
ES3 Lab 3ES3 Lab 3
OpenGLES

This lab

• Creating an OpenGLES project

• Drawing simple triangles

• Drawing a quad

• Loading textures

• Drawing many OpenGLES objects• Drawing many OpenGLES objects

Outl ine of s teps

• Create a blank project

• Make it OpenGLES 1.1

• Strip out the default rendering code

• Draw a simple triangle

• Load a texture

• Draw it as a background

• Create a simple "particle"

• Make it move in random direction

• Make many particles spawn from finger location

• Give particles a limited lifetime

• Add gravity, wall deflection

Resul t

• A particle system which shoots "sparks" from the finger

Creat ing an OpenGLES project

• Create a new OpenGLES based application in XCode

Project s t ructure

• Note the structure of the project

▫ EAGLView.m defines a subclass of a control which provides an OpenGLES

context

▫ i.e. can draw OpenGLES in a control

ES1Renderer actually defines a skeleton block of code for OpenGLES 1.1 • ES1Renderer actually defines a skeleton block of code for OpenGLES 1.1

▫ initialise and draw callback

• ES2Renderer defines a OpenGLES 2.0 skeleton

▫ We don't want this

▫ In EAGLView.m change the code so that only ES1Renderer is used

▫ Delete ES2Renderer from the project!

▫ You will need to change ESRenderer as well to eliminate references to

ES2Renderer.h

• Build it and check that the default bouncing square appears

View subclass OpenGLES

Code

Project St ructure

• Note: EAGLView is the control

▫ it receives events and is instantiated in the app delegate

� added to the main UIWindow

▫ if you wanted to manipulate touch events, you would override touchesBegan

etc. in EAGLView

▫ the default project creates a fullscreen control▫ the default project creates a fullscreen control

• ES1Renderer is where OpenGLES drawing commands go

▫ EAGLView will call render in ES1Renderer when the control needs redrawn

▫ This will be called regularly (e.g. at 60FPS)

• The initial ES1Renderer has a lot of setup and other stuff in it

▫ The key place for rendering is render

Cleaning up render

• Remove everything that's currently in render and replace it with the following

blank skeleton

- (void) render
{

[EAGLContext setCurrentContext:context];
glBindFramebufferOES(GL_FRAMEBUFFER_OES, defaultFramebuffer);glBindFramebufferOES(GL_FRAMEBUFFER_OES, defaultFramebuffer);

// Render stuff will go here!

glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

}

Clear ing the screen

• We need to clear the screen

• Set the clear color using glClearColor(r,g,b,a)

• Clear using glClear(GL_COLOR_BUFFER_BIT)

▫ Insert these Immediately after glBindFramebufferOES(...)

▫ clearing should happen before anything else

• Choose an interesting color for the clear color

• Build, check that the screen goes to the color you set!

Sett ing the project ion

• We need to set the projection matrix

• We will use an orthographic perspective which emulates pixel coordinates

• Set the matrix mode to GL_PROJECTION and then reset it with glLoadIdentity()

• Remember to set the matrix mode back to model view and call glLoadIdentity()!

glClear(GL_COLOR_BUFFER_BIT);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Adding an or thographic project ion

• After glMatrixMode(GL_PROJECTION), glLoadIdentity() add a call to glOrthof

▫ This sets the projection matrix to orthographic

• Note: it must go after the glLoadIdentity(), and before the matrix mode is set back

to GL_MODELVIEW!

• The parameters are the left, right, bottom and top extents, and the z range

▫ The z range is effectively unimportant

▫ We will always draw at z=0

• Left should be 0, right should be backingWidth (size of the screen)

• Bottom should be 0, top should be backingHeight

• zNear, zFar should be -1, 1

▫ this includes the region at z=0 where we will draw

Drawing a t r iangle

• Add a triangle (using indexed drawing)

▫ Create an array (of GLfloat) for the vertex positions (must have 9 elements!)

� positions are in screen coordinates

▫ Create an array of (GLubyte) for the vertex indices

GLfloat trianglePositions[9] = {... // 9 floats x1,y1,z1,x2,y2,z2,x3,y3,z3
// z should be zero for all

▫ Set the color using glColor4f

▫ Enable vertex arrays

▫ Set the vertex pointer

▫ Call glDrawElements

▫ Build, check a triangle actually appears!

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, &(trianglePositions[0]));
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_BYTE, &(triangleIndices[0]));

glColor4f(1,0,0,1); // red (choose your own color!)

// z should be zero for all
GLubyte triangleIndices[3] = {0, 1, 2}; // use first three vertices

Loading a texture

• In the lab zip file, there is are Utils.m and Utils.h

▫ Add these to your project

▫ Import Utils.h in EAGLView.h and ES1Renderer.h

• Utils provides an PNG image loading function called loadTexture()

▫ Have a look at this function

▫ It has a lot of boilerplate, but it basically just loads an image and converts it to

a plain array of RGBA floats and passes this to OpenGL

• It takes a string for the filename (minus the extension!) and returns a texture

name

▫ This is just an integer

• The other two parameters write the width and height into the passed pointer

• Note: you must add the CoreGraphics framework to the frameworks to make this

code compile!

Loading the background image

• Add background.png to the project

• Add a member variable for the background image to ES1Renderer (of type

GLuint)

▫ in init load the texture:

• Note: background.png is 512x512

▫ This is because OpenGLES textures must have widths and heights which are

powers of 2

▫ The image is actually 320x480 with a border around it

int w,h; // we don't use these, but we need to pass something
backgroundTexture = loadTexture(@"background", &w, &h);

Drawing the background

• Add a drawBackground method to ES1Renderer

▫ Call it from render, before the triangle drawing

• Here we need to draw a textured quad

glEnable(GL_TEXTURE_2D); // Enable texturing
glEnableClientState(GL_VERTEX_ARRAY); // Enable the right arrays
glDisableClientState(GL_NORMAL_ARRAY);glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

GLfloat texCoords[] = {0, 1, 1, 1, 0, 0, 1, 0};
GLfloat vertices = {0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0};

glPushMatrix(); // Store modelview matrix

glScalef(320, 480, 1); // map (0,0),(1,1) to (0,0),(320,480)
glColor4f(1,1,1,1); // white color
glBindTexture(GL_TEXTURE_2D, backgroundTexture); // set the current texture
glVertexPointer(3, GL_FLOAT, 0, vertices); // set the pointers
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glPopMatrix(); // Restore modelview matrix
glDisable(GL_TEXTURE_2D); // Important: disable texturing again!

Test i t !

• Build this, run it.

• It should look like the following:

The s ize is wrong

• This doesn't look right

▫ we mapped the whole 512x512 texture to the screen

▫ including the border!

▫ everything is very stretched out

• To fix this, set the texture coordinates to only cover the region we are interested in

▫ Hint: work out what fraction 320/512 is (and 480/512) and use that in the

texture coordinates (not the vertex positions!)

• Check that it now looks correct

Part icle System

• A particle system just simulates very simple physics on a bunch of points

▫ Commonly used in games for effects like fire, smoke, fog, plasma etc.

• Each particle has (at least) a position, a velocity and a lifetime

▫ At each redraw, the position of each particle is updated according to the

particle physics

� can be as simple as just move by the current velocity

▫ Each particle is drawn on the screen at its current position

▫ Particles are randomly generated and are removed after a certain time

� i.e. they have a lifetime and then "die"

Mr. Sparky

• To create the spark effect, we will use a simple particle system

▫ Each particle will be a textured quad

• We maintain a list of these particles

▫ update their movement every frame

▫ draw a textured quad at their new position

• In EAGLView add a mutable array instance variable to hold the list of particles

• Create a class Particle to represent a particle

▫ i.e. representing the position and state of a particle

• Just create an subclass of NSObject called Particle

▫ It needs an x and y position (floats) at a minimum

▫ Remember to add properties for the x and y position

Part icle class

• Add an array variable to ES1Renderer to hold a reference to the particle array in

EAGLView

▫ Add a property for it!

• In EAGLView initialise the array to be empty in the init method

Then set the particle array in the ES1Renderer to this array▫ Then set the particle array in the ES1Renderer to this array

▫ Note that you have to call setParticleList explicitly

self.particleList = [NSMutableArray arrayWithCapacity:500];
[self.renderer setParticleList:self.particleList];

Drawing the spr i te

• Add a texture name to ES1Renderer, as you did for the background

• This time, load spark.png (also in the lab zip file)

• Add a method drawParticle to ES1Renderer

▫ taking one argument, an instance of the Particle class

• In render (in ES1Renderer), iterate through the particle list and call drawRender

on each particle

Drawing the spr i te

• in drawParticle

▫ Draw a textured quad, exactly as in the background drawing

▫ Bind the spark texture instead

▫ Add a translate to the position given by the particle class

� use glTranslatef(x,y,0)

� translate before scaling� translate before scaling

▫ Instead of scaling to 320x480, scale to 32x32 instead

▫ Remember: Push the matrix, transform, draw, pop the matrix

� exactly as in the background drawing example

• In the EAGLView init method, create a new instance of Particle

▫ put it into the array

▫ set its x and y to something like 160, 240 (middle of the screen)

• Build, run, check that the particle appears!

Making i t move

• Now the single sprite is visible we can move it

• To move a sprite, translate it by a different amount each frame

▫ Give the sprite a velocity

� Add dx and dy as variables to the Particle class

� Add a method update� Add a method update

• In update just do x+=dx, y+=dy

• In EAGLView, add an updateParticles method and call it from the drawNow

function

▫ Iterate through the particles and call update on each

• When you create the particle object, remember to set dx and dy to sensible values

▫ choose small values like 0.1 to start

• The particle should move!

Part icle l i fet imes + replacement

• Particles shouldn't last forever

• Add a lifetime variable to the particle class

▫ Make it start at some maximum age (e.g. 40) when it it initialised

▫ Decrement it by one in every update cycle

• Now, in EAGLView's updateParticles method, look through all particles and check

for any with lifetime<=0

▫ Remove these from the list of particles

� Note: to do this, place all the expired particles in a "kill list"

� Then iterate through the kill list and remove all those particles from the main list

� If you try and remove things directly while iterating through the particle list, you will cause an

error

Color by l i fet ime

• Particles should fade out as they get "older"

• Color particles by their age

▫ brightness = currentAge/maximumAge

▫ ==1 when particles are generated

▫ ==0 when particles are about to be removed

• Set brightness by setting the color before drawing the particle

▫ use glColor4f and set the brightness using the alpha component

▫ other components should be 1

• Now the particle should fade out and disappear after a while

Drawing lots of part icles

• One particle isn't very exciting

▫ In updateParticles randomly add new particles

// r will be 0-4 random value
int r = arc4random() % 5;

for(int i=0;i<r;i++)
{

• Utils.m has a function generateGaussian

▫ this generates a normal random number centered around zero

• Use this to set the velocity of the particle (dx and dy)

▫ Add a constant on to the random value so the particles "spray off" in a definite

direction

• Check this works!

{
// create new instance of particle
// add it to particleList

}

Sett ing the blend mode

• We want the particles to "add together"

▫ OpenGLES supports this natively

• Before drawing the particles

▫ enable blending

� glEnable(GL_BLEND)

▫ set the additive blending mode

� glBlendFunc(GL_SRC_ALPHA, GL_ONE)

� this is equivalent to newColor = alpha*sourceColor + oldColor

Dist r ibut ing them around the f inger

• We want the particles to spray out from the finger

▫ Add member variables to EAGLView which indicate whether the finger is down

or not, and its current position

• Add touchesBegan, touchesEnded and touchesMoved methods to EAGLView

These will receive the touch events▫ These will receive the touch events

▫ When the finger goes down or moves, record the position

• In updateParticles only add new particles if the finger is down

• Make the initial position of the particles the finger location

▫ The y coordinate will be wrong!

� Correct value is 480-y (OpenGL coordinates are upside with respect to device coordinates)

Orient ing part icles

• The particles are all facing horizontally

▫ This doesn't look right

▫ They should point along the direction they are moving

• In update, compute the angle of the particle

▫ store it in an instance variable

▫ NB: angle = atan2(dy,dx) (atan gives result in radians!)

• In the renderParticle method, rotate by the particle's angle (after the translation)

▫ Remember to convert from radians to degrees!

▫ Rotate around the z axis (0,0,1)

▫ Now the particles should line up with the direction they are going

• Build it, and check that it works

Gravi ty! :)

• Gravity is easy to simulate

▫ Just a constant on to dy in each update call

� NB: increment dy, not y!

▫ -2 works well

• The particles will now fall down• The particles will now fall down

▫ However, they will speed up unrealistically

▫ Real sparks have (lots of) air resistance

• Simulate air resistance by multiplying dx and dy by a constant < 1.0 on every

update

▫ a scaling of 0.7 -> 0.99 will give good results

▫ e.g. dx = dx * 0.9

The wal ls

• One final touch: the particles should not fall "off" the edge of the screen

• In update, test if the y coordinate is < 0

▫ if it is, set the y coordinate to 0, and set they y velocity (dy) to 0

▫ i.e. stop it at the edge

• Now the particles should pool up nicely at the bottom of the screen!

• Also, add a scale variable to Particle to introduce size variability

▫ Scale the particle by this value when rendering it (using glScalef)

▫ Set the scale value to some random value when particles are created

� say between 0.2 and 1.5

� note: to generate a random number from 0.0--1 .0use

arc4random()/(double)ARC4RANDOM_MAX

• That's it, we're done!

Bonus points

• If you have a real iPhone / iPod you could make the gravity in the particle system

depend on the real angle of the device

▫ look up UIAccelerometer

▫ the angle of the device is given by atan2(accelerationY, accelerationX)

You could make the particle system multi-touch• You could make the particle system multi-touch

▫ for example, have the particles shoot from one finger to another

▫ or have them orbit around the second finger

▫ You just need to extend the code in

touchesBegan/touchesEnded/touchesMoved

• You could also add some sound

▫ a loopable "sparking" sound is in the lab zip file...

▫ look up AVAudioPlayer

� it has playback/stop functionality with looping support

