email address and a common password for that cloud storage application.

4. After the test account was created, the application was ‘connected’ to the cloud storage

provider’s services, which meant the device was now ready to receive the dataset.

5. A personal computer running Windows 7 was used to access the test account created in Step 4

and the dataset was then uploaded to the cloud storage provider using a web browser. The date

and time the files were uploaded to the cloud storage provider was noted. The smartphone was

Feature iPhone 3G HTC Desire HTC Desire

Operating system iOS v. 3 Android v. 2.1 Android v. 2.3

Internal memory 8 GB storage 576 MB RAM 576 MB RAM

Memory card No Yes (4 GB) Yes (4 GB)

synchronized with the cloud storage provider, to ensure the dataset was visible via the

smartphone application.

6. When the entire dataset was visible on the smartphone, a number of manipulations were made to

files in the dataset. Table 2 – Experimental Dataset summarizes these manipulations. These

included:

 a file being viewed or played;

 a file viewed or played then saved for offline access;

 a file viewed or played then deleted from the cloud storage provider; and

 some files were neither opened/played nor deleted (no manipulation).

7. The smartphone and cloud storage application were also manipulated in one of the following

ways:

 Active power state - the smartphone was not powered down and the application's cache

was not cleared;

 Cache cleared - the applications cache was cleared;

 Powered off - the smartphone was powered down; and

 Cache cleared and powered off - the applications’ cache was cleared and the smartphone

was powered off.

These manipulations were done to mimic various scenarios a forensic investigator could

encounter during an investigation. The smartphone was then removed from the wireless network

to prevent any accidental modification to the dataset.

Table 2. Experimental Dataset

8. After the above manipulations, the smartphone device was processed to create a forensic dump of

its internal memory. In the case of the HTC Desire, the Secure Digital (SD) memory card was

processed separately from the smartphone. The HTC Desire was processed directly using the

UFED, while a binary image of the SD card was created using FTK Imager. Before the HTC

Filename Size (bytes) Manipulation

01.jpg 43183 File viewed/played

02.jpg 6265 File viewed/played and saved for offline access

03.jpg 102448 No manipulation

04.jpg 5548 File viewed/played and then deleted

05.mp3 3997696 File viewed/played

06.mp3 2703360 File viewed/played and saved for offline access

07.mp3 3512009 No manipulation

08.mp3 4266779 File viewed/played and then deleted

09.mp4 831687 File viewed/played

10.mp4 245779 File viewed/played and saved for offline access

11.mp4 11986533 No manipulation

12.mp4 21258947 File viewed/played and then deleted

13.pdf 1695706 File viewed/played

14.pdf 471999 File viewed/played and saved for offline access

15.pdf 2371383 No manipulation

16.pdf 1688736 File viewed/played and then deleted

17.docx 84272 File viewed/played

18.docx 85091 File viewed/played and saved for offline access

19.docx 14860 No manipulation

20.docx 20994 File viewed/played and then deleted

Desire was processed, the USB debugging option was enabled on the smartphone. This is

required by the UFED to create the binary images from the device. The default parameters for a

Physical Extraction on the UFED were selected, and the make and model of the device were

provided. In the case of the SD card, the default parameters were used to create a binary image of

the storage card. The resulting binary images were saved to a forensically wiped 16 GB USB

flash drive. The extraction process for the iPhone differed from that of the HTC Desire as the

device was processed using the Physical Analyzer ‘add-on’, which is designed to extract binary

images from the iPhone. A step-by-step wizard provided instructions on how to prepare the

device for the extraction. From the selection menu, the User partition was selected for extraction

from the device, and the resulting memory dump was saved to a 16 GB USB flash drive.

9. The images extracted from the smartphone device were then loaded into Physical Analyzer,

where the iOS and Android file systems were reconstructed. FTK 4 was used as the primary tool

for analysis. This involved extracting the partitions from the dumps in Physical Analyzer and

then examining them using FTK. Analysis techniques used included: string searching for the

password, filtering by file types and browsing the iOS and Android file systems.

4. Findings

A summary of files recovered from the devices is shown in the following tables: Table 3 – Dropbox

Files Recovered, 4 – Box Files Recovered, 5 – SugarSync Files Recovered and 6 – Syncplicity Files

Recovered. Several observations can be drawn from these results. Smartphone devices can be used to

recover artefacts related to cloud storage services. These artefacts can include the files stored in the

cloud storage service which have been accessed using the smartphone device and metadata associated

to user and service activity. The exception to this was the recovery of a thumbnail of the JPEG image

file not viewed on the device (03.jpg), which was recovered from ten of the twelve applications

examined.

The chances of recovering a file increase if the file has been saved for offline viewing. Files which

were marked for offline viewing were recovered from all the applications except from version 2.0.2 of

the Box Android application. The results also indicate that different versions of the Android

applications can result in different files being recovered from a smartphone device. This finding was

particularly evident for the Box and Syncplicity applications. The two different versions of these

applications resulted in different files from the dataset being recovered. The metadata recovered from

the devices included SQLite databases, text-based transaction logs, JavaScript Object Notation

(JSON) and XML files. These metadata artefacts contained information related to user activity;

account-specific information such as email addresses and described which files are stored in the cloud

storage service.

An analysis of the memory dumps revealed that forensic artefacts can be recovered from the

smartphone devices and in the case of the Android devices, the SD memory card. The Android

operating system allows files to be stored in either the device’s internal storage memory or on an

external memory card [52]. The iPhone does not have an external storage device and all artefacts

recovered from the device were from the internal storage memory. The SD memory card used with

the Android devices contained files which were either deleted by the user or deleted as a result of the

cache being cleared. Clearing the application’s cache has an adverse effect on the recovery of files.

This is more evident on the iPhone, which does not contain an SD card. Powering down the

smartphone devices did not have an effect on the recovery of data. As a result, the files recovered

were identical to that of the active power state scenario.

Artefacts stored in the internal memory of the Android devices can be recovered from a sub-folder

named after the application name. This sub-folder can be recovered from the path /data/data [52].

Unlike the internal storage device, applications can store data in any location on the SD memory card

[62]. Therefore, the location of evidence on the SD card varies, depending on the application being

investigated. The iOS file system creates a sub-folder for each installed application under the

directory /private/var/mobile/Applications in the User partition [53]. The name of the

application directory installed under this location is assigned a unique 32 character alphanumeric

folder name [63]. The folder name is different for each application installed on the device. Artefacts

related to the iOS applications were stored under this folder location.

4.1 Detailed Dropbox Findings

On the HTC Desire, the forensic toolkits recovered nine files from both Android versions of Dropbox.

Depending on application and device manipulation, either five or seven files were recovered from the

iOS version of Dropbox. The results of which files were recovered from the Dropbox application are

shown in Table 3 – Dropbox Files Recovered.

 Android Application

Version 2.1.3

Android Application

Version 2.2.2

iOS Application

Version 1.4.7

F
il

en
a

m
e

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

01 T T T T T T T T T T

02

03 T T T T T T T T T T

04 T T T T T T T T

05

06

07

08

09

10

11

12

13 D D D D

14

15

16 D D D D D D D D

17 D D D D

18

19

20 D D D D D D D D

Table 3: Dropbox Files Recovered

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache
Cleared and Powered Down; = File Recovered; D = Deleted File Recovered;

T= Thumbnail Recovered

4.1.1 Android Applications

Files stored in the Dropbox service can be recovered from two locations on the SD card. These

locations and their contents are valid for both versions of the Android Dropbox application. First,

thumbnails of the JPEG images were recovered from the path /Android/data/

com.dropbox.android/cache/thumbs/. Second, files which were saved for offline viewing

and the document files which were viewed and not deleted on the device were recovered from the

path /Android/data/com.dropbox.android/files/scratch. Analyses of the ‘unallocated

space’ for both Android applications revealed that the two document files which were deleted (16.pdf

and 20.docx) were still physically stored on the SD card. These two document files were recovered by

FTK.

Metadata related to both versions of the Dropbox application were recovered from the internal

memory of the smartphone. The metadata recovered were valid for both versions of the Android

application. This metadata consisted of two SQLite databases and a transaction log. The two

databases were recovered from the path /data/data/com.dropbox.android/databases/.

The first database, db.db, has a table called dropbox, which contains metadata related to the files

currently stored in the service, i.e., files which have not been deleted from the Dropbox service. Fields

identified from this table are shown in Appendix A.

The second database, prefs.db, has a table called DropboxAccountPrefs which contains

metadata related to the end-user. Information hich can be recovered includes the user’s name and

email address used to register for the Dropbox service. A transactional log called log.txt is created

by the Dropbox application to record service and user-related events including: the creation of a new

user account; successful and unsuccessful login attempts; as well as which files are synchronized to

the Dropbox service. A UNIX epoch timestamp accompanies the documented event. This log can be

recovered from the path data/data/com.dropbox.android/files.

Clearing the cache of both versions of the Dropbox Android application, removes the documents

viewed and not deleted using the smartphone device (13.pdf and 17.docx), which are stored in the

com.dropbox.android/files/scratch directory. These files were still physically stored on

the SD card and are recovered by FTK. The files saved for offline access, JPEG thumbnails and

metadata remain unaltered.

4.1.2 iOS Application

On the iOS device, a number of files stored in the Dropbox service were recovered from a sub-folder

called Dropbox, which can be found in the path /Library/Caches. The following files were

recovered from this location: thumbnails of three JPEG images (01.jpg, 02.jpg and 03.jpg); five files

saved for offline access; and PDF and DOCX files, viewed but not deleted from the device (13.pdf

and 17.docx). No other files stored in the Dropbox service were recovered from the iOS device.

The metadata artefacts recovered include an SQLite database, property list (plist) files and text-based

logs. These metadata artefacts described user activity and the files stored in the service. The main

metadata repository is an SQLite database called Dropbox.sqlite which contains metadata about

the files stored in the Dropbox service. This database can be recovered from a sub-folder called

/Documents from the application’s root directory. The ZCACHEDFILE table within this database

contains metadata related to the files recovered from the directory located at

/Library/Caches/Dropbox. Fields identified from the ZCACHEDFILE are shown in

Appendix A.

Additional metadata related to the files which were saved as ‘favorite’ and user-specific information

can be recovered from two property list (plist) files. The first plist file located from the path

/Library/Preferences/com.getdropbox.Dropbox.plist contains the email address used

for the Dropbox account and information related to files which were saved as ‘favorite’. The second

plist file called FavoriteFiles.plist located from the path /Library/Caches/ contains

further information about files which were downloaded and saved as ‘favorite’. Metadata which can

be recovered from the FavoriteFiles.plist file includes the size of the file in bytes, the last

modified time, the file name and if the file has been deleted.

Two transaction logs were also recovered from the iOS device. The first log called Analytics.log

records user-related activity and can be recovered from the path /Library/Caches. Each entry in

the log is accompanied by a UNIX epoch timestamp. Figure 1 shows an example record from the

Analytics.log file, which describes a PDF file which was viewed and then saved for offline

access. The second log, run.log, which can be recovered from the path /tmp/ contains additional

information about service-related transactions performed by Dropbox. When the Dropbox iOS

application cache is cleared on the device, the only files which remain are those five files saved for

offline access. This action also affects the Dropbox.sqlite database. When the application’s cache

is cleared the database only contains metadata for the five files which remain on the device. All other

metadata artefacts remain unchanged.

Figure 1: Analytics.log file describing a PDF file which was viewed and then saved for offline
access using the Dropbox iOS application

4.2 Detailed Box Findings

From the Android applications, the forensic toolkits recovered fifteen files from version 1.6.7 and

between four and six from version 2.0.2, depending on application and device manipulation. Five files

were recovered from the iOS version of the Box application. The files which were recovered from the

Box application are summarized in Table 4 – Box Files Recovered.

4.2.1 Android Applications

On the Android devices, Box-related artefacts varied between the two versions of the application.

Artefacts related to version 1.6.7 of the Box application were recovered from three locations on the

SD card. The files saved for offline access (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) were

recovered from the path /Box/email_address/, where email_address is the email address

used to register for the service. This version of the application caches any files which have been

viewed on the device. These can be recovered from the directory

/Android/data/com.box.android/cache/filecache. Fifteen files from the dataset were

found in this directory. The files missing are those which are marked as ‘no manipulation’ in Table 2

– Dataset. Thumbnails of all four JPEG images (01-04.jpg) can be recovered from a sub-folder of the

above location called /tempfiles/box_tmp_images.

Artefacts related to version 2.0.2 of the Box application were recovered from four locations on the SD

card. This version of the Box application encrypts the cache folders used by the service. Three

encrypted folders called dl_cache, dl_offline and previews were recovered from the path

/Android/data/com.box.android/cache. No files from the dataset were recovered from

these three folders. Thumbnails of all four JPEG images can be recovered from the path

/data/data/com.box.android/cache/tempfiles/box_tmp_images. The six MP3

(05.mp3, 06.mp3 and 08.mp3) and MP4 (09.mp4, 10.mp4 and 12.mp4) files viewed on the device can

be recovered from a sub-folder called working located under the path

/data/data/com.box.android/cache. This version of the Box application creates an

additional folder of interest called previews which can be recovered from the path

/data/data/com.box.android/files/. The previews folder contains PNG image files of

‘snapshots’ of the text-based documents (DOCX and PDF) and JPEG images from the dataset which

have been viewed using the device.

The metadata artefacts for both versions of the Box application can be recovered from the

smartphone, which unless stated were the same for both versions of the application. The Box

application creates a JavaScript Object Notation (JSON) file called

json_static_model_emailaddress_0, where emailaddress is the email address used to

sign-up to the Box service. This file can be recovered from the path

/data/data/com.box.android/files/. This JSON file contains property metadata about the

files stored in this Box service. Fields identified from the JSON file are described in Appendix B.

 Android Application

Version 1.6.7

Android Application

Version 2.0.2

iOS Application

Version 2.7.1

F
il

en
a

m
e

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

01 D D T T T T T T T T

02 D D T T T T

03 T T T T T T T T T T T T

04 D D T T T T T T T T

05 D D

06 D D

07

08 D D D D

09 D D D D

10 D D D D

11

12 D D D D

13 D D

14 D D

15

16 D D

17 D D

18 D D

19

20 D D

Table 4: Box Files Recovered

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache
Cleared and Powered Down; = File Recovered; D = Deleted File Recovered;

T= Thumbnail Recovered

A second location containing metadata related to the Box application can be found under the path

/data/data/com.box.android/shared_prefs. This location contains a number of XML

files which contain user and service-specific information. The files created in this location vary

between the two versions of the application. The files recovered from this path include:

 myPreference.xml - which contains the authentication token associated with this particular

account and the email address used to register for the Box service. This can be recovered from

both versions of the application.

 Preview_Num_Pages.xml – this file is related to the folder recovered from the path

/data/data/com.box.android/files/previews and contains metadata such as the

mId of the file whose ‘preview’ is stored in the folder as well as the number of ‘preview’

pages. This file can only be recovered from version 2.0.2 of the application.

 Downloaded_Files.xml - contains metadata about the files downloaded to the SD card from

the Box service. Long name is the ID number assigned to that particular file and value is

the date and time the file was deleted. The data and time is stored as a UNIX epoch

timestamp. This file name is only valid for version 1.6.7 of the Box application. The file is

renamed to offlineFileSharedPreferences.xml for version 2.0.2 but contains the

same metadata related to files saved for offline viewing.

When the cache is cleared on the version 1.6.7 of the Box application, the contents of the

Android/data/com.box.android/cache/filecache and the /Box/email_address/

directories are deleted and recovered by FTK. All other files and metadata related to the Box service

are not affected. When the cache is cleared on version 2.0.2 of the application, the three encrypted

folders, the files stored in the /data/data/com.box.android/cache and working folders as

well as the PNG ‘snapshot’ files stored on the device are deleted but can be recovered using FTK. All

other files and metadata related to the Box service are not affected.

4.2.2 iOS Application

On the iOS device, the files and metadata related to the Box service can be recovered from three main

locations under the application’s root directory. The files saved for offline viewing (02.jpg, 06.mp3,

10.mp4, 14.pdf and 18.docx) can be recovered from a sub-folder located under the path

/Documents/SavedFiles. The thumbnails of the four JPEG images stored in the Box service can

be found in the sub-folder /Library/Caches/Thumbnails. No other files from the dataset were

recovered from the Box service. Metadata related to files stored in the service can be recovered from

a SQLite database called BoxCoreDataStore.sqlite found under the sub-folder

/Documents/. This database contains a table called ZBOXBASECOREDATA, which includes property

metadata for all twenty files in the dataset. The metadata which can be recovered from this database is

described in more detail in Appendix B. Additional information which can be recovered from this

database includes the username and email address used to create the Box account and a unique

authentication token assigned to the user account. Clearing the cache of the iOS Box application has

no effect on the data or metadata stored on the device.

4.3 Detailed SugarSync Findings

On the HTC Desire, the forensic toolkits recovered eleven files from both Android versions of

SugarSync and, depending on application and device manipulation, either seven or fifteen were

recovered from the iOS version of the application. The results of which files were recovered from the

SugarSync application are shown in Table 5 – SugarSync Files Recovered.

4.3.1 Android Applications

Files stored in the SugarSync service can be recovered from three locations on the SD card. These

locations and their contents are valid for both versions of the Android SugarSync application. First,

the three PDF files viewed on the smartphone (13.pdf, 14.pdf and 16.pdf) can be recovered from a

folder called /.sugarsync located in the root directory of the application. Second, the thumbnails

of all four JPEG images, the three JPEG images viewed on the device (01.jpg, 02.jpg and 04.jpg) and

four document files viewed on the device (13.pdf, 16.pdf, 17.docx and 20.docx) can be recovered

from a sub-folder called /.httpfilecache found in the above location. The third location is a

folder called /MySugarSyncFolders located in the root directory of the application where the five

files saved for offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) can be found.

Metadata related to the SugarSync service can be recovered from two text-based transaction logs and

an SQLite database. The metadata artefacts recovered from the device are valid for both versions of

the Android application. The first transaction log is called sc_appdata and is recovered from the

path /data/data/com.sharpcast.sugarsync/app_SugarSync/SugarSync/. This log

contains the user’s email address used to register for the service, the unique ID assigned to the user

and a hash of the user’s password.

 Android Application

Version 3.6

Android Application

Version 3.6.2

iOS Application

Version 3.0

F
il

en
a

m
e

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

01 D D D D

02

03 T T T T T T T T

04 D D D D

05

06

07

08

09

10

11

12

13

14

15

16

17 D D D D

18

19

20 D D D D

Table 5: SugarSync Files Recovered

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD = Cache
Cleared and Powered Down; = File Recovered; D = Deleted File Recovered;

T= Thumbnail Recovered

The second transaction log is called sugarsync.log and is recovered from the path

/data/data/com.sharpcast.sugarsync/app_SugarSync/SugarSync/log. This log

contains events related to the SugarSync service. For example, entries in this log include: the user

authenticating with the service, the user downloading files on the device and an MP4 file being

‘synced’ from the service and then played on the device.

The SQLite database relevant to this application is called SugarSyncDB and can be recovered from

the path /com.sharpcast.sugarsync/databases. This database has a table called

rec_to_offline_file_X, where X is the unique ID number assigned to the user. This table

contains metadata related to files saved for offline viewing and a UNIX epoch timestamp of when the

file was saved for offline viewing.

When the cache is cleared on both versions of the Android application, the files affected are those

stored under the location /.sugarsync/.httpfilecache, which are deleted from the SD card

and recovered by FTK. All other files and metadata artefacts are not affected.

4.3.2 iOS Application

Files and metadata related to the iOS version of the SugarSync application can be recovered from four

locations on the device under the application’s root directory. The SugarSync service caches the files

viewed on the device in a folder called /tmp. Files from the dataset can be recovered in two sub-

folders within this location. The JPEG, MP4, DOCX and PDF files viewed on the device can be

recovered from a sub-folder from the path /tmp/http_cache. The three MP3 files (05.mp3,

06.mp3 and 08.mp3) viewed on the device were recovered from the path /tmp/cache. The files

which were saved for offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and18.docx) can be recovered

from a sub-folder called /MyiPhone located under the /Documents directory.

The SugarSync service creates two main artefacts containing metadata related to the user and files

stored in the service. These two artefacts can be recovered from the /Documents sub-folder.

Account-specific information such as the email address used to register for the service can be

recovered from a file called ringo.appdata. An SQLite database called Ringo.sqlite, contains

a table called ZSYNCOBJECT. This table can be used to recover metadata related to the files saved for

offline access. When the SugarSync application cache is cleared, the contents of the /http_cache

folder are deleted. No other files and artefacts are affected when the cache is cleared.

4.4 Detailed Syncplicity Findings

From the Android Syncplicity applications, the forensic toolkits recovered nine files from version 1.7

and fifteen from version 2.1.1. Depending on application and device manipulation, either zero or

fourteen were recovered from the iOS version of the application. The results of which files were

recovered from the Syncplicity application are shown in Table 6 – Syncplicity Files Recovered.

4.4.1 Android Applications

On the Android devices, Syncplicity-related artefacts varied between the two versions of the

application. For version 1.7 of the application, files were recovered from three locations on the SD

card. Thumbnails of all four JPEG images can be recovered in the path Android/data/

com.syncplicity.android/cache/cachefu/image_cache. The files which were saved for

offline viewing (02.jpg, 06.mp3, 10.mp4, 14.pdf and 18.docx) can be recovered from a folder called

/Syncplicity, which is stored in the root directory of the application. Version 1.7 of the

application encrypts the cache folder used by the application. This folder can be recovered from the

path /Android/data/com.syncplicity.android/cache/private_syncp_file_cache

_v3/encrypted/X, where X is the unique ID assigned to the user. No files from the dataset were

recovered from this location.

Further, files and metadata related to version 1.7 were recovered from four locations on the

smartphone device. Files from the dataset can be recovered from the device in a directory located at

the path /data/data/com.syncplicity.android/files. The files recovered from this

location have been deleted, however, FTK was used to recover specific files from the dataset. The

files recovered were the three JPEG files (01.jpg, 02.jpg and 04.jpg) and the three DOCX files

(17.docx, 18.docx and 20.docx) viewed and not deleted on the smartphone device. No other files were

recovered from this location.

Table 6: Syncplicity Files Recovered

APS = Active Power State; PWD = Powered Down; CC = Cache Cleared; CC & PWD =
Cache Cleared and Powered Down; = File Recovered; D = Deleted File Recovered;

T= Thumbnail Recovered

Metadata artefacts related to version 1.7 which were recovered from the device included a text-based

log, XML files and an SQLite database. These artefacts contained metadata related to both user

activity and the files stored in the service. A text-based transaction log called

0000000000000000000.log.gz.tmp contains metadata about the application and its interaction

with the cloud service. This log can be recovered from the path /data/data/com.syncplicity.

android/app_log_syncplicity. An SQLite database called CacheDatabase, can be

recovered from the path /data/data/com.syncplicity.android/databases. This database

Android Application

Version 1.7

Android Application

Version 2.1.1

iOS Application

Version 1.6

F
il

en
a

m
e

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

A
P

S

C
C

P
W

D

C
C

 &
 P

W
D

01 D D D D D D

02

03 T T T T T T T T

04 D D D D D D

05 D D

06

07

08 D D

09 D D

10

11

12 D D

13 D D

14

15

16 D D

17 D D D D D D

18

19

20 D D D D D D

contains a table called Files, which can be used to recover property metadata for all twenty files

stored in the Syncplicity service. The information which can be recovered from the Files table can

be seen in Appendix C.

A final source of metadata related to version 1.7 can be recovered from the path

/data/data/com.syncplicity/shared_prefs. This folder contains the following XML files

created by the application:

 auth_prefs.xml – this file contains the email address used to register for the Syncplicity

service;

 file_cache_preferences(X).deleted.xml – X is a number and twenty-five different files can be

found with such a naming convention. The format of the file is shown in Figure 2 below.

These XML files can be used as a mapping for the encrypted directory found on the SD

memory card.

Figure 2: Example of file_cache_preferences(X).deleted.xml file mapping retrieved from the
Syncplicity Android application

When the cache is cleared on version 1.7 of the application, the contents of the

cache/cachefu/image_cache and encrypted folders are both deleted and recovered by FTK. No

other files or artefacts are affected by the cache being cleared.

For version 2.1.1 of the application, files from the dataset were again recovered from both the SD

card. Thumbnails of all four JPEG images can be recovered from the directory /Android/data/

com.syncplicity.android/cache/cachefu/image_cache. As with the previous version,

version 2.1.1 of the application also encrypts the cache folder used by the Syncplicity service. This

folder can be recovered from the path /Android/data/com.syncplicity.android/

encrypted_ storage. No files from the dataset were recovered from this location. This version of

the Syncplicity application also contains a ‘decrypted’ cache folder where fifteen files from the

dataset which were viewed on the device can be found. This folder can be recovered from the path

/Android/data/com.syncplicity.android/temporary_decrypted_storage.

The metadata artefacts recovered from version 2.1.1 of the application included an SQLite database, a

text-based transaction log and XML files. These artefacts were recovered from the internal memory of

the device. A text transaction log called 0000000000000000000.log.gz.tmp contains metadata

about the application and its interaction with the cloud service. This log can be recovered from the

path /data/data/com.syncplicity.android/app_log_syncplicity. An SQLite

database called VIRTUAL_FILE_SYSTEM.db was recovered from the path /data/data/com.

syncplicity.android/databases. This database contains two tables of interest. The first table

is called Files and contains metadata about all twenty files stored in the Syncplicity service.

Appendix C shows the metadata which can be extracted from this table. The second table of interest is

called Files_and_Folders_to_Synchronize which contains the names of the files saved for

offline viewing. The XML files recovered from version 2.1.1 of the application can be found in the

same location as the files in version 1.7: /data/data/com.syncplicity/shared_prefs. The

contents of the XML files recovered from this location are the same for those recovered from

version 1.7.

When the cache is cleared on version 2.1.1 of the application, the contents of the

/cache/cachefu/image_cache and encrypted folders are both deleted and recovered by FTK.

The files recovered from the temporary_decrypted_storage folder are also affected when the

cache is cleared. This folder now contains only the files which were saved for offline access. All other

files have been deleted and recovered by FTK. The VIRTUAL_FILE_SYSTEM database is also

affected when the cache is cleared. No other files and artefacts are affected by the cache being

cleared.

4.4.2 iOS Application

Files and metadata related to the iOS version of the Syncplicity application can be recovered from

four locations on the device under the application’s root directory. The only location where files from

the dataset can be recovered from the iOS device is a cache folder created by the application under the

path /Documents. Fourteen out of the fifteen files viewed on the device can be recovered from this

folder. The MP4 file viewed and then deleted (12.mp4) was the only file viewed on the device and not

recovered from this location.

Metadata related to the iOS application consists of an SQLite database, a plist file and a text-based

log. The SQLite database is called syncplicity.sqlite and can be recovered from the path

/Documents/. This database contains a table called ZFILES which contains metadata about

eighteen files from the dataset; the entries which are missing from this table are related to files 04.jpg

and 08.mp3. The property metadata, which can be recovered from this table, is shown in Appendix C.

Metadata related to the user account can be recovered from a plist file called syncplicity.plist,

which can be found in the path /library/preferences/com.syncplicity.ios. This plist

file can be used to recover information such as the type of account used in the service (free or paid)

along with the first and last name of the user who registered for the account. The final location of

metadata related to the iOS Syncplicity application is a transaction log called

syncplicity_0.log, which can be found in the location /library/caches. This log contains

user and service related transactions including files that were downloaded to the device and

authentication token synchronization between the device and the Syncplicity service.

When the Syncplicity iOS application cache is cleared, the contents of the /Documents folder are

deleted and no files are recovered from this location. No other files and artefacts are affected when the

cache is cleared.

5. Discussion

The results described in the previous section can be used to provide answers to the research questions

proposed in Section One. Forensic toolkits, including the Cellebrite UFED, can be used to recover

data from a smartphone device that has accessed a cloud storage service. The proposed use of forensic

and analysis toolkits currently available to the forensic community provides a practical solution for

investigating cloud computing environments. The lack of forensic tools is commonly cited as a

mainstream challenge for investigating cloud environments [2, 28, 34]. The results from this research

suggest that end-devices, such as a smartphone, may contain evidence in relation to cloud storage

services which may be important in an investigation, and that this resource should be considered and

examined. Furthermore, the tools and methods used in the experiment to recover data from the

smartphone device are widely used and accepted by the forensic community. It must be acknowledged

that the files recovered from the smartphone devices present a ‘snapshot in time’ of the dataset stored

in the cloud storage service. A file which is recovered from a smartphone does not mean that the file

still exists in the cloud storage service, but provides an indication that at a point in time this file was

stored in the service.

The results indicate that it is possible to recover files, providing a snap-shot in time, that indicates the

existence of potential data that is stored in cloud services like Dropbox, Box, SugarSync and

Syncplicity. On the HTC Desire, both deleted and available files were recovered. No deleted files

were recovered from the iPhone. Certain file types were recovered more than other types. For

example, the results show that JPEG thumbnail images were produced on all the devices running the

Android applications. Thumbnail images were also recovered from the Dropbox and Box applications

on the iOS device. In general, very few MP3 and MP4 files were recovered from all three devices. It

is also interesting to note that more deleted files were recovered from the Box and Syncplicity

applications than Dropbox or SugarSync applications on the HTC Desire.

The recovery of files from a smartphone device is affected by the user’s manipulation of the device

and the cloud storage application. The Box iOS application and version 1.7 of the Android Syncplicity

application were the only applications where there was no difference in the number of files recovered

from the ‘active power state’ and the ‘cache cleared state’. The results also show that when the cache

was cleared in all other instances, fewer files were recovered than from the ‘active power state’. In the

case of the iOS Syncplicity application, no files were recovered when the application’s cache was

cleared. User actions on specific files have shown to influence the recovery of these files. For

example if a file has been viewed using the smartphone there is the opportunity for it to be recovered

using forensic toolkits. This is provided that the user has not deleted the file, or cleared the

application’s cache. Files saved for offline access by the user can be recovered from the Android and

iOS applications. There were two exceptions to recovering these files. The first is when the cache was

cleared for the Syncplicity iOS application, none of the files saved for offline viewing were recovered.

The second is when the cache was cleared for version 2.0.2 of the Android Box application, none of

the files for offline viewing were recovered from any of the states. Deleted files were recovered from

the Android devices. The recovery of these files is dependent upon them not being overwritten by new

data on the SD memory card. No deleted files were recovered from the iOS device.

It is interesting to note that there are discrepancies in the number of files recovered depending on the

version of the cloud storage service implemented on different mobile platforms and operating

systems. While the versions of Dropbox produced the same number of files, there were vast

differences between specific versions of Box, SugarSync and Syncplicity. A summary of the total

number of active power state files recovered from the Android and iOS devices by cloud application

is shown in Figure 3. This table presents the files recovered from the active power state excluding

thumbnails and deleted files.

Figure 3 : Total number of active power state recovered files

Metadata was recovered from all the applications on all three devices. The metadata recovered

included text-based transaction logs containing user and service activity, SQLite databases and JSON

files containing property metadata data related to the files in the service, as well as XML files

containing user-specific metadata such as login credentials. The metadata recovered from the devices

can also present the investigator with a greater representation of the dataset stored in the cloud. For

example, depending on the operating system platform, device and application manipulation, between

0

2

4

6

8

10

12

14

16

18

20
Files Recovered

four and fifteen files were recovered from the iOS and Android Box applications. However, the

metadata artefacts recovered from these applications run on the Android and iOS devices, revealed

information about files stored in the Box service which were not recovered from the device. The

JSON files and SQLite databases recovered from the internal memory of these devices contained

records for all twenty files stored in the Box service. The information which can be recovered

includes the file names and unique identification number assigned to each file as well as user-specific

identification numbers and email addresses used to register for the storage services. This metadata

could help an investigator justify requesting a court order or warrant for a cloud storage provider to

recover further files from the account being investigated [38].

Furthermore, using metadata artefacts recovered from the Box application, it is possible to download

further files from the Box service. This can include files which were not recovered from the

smartphone device itself. This information can be recovered from all three versions of the Box

application which were included in this experiment. This is possible by constructing a direct link to

the file stored in the Box service using the Box API [64]. This direct link requires three pieces of

information from the smartphone device, for example from an Android device:

1. The authentication token, which can be recovered from the myPreference.xml file found

in the path /data/data/com.box.android/shared_prefs. For example, in Figure

4, the authentication token is shown as: :<string name=“authToken”>

u5es7xli4xejrh89kr6xu14tks6grjn3</string>;

2. The unique file ID number called mId, which is the ID number assigned to each file stored in

the service. This information can be recovered from the json_static_model_

emailaddress_0 file stored in the directory /data/data/com.box.android/

files/. The investigator requires the ID number for each file they wish to download from

the Box service (Figure 5); and

Figure 4 : Metadata artefact containing the authentication token from Box Service

3. A URL from the Box API [64]: https://www.box.net/api/1.0/download/
auth_token/file_id, where auth_token is the authentication token for the account and

file_id is the mId number of the file to be downloaded.

Figure 5 : mID value for file 03.jpg

This information can be combined to reconstruct a direct link, which will result in the file

associated with the mId being downloaded. For example, the URL: https://mobile-

api.box.com/api/1.0/download/u5es7xli4xejrh89kr6xu14tks6grjn3/2072716499 can be used to recover

the JPEG image 03.jpg from the dataset. This information is not unique to the Android, and the data

needed to reconstruct the URL can also be recovered from the iPhone device. Relevant artefacts can

be found in the BoxCoreDataStore.sqlite database in the directory /Documents/. The

privacy and legal implications associated with this practice are out of scope for this chapter.

The ultimate goal of a forensic investigator should be to recover as much evidence as possible from a

cloud storage service. An analysis of the files recovered from two of the Android applications (Box

and Syncplicity) has revealed that different files were recovered from different versions of these cloud

storage applications. Forensic toolkits recovered fifteen files from version 1.6.7 of the Box application

and only six from version 2.0.2, while five files were recovered from version 1.7 of Syncplicity

application and fifteen from version 2.1.1. These results suggest that there is an opportunity to recover

a more complete dataset from the cloud service if multiple devices are examined as part of an

investigation. The results from the experiment propose the idea that an investigator who analyses

multiple devices with different versions of an application could recover a more complete dataset than

that from just a single device. The proportion of artefacts which can be recovered from two or more

devices are calculated as |m1 m2 m3|, where mn, are the devices which are being analysed as

part of a forensic investigation of cloud storage services. Preliminary data demonstrated in Table 7 –

Total Files Recovered from Multiple Devices supports the idea that multiple devices can produce a

more complete dataset for a forensic investigator. In three out of the four applications examined, a

bigger dataset was recovered by combining the number of files recovered from each device to create a

more complete dataset.

Finally, the results from the experiment can also be used to support the hypotheses proposed in

Section One. H1, the smartphone devices in this experiment contain a partial view of the data held in

the cloud storage service. This statement continues to hold when the device is powered down.

Therefore, a smartphone device potentially presents a forensic investigator with a proxy view of the

evidence held in the cloud storage service. In support of H2, clearing the application’s cache has an

adverse effect on evidence collection. The data indicates partial support for H3 in that different files

are recovered from the same cloud application on different mobile device platforms and operating

systems for some cloud applications.

https://mobile-api.box.com/api/1.0/download/u5es7xli4xejrh89kr6xu14tks6grjn3/2072716499
https://mobile-api.box.com/api/1.0/download/u5es7xli4xejrh89kr6xu14tks6grjn3/2072716499

Cloud

Storage

Service

m1

{files recovered}

m2

{files recovered}

m3

{files recovered}

|m1 m2 m3|

{total files recovered}

Dropbox {2,6,10,13,14,

16,17,18,20}

{2,6,10,13,14,

16,17,18,20}

{2,6,10,13,14,

17,18}

{2,6,10,13,14,16,17,18,

20} = 9

Box {1,2,4,5,6,8,9,

10,12,13,14,16,

17,18,20}

{5,6,8,9,10,12} {2,6,10,14,18} {1,2,4,5,6,8,9,10,12,13,

14,16,17,18,20}= 15

SugarSync {1,2,4,6,10,13,

14,16,17,18,

20}

{1,2,4,6,10,13,

14,16,17, 18,20}

{1,2,4,5,6,8,9,

 10,12,13,14,

 16,17,18,20}

{1,2,4,5,6,8,9,10,12,13,

14, 16,17,18,20} = 15

Syncplicity {2,6,10,14,17,

18,20}

{1,2,4,5,6,8,9,

 10,12,13,14,

16,17,18}

{1,2,4,5,6,8,9,

10,13,14,16,

17,18,20}

{1,2,4,5,6,8,9,10,12,13,

14, 16, 17,18,20} = 15

Table 7 – Total Files Recovered from Multiple Devices

6. Conclusions and Future Work

The attractiveness of cloud computing is impacting where individuals and organizations store their

data. The growing popularity of cloud storage services means that such environments will become an

attractive proposition for cybercrime. This could result in an increase in demand for investigations of

cloud storage services. However, the issue of conducting digital forensic investigations of cloud

computing environments is an increasingly challenging and complex task. One of the biggest

challenges facing investigators is the ability to identify and recover digital evidence from the cloud in

a forensically sound manner. The remote and distributed nature of cloud computing environments

means that the traditional offline approach to forensic evidence acquisition is invalidated. As a result,

both industry and academia are beginning to examine different methods and techniques to investigate

cloud computing environments.

This work presents the examination of end-devices such as smartphones, which have been used to

access cloud storage services. The data recovered from these devices can be used by investigators as a

proxy for potential evidence stored in cloud storage services. The effectiveness of this method is

dependent on the operating system, specific cloud storage application implementation and usage

patterns. In other words, the potential recovery of data increases if a device has been used to view the

files through a cloud storage application and the user has not attempted to clear the cache of recently

viewed files.

Two advantages become apparent to using this investigative approach. First, the investigator can

begin the chain of custody process when the device is seized, and does not need to rely on the cloud

provider to begin this process. Second, the tools and methods which have been used to recover data

stored in cloud storage services are widely used by the forensic community. The recovery of metadata

artefacts from the smartphone device can, in some scenarios, provide the investigator with insight into

further data stored in a cloud service. The information recovered can also help justify a court order

requesting assistance from the cloud storage provider to recover further files from the specific

account.

Future research needs to be conducted to extend the analysis of smartphone hardware and operating

systems, to increase the size and file types of the dataset and conduct research into other cloud storage

services. The methodology proposed in this chapter can be extended to other smartphone devices and

operating systems such as Windows Mobile and Blackberry devices. In addition, research can also be

conducted to investigate other cloud storage services such as Google Drive, OneDrive and CloudMe.

The dataset used in future experiments can also be extended to include additional data types as well

increasing the overall number of files and files of varied sizes.

The analytical findings from this research indicated that examining multiple devices and multiple

versions of cloud storage applications can result in a more complete dataset being recovered. This

experiment can be extended to examine a number of mobile devices such as tablets, iPads, iPods and

eBook readers. Other research questions that warrant investigating include the examination of usage

patterns along with the construction of relevant timelines across multiple devices and cloud

applications.

From a corporate security perspective, future work needs to examine the risk of data leakage that

cloud storage applications can introduce to an organization. This research identifies the implications

from a corporate policy perspective and determines if cloud applications introduce opportunities for

data leakage in organizations. If so, what is the most effective way to minimize risk and maximize

employee productivity? The results from this research provide the foundation for further development

of security measures and policies for both cloud providers and smartphone users that mitigate the

potential risk of data leakage.

References

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing, in

University of California, Berkeley, Technical Report No. UCB/EECS-2009-28. 2009.

2. G. Grispos, T. Storer, and W. B. Glisson, Calm Before the Storm: The Challenges of Cloud

Computing in Digital Forensics. International Journal of Digital Crime and Forensics, 2012.

4(2): p. 28-48.

3. T. Mager, E. Biersack, and P. Michiardi. A measurement study of the Wuala on-line storage

service. in Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Conference on. 2012.

4. M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl. Dark clouds on the

horizon: Using cloud storage as attack vector and online slack space. in USENIX Security. 2011.

5. D. S. Hunsinger and J. K. Corley. An Examination of the Factors Influencing Student Usage of

Dropbox, a File Hosting Service. in Proceedings of the Conference on Information Systems

Applied Research ISSN. 2012.

6. K. Hong. Dropbox reaches 300m users, adding on 100m users in just six months. 2014;

Available from: http://thenextweb.com/insider/2014/05/29/dropbox-reaches-300m-users-adding-

100m-users-just-six-months/.

7. J. Constine. Dropbox Is Now The Data Fabric Tying Together Devices For 100M Registered

Users Who Save 1B Files A Day. 2012; Available from:

http://techcrunch.com/2012/11/13/dropbox-100-million/.

8. Ubuntu One. A big thanks to our 1 million users: have some storage on us! ; Available from:

http://voices.canonical.com/ubuntuone/2011/07/28/a-big-thanks-to-our-1-million-users-have-

some-storage-on-us/.

9. EMC2. Mozy Delivers Faster, Easier Service and Adds Local Backup to Consumers and

Businesses with Mozy 2.0. Available from:

http://www.emc.com/about/news/press/2010/20100518-01.htm.

10. MarketWire. Box Triples Enterprise Revenue in 2011. 2012; Available from: Box Triples

Enterprise Revenue in 2011, http://www.marketwire.com/press-release/box-triples-enterprise-

revenue-in-2011-1605187.htm.

11. Mozy - About Us. 2014; Available from: http://mozy.com/about/about-mozy.

12. Forrester Research, Personal Cloud Services Emerge To Orchestrate Our Mobile Computing

Lives. 2012.

13. CRN. Box Triples Enterprise Cloud Storage Revenue. 2012; Available from: Box Triples

Enterprise Cloud Storage Revenue, http://www.crn.com/news/cloud/232400190/box-triples-

enterprise-cloud-storage-revenue.htm.

14. MarketWire. Box Sees 70 Percent Growth in Legal Services Cloud Adoption. 2012; Available

from: http://www.marketwire.com/press-release/Box-Sees-70-Percent-Growth-in-Legal-

Services-Cloud-Adoption-1749461.htm.

15. S. Subashini and V. Kavitha, A survey on security issues in service delivery models of cloud

computing. Journal of Network and Computer Applications, 2011. 34(1): p. 1-11.

16. A. S. Ibrahim, J. H. Hamlyn-Harris, and J. Grundy, Emerging Security Challenges of Cloud

Virtual Infrastructure, in APSEC 2010 Cloud Workshop. 2010: Sydney, Australia.

17. W. Jansen and T. Grance, Guidelines on Security and Privacy in Public Cloud Computing. 2011,

National Institute of Standards and Technology.

18. G. Grispos, W.B. Glisson, J. H. Pardue, and M. Dickson. Identifying User Behavior from

Residual Data in Cloud-based Synchronized Apps. in Conference on Information Systems

Applied Research (CONISAR 2014). 2014. Baltimore Maryland, USA.

19. G. Grispos, W. B. Glisson, and T. Storer, Cloud security challenges: investigating policies,

standards, and guidelines in a fortune 500 organization, in European Conference on Information

Systems 2013. 2013: Utrecht, Netherlands.

20. D. Zissis and D. Lekkas, Addressing cloud computing security issues. Future Generation

Computer Systems, 2012. 28(3): p. 583-592.

21. L. M. Kaufman, Data Security in the World of Cloud Computing. Security & Privacy, 7(4), 61-

64, 2009.

22. B. Hay, K. Nance, and M. Bishop, Storm Clouds Rising: Security Challenges for IaaS Cloud

Computing, in System Sciences (HICSS), 2011 44th Hawaii International Conference on. 2011.

p. 1-7.

23. B. Hay, K. Nance, M. Bishop, and L. McDaniel, Are Your Papers in Order? Developing and

Enforcing Multi-tenancy and Migration Policies in the Cloud, in System Science (HICSS), 2012

45th Hawaii International Conference on. 2012. p. 5473-5479.

24. TrendMicro, Cloud Security Survey Global Executive Summary. 2011.

25. D. Kholia and P. Wegrzyn, Looking inside the (Drop) box, in 2013 USENIX Annual Technical

Conference. 2013: San Jose, CA, USA.

26. D. Reilly, C. Wren, and T. Berry, Cloud computing: Forensic challenges for law enforcement, in

International Conference for Internet Technology and Secured Transactions (ICITST). 2010. p.

1-7.

27. K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie, Cloud Forensics, in Advances in Digital

Forensics VII, G. Peterson and S. Shenoi, Editors. 2011, Springer: Boston. p. 35-46.

28. M. Taylor, J. Haggerty, D. Gresty, and R. Hegarty, Digital evidence in cloud computing systems.

Computer Law & Security Review, 2010. 26(3): p. 304-308.

29. J. Brodkin. Gartner - Seven cloud-computing security risks. 2008; Available from: Gartner:

Seven cloud-computing security risks http://www.infoworld.com/d/security-central/gartner-

seven-cloud-computing-security-risks-853.

30. W. Jansen and R. Ayers, Guidelines on Cell Phone Forensics. , 2007, National Institute of

Standards and Technology.

31. G. Grispos, W. B. Glisson, and T. Storer. Using smartphones as a proxy for forensic evidence

contained in cloud storage services. in Hawaii International Conference on System Sciences

(HICSS-46). 2013. Grand Wailea, Maui, Hawaii, USA: IEEE.

32. S. Biggs and S. Vidalis. Cloud Computing: The impact on digital forensic investigations. in

Internet Technology and Secured Transactions, 2009. ICITST 2009. International Conference

for. 2009.

33. Google. Security Whitepaper: Google Apps Messaging and Collaboration Products. 2011;

Available from: Google. "Google Security Whitepaper: Google Apps Messaging and

Collaboration Products".

34. J. Dykstra and A. T. Sherman, Acquiring Forensic Evidence from Infrastructure-as-a-Service

Cloud Computing: Exploring and Evaluating Tools, Trust, and Techniques, in Digital Forensic

Research Workshop (DFRWS). 2012: Washington, DC.

35. W. Delport, M. S. Olivier, and M. Kohn, Isolating a Cloud Instance for a Digital Forensic

Investigation, in 2011 Information Security for South Africa, H.S. Venter, M. Coetzee, and M.

Loock, Editors. 2011: Johannesburg, South Africa.

36. Amazon Web Services. About AWS Security Credentials. 2011; Available from: Amazon Web

Services. "About AWS Security Credentials".

37. Amazon Web Services, Amazon Elastic Compute Cloud Microsoft Windows Guide. 2012.

38. H. Chung, J. Park, S. Lee, and C. Kang, Digital forensic investigation of cloud storage services.

Digital Investigation, 2012. 9(2): p. 81-95.

39. J. Lee, H. Chung, C. Lee, and S. Lee, Methodology for Digital Forensic Investigation of iCloud,

in Information Technology Convergence, Secure and Trust Computing, and Data Management,

J.H. Park, et al., Editors. 2012, Springer Netherlands. p. 197-206.

40. D. Quick and K.-K. R. Choo, Dropbox analysis: Data remnants on user machines. Digital

Investigation, 2013. 10(1): p. 3-18.

41. D. Quick and K.-K. R. Choo, Digital droplets: Microsoft SkyDrive forensic data remnants.

Future Generation Computer Systems, 2013. 29(6): p. 1378-1394.

42. D. Quick and K.-K. R. Choo, Google Drive: Forensic analysis of data remnants. Journal of

Network and Computer Applications, 2014. 40: p. 179-193.

43. D. Quick, B. Martini, and R. Choo, Cloud Storage Forensics. 2013: Syngress.

44. D. Quick and K.-K. Raymond Choo, Digital droplets: Microsoft SkyDrive forensic data

remnants. Future Generation Computer Systems, 2013. 29(6): p. 1378–1394.

45. D. Quick and K.-K. R. Choo, Forensic collection of cloud storage data: Does the act of

collection result in changes to the data or its metadata? Digital Investigation, 2013. 10(3): p.

266-277.

46. B. Martini and K.-K. R. Choo, Cloud storage forensics: ownCloud as a case study. Digital

Investigation, 2013. 10(4): p. 287-299.

47. B. Martini and K.-K. R. Choo, Distributed filesystem forensics: XtreemFS as a case study.

Digital Investigation, 2014. Article in press.

48. S. Biggs and S. Vidalis, Cloud Computing Storms. International Journal of Intelligent Computing

Research (IJICR), 2010. 1(1/2): p. 61-68.

49. A. Phillips, E-Evidence and International Jurisdictions: Creating Laws for the 21st Century, in

System Sciences (HICSS), 2011 44th Hawaii International Conference on. 2011. p. 1-5.

50. G. Grispos, T. Storer, and W. B. Glisson, A comparison of forensic evidence recovery techniques

for a windows mobile smart phone. Digital Investigation, 2011. 8(1): p. 23-36.

51. W. Glisson, T. Storer, G. Mayall, I. Moug, and G. Grispos, Electronic retention: what does your

mobile phone reveal about you? International Journal of Information Security, 2011. 10(6): p.

337-349.

52. A. Hoog, Android Forensics - Investigation, Analysis and Mobile Security for Google Android

2011: Syngress.

53. A. Levinson, B. Stackpole, and D. Johnson, Third Party Application Forensics on Apple Mobile

Devices, in System Sciences (HICSS), 2011 44th Hawaii International Conference on. 2011. p. 1-

9.

54. S. Morrissey, iOS Forensic Analysis: for iPhone, iPad, and iPod touch. 2010: Apress.

55. Cellebrite. Cellebrite UFED. Available from: Cellebrite UFED,

http://www.cellebrite.com/mobile-forensics-products/forensics-products.html.

56. Micro Systemation. What is XRY? ; Available from: What is XRY?,

http://www.msab.com/xry/what-is-xry.

57. A. Distefano and G. Me, An overall assessment of Mobile Internal Acquisition Tool. Digital

Investigation, 2008. 5, Supplement(0): p. S121-S127.

58. Paraben. Device Seizure. Available from: Device Seizure, http://www.paraben.com/device-

seizure.html.

59. W. J. Hengeveld. RAPI Tools. Available from: RAPI Tools,

http://itsme.home.xs4all.nl/projects/xda/tools.html.

60. Gartner. Gartner Says Worldwide Sales of Mobile Phones Declined 2 Percent in First Quarter of

2012; Previous Year-over-Year Decline Occurred in Second Quarter of 2009. 2012; Available

from: Gartner Says Worldwide Sales of Mobile Phones Declined 2 Percent in First Quarter of

2012; Previous Year-over-Year Decline Occurred in Second Quarter of 2009,

http://www.gartner.com/it/page.jsp?id=2017015.

61. Department of Defense Computer Forensics Lab. dcfldd. 2006; Available from:

http://dcfldd.sourceforge.net/.

62. J. Lessard and G. Kessler, Android Forensics: Simplifying Cell Phone Examinations. Small Scale

Digital Device Forensics Journal, 2010. 4(1): p. 1-12.

63. J. Zdziarski, iPhone forensics: recovering evidence, personal data, and corporate assets. 2008:

O'Reilly Media, Incorporated.

64. Box Platform Developer Documentation. ApiFunction_Upload and Download. Available from:

http://developers.box.net/w/page/12923951/ApiFunction_Upload%20and%20Download.

Appendix A: Metadata artefacts recovered Dropbox service

OS Filename Fields

Android db.db

_data: path gives the location of where the file can be recovered from

the device.

modified: date and time file was uploaded to Dropbox service.

is_favorite: boolean field which indicates if file has been saved as a

‘favorite’, i.e. offline viewing.

parent_path: parent directory for the file, root directory is the default.

last_modified: last date and time the file was open/ modified on the

device, stored as a UNIX epoch timestamp.

display_name: contains the name of the file as stored in the storage

service.

local_hash: MD5 hash of file.

 iOS Dropbox.sqlite

ZFAVORITE: boolean field which indicates if file has been saved as a

‘favorite’.

ZSIZE: size of the file in bytes

ZVIEWCOUNT: number of times file has been viewed using the device

ZISTHUMBNAIL: boolean field which indicates if a thumbnail exists

for the file.

ZLASTVIEWEDDATE: date and time file was last viewed stored in

MAC Absolute time

ZPATH: path and file name for particular file

Appendix B: Metadata artefacts recovered Box service

OS Filename Fields

Android
json_static_model_

emailaddress_0

mThumbnail: The URL of the thumbnail image of the file

mFileName: Name of the file as stored in the Box service

mSha1: SHA1 hash of the file

mUpdated: UNIX epoch timestamp which states the last time the

file was updated, in this experiment it is the last time the file was

last viewed on the device.

mId: Unique ID number assigned to each file

mSize: Size of the file in bytes

mCreated: UNIX epoch timestamp which states when the file

was created, in this experiment this is the time when the file was

uploaded and stored in the Box service.

mShared: Boolean (True/False) filed which indicates if file has

been shared.

 iOS BoxCoreDataStore.sqlite

ZBOXID: unique ID number assigned to each file stored in the

Box service account.

ZSIZE: size of the file in bytes.

ZFAVORITEOBJECT: boolean field which indicates if file has

been saved as a ‘favorite’, i.e. offline viewing.

ZUPDATED: absolute timestamp showing when file was last

updated

ZLASTDOWNLOADDATE: absolute timestamp showing when

file was last downloaded to device

ZCREATIONTIME: absolute timestamp showing when file was

stored in Box service

ZNAME: name of file

ZSHA1: SHA1 hash of file in Box service

ZLOCALURLSTRING: directory location for file stored on the

device

ZSTREAMINGURLSTRING: URL location for file which can

be accessed from Box service

ZLOCALSHA1: SHA1 hash of file on device

Appendix C: Metadata artefacts recovered Syncplicity service

OS Filename Fields

Android

CacheDatabase.sqlite

Virtual_File_System.db

fileId: unique ID number assigned to each file stored in the service.

name: name of file.

length: size of the file in bytes.

fileStatus: boolean value which indicates if file is still stored in the

service, if the value is 1 then file is still stored in service, if value is

0 then file has been deleted.

thumbnailURL: if file has a thumbnail, this is a working URL to

the thumbnail stored in the service.

File_ID: unique ID number assigned to each file stored in the

service.

File_Name: name of file.

Is_Favorite: boolean field which indicates if file has been saved as

a ‘favorite’, i.e. offline viewing.

Server_Length: size of file stored in service, presented in bytes.

Local_Length: size of file stored in device, presented in bytes.

Is_Deleted: boolean field which indicates if file has been deleted.

Thumbnail_URL: if file has a thumbnail, this is a working URL to

the thumbnail stored in the service.

 iOS syncplicity.sqlite

ZLENGTH: size of file in bytes

ZFILEID: unique ID number assigned to each file stored in the

service.

ZDELETED: boolean field which indicates if file has been

deleted.

ZFILENAME: name of file.

ZEXT: file type.

ZTHUMBNAILURL: if file has a thumbnail, this is a working

URL to the thumbnail stored in the service

