OpenGLES

This lab

Creating an OpenGLES project
Drawing simple triangles
Drawing a quad

Loading textures

Drawing many OpenGLES objects

Ovutline of steps

Create a blank project
Make it OpenGLES 1.1
Strip out the default rendering code

Draw a simple triangle
Load a texture
Draw it as a background

Create a simple "particle"

Make it move in random direction

Make many particles spawn from finger location
Give particles a limited lifetime

Add gravity, wall deflection

Result

A particle system which shoots "sparks" from the finger

-55'

\

‘s\:p

\

')

\\
\

Creating an OpenGLES project

Create a new OpenGLES based application in XCode

MNew Project

Choose a template for your new project:

l iPhone OS5 4
L b

h
Application

System Plug-in
Other

you to animate the view.

Project structure

Note the structure of the project

EAGLView.m defines a subclass of a control which provides an OpenGLES
context

i.e. can draw OpenGLES in a control

ES1Renderer actually defines a skeleton block of code for OpenGLES 1.1
initialise and draw callback

ES2Renderer defines a OpenGLES 2.0 skeleton
We don't want this
In EAGLView.m change the code so that only ES1Renderer is used
Delete ES2Renderer from the project!

You will need to change ESRenderer as well to eliminate references to
ES2Renderer.h

Build it and check that the default bouncing square appears

View subclass OpenGLES
Code

o e I

| Simulator - 3.1.2 | Debug +| | %] !Z] ﬁ

Overview Action Breakpoints Build and Ro- Tasks
Groups & Files] File Mame

¥ & Lab3 B [4] EAGLView.h
Classes i| EAGLMiew..:
Shaders ES1Rendernr.b
Other Sources ES1Renderer.m
Resources FES2Remtererh
Frameworks m—E2Rendererm———————
Products ESRenderer.h
(&) Targets = Foundation.framework
4 Executables Lab3-Info.plist
4, Find Results i_lah3 ann
["] Bookmarks
SCM
B Project Symbals
|4 Implementation Files
[Interface Builder Files

rer alloc] imit]:

'.---'.:'E'-'I':'E;-':':. al_l_l:II:] lrllt] ¥

rer alloc] init]:

Project Structure

Note: EAGLView is the control

it receives events and is instantiated in the app delegate
added to the main UIWindow

if you wanted to manipulate touch events, you would override touchesBegan
etc. in EAGLView

the default project creates a fullscreen control

ES1Renderer is where OpenGLES drawing commands go
EAGLView will call render in ES1Renderer when the control needs redrawn
This will be called regularly (e.g. at 60FPS)

The initial ES1Renderer has a lot of setup and other stuff in it
The key place for rendering is render

Cleaning up render

Remove everything that's currently in render and replace it with the following

blank skeleton

- (void) render
{
[EAGLContext setCurrentContext:context];

glBindFramebufferOES(GL FRAMEBUFFER OES, defaultFramebuffer);

// Render stuff will go here!

glBindRenderbufferOES(GL RENDERBUFFER OES, colorRenderbuffer);
[context presentRenderbuffer:GL _RENDERBUFFER OES];

Clearing the screen

We need to clear the screen

Set the clear color using glClearColor(r,g,b,a)

Clear using glClear(GL_COLOR_BUFFER_BIT)
Insert these Immediately after gIBindFramebufferOES(...)
clearing should happen before anything else

Choose an interesting color for the clear color

Build, check that the screen goes to the color you set!

Setting the projection

We need to set the projection matrix

We will use an orthographic perspective which emulates pixel coordinates
Set the matrix mode to GL_PROJECTION and then reset it with glLoadldentity()

glClear(GL_COLOR BUFFER BIT);

glMatrixMode(GL PROJECTION);
glLoadIdentity();
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity();

Remember to set the matrix mode back to model view and call glLoadldentity()!

Adding an orthographic projection

After giMatrixMode(GL_PROJECTION), glLoadldentity() add a call to glOrthof
This sets the projection matrix to orthographic

Note: it must go after the glLoadldentity(), and before the matrix mode is set back
to GL_MODELVIEW!

The parameters are the left, right, bottom and top extents, and the z range
The z range is effectively unimportant
We will always draw at z=0

Left should be 0, right should be backingWidth (size of the screen)
Bottom should be 0, top should be backingHeight
zNear, zFar should be -1, 1

this includes the region at z=0 where we will draw

Drawing a triangle

Add a triangle (using indexed drawing)
Create an array (of GLfloat) for the vertex positions (must have 9 elements!)

positions are in screen coordinates
Create an array of (GLubyte) for the vertex indices

GLfloat trianglePositions[9] = {... // 9 floats x1,y1,z1,x2,y2,22,x3,y3,23
// z should be zero for all
GLubyte trianglelIndices[3] = {0, 1, 2}; // use first three vertices

Set the color using glColoraf

glColordf(1,0,0,1); // red (choose your own color!)
Enable vertex arrays

Set the vertex pointer

Call giDrawElements

glEnableClientState(GL VERTEX ARRAY);
glVertexPointer(3, GL FLOAT, 0, &(trianglePositions[0]));
glDrawElements(GL TRIANGLES, 3, GL UNSIGNED BYTE, &(triangleIndices[0]));

Build, check a triangle actually appears!

-all Carrier = 10:56 AM

Loading a texture

In the lab zip file, there is are Utils.m and Utils.h
Add these to your project
Import Utils.h in EAGLView.h and ES1Renderer.h

Utils provides an PNG image loading function called loadTexture()
Have a look at this function

It has a lot of boilerplate, but it basically just loads an image and converts it to
a plain array of RGBA floats and passes this to OpenGL

It takes a string for the filename (minus the extension!) and returns a texture
name

This is just an integer

The other two parameters write the width and height into the passed pointer

Note: you must add the CoreGraphics framework to the frameworks to make this
code compile!

Loading the background image

Add background.png to the project

Add a member variable for the background image to ES1Renderer (of type
GLuint)

in init load the texture:

int w,h; // we don't use these, but we need to pass something
backgroundTexture = loadTexture(@"background", &w, &h);

Note: background.pngis 512x512

This is because OpenGLES textures must have widths and heights which are
powers of 2

The image is actually 320x480 with a border around it

Drawing the background

Add a drawBackground method to ES1Renderer
Call it from render, before the triangle drawing
Here we need to draw a textured quad

glEnable(GL TEXTURE 2D); // Enable texturing
glEnableClientState(GL VERTEX ARRAY); // Enable the right arrays
glDisableClientState(GL_NORMAL ARRAY);
glDisableClientState(GL_COLOR ARRAY);
glEnableClientState(GL_TEXTURE_COORD ARRAY);

GLfloat texCoords[] = { 0, 0, , 0},
GLfloat vertices = e, o0, 0, 0, 1, 0, 0};

glPushMatrix(); // Store modelview matrix

glScalef (320, 480, 1); // map (0,0),(1,1) to (0,0),(320,480)
glColor4f(1,1,1,1); // white color
glBindTexture(GL_TEXTURE_ 2D, backgroundTexture); // set the current texture
glVertexPointer(3, GL FLOAT, 0O, vertices); // set the pointers
glTexCoordPointer(2, GL FLOAT, 0, texCoords);

glDrawArrays(GL TRIANGLE STRIP, 0, 4);

glPopMatrix(); // Restore modelview matrix
glDisable(GL TEXTURE 2D); // Important: disable texturing again!

Test it!

Build this, run it.
It should look like the following: .l Carrier = 9:57 AM

The size is wrong

This doesn't look right
we mapped the whole 512x512 texture to the screen
including the border!
everything is very stretched out

To fix this, set the texture coordinates to only cover the region we are interested in

Hint: work out what fraction 320/512 is (and 480/512) and use that in the
texture coordinates (not the vertex positions!)

Check that it now looks correct

-l Carrier = 3:36 PM

Particle System

A particle system just simulates very simple physics on a bunch of points
Commonly used in games for effects like fire, smoke, fog, plasma etc.

Each particle has (at least) a position, a velocity and a lifetime

At each redraw, the position of each particle is updated according to the
particle physics

can be as simple as just move by the current velocity

Each particle is drawn on the screen at its current position

Particles are randomly generated and are removed after a certain time

i.e. they have a lifetime and then "die"

Mr. Sparky

To create the spark effect, we will use a simple particle system
Each particle will be a textured quad

We maintain a list of these particles
update their movement every frame
draw a textured quad at their new position

In EAGLView add a mutable array instance variable to hold the list of particles

Create a class Particle to represent a particle
i.e. representing the position and state of a particle

Just create an subclass of NSObject called Particle
It needs an x and y position (floats) at a minimum
Remember to add properties for the x and y position

Particle class

Add an array variable to ES1Renderer to hold a reference to the particle array in
EAGLView

Add a property for it!

In EAGLView initialise the array to be empty in the init method

Then set the particle array in the ES1Renderer to this array

self.particleList = [NSMutableArray arrayWithCapacity:500];
[self.renderer setParticlelList:self.particlelList];

Note that you have to call setParticleList explicitly

Drawing the sprite

Add a texture name to ES1Renderer, as you did for the background
This time, load spark.png (also in the lab zip file)

Add a method drawParticle to ES1Renderer
taking one argument, an instance of the Particle class

In render (in ES1Renderer), iterate through the particle list and call drawRender
on each particle

Drawing the sprite

in drawParticle
Draw a textured quad, exactly as in the background drawing
Bind the spark texture instead

Add a translate to the position given by the particle class
use glTranslatef(x,y,0)
translate before scaling

Instead of scaling to 320x480, scale to 32x32 instead

Remember: Push the matrix, transform, draw, pop the matrix

exactly as in the background drawing example

In the EAGLView init method, create a new instance of Particle
put it into the array
set its x and y to something like 160, 240 (middle of the screen)
Build, run, check that the particle appears!

Making it move

Now the single sprite is visible we can move it

To move a sprite, translate it by a different amount each frame

Give the sprite a velocity
Add dx and dy as variables to the Particle class
Add a method update

In update just do x+=dx, y+=dy

In EAGLView, add an updateParticles method and call it from the drawNow
function

Iterate through the particles and call update on each

When you create the particle object, remember to set dx and dy to sensible values
choose small values like 0.1 to start
The particle should move!

Particle lifetimes + replacement

Particles shouldn't last forever

Add a lifetime variable to the particle class
Make it start at some maximum age (e.g. 40) when it it initialised
Decrement it by one in every update cycle

Now, in EAGLView's updateParticles method, look through all particles and check
for any with lifetime<=0

Remove these from the list of particles
Note: to do this, place all the expired particles in a "kill list"
Then iterate through the kill list and remove all those particles from the main list

If you try and remove things directly while iterating through the particle list, you will cause an
error

Color by lifetime

Particles should fade out as they get "older"

Color particles by their age
brightness = currentAge/maximumAge
==1 when particles are generated
==0 when particles are about to be removed

Set brightness by setting the color before drawing the particle
use glColoraf and set the brightness using the alpha component

other components should be 1

Now the particle should fade out and disappear after a while

Drawing lots of particles

One particle isn't very exciting
In updateParticles randomly add new particles

// r will be 0-4 random value
int r = arcd4random() % 5;

for(int i=0;i<r;i++)
{

// create new instance of particle
// add it to particlelist

}
Utils.m has a function generateGaussian
this generates a normal random number centered around zero

Use this to set the velocity of the particle (dx and dy)
Add a constant on to the random value so the particles "spray off" in a definite
direction

Check this works!

Setting the blend mode

We want the particles to "add together"
OpenGLES supports this natively

Before drawing the particles
enable blending
glEnable(GL_BLEND)

set the additive blending mode
giBlendFunc(GL_SRC_ALPHA, GL_ONE)
this is equivalent to newColor = alpha*sourceColor + oldColor

Distributing them around the finger

We want the particles to spray out from the finger

Add member variables to EAGLView which indicate whether the finger is down
or not, and its current position

Add touchesBegan, touchesEnded and touchesMoved methods to EAGLView
These will receive the touch events
When the finger goes down or moves, record the position

In updateParticles only add new particles if the finger is down

Make the initial position of the particles the finger location
The y coordinate will be wrong!

Correct value is 480-y (OpenGL coordinates are upside with respect to device coordinates)

Orienting particles

The particles are all facing horizontally
This doesn't look right
They should point along the direction they are moving

In update, compute the angle of the particle
store it in an instance variable
NB: angle = atan2(dy,dx) (atan gives result in radians!)

In the renderParticle method, rotate by the particle's angle (after the translation)
Remember to convert from radians to degrees!
Rotate around the z axis (0,0,1)

Now the particles should line up with the direction they are going

Build it, and check that it works

Gravity! :)

Gravity is easy to simulate
Just a constant on to dy in each update call

NB: increment dy, not y!

-2 works well

The particles will now fall down
However, they will speed up unrealistically
Real sparks have (lots of) air resistance

Simulate air resistance by multiplying dx and dy by a constant < 1.0 on every
update

a scaling of 0.7 -> 0.99 will give good results
e.g.dx=dx *0.9

The walls

One final touch: the particles should not fall "off" the edge of the screen

In update, test if the y coordinate is< 0
if it is, set the y coordinate to 0, and set they y velocity (dy) to O
i.e. stop it at the edge

Now the particles should pool up nicely at the bottom of the screen!

Also, add a scale variable to Particle to introduce size variability
Scale the particle by this value when rendering it (using glScalef)

Set the scale value to some random value when particles are created
say between 0.2 and 1.5

note: to generate a random number from 0.0--1 .Quse
arc4random()/(double)ARC4ARANDOM_MAX

That's it, we're done!

Bonus points

If you have a real iPhone / iPod you could make the gravity in the particle system
depend on the real angle of the device

look up UlAccelerometer
the angle of the device is given by atan2(accelerationyY, accelerationX)

You could make the particle system multi-touch
for example, have the particles shoot from one finger to another
or have them orbit around the second finger

You just need to extend the code in
touchesBegan/touchesEnded/touchesMoved

You could also add some sound
a loopable "sparking" sound is in the lab zip file...

look up AVAudioPlayer
it has playback/stop functionality with looping support

