What is computational interaction design?

Computational interaction would typically involve at least one of:

I. an **explicit mathematical model** of user-system behavior;
II. a way of updating that model with **observed data** from users;
III. an **algorithmic element** that, using this model, can directly synthesise or adapt the design;
IV. a way of **automating and instrumenting** the modeling and design process;
V. the ability to **simulate or synthesise** elements of the expected user-system behavior.

Computational interaction often involves elements from machine learning, signal processing, information theory, optimisation, inference, control theory and formal modelling.
Contrast with traditional approaches

Traditional HCI
more design ingenuity
better elicitation and design techniques
stronger evaluation

Example:
A designer invents a mid-air interaction, logs performance with users, and performs a statistical analysis. The designer improves the design informed by the evaluation results.

No design work was automated.
No explicit model.
Data influenced design only through designer.

Computational HCI
improved modeling
better data collection
more powerful algorithms
increased computational power

Example:
A designer builds a model of pointing behaviour in mid-air from data. An algorithm is used to optimise the spacing of targets.

Design work performed by algorithm.
Explicit modeling.
Data directly influenced design.
Why do computational interaction design? (I)

Automation, data and models can supplant hand-tweaking

=> reduce design time of interfaces.

Better models can better predict how interactions evolve

=> build more robust and efficient interfaces.

Structure can be learned rather than dictated

=> better tailored interfaces: to users, contexts, devices.

Fundamental processes that generalise to new contexts

=> harness new technologies quickly.
Why do computational interaction design? (II)

Strong models can predict much of expected user behavior
 => reduce the evaluation burden.

HCI problems can be defined formally
 => increases our ability to reason rather than blind experimentation

Algorithmic design can support designers in tedious tasks
 => focus on creative aspects of design
Themes

- **Optimisation**: Delegating design decisions to automatic optimization, rather than fine tuning every detail by hand.
 - This requires defining objective functions to measure performance, setting models of interfaces and selecting and running optimisation algorithms
 - This draws on optimisation theory and models of human performance.

- **Inference**: Recovering intention from measured signals at input devices.
 - This involves creating mappings between measurements and actions that go beyond simple hard-coded rules, by learning from observed data and inferring intention probabilistically
 - This draws on machine learning and probabilistic inference.

Underpinned by

- **Modeling**: Executable approximations of system, user and system-user behaviour