
What is computational interaction design?
Computational interaction would typically involve at least one of:

I. an explicit mathematical model of user-system behavior;

II. a way of updating that model with observed data from users;

III. an algorithmic element that, using this model, can directly synthesise or adapt the

design;

IV. a way of automating and instrumenting the modeling and design process;

V. the ability to simulate or synthesise elements of the expected user-system behavior.

 Computational interaction often involves elements from machine learning, signal processing, information theory,

optimisation, inference, control theory and formal modelling.

Contrast with traditional approaches
Traditional HCI

more design ingenuity

better elicitation and design techniques

stronger evaluation

Example:

A designer invents a mid-air interaction, logs

performance with users, and performs a statistical

analysis. The designer improves the design informed

by the evaluation results.

No design work was automated.

No explicit model.

Data influenced design only through designer.

Computational HCI

improved modeling

better data collection

more powerful algorithms

increased computational power

Example:

A designer builds a model of pointing behaviour in
mid-air from data. An algorithm is used to optimise
the spacing of targets.

Design work performed by algorithm.
Explicit modeling.
Data directly influenced design.

Why do computational interaction design? (I)

Automation, data and models can supplant hand-tweaking

=> reduce design time of interfaces.

Better models can better predict how interactions evolve

=> build more robust and efficient interfaces.

Structure can be learned rather than dictated

=> better tailored interfaces: to users, contexts, devices.

Fundamental processes that generalise to new contexts

=> harness new technologies quickly.

Why do computational interaction design? (II)

Strong models can predict much of expected user behavior

=> reduce the evaluation burden.

HCI problems can be defined formally

=> increases our ability to reason rather than blind experimentation

Algorithmic design can support designers in tedious tasks

=> focus on creative aspects of design

Themes
● Optimisation: Delegating design decisions to automatic optimization, rather than fine tuning every

detail by hand.
○ This requires defining objective functions to measure performance, setting models of

interfaces and selecting and running optimisation algorithms
○ This draws on optimisation theory and models of human performance.

● Inference: Recovering intention from measured signals at input devices.
○ This involves creating mappings between measurements and actions that go beyond simple

hard-coded rules, by learning from observed data and inferring intention probabilistically
○ This draws on machine learning and probabilistic inference.

Underpinned by

● Modeling: Executable approximations of system, user and system-user behaviour

