
ES3 Lecture 10ES3 Lecture 10
Further Android development: UI

design, maps, app widgets and using

OpenGLES

Menus

• Android, unlike some other mobile platforms, supports menus in applications

• Menus can be be either:

▫ key-triggered Options menu (appear when the Menu key brings up a menu)

▫ context menus (appear when a control is held for a long time)

• Options menu is created dynamically

▫ on first menu press the onCreateOptionsMenu() method of the current Activity

is called

▫ this should populate the menu with items

▫ when options are selected, the onOptionsMenuItemSelected() method of the

current Activity is called

Context Menus

• Context menus are created in much the same way

▫ onCreateContextMenu() is created for the first time a View is long-pressed

▫ the View is passed in

▫ onContextItemSelected() is called when an item is selected

public void onCreateContextMenu(ContextMenu menu, View view, ContextMenuInfo info
{

super.onCreateContextMenu(menu, view, info);
if(view.id == R.id.launchItem)
{

menu.add(0, LAUNCH_ID, 0, "Launch");
menu.add(0, RECALL_ID, 0, "Recall");
menu.add(0, DISABLE_ID, 0, "Disable");

}
}

public boolean onContextItemSelected(MenuItem item)
{

if(item.getItemId()==LAUNCH_ID) { doLaunch(item); } // etc...
}

Noti f icat ions

• Android supports several kinds of simple notifications

• "Toasts" are simple message boxes which appear for a brief time

▫ They can be launched from Services, and will appear over the current Activity

Toast.makeText(getApplicationContext(), "Lauch failed!", Toast.LENGTH_SHORT);

• Notifications can also appear in the status bar

▫ This is rather more complicated and requires a Notification to be sent to a

NotificationManager

Toast.makeText(getApplicationContext(), "Lauch failed!", Toast.LENGTH_SHORT);

Styles

• Android allows user interface components to have styles

▫ Styles are hierarchical

▫ Much like the was CSS specifies styles for HTML documents

• Styles are specified in XML files

▫ stored in (any) XML file in res/values▫ stored in (any) XML file in res/values

• Each style is an element <style> with a name, with a list of <item> subitems

▫ each subitem specifies an attribute, like layout_width, or textColor

• A component definition in a layout XML file can reference the style using the notation

@style/MyStyleName where MyStyleName is the name of the <style> element

• Styles can inherit from other styles by specifying the parent attribute in the <style> tag

▫ Individual attributes in specific controls can override style parameters (e.g. specifically

specify textColor)

Example style usage

• In res/values/styles.xml

<resources>
<style name="RedStretch">

<item name="android:layout_width">fill_parent</item>
<item name="android:textColor">#ff0000</item>

</style>

<style name="RedStretch.text" parent="RedStretch">
<item name="android:typeface">serif</item>

• In res/layout/main.xml

▫ Note that the second button overrides the font color

<item name="android:typeface">serif</item>
</style>
</resources>

<Button style="@style/RedStretch" android:text=@"Press Me!"/>

<Button style="@style/RedStretch" android:text=@"Press Me!" android:textColor="#00ff00"/>

Tween Animations

• Android supports animations much as the iPhone does

▫ Like so many other things in Android, animations are usually specified in XML

files and triggered when required

• Animation definitions go in res/anim

Consist of a series of animation types▫ Consist of a series of animation types

� rotate, translate, scale, alpha, or set

� set allows grouping of animation elements (e.g. rotate and scale at the same time)

▫ Each element specifies a duration and an interpolator

� Sets allow interpolators to be shared among a number of elements (for synchronization)

• Various interpolators are available, like LinearInterpolator, AccelerateInterpolator,

AnticipateOvershootInterpolator...

▫ A bit richer than the iPhone standard interpolator types (linear, with optional

ease in/ease out)

Attr ibutes

• Animation attributes specify the change in their value

▫ e.g. rotation specifies a start and end angle in degrees

▫ transform attributes also specify pivots

� this is the centrepoint about which transforms are made

� e.g. rotation centre

• Animations can be loaded using AnimationUtils.loadAnimation()• Animations can be loaded using AnimationUtils.loadAnimation()

▫ e.g. Animation spinFast = AnimationUtils.loadAnimation(this, R.anim.spinFast)

• The animation is then passed to a specific View, by calling startAnimation on the view

▫ pacmanSprite.startAnimation(spinFast)

• Android also supports frame animations for general drawables (not for Views)

▫ i.e. switching images rapidly

▫ an <animation-list> tag is used to specify a list of drawables

▫ can cycle continuously or loop once

OpenGLES in Android

• Android supports OpenGLES with a standard set of bindings

• To use OpenGLES you must explicitly use GLSurfaceView

▫ You can use this in place of any View

• Then implement a subclass of opengl.GLSurfaceView.Renderer

▫ and assign the renderer to the View with setRenderer()▫ and assign the renderer to the View with setRenderer()

▫ onSurfaceCreated() is called when the surface is created (i.e. at init)

▫ onDrawFrame() is called for every redraw step

� all drawing code goes in here

• Each method gets passed a GL10 context object

▫ this is an object which implements OpenGL calls

▫ e.g. with gl_context.glColor4f(1,1,1,0.5)

▫ or gl_context.glEnable(GL10.GL_BLEND)

• Note that all constants are also class members of the GL10 object

Star t ing Services

• Services are Android's mechanism for background computation

▫ A Service is usually launched from an Activity and persists until it is shut down

▫ It does not exit when the current task ends!

• Services are started with Intents, as with other Android components

▫ Context.startService() takes an Intent which specifies the service to start up▫ Context.startService() takes an Intent which specifies the service to start up

• Services must be declared in the AndroidManifest.xml

▫ Intent-filters are used to specify the Intent that the service will respond to

• Services extend the Service class

▫ Usually at least override onCreate, which is called when the Service is started

Binding to services

• In order to be useful, Activities (and other Services) need to communicate with a

running Service

• Entities communicate with a Service by binding to it

▫ This opens up a communication channel

• The specification of this communication channel must be laid out beforehand

▫ This specifies the method calls the entity can use to communicate with the

service, and the type and direction (e.g. in only or in and out) of parameters

• Android uses a specification language called AIDL to specify the procedure calls

that can be used

▫ AIDL is basically like Java method prototypes

AIDL

• AIDL files define a remote interface

▫ Consist of an interface definition with a series of method definitions

• Interface parameters can be primitives, Strings, CharSequences, Lists or Maps or can be

types imported from other packages

• Every parameter must specify a direction• Every parameter must specify a direction

▫ in, out or in out

▫ primitive types can only be in (no way to write to a boolean parameter, for example)

package com.es3.labs.SampleApplication

// Must be specifically imported!
import com.es3.labs.SampleApplication.TargetType;

interface ILauncher {
void setTarget(in double latitude, in double longitude);
boolean isOnTrack();
void getTarget(out TargetType target);

}

Implement ing the Inter face

• In order to use the AIDL file, you must provide an implementation

• This is done by providing a stub

▫ Each interface defined by the AIDL file has an automatic stub variable

▫ You set this to a class instance which matches the interface and returns the

valuesvalues

• This interface object is then returned to the binding object (e.g. the Activity that

started the service) when the class is bound (with bindService)

▫ The methods on this interface can then be called by the binding object

