
ES3 Lecture 11ES3 Lecture 11
Qt + Maemo development

Maemo

• Nokia's Linux based platform

▫ Almost entirely open source

▫ Nokia N770, N800, N810, N900 only models

▫ Only N900 has 3G/phone capability

N900 has relatively fast ARM CPU, GPU acceleration• N900 has relatively fast ARM CPU, GPU acceleration

▫ resistive touch screen -- so no multitouch

• Development is very flexible

▫ C, C++, Java, Python, Ruby, Lua, Lisp, whatever you want

Maemo development

• Can develop on the device itself

▫ e.g. using gcc (but not really practical for big projects -- too slow and memory

intensive)

▫ or just copy over python scripts and running them...

Scratchbox provides a Linux-based cross-compilation toolkit• Scratchbox provides a Linux-based cross-compilation toolkit

▫ Makes it easy to develop on a Linux system and target for Maemo

▫ Only available for Linux though, and a bit tricky to set up

• Maemo emulator available as part of the API

▫ Runs in virtual machine

• Development can be very straightforward

▫ e.g. ssh into device to execute and debug

▫ files can be directly shared, so you can edit files on the device transparently

Maemo Development (I I)

• Maemo uses a derivative of Debian

▫ Many standard libraries and utilities are present

▫ Porting new libraries is often feasible as well

• The Maemo UI is currently a custom UI built on GTK+ (Hildon)

▫ adds "finger-friendly" extensions

▫ supports a simple desktop environment

� control panel, application manager

▫ some common widgets for mobile systems implemented

• But Nokia will be moving to Qt across all their platforms shortly

The Qt f ramework

• Qt is a full object-oriented framework with extensive GUI support

▫ Written in C++

▫ Large class library

• Provides basic container objects, file system access, multi-threading, networking,

user interface components, scripting and database accessuser interface components, scripting and database access

• Originally developed by TrollTech, recently bought by Nokia, who are pushing hard

to standardize its use across their platforms

• Open-source, under the LGPL license

▫ (Expensive!) commercial license available if you want to modify the library and

redistribute without releasing the source

Development

• Cross-platform

▫ code using this framework should simply recompile on another platform

▫ unlike other platforms we've covered ,this is just a very complete library

� it runs on desktop as well as mobile platforms

• Supported platforms include: Linux, Windows, Mac OSX, Maemo, Windows CE, Symbian and • Supported platforms include: Linux, Windows, Mac OSX, Maemo, Windows CE, Symbian and

Maemo

▫ experimental support for Android and even the iPhone(!)

• New IDE recently released (Qt Creator)

▫ provides code editor, GUI designer, debugger etc.

• Although written in C++, bindings exist for other languages

▫ Jambi provides Java bindings

▫ PyQt provides Python bindings but is proprietary

▫ PySide is Nokia's PyQt reimplementation project (a bit ropey at the moment)

Qt St ructure

• Qt has:

▫ Core module (data structures, OS services)

▫ GUI module (widgets, canvas)

• Extension modules, including:

▫ OpenGL(ES)

▫ Database access

▫ Networking (HTTP, FTP, sockets)

▫ Database drivers

▫ XML parsing

▫ Media playback (video and audio)

▫ HTML renderer

Qt and C++

• Qt is implemented in C++, and is thus strongly-typed

▫ nothing like the message-based model of Objective-C...

▫ All the benefits (performance, compatibility, flexibility) of C++, and all of the

downsides too (awful syntax, complexity, manual memory management)

All Qt objects inherit from QObject, the base object of the Qt hierarchy• All Qt objects inherit from QObject, the base object of the Qt hierarchy

• C++ has manual memory management

▫ Qt provides some help by automatically destroying objects hierarchically (e.g.

window is destroyed, all child widgets are destroyed)

▫ Provides QPointer smart pointers which automatically null after the object is

freed

• Adds features such as internationalised strings (QString), hashtables (dictionaries),

▫ standard C++ datastructures (e.g. from STL) are little used

Signals and Slots

• Qt has to be able to work over many different platforms

• It has a custom communication interface called Signals and Slots

▫ Allows typesafe communication between any Qt objects

• Each signal and slot has a method signature

▫ These signatures must match when connecting objects!

▫ e.g. void f(int x) -> void g(int x), but not void f(QObject *q) -> void g(int x)

• A slot is just a object method which will be called when an event is sent

• A signal looks like a method, but is never called

▫ instead it is emitted

▫ this routes the call to the connected slot instead

Signals and Slots

• Signals and slots are connected using QObject::connect()

▫ takes a sending object, a signal, a receiving object and its slot

QObject::connect(vehicle, SIGNAL(engineStarted(int)), vehicleRegistry,
SLOT(vehicleStartedEngine(int))

▫ Signals and slots are declared in the class definition
class Vehicle : public QObject {
...

signals:
void engineStarted(int started);
}

class VehicleRegistry : public QObject {

public slots:
void vehicleStartedEngine(int started);

}

Emit t ing s ignals

• Executing emit engineStarted(1) in this example would send the signal

▫ emit will only work from within the class that defines the signal

▫ Signals are always private and always return void

• Any object connected to it would receive a call to the slot method

▫ Methods are executed synchronously

▫ i.e. when an emit is encountered, each listening slot is executed, and then the

code after the emit resumes

• Signals and slots are high-perfomance

▫ slower than basic function calls, but not by much

• Sender of signal can be recovered in a slot using QObject::sender()

• Other more complex functionality available (e.g. asynchronous queued signals)

QPointer

• Qt provides guarded pointers (QPointers) which work with all Qt objects

▫ Uses operator overloading to work like a normal pointer

▫ But auto-nulls when the object it is pointing to is destroyed

� avoids dangling pointers

• Use C++ generics so that QPointer's work just like ordinary pointers (except for no • Use C++ generics so that QPointer's work just like ordinary pointers (except for no

pointer arithmetic)

// standard pointer
QLabel *ql = new QLabel;

// guarded pointer
QPointer<QLabel> ql = new QLabel;

Javascr ipt (ECMAScr ipt) scr ipt ing

• Qt has built in ECMAScript support, called QScript

▫ Basically Javascript

▫ Integrated script debugger in the IDE

• QScript can access and manipulate Qt objects

▫ properties, signals and slots are available

• Use is simple: create a QScript object, passing in any objects you want the script to

access, and then execute it

▫ The C++ code can set and get values that the script uses

QScriptEngine engine;
QScriptValue result = engine.evaluate(scriptString);

Statechart support

• Qt has powerful support for state machine models

▫ especially the formalisms used in statecharts

• States and transitions can be defined, and actions can happen on transitions, and

when states are entered and left

Guards and targetless transitions are supported▫ Guards and targetless transitions are supported

• States can be grouped to produce hierarchical state machines

▫ History states (so that groups remember their previous state) are supported

▫ Concurrent state machines are also possible

• State machines can receive messages from your code, and perform actions as a

result (e.g. by sending messages back)

• State machines can be linked to the UI using the animation framework

GUI features

• Many standard widgets

• GUI editor

• Dialog creation tools (e.g. for wizards)

• High-quality anti-aliased drawing

▫ Built in SVG support

• Animation support (similar to Android and iPhone, but more flexible)

• Multi-touch support

• Built in gesture-recognition (pinch etc.)

• Able to support native look and feel on all platforms

▫ e.g. looks like Windows on Windows

▫ This is quite unlike GTK...

GUI

• QtGui module provides standard widgets

▫ text box, buttons, labels, combo boxes

▫ advanced widgets like treeviews, toolboxes

▫ printer support

▫ undo support

▫ drag and drop

▫ accessibility functions

▫ layout managers

• Item views support simple linkage of data sets to the GUI (e.g. standardized table

views)

High-performance Canvas

• One of Qt's advantages is a powerful drawing module

▫ Hardware accelerated, where supported

▫ Highly scalable, and can draw huge numbers of graphical elements efficiently

▫ Automatically supports printing

• Graphical effects like blurring, blending and shadowing are built in

• The QGraphicsView widget provides the canvas, and be used as any other widget

• Geometric primitives, Bezier curves, advanced type rendering are all supported

Qt Mult i threading

• Qt has a cross-platform common interface for multithreaded applications

▫ Thread starting and completion

▫ Semaphores and mutexes

▫ Inter-thread communication

• Threads can communicate using the standard signal and slot mechanism

• High-level concurrent programming interface allows parallel computation without

using threads

▫ e.g. mapping a function over a list, or doing map/reduce, or filtering sequences

▫ makes it easy to scale applications across cores without rewriting any code

• Inter-process communication also has a standard interface

▫ either using simple local sockets

▫ or shared memory, for fast transfer of data between processes

Using PyQt

• PyQt provides standardized bindings for Qt

▫ Open-source, but only licensable as GPL for free use

� This means you must distribute soruce code

▫ Commercial use requires a license

• PyQt is extremely complete, and covers virtually everything available in Qt• PyQt is extremely complete, and covers virtually everything available in Qt

▫ Even GUIs designed in the design tool can be converted to Python code with an

automatic tool!

• Designed to make Qt appear as much like Python as possible

▫ Most memory management issues just disappear

• There is a book

▫ "Rapid GUI programming with Python and Qt" by Mark Summerfield published

in 2007 (so reasonably up-to-date)

PySide

• Nokia's reimplementation of PyQt, using a free license (LGPL, like Qt)

• Incomplete as of now (e.g. no Windows port)

▫ Supposed to be well supported on Maemo

▫ It is not recommended for "production-level stability"

▫ However, Users have reported than many applications written for PyQt work

correctly with PySide as is

• API is currently intended to be one-for-one compatible with PyQt

▫ i.e. you can just substitute the import line and everything will work the same

