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Realtime audio on mobile devices



Recommended reading

• Real sound synthesis for interactive applications by Perry Cook [2002]

▫ short, but complete and well written introduction to audio synthesis

• Julius O. Smith has three very good (but technical) online books on audio processing

▫ Introduction to Digital Filters with Audio Applications by Julius O Smith [2009]

� www.dsprelated.com/dspbooks/filters� www.dsprelated.com/dspbooks/filters

▫ Mathematics of the DFT with Audio Applications by Julius O Smith

� www.dsprelated.com/dspbooks/mdft

▫ Physical Audio Signal Processing by Julius O Smith

� www.dsprelated.com/dspbooks/pasp

▫ Spectral Audio Signal Processing by Julius O Smith

� www.dsprelated.com/dspbooks/sasp

▫ Computer Music Tutorial by Curtis Roads

� Very complete  introduction to ditgal audio

▫ Lots of very useful code snippets at musicdsp.org



Digi tal  Audio

• Sounds consist of pressure waves

▫ variations in air pressure levels are picked up by the ears

• Sounds are by their nature analog

▫ They vary continuously in both time and value

• In order to deal with them on a computer, a digital representation is required

▫ Discrete time, and discrete value

• There is a very important result that shows that if you sample (measure) an analog value 

frequently enough, and with enough resolution, it can be reproduced nearly perfectly

▫ The speed of sampling determines the maximum frequency which can be represented

▫ Maximum frequency is 1/2 the sample rate -- the Nyquist rate

▫ The number of levels  used determine the accuracy of the signal

� Fewer levels mean noisier signals



Sampl ing

• To represent a sound, regularly spaced samples are taken

▫ Samples have a rate and a resolution

• Humans can hear at the most up to about 20000Hz

▫ So a sampling rate of around 40000Hz can represent all audible frequencies

� e.g. CD audio is sampled at 44100Hz, SACD� e.g. CD audio is sampled at 44100Hz, SACD

▫ Lower sample rates occupy less space (obviously) but lose high frequency components

• The resolution specifies the number of possible levels used. Common values are:

▫ 8 bit: 256 level, sounds crude and noisy, but was often used in old hardware

▫ 12 bit: 4096 levels, used on many old digital musical instruments

▫ 16 bit: 65536 levels, the most common digital standard. Resolution above this are not audible.

▫ 24 bit: 16777216 levels. Used in professional audio. This resolution is used because certain processing 

can reduce the levels available -- this would result in noticeable degradation at 16 bit.

▫ 32 bit or 64 bit: floating point. Used for ease and speed of computation

pluck-reverb.wav



PCM Data

• The canonical form for audio data is PCM (pulse code modulation)

▫ Just a sequence of integer values representing sound levels

▫ Assumes a constant sample rate

• All (well, almost all) digital audio hardware uses this internally at some stage

▫ A/D convertors convert analog signals (e.g. from a microphone) to PCM▫ A/D convertors convert analog signals (e.g. from a microphone) to PCM

▫ D/A convertors convert it back into electrical signals (to go to speakers)

• It is very easy to manipulate audio data in PCM format

▫ e.g. to mix two sounds, their PCM representations can just be added



Formats

• Raw PCM data can have several forms

▫ When working with PCM data, you need to know the format!

▫ It  has a sample rate

� e.g. 44100Hz

▫ It has a resolution or bit depth

� e.g. 16 bit� e.g. 16 bit

▫ It has a signedness

� PCM can either be unsigned (0-65535, for example) or signed (-32768--32767, for 

example)

� Signed data is generally easier to work with

▫ It has an endianness

� order of bytes in machine representations of words 

▫ It has a number of channels

� e.g. 1 for mono, 2 for stereo, 6 for surround



WAV f i les

• WAV files are commonly used to store PCM data

▫ (although they can store compressed data as well)

• Just has a header specifying the features listed on previous page

▫ and the length of the data

▫ followed by a block of binary data with the PCM data

• Lots of standard routines for reading/writing WAV files 

▫ e.g. using the AudioToolbox library on the iPhone



Compressed Formats

• Raw PCM audio data is often very large

▫ e.g. 1 minute at 44100Hz, 16 bit = 5.2Mb 

• Lossy compressed formats remove data which are less perceptually important

• Simple mulaw coding reduces the dynamic range of a signal using an exponential signal• Simple mulaw coding reduces the dynamic range of a signal using an exponential signal

▫ changes in small values are more important than changes in large values

• MP3 coding splits up sound files into chunks, and splits those chunks into frequency bands 

▫ throws away those that are not "perceptually important" according to a fairly complex 

model

▫ results in huge filesize reduction but often very similar sounding sounds

• Compressed formats are always converted to raw PCM before playback!



Buffers

• Almost all digital audio hardware (and audio APIs)  use buffers

• Data is passed to the hardware in blocks

▫ e.g. of 2048 samples

• APIs never have methods like outputNextSample() 

▫ Instead, you fill a whole buffer of data and pass that in▫ Instead, you fill a whole buffer of data and pass that in

• Audio data is expensive to process and is absolutely time critical

▫ a variation of a few microseconds will corrupt the sound

▫ hardware takes care of streaming data to the D/A from the buffer

▫ buffering eliminates any errors in timing

� so long as the buffer is longer than any timing variation

• You must be able to fill the buffers fast enough

▫ otherwise the audio hardware will glitch, usually with sonically devastating results



Buffer ing

• The disadvantage of buffering is latency

▫ The longer the buffer is, the longer between an event being detected (e.g. a tap) and a 

sound being output

� 2048 sample buffer is 46ms at 44100Hz (reasonable)

� 65536 sample buffer is 1.49 seconds (not reasonable!)

▫ In very sensitive tasks (like drumming) humans can detect latency down to around 5ms

▫ 2ms latency is usually desirable in professional musical applications

� only 88 sample buffer  at 44100Hz!

• Most APIs have a callback system

▫ You register a function to fill buffers

▫ Each time the audio API runs out of data, it automatically calls your function to fill the 

buffer

• If there were only one buffer, this would lead to glitches between buffers!

▫ Usually have at least two buffers

▫ The API asks you to fill a buffer which is not currently being output

output 

spare



Simple Example

• Using an imaginary Objective-C API:

// in init...
[soundDriver registerCallbackTarget:self action:fillBuffer];

- (void) fillBuffer(int length, SInt16 *buffer)
{

• Every time the hardware needs more data, it calls fillBuffer; and gets some more 

data

{
for(int i=0;i<length;i++)
{

// produces pure tone at high A (440Hz) (assuming 44100Hz sampling rate)
double v = sin((440*i*2*M_PI)/44100.0);

// Buffer is signed 16 bit integers
// multiply floating point value -1 .. 1 by 32767 to fit to range
buffer[i] = v * 32767; 

}
}



F loat ing-point  and integer

• PCM data is usually integer

• On many devices, integer operations are much much faster than floating point operations

▫ but not on modern desktop processors -- floating point is faster!

• Unfortunately, it's much easier to work with sampled data in floating point

▫ Either have to do processing in floating point and convert at the end...▫ Either have to do processing in floating point and convert at the end...

▫ Or use integer versions of routines

• Large literature exists on efficiently implementing audio synthesis and processing effects 

using only integer instructions

▫ Problems often resolve around loss of precision

▫ e.g. sum together 64 16 bit integers and divide by 64 to get the average...

▫ result has only 10 bits of resolution!



Playing a sample back

• The simplest thing to do is to play back pre-recorded sound

• We will assume the pre-recorded sound is PCM, with the same format as the output API (i.e. 

same sample rate, bit depth, same number of channels)

▫ Otherwise will have to convert!

▫ Converting between sample rates accurately is very hard....▫ Converting between sample rates accurately is very hard....

▫ Although converting between signedness, endianness and bit-depth is very easy

• All that needs be done is to copy the data into the buffers



Simple Playback

SInt16 *PCMSample; 
int sampleLength;
int samplePointer = 0;

// Assume this loads a sample into PCM sample
loadSample(PCMSample, &sampleLength);

- (void) fillBuffer(int length, SInt16 *buffer)
{
for(int i=0;i<length;i++)
{

if(samplePointer<sampleLength)
buffer[i] = PCMSample[samplePointer++]; 

else
buffer[i] = 0;

}
}



Mixing samples

• Having one sample playing is useful, but often multiple layers needed

▫ e.g. in a musical instrument, many notes can be playing at once

• Can just add together samples (possibly scaling them down to reduce volume) to mix them 

together

• Often need to exactly specify starting point of sample

▫ since we are dealing with buffers, we can't just start the sample at the fillBuffer function 

call

▫ timing of samples will be limited to multiples of the buffer length

� sounds bad, gives a staccato machine gun effect when many samples are triggered

� sound playback should never depend on buffer length!

• The solution to this is to maintain a queue of currently active samples

▫ Each with a starting offset, representing the number of samples from now to start the 

sample



Event Queues

• Each element of the queue is of the form (time, sampleData)

▫ (-210, <SampleData 0x45AD>)

▫ (51,  <SampleData 0x5010>)

▫ (1813,  <SampleData 0x5014>)

▫ (4003,  <SampleData 0x5018>)

• Queue is maintained in sorted order

▫ A negative time indicates a currently playing sample

• On each fillBuffer, decrement the time by the length of the buffer

▫ if it is or  becomes negative, will need to be mixed into the buffer

▫ if -time > sample length, remove the sample from the queue (because it 

finished)



Better  sample player

- (void) fillBuffer(int length, SInt16 *buffer)
{
//it's faster to do the loops in the other order, but this is clearer
for(int i=0;i<length;i++)
{

int v = 0;
for(SoundEvent *event in queue)
{{

// add in currently playing samples
if(event.time-i<0 && -(event.time-i) < event.length)

v = v + event[-(event.time-i)];

// remove old samples
// in practice it is dangerous to remove an element from
// a queue we are iterating over...
if(-(event.time-i)>=event.length)

[queue removeElement:event];
}

buffer[i] = v;
}
// move the buffer on
for(SoundEvent *event in queue)

event.time -= length;
}



Frequency adjustment

• Frequency of samples can be adjusted by reading out samples either faster or 

slower than their original rate

▫ e.g. by reading out at 1/2 speed, pitch is lowered by half

▫ this is a naive way to adjust pitch and results in significant artifacts, but is cheap 

to implement

• Volume modulation is just multiplication by a constant

▫ multiply by 0.5 to half level

• Adding two field, event.rate and event.volume it is easy to create a sample player 

with adjustable frequency and volume 



Frequency shi f t ing sample player

- (void) fillBuffer(int length, SInt16 *buffer)
{
for(int i=0;i<length;i++)
{

int v = 0;
for(SoundEvent *event in queue)for(SoundEvent *event in queue)
{

// add in currently playing samples
int position = event.time - i * event.rate;
if(position <0 && -position < event.length)

v = v + event[-position] * event.volume;

// remove old samples
if(position>=event.length)

[queue removeElement:event];
}
buffer[i] = v;

}
// move the buffer on
for(SoundEvent *event in queue)

event.time -= length*event.rate;
}



Generat ing tones

• Often we want to do something more interesting than just playing back pre-

recorded data 

▫ Synthesizing audio in realtime for example

▫ Signals can be generated directly as needed

Tones can be generated with signals who have a basic period of 1/frequency of the • Tones can be generated with signals who have a basic period of 1/frequency of the 

desired tone

▫ i.e. repeat (in some sense) after 1/(frequency/sample rate) samples

▫ a tone is different from a noise in that it has a harmonic structure

▫ it appears to have a clear pitch when listened to

• A tone at 261Hz (middle C on a piano) has a period of ~167 samples at 44100Hz

• Lots and lots of functions and techniques can be used to generated sounds!



Sound basics

• Most sounds have three important properties

▫ pitch 

� the fundamental pitch which the sound appears to have

� obviously some sounds are unpitched entirely

▫ amplitude

� the level (and variation in level) of a sound

▫ timbre

� the "other quality" of sound

� woodwind vs piano, steel vs carpet



Sine wave

• The simplest, purest tone is a sine wave

▫ just a single frequency

▫ very easy to generate (as in the first example)

� (computing sin(x) is quite expensive, normally precomputed tables are used)

▫ v = sin((frequency*phase*2*pi)/(samplerate)▫ v = sin((frequency*phase*2*pi)/(samplerate)

� ranges from -1 to 1, must be scaled to fit the bit depth

� phase is a variable that increases by 1 for each sample produced

• Lots of synthesis techniques use the idea of a phasor

▫ Just a value which increments at each sample

▫ The increment is by frequency/(sample rate)

▫ Increases by 1.0 every period

� v = sin(phasor)

� phasor +=  (2*pi*frequency)/samplerate



Envelopes

• One of the key aspects of a sound is the way the amplitude changes over time

• Most sounds become rapidly loud, then become quieter

▫ The characteristic shape is very important

• The envelope of a sound is its amplitude profile

• Often described in terms of

▫ attack time (increase at start)

▫ decay time (decay to steady state)

▫ sustain level (volume while sustaining)

▫ release time (time to go back to silent)

• A flute has a slow attack and high sustain

• A drum has a very fast attack, no sustain and slow release



Use of  envelopes

• Often envelopes are used to modify the amplitude of sounds

▫ an envelope can be multiplied by a sample for example, to impose that envelope on to it

• Envelope generators just produce slowly varying sample patterns according to an envelope 

definition

• Often used for other parameters in synthesis

▫ for example, the "brightness" of a sound can be defined by an envelope

▫ lots of sounds are very bright in their attack and then become less bright

▫ brass instruments have the opposite envelope (brighter after attack)

• Envelopes vary slowly over a range of seconds, rather than the fast oscillations of tone 

generators



Synthesis  types

• There are many common synthesis types, including:

▫ Wavetable synthesis

� sample playback, usually with sample layering and pitch shifting

� widely used in electronic instruments (e.g. for acoustic instruments)

▫ Subtractive synthesis▫ Subtractive synthesis

� generates tones with very basic tones and then filters them

� most explicitly electronic-sounding instruments use this principle

▫ FM synthesis

� generates tones by modulating phase of a sine wave by another sine wave

� flexible and powerful, widely used in the 80's...



Synthesis  types

▫ Physical modelling synthesis

� simple physical models of real systems (airflows in tubes, vibrating strings)

� realistic and expressive, but computationally intensive

▫ Granular synthesis

� uses large numbers of very short fragments of sampled sound

� sound is defined by probability distributions over parameters

▫ Distortion Synthesis

� generalisation of FM, includes things like wave shaping, phase distortion and DSF 

synthesis

� excellent for generating new, artificial timbres and can be expressive

� computationally efficient



Wavetable

• Wavetable synthesis is just playing back samples

▫ Recordings from a real instrument or object are played back

▫ Pitches are matched to desired pitches by pitch shifting

• The code given previously is sufficient to implement a wavetable synthesizer

• The amplitude of the waveform can be adjusted, often with an envelope, so that different 

amplitude patterns can be achieved

• Wavetable synthesizers sound very realistic (because they are samples)

▫ But not very expressive, because there are very few ways to modulate them

• Usually the pitch, an amplitude envelope and a simple filter are used to modulate the raw 

samples



Sample layer ing

• Pitch shifting samples sounds bad if the shift is more than a few percent

▫ length of sound changes, and fixed resonances shift unnaturally

• Many wavetable synthesizers use many samples of an instrument, at different pitches

▫ choose the sample nearest to the desired pitch

▫ then pitch  shift a small amount to correct the sample▫ then pitch  shift a small amount to correct the sample

• This is quite memory intensive though

▫ some piano synthesizers use multiple gigabytes of samples!

▫ every key sampled at many levels of velocity

• Other variations might be recorded

▫ playing hard vs playing gently

▫ again, closest sample is selected, and then amplitude adjustment is used to fill in levels



Subtract ive

• Subtractive synthesis is the (digital emulation of) the techinques used in early electronic 

instruments such as Moog

• Use a few simple signal generators to create basic tones

▫ Sine waves, saw waves, square waves...

▫ Frequency and ampltiude of tones can be enveloped▫ Frequency and ampltiude of tones can be enveloped

• These signals are then filtered using digital filters

▫ e.g. lowpass filters to remove high frequency content

• Most "electronic" sounding instruments use subtractive synthesis 

▫ e.g. extensively used in dance music

• Making good sounding subtractive synthesizers is actually really hard in the digital domain, 

because the analog techniques are tricky to emulate without artifacts



Waveform generat ion

• Simple "classic" waveforms are used

▫ Originally used because they are easy

to generate in analog hardware

• Traditional waveforms are sine, square, 

saw and trianglesaw and triangle

• Square, saw and triangle are very rich

in harmonics

▫ i.e. lots of high frequency content

• Other waveform types, such as white noise, are also used

▫ computationally simple but frequency rich

• These harmonics can be filtered to produce interesting sounds



Digi tal  F i l ters

• Filters are used to "sculpt" the sound by removing frequency

▫ Lowpass filters remove high frequencies

▫ Highpass remove low

▫ Bandpass just keep frequencies in a particular band

• The filter cutoff frequency can be adjusted throughout the sound• The filter cutoff frequency can be adjusted throughout the sound

▫ e.g. letting through lots of high frequency at the start of a sound and then cutting it down

▫ usually modulated with an envelope

• Interesting filters are usually resonant

▫ enhance frequencies near the cutoff frequency

▫ resonant filters are the characteristic "analog synthesizer" sound

▫ filters often resonate so much they go into oscillation

• Although simple digital filters are easy to implement, making good sounding filters is hard

▫ especially since analog versions often have significant non-linearities...



Simple lowpass/highpass f i l ter

• A very simple "one-pole" lowpass filter is given by

▫ y(t) = alpha*y(t-1) + (1-alpha)*x(t)

• A corresponding highpass filter is just

▫ z(t) = x(t) - y(t)

• alpha can be set to produce a given cutoff frequency

▫ alpha = exp(-2*pi*frequency / sampleRate)

• This can't resonate though...

▫ One that can is the State Variable Filter, which also sounds pretty good (few digital 

artifacts) (see next page)

• Filters can be cascaded or run in parallel for richer modulations

▫ e.g. a bank of bandpass filters can be used to simulate a set of resonances



State Var iable F i l ter

• From musicdsp.com, originally from "Effect Design Pt. 1", J. Dattorro, J. Audio Eng. 

Soc., 45:9 1997

cutoff = cutoff freq in Hz
fs = sampling frequency //(e.g. 44100Hz)
f = 2 * sin (pi * cutoff / fs) //[approximately]
q = resonance/bandwidth [0 < q <= 1]  most res: q=1, less: q=0q = resonance/bandwidth [0 < q <= 1]  most res: q=1, less: q=0
low = lowpass output
high = highpass output
band = bandpass output
notch = notch output

scale = q
low=high=band=0;

//--beginloop
low = low + f * band;
high = scale * input - low - q*band;
band = f * high + band;
notch = high + low;
//--endloop



FM synthesis

• Frequency modulation synthesis is a simple technique for generating complex waveforms 

with minimal computation

▫ It is also the sound of the 80's due to the popularity of the Yamaha DX7!

• Idea: take a sine wave, and modulate its frequency with another sine wave

▫ When done slowly sounds like vibrato (frequency wobble)▫ When done slowly sounds like vibrato (frequency wobble)

▫ When done quickly, changes character (timbre) of the sound

• In practice, true frequency modulation can run into nasty problems

▫ phase modulation is used instead 

• Simple formula:

▫ v = sin((phasor1 + sin (phasor2) * modulation))

▫ phasor1 and phasor2 run at different frequencies 

▫ modulation specifies how much the second waveform distorts the first



FM synthesis  ( I I )

• As the modulation of the sine wave increases, the spectral richness of the signal increases

▫ more high frequency components

▫ if the modulator:carrier frequency is integer, the resulting sound is harmonic

▫ if it's not, the result is inharmonic

� this is hard to achieve with other methods

� excellent for bell sounds, where inharmonicity is important

• More complex sounds can be created by combining units together

▫ one FM unit can be the modulator of another unit, replacing the basic sine wave

▫ multiple FM units can be cascaded or run in parallel

• Classic instruments like the DX7 had 6 "operators" (sine wave synthesizers) which could be 

arranged in different patterns

▫ other synthesizers have used 4 or 8 operators





FM Synthesis  ( I I I )

• FM can produce a wide variety of sounds

▫ very "sharp" compared to traditional analog synthesis

� lots of high frequency components

▫ sometimes said to have a "plasticy" tone

• Using envelopes to modulate the frequency and modulation index of the different • Using envelopes to modulate the frequency and modulation index of the different 

"operators", rich changes in timbre can be created

• Extremely efficient

▫ Just needs a sine table lookup

▫ No need for any floating point computations

▫ Earlier synthesizers used log/exp tables so that envelope modulation could be carried out 

without even using multiplies!



Physical  models

• Physical modelling synthesis tries to model the actual physics of an instrument or object

▫ For example, modelling a flute by simulating the flow of air inside the flute

• These models are necessarily very simplified

▫ accurate model of airflow in a flute would be extremely complex

▫ could never realistically be performed in realtime▫ could never realistically be performed in realtime

▫ usually involve delay lines to model one-dimensional waves

▫ filters and nonlinear elements are used to interconnect these "waveguides"

• Physical modelling can be very expressive, because the parameters of the simulation can be 

modulated in natural ways and many types of stimulation can be applied

▫ e.g. simulating a snare drum which responds to where and how hard you hit it

▫ might allow brush strokes as well as stick hits

� just a change of input



Delay L ines

• Much of physical modelling synthesis extensively uses delay lines

▫ A delay line just delays a signal by a certain number of samples

▫ A length n delay line takes x[t] and returns x[t-n]

▫ This can implemented very efficiently using just an array of samples

• By feeding back the output of a delay line back into itself, a recirculating delay line can be • By feeding back the output of a delay line back into itself, a recirculating delay line can be 

produced

▫ This resonates at a frequency given by the length of the delay line

• Multiple delay lines can be linked together

▫ Filters and other elements can be introduced into the linkages to simulate mechanical 

effects

▫ loss of energy, or high frequency damping



Waveguide

• A waveguide is a simple model for one-dimensional wave propagation

▫ Consists of a pair of delay lines, one running in each direction

Delay

• Different topologies of waveguides can be connected together

▫ e.g. a simple drum head can be constructed like this:

Delay



Losses

• Real wave propagation involves losses

▫ waves do not recirculate forever

• This can be simulated with simple damping

▫ multiplying the output of each delay line with a constant < 1.0 before passing it 

into the other delay lineinto the other delay line

• There are also frequency dependent losses

▫ high frequencies decay faster than low frequencies in real physical systems

▫ putting a lowpass filter at the delay line junction simulates this property

� lowpass filter must have a total gain of 1.0 or less, otherwise energy will increase!



Impulses

• To actually "play" a waveguide, energy must be injected

• Impulses are introduced into the delay lines

▫ these then recirculate, gradually decaying due to the modelled losses

• Simple impulses can just be a single sample with a large value (a spike), or a short 

burst of white noise

• More complex impulses can be used

▫ for example, extracting impulse models from real instruments

▫ modelling a guitar's pick



Fract ional  Delay L ines

• Note that we often need delays with non-integer sample lengths

▫ Otherwise, for example, notes will be out of tune!

• e.g. if you want a delay line which resonates at 1808Hz at 44100Hz sampling rate, it would 

need to be 24.391 samples long

▫ 24 sample long delay line is 1837Hz -- this is very significantly out of tune!▫ 24 sample long delay line is 1837Hz -- this is very significantly out of tune!

• Special filters can be used to simulate delays of 0.0 - 1.0 samples

▫ Lagrange filters, allpass filters

▫ One of these is applied after the integer delay line to correct the tuning

• You will implement a simple fractional delay line as part of the lab tomorrow



Plucked st r ing model

• A very simple plucked string model was developed by Karplus and Strong

• A delay line recirculates (feeds back), with 

▫ damping (reducing amplitude over time) 

▫ and some filtering (reducing high frequencies over time)

• This simulates the signal propagating up and down the string, losing energy at its termination 

points

• The string is plucked simply by filling the delay line with random values

▫ This is very crude, but sounds surprisingly good


