ES3 Lab 2

InterfaceBuilder and user interfaces

InterfaceBuilder
Creating components
Linking them to your code
Adding buttons, labels, sliders

UlTableView
Creating a tableview
Customizing cells

UINavigationController

Hierarchical table access

ASSESSED!

THIS IS THE ASSESSED EXERCISE FOR THE iPhone SECTION OF THE COURSE!

Hand in two weeks from today

email me your source code

Individual work -- don't copy someone elses!

Feel free to use any online tutorials or references to learn more BUT don't just copy
and paste code in

In the later parts of the exercise you will need to refer to the API docs and/or other
resources extensively

Exercise

Create the Vehicle Recorder and Observer app
Imagine a scenario where a police officer is recording suspicious vehicles...

Enter basic data about vehicles you see (color, make, registration, location, time,
photo)

Use location and timestamp, photo from device

Store it persistently

Show data in a hierarchical menu view and a linked map view

Guide

You will get at least a passing mark if you manage to implement just the basic
recorder, which stores data persistently and shows the registrations in the list view

You will get full credit if:
the recorder works fully, including taking pictures
data is stored peristently
table view with navigation controller to select details
details show picture when car is selected
map view with annotations

annotations can link to the table view and vice versa
this last bit is tricky!

Canada

Recorder

Record

EH345 ERG

ffic

Google

Recorder

México

LA

Gulf of
Mexico

Gl

Guatemala

MG aragLis

XCode + Interface Builder

XCode and InterfaceBuilder are seperate applications

Remember to save before switching between!

In InterfaceBuilder you can preview the interface with File/Simulate Interface, or
actually build and test the app with File/Build and Go in XCode

Double-click XIB files to open InterfaceBuilder

Procedure

Construct the form for recording the data (in InterfaceBuilder)

Link it to your code

Make a button which takes a picture, reads the form and stores the data persistently
Put the form in a tab bar

Create a table view which lists all the vehicles recorded
Put this table view in the tab bar

Make it a hierarchical view with UINavigationController
Add a table view to display the details

Add an action when a row is selected to display the details

Add a map view and put it in the tab bar
Add annotations to the map view
Link annotations to the detail view and vice versa

VehicleView

We need a new UlViewController to represent our form where we will enter data
about vehicles

Use Add/New file... to add a new sublass of UIViewController
Tick the "with XIB" option!
This is ESSENTIAL -- it creates the nib file to go with the UlViewController

Add a VehicleView instance to the application delegate
add a property and synthesize it too
Initialise it with initWithNibName
pass the name of the nib file that XCode created for you (@"VehicleView")

self.vehicleView = [[[VehicleView alloc] initWithNibName:@"VehicleView" bundle:[NSBundle
mainBundle]] autoreleasel;
[window addSubview:self.vehicleView.view];

VehicleView

= el New File

Choose a template for your new file:

. IPhone OS : - L

EBesa Toneh O .m N 11

User Interface
Resource Objective-C class Dbjective-C test UlviewController
Code Signing case class | subclass

Eﬁ Mac OS X

Cocoa Class

C and C++

User Interface
Resource

Interface Builder Kit

Other
Options [WITableViewController subclass

IE With XIB for user interface

m UlViewController subclass

An Objective-C class which is a subclass of UlViewController, with an optional header file
which includes the <UIKit/UIKit.h> header. A XIB file containing a view configured for this
View Controller is alse included.

Creating a form in InterfaceBuilder

Open VehicleView.xib
it will have a File's Owner, First Responder and a View

32 = m 0O <
View Mode Inspector Search Field
Name Type
File's Owner VehicleView
! First Responder UIResponder
Wiew UiView

1 Lab2.xcodepraoj

Adding conirols

Open the View by double-clicking it
Drag and drop controls from the library window onto the view
if Library isn't visible, Tools/Library will bring it up

«chain Access
®

Simulated User

Click 1o lock the login keychain.

Simulated Interface Elements

Status Bar | None
Device - 3.1.2 | Debug . g Match Project
Top Bar

L
Library Search

Bottom Bar None
e T v | ! 4] < [Code)
Classes | Media 1 1 = Q uISe

View
Sunnyvale Mode Scale To Fill
| Alpha

Cupertino Background

p T:
Santa Clara E: 24
Drawing ™ Opaque] Hidden
Clear Context Before Drawing

" ol | g F. [Clip Subviews

L[}
eh:10 ¢ <No selected symbol> ¢ = F ¥ Autoresize Subviews

Stretching 0.00| [i] 0.00
X Y

1oo] I 100 [}

Width Height

%mm’” Interaction ¥ User Interaction Enabled
[Multiple Touch
m d O <
View Mode ra g Inspector Search Field
Name Type
File's Owner VehicleView

W) First Responder UlResponder
View Ulview

reserved.

macho_h¢
View Controller
UnViewController

Provides view-management functionality for toolbars, navigation
bars, and application views. The UNiewController class also
supports modal views and rotating views when device orientation
changes @Succeeded
B i Z
1 E O Lab2 xcodeproj
ttalog - /PickerviewContralier.m DB Running . @succeeded
teessibility Protocol Reference
See Also

Creating the form

Make the interface look like this:
remember, you can change visual properties using the Inspector window
click the tab with the "slider" icon at the top of the Inspector to set attributes

’k—r_—ﬁ"ﬂ

PR e

Picker view
UlPickerView - : -

§ Segmented control
(bar style)

- UlSegmentedControl

UlButton

Linking things

Create outlets for the textfields, the picker and the segmented bar controls

Just create variables in VehicleView, mark them IBOutlet
e.g. of type UlButton * or UlSegmentedControl *
IBOutlet goes before the type
IBOutlet UIButton *myButton;

Save the header file (IMPORTANT!)

Go back to InterfaceBuilder
Right-click the segmented bar control
Choose "New referencing outlet"
Drag a connection to File's Owner

remember, the owner is the VehicleView instance!
The name of the instance variable should pop up
Click on the connection and it should appear

Record

Inspector

colorSelector
typeSelector
view

Repeat for the textfields, the picker and the other segmented bar control

If this doesn't work, either the instance variables are of the wrong type, you didn't mark them IBOutlet, or

you didn't save before switching to InterfaceBuilder

Editing Did Begin
Editing Did End
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed

¥ Referencing Outlets
New Referencing Outlet

W
UlResponder
Ul'View

) Bar Segmented Control (Red, Silver, Black, Blue,...

o
o]
]
o
(@]
o]
(o]
o
o
o
(o]
(o]
-

.o i

-

iy

Setting up the texifields

There are three textfields
One for each part of a registration number
This is really just to show the different possibilities

Using the Inspector, set
first text field : capitalized, default keyboard, no correction
second text field: phone keypad
third text field: capitalized, default keyboard, no correction

Set the placeholder text in the Inspector

Text

Placeholder Reg
Background
Disabled

Alignment |

| Border

Clear Button | Never ap
IET Clear When Editing Begins
Font
FontSize [Adjust To Fit 17
Min Size

Text Input Traits

Capitalize All Characters

Correction No

Keyboard Default

Return Key Default
| Auto-enable Return Key

Secure

Control

| Content Iﬁl] dl& D__E} [1) &

H Alignment V. .Aiignn‘lent
] Highlighted [Selected
™ Enabled

View

Mode . Scale To Fill

Alpha —_— |

Background r,..

UlTextFieldDelegate

Textfields must have delegates
Make VehicleView conform to UlTextFieldDelegate by changing the interface in the .h file

@interface VehicleView:UIViewController <UITextFieldDelegate> {

Implement the textFieldShouldReturn as follows

- (BOOL) textFieldShouldReturn: (UITextField *)textField {
[textField resignFirstResponder];
return YES;

}

In IntefaceBuilder, link all three of the textfields' delegate properties to File's Owner

Save, build it, and check that the Ul appears
Try entering text, check that the fields work
The picker will not appear!

It has no data source...

UIPickerDataSource

Make VehicleView conform to UIPickerViewDataSource and UlPickerViewDelegate, as well
as UlTextFieldDelegate

putting everything in one class like this is not recommended for larger interfaces, but it
simplifies things here

Now we need a list of cars
Use an NSMutableArray

Create an NSMutableArray instance variable in VehicleView, make it a property and create
an instance

The Data Source

In viewDidLoad, something like this:

//capacity is just initial capacity; it will expand automatically
self.vehicleModels = [NSMutableArray arrayWithCapacity:32];
[self.vehicleModels addObject:@"---"1; // no model
[self.vehicleModels addObject:@"Ford"];

[self.vehicleModels addObject:@"Renault"];
//... etc ...

Now in VehicleView implement

numberOfComponentsinPickerView (just return 1)
only one section

numberOfRowsIinComponent (return [self.vehicleModels count])
i.e. number of vehicle models

titleForRow (return [self.vehicleModels objectAtindex:row])

the title for each row is the name at that index in the array
note: full signature is

- (UIView *) pickerView: (UIPickerView *)picker titleForRow: (NSInteger)row
forComponent: (NSInteger)component;

Check it!

Save, go to InterfaceBuilder and connect the dataSource and delegate properties of the
picker to File's Owner

Save the interface

Build it, and check that the picker now appears correctly!

Getting a value from the conirols

To read the values from the controls in your code, there are a few useful methods and
properties

Segmented controls store the currently selected index in the property
selectedSegmentindex

You can look up the label for a segment using titleForSegmentAtindex

Text fields have a simple text property

Pickers have a a selectedRowIinComponent method

you look up the row in the array which provides the data for the picker

Linking class data to

Create a Vehicle class to represent a single vehicle
make sure it is a subclass of NSObject
check carefully when you add the new class!

For each entry, create a class variable for it
time, location, registration, color, make, type
make the variables of appropriate type

When the user presses "Record", create a new instance, write the values from the
Ul to the instance variables

The record button

Record should:
take a picture
record the time
record the location
construct a new Vehicle object with these values and the values from the form
add it to the array of vehicles
write it to disk

Add a method to the view controller
mark it as IBAction
link it to the Record button's touchUplnside in InterfaceBuilder

Taking a photo

Use UllmagePickerController to take a picture

//create a picker
UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];

// allow user to pan and crop image
imagePicker.allowsImageEditing = YES;

//send messages to this view controller
imagePicker.delegate = self;

// select the camera as the input source
// on the emulator use UIPickerControllerSourceTypePhotoLibrary
imagePicker.sourceType = UIPickerControllerSourceTypeCamera;

// present the picker
[self presentModalViewController:imagePicker animated:YES];

Photo taking

When the user takes the photo, the message
imagePickerController:didFinishPickingMediaWithinfo is sent to the delegate

Make sure you implement this method

You MUST dismiss the image picker in this method

[picker dismissModalViewControllerAnimated:YES];

The image is a Ullmage instance in the info dictionary
in key UllmagePickerControllerEditedimage

Write it to disk
find the home directory (see following)
construct a random filename (see following)

Use UllmagePNGRepresentation to get a NSData block representing the file
Write the NSData to the file

Random filename

You can construct a random filename as follows:

NSString *randomName = [NSString stringWithFormat:@"image-
%X%X.png",arc4random(),arc4random()];

This uses the ARC4 random number generator to create a 64 bit hex code (%X formats a
number as hex)

Remember to pass the filename to the method that records the data
Otherwise you will have no reference to the file!

Note: you could just store the Ulimage directly in Vehicle, but that means that all the images
must be loaded when the vehicle record is created

It's much more efficient just to load images when they are viewed

Use the following to get the home directory

NSArray *documents = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory,
NSUserDomanMask, YES);
NSString *homeDirectory = [documents objectAtIndex:0];

Time and location

Use NSDate to get the current date and time
The date method returns the current time

Use CoreLocation to get positional updates (see following instructions)

Getting location data

Make sure you import <CoreLocation/CoreLocation.h>
Also add the CorelLocation framework to the frameworks

Add a instance variable of CLLocationManager to the view controller
make property and synthesize
instantiate in viewDidLoad with alloc/init (remember to release!)
call startUpdatingLocation

Now location information is available in locationManager.location
check that it's not nil before using it (it will be until the first update)

In the simulator, this location will always return the co-ordinates of Apple HQ, so
don't worry if the values seem strange

Making Vehicle serializable

Vehicle must conform to the NSCoding protocol so it can be read and written
add initWithCoder and encodeWithCoder methods

encode and decode each member variable using encodeObject/decodeObject
method of the coder you get passed

You will only be encoding or decoding objects that already conform to
NSCoding

Encode each object in order, and in initWithCoder, decode each object in
exactly the same order

All you have to do is call encodeObject/decodeObject on each variable

Vehicle List

Make an NSMutableArray variable in the VehicleView class
remember to make it a property

This will store the list of vehicle records
It can be serialized and deserialized from disk

To create it, first test if there is an existing archive, and if not, create a new instance --
otherwise use the one unarchived from disk

NSKeyedUnarchiver returns nil if the archive doesn't exist
so try unarchiving, if it returns nil, just create a new empty array
If you don't do this, the archive will be reset each time you run the recorder!

Note: the archive should be written to a file in the app's home directory

Saving the data

After the image picker sends a message saying it has finished
Record the time, the location and construct the new Vehicle object
Add it to the array of Vehicles
Write it to disk with NSKeyedArchiver

NOTE: write the entire array as the root object -- don't try and make a key indexed archive

An extension...

Try making the picker view for the vehicle manufacturer depend on the type of vehicle
Kawasaki don't make many cars, and Ferrari don't make many vans...

Hints:
Use a NSMutableDictionary to link vehicle types to arrays of manufacturer names
Send the UlPickerView instance a reloadAllComponents message to refresh it
Listen to UlControlEventValueChanged in the segmented control

Putting it in a tab bar

We're going to have three tabs: recorder (which we just created), viewer (a
hierarchical table view) and a map view

| —

Recorder Map View
Table View

Adding the tab bar

In the app delegate, add an UlTabBarController instance (property and synthesize)

Now, originally you added VehicleView's view to the window in
appDidFinishLaunching

Instead
Create a NSMutableArray (not an instance variable, just locally)
Put VehicleView in it
Instantiate the UlTabBarController
Set it's viewControllers property to the array containing VehicleView
Set VehicleView's title propety to @"Recorder"

Build it, and test that the tab bar appears!
You may have to rearrange your form to fit

Adding a table view controller

The second tab will have a table listing all of the registration numbers

Create a subclass of UlTableViewController

In XCode, click subclass of UIViewController, then tick the
UlTableViewController box at the bottom

You need to implement
numberOfSectioninTable (return 1)

cellForRowAtindexPath (return a cell with the text set to the registration
number at that index)

numberOfRowsInSection (return the size of the Vehicle array)

NOTE: you need to find a way of making sure the Recorder and the Table view
share the same array of Vehicle objects

think about a clean way of doing this

Adding the controller to the tab bar

In the app delegate
Create an instance variable for the new table viewer
in appDidFinishLaunching, instantiate it and add it to the tab bar array
Set its title property

Check that the table view appears!

Making it a navigation coniroller

In the app delegate, instead of directly adding the controller into the tab bar:

create a new instance of UINavigationController with the root controller being
the table view

add this to the tab bar

When you run it, there should now be a title

The detail table view

Create a new subclass of UlTableViewController to represent the details of the car
so when the user taps on the registration number, the detail view pops up

Create a constructor that takes a Vehicle object
it will use this to populate the table

Pushing a new view

Modify the table view's didSelectRowAtIndex so that it

creates a new instance of the detail view controller with the details of the
selected vehicle

then pushes the new viewcontroller

Vehicle *vehicle = [self.vehicleRecords objectAtIndex:indexPath.row];
DetailViewController *detailViewController = [[DetailViewController alloc]
initWithVehicle:vehicle];

[self.navigationController pushViewController:detailViewController];
[detailViewController release];

Table layout

Make it have two sections

Set the title for section 0 to be Information, section 1 to Image

In cellForRowAtIndexPath, use the cells textLabel property to set the text for the first
section (color, registration, etc)

For the second section, use the imageView property
set the image property to a newly constructed Ullmage loaded from the filename

Use the heightForRowAtIindexPath to make the row for section 1 (the photo) to be
reasonably large (e.g. 320 pixels tall - this will make portrait photos fullscreen)

use self.tableView.rowHeight for the other rows to get the default height

Adding a map view

Create a new view controller, without a nib file

Add a MKMapView component to the controller
make sure you include the MapKit framework and import!

Make sure the users position is visible
hint: see the lecture notes!

Add it to the tab bar

Check that the map appears
On the simulator, the map will always be centered on Cupertino...

Annotations

Create a new class
Make it conform to MKMapViewAnnotation
It needs a title, subtitle and coordinate property

Add instances of it to the map

You need to implement the MKMapViewDelegate protocol in order to return
views for each pin

You should also add a callout
set the canShowCallout property of the MKPinAnnotationView to YES when
the delegate returns the new MKAnnotationView

set the rightCalloutAccessoryView to have a UIButton instance
make the button select the detail page in the table view
This is tricky!

Polish

There's an icon in the Lab.2zip file on the web (lcon.png)

Create your own Default.png

Capture the emulator window using Apple-Shift-4

Select just the region of the interface, excluding the top bar
It should be 320x460 in size

This will put a PNG file on your desktop

Rename it to default.png and put it in the project

