
ES3 Lecture 3ES3 Lecture 3
iPhone development: XCode and

Objective-C

Resources

• developer.apple.com -- sign up for a free online account to access the APIs!

• Stanford has an online course at http://www.stanford.edu/class/cs193p/cgi-

bin/index.php the slides and lecture here are useful.

OpenGLES stuff: http://iphonedevelopment.blogspot.com/2009/04/opengl-es-• OpenGLES stuff: http://iphonedevelopment.blogspot.com/2009/04/opengl-es-

from-ground-up-part-1-basic.html

• switchonthecode.com some useful introductory tutorials here

iPhone Development

• The iPhone is based around the Cocoa Touch API

▫ Variation on the Cocoa API used in OS X

▫ Provides many basic objects (data structures) and specialized UI components

• Development in Objective-C

▫ Apple does not permit the use of interpreted languages

• Development is exclusively with Apple's own XCode IDE

▫ Provides IDE, editor, debugger

Object ive-C

• It's C

▫ Well, a superset of it

• Everything in C works exactly the same in Objective-C

▫ Great for porting existing code

• But Objective-C has some very lightweight and clean object-oriented

extensions

▫ Much cleaner and simpler than C++

• Introduces an object type, and a message based OO model

▫ You send messages to objects and they take actions

▫ A more "loosely-coupled" approach to OO programming

Object ive-C

• Dynamically typed (unlike C++)

▫ The compiler can help check types for you, but binding is at runtime

▫ This makes it very flexible

• Lots of Objective-C is based around conventions

▫ Naming conventions especially

▫ You should stick to these rigorously!

• Objective-C itself is very simple

▫ Just adds the ability to use objects in C code with a few extra keywords and

syntax

▫ It's Cocoa -- the libraries used by OS X and the Cocoa Touch variant for the

iPhone -- which provides most of the power

� API comparable to the Java SDK in scope and power

Some Syntax

• Calling a method of an object uses square bracket notation

[vehicle startMoving]

▫ Sends the message startMoving to the object vehicle

▫ This is like calling the startMovingmethod of vehicle

• Parameters are passed using colons

[vehicle startMoving:YES]

Receiver Sender
Message

Executes

Arguments

Some Syntax

• Multiple parameters are of course possible, and they must have names

▫ This does NOT mean they are optional or the order can be changed!

▫ The parameter names are part of the name the compiler uses for the message

[vehicle startMoving:YES withSpeed:50.0 atAngle:30.0]

• This is like vehicle.start_moving(true, speed=50.0, angle=30.0) in Python

• Note that it is possible to take a variable number of arguments

▫ It's a bit more complicated and not commonly done

� Actually, each named parameter can have variable number of following arguments

� Normally better to pack things into a container and send them that way

• NB: the compiler doesn't force type checking

▫ It is possible to send a message to an object that doesn't know how to

respond!

� This will cause a runtime exception

Syntax: declar ing classes

• Classes are declared with @interface (one of the few new keywords in

Objective-C)

@interface Track : WorldObject {
// instance variables here
int times;
Vehicle *racer;
}

• Inheritance is specified with the name : superclass notation

• Classes are followed by a block where instance variables are listed

• Then the methods are listed

• Then @end (you can't miss that out!)

}
// methods
- (void) setRacer:(Vehicle*) racer;
@end

Basics

• Objective-C generally uses a file-per-class approach (as in Java)

� Like many other things, it's not enforced!

• Each class has a specification (held in a .h file) and an implementation (held in a

.m) file

• The specification lists all member variables and the prototypes of the methods

▫ The implementation just has all the method implementation

• You should stick to this structure

▫ XCode will help you -- it can automatically generate a pair of barebones .m and

.h files for you

ClassName.m
implementation

ClassName.h
specification

ClassName

Basics (I I)

• You specify the implementation of a class using @implementation

// in the .h file
@interface Vehicle {
...
}
...

• Methods are listed in the implementation block

• Still need the leading + or -

• Identical to the signature in the .h file (you can just copy and paste)

...
- (void) start;
@end

// in the .m file
// NOTE: no following block!
@implementation Vehicle

- (void) start {
// do some start stuff

}
...
@end

Syntax: methods

• Methods are defined beginning with either - for instance methods, or +

for class methods

• The first parameter is specified with (type)varname:

- (void) goFaster;
+ (void) createVehicle;

• The first parameter is specified with (type)varname:

• Subsequent parameters need names as well as types!

• Note that the name and the parameter name can be unrelated

� The name is just there for the compiler to tell the method apart and to make it easier

to read method calls with multiple parameters

- (void) setSpeed:(double)newSpeed;

- (void) setVelocity:(double)angle speed:(double)speed
- (BOOL) hasCollided:(double)time with:(Vehicle *)otherVehicle;

Overloading and naming

• You can overload methods, but the overall method name must be

different:

- (void) setSpeed:(double)newSpeed;

// This is ok
- (void) setSpeed:(double)newSpeed multiplier:(double)multiplier;

• The compiler treats the name as if it were setSpeed:multiplier:
▫ Types are not part of the name, so they will clash!

• It's a good idea to use parameter names so that the call reads well:

- (void) setSpeed:(double)newSpeed multiplier:(double)multiplier;

// This won't compile (you can't overload on type alone)
- (void) setSpeed:(NSString*)newSpeed;

- (void) setPositionX:(double)x Y:(double)y;

//call it like
[setPositionX:40.0 Y:30.0];

Instant iat ing and us ing objects

• You create classes by calling class methods

• The method alloc allocates the memory for a class (but does nothing else)

• You generally need to have some kind of init function to set up member variables

▫ By convention, this should return itself

Vehicle *racer = [racer alloc];

• NB: the method + (void) initialize is called for all classes at start up

▫ Useful for setting up class data

▫ Classes have no storage -- have to use static global variables

// in the class definition
+ (Vehicle *) initWithName:(NSString*)name {
vehicleName = name;
return self;

}
...
// in the body
Vehicle *racer = [[racer alloc] initWithName:"Monocycle"];

Instant iat ing and us ing objects

• Many classes have factory methods

▫ Generate new objects and return them to you

▫ Uses autorelease pools (more later) for easier memory management

Vehicle *racer = [racer createRacerWithName:@"Monocycle"];

• In general, use these methods if they're available rather than alloc/init*: it'll

simplify memory management

id

• In Objective-C, all objects are of type id

• Any object can be stored in a variable of type id

Vehicle *racer = [racer createWithName:@"Monocycle"];
NSString *name = @"John";

id obj;

• (almost) everything in objective-C is either of type id, or a basic C type

▫ int, double, float, char *, struct, enum, union, etc.

� A few special cases, like type SEL for selectors

id obj;
obj = name; // fine
obj = racer; // fine
name = racer; // compiler will complain!
name = obj; // this is fine at compile time, but not at run time!

//Wrong! just type id, not id*
id *obj2 = name;

BOOL

• Objective-C introduces a boolean type BOOL

▫ typedef for char

▫ values are TRUE or FALSE, but more commonly YES or NO

BOOL flagSet = YES;
if(flagSet)if(flagSet)
{
[racer crashNow];

}

Sel f

• Note that an instance can always get a pointer to itself from the self

variable

//This is an instance method
- (void) changeDirection:(double)newAngle speed:(double)speed
{

//Just calls these methods on the current instance

• This is often essential when telling other objects where to send messages

in response to events (the target-action model)

//Just calls these methods on the current instance
[self setSpeed:newSpeed];
[self setAngle:newAngle];

}

Protocols

• Like interfaces in Java

• Allow specification of methods a class must have

▫ Compiler checks for you

• Classes can (and often do) implement multiple protocols

• Definition using @protocol instead of @class

▫ no instance variables!
@protocol Steerable
- (void) setHeading:(double) newAngle;
- (void) setSpeed:(double) newSpeed;
@end

Protocols (I I)

• A class declares that it uses a protocol by including in a <> bracketed list

after the class name:object

• Remember: Objective-C is dynamically typed

@class Vehicle : MovingObject <Steerable, Drawable>
...

• Remember: Objective-C is dynamically typed

▫ Compiler will warn you if you try and use an object which does not

conform to a protocol

▫ Error if you don't implement all the methods of the protocol

Propert ies

• Setting and getting instance variables with methods gets tedious

• Properties introduce new syntax which wraps up setting and getting instance

variables

...
int type = [[racer engine] engineType];
[[rootMenu currentMenu] setType:type];

variables

▫ x.y notation

▫ Still allows the encapsulation and separation that messaging encourages

• t = x.y.z is converted by the compiler to t = [[x y] z]

• x.y.z = t is converted by the compiler to [[x y] setz:t]

▫ last element in the dot list becomes setXXX when it is used as an lvalue in

assignment

int type = racer.engine.engineType;
rootMenu.currentMenu.type = type;

Propert ies (I I)

• To use properties, you must declare them in the class definition

@class Racer {
int type;
Engine *engine;
NSString *name;
}
//methods

• Now a x = racer.engine is equivalent to x = [racer engine]

▫ It calls the method you define!

▫ Properties work by naming convention alone

//methods
- (void) setName:(NSString *)newName;
- (NSString *)name;
- (void) setEngine:(Engine*)newEngine;
- (Engine *) engine;

@property NSString *name;
// Note the qualifiers in brackets!
@property (nonatomic, retain) NSString *Engine;
@end

Propert ies (I I I)

• Sometimes it's useful to have automatic properties

▫ just sets/reads the instance variables

• Objective-C can do this automatically using @synthesize

• This must go in the implementation of the class (not the definition!)

• Note: no types given, just the name

• This automatically creates methods name, setName, engine and setEngine

▫ just read and write instance variables

• You can make properties read only with the readonly attribute:

@synthesize name, engine;

@property (assign, readonly) Vehicle* racer;

Types: inher i tance

• Objective-C supports inheritance

• Methods and instance variables are inherited

• The superclass of an object can be accessed with super, exactly like self

• Two things:• Two things:

▫ in init functions you need to call [super init] to initialize the super class

▫ in dealloc, you need to call [super dealloc] to deallocate storage of the

super class

• Unlike C++ this is not automatic

Selectors , delegates and target-

act ion

• One very common pattern is the target-action pattern

▫ Send a message to an object, specifying a target (object) and an action (a message)

▫ The receiving object sends that message to that object when some event occurs

//so vehicle will call the carCrashed method of self if it crashes
[vehicle setCrashTarget:self action:@selector(carCrashed:)

• Note the use of @selector

▫ this returns a value of type SEL which identifies the message

▫ rather than inefficiently using strings

• In the delegate model, an object is sent (normally conforming to some protocol) and the

receiving class sends messages to it

[vehicle setActionHandler:self]
// vehicle now sends messages to this instance
// when actions happen

Structure of Cocoa

• UIKit: user interface components

• Foundation: everything else (containers, files, data, etc.)

• Core Frameworks (location, graphics etc.)

• see

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/Coco

aFundamentals/WhatIsCocoa/WhatIsCocoa.html

NSObject

• Every class in Cocoa inherits from NSObject

• Provides basic functionality (alloc, release, dealloc, etc.)

• Also provides useful reflection methods
� instancesRespondToSelector -- test if an object will respond to a given message

� class/superclass -- get the class/superclass of this object

� isSubclassOfClass /conformsToProtocol -- checks if this object is a subclass of a class / conforms to a protocol

� resolveClassMethod/resolveInstanceMethod -- look up a selector by name (i.e. with a string, at runtime)

� performSelector -- call a method of this object (at runtime, so you can call methods without knowing types)

� methodSignatureForSelector -- get the types for arguments and return values of a method

• These allow you to interrogate and perform actions on objects without knowing their type at

compile time

▫ In particular, performSelector: is often used to send messages to objects

NSStr ing

• Replaces char* in all Cocoa libraries

▫ Much, much better! Fully object-oriented, and supports virtually any encoding for

different languages

• Special syntax for generating literals: @"text" creates an instance of NSString
NSString *myName = @"John";

• Can convert to and from C-style char* strings if you need to use C-libraries

• NSStrings are immutable. You cannot change them after creation.

▫ You can use NSMutableString if you want to change after creation

• Methods for comparing, slicing, line splitting, delimiter separating, joining and converting to

numerical values all provided as part of the NSString class.

NSString *myName = @"John";

Other useful Foundat ion classes

• NSDate : store and manipulate dates and time at high resolution (ms level).

• NSURL: work with URLs

NSDate *startTime = [NSDate date];
...
double secondsElapsed = -[startTime timeIntervalSinceNow];

• NSTimer: set up timers to send messages at given intervals

• NSException: exception classes

• NSDateFormatter, NSNumberFormatter: stringify dates and numbers

• NSNotification / NSNotificationCenter: broadcast messages to listeners

Memory management (I)

• In Cocoa, you are responsible for memory management

▫ no garbage collector (at least not on the iPhone)

• Memory management is a really important concept to get your head around!

• Manual reference counting system

▫ Space is allocated with alloc and deallocated with dealloc

▫ EXCEPT you NEVER call dealloc manually

� (well except when you call [super dealloc] in the dealloc method of your own class)

▫ Instead, you call release

▫ This decreases the "retain count " of the object

▫ When it goes to zero, the object is automatically deallocated

▫ Calling retain on an object increases it's retain count (i.e. it will need another

release before it can be deallocated)

Memory management (I I)

Code Retain Count

Vehicle *car = [[Vehicle alloc] initWithName:@"car"]; 1 (alloc makes it 1)

[car retain]; 2 (retain increased it)

[car release]; 1

[car release]; 0 (car is now

automatically freed!)

• Often you will have init/dealloc methods in your classes which look like this:

- (void) initWithName:(NSString *)name
{
Engine *engine = [[Engine alloc] init];
...
}

- (void) dealloc
{
[engine release];
[wheels release];
[super dealloc]; // the ONLY time you ever manually call dealloc!

}

Autorelease Pools

• Autorelease pools make it (a bit) easier to manage memory

• Put objects in an autorelease pool by sending it the autorelease message
Vehicle *car = [Vehicle alloc];
[car autorelease];

• Basically, all API calls (which don't begin alloc, copy or new) will return

autoreleased objects

• These objects will be released automatically "later"

▫ This "later" is guaranteed to be at least until after the current function returns

▫ But no more than that is guaranteed!

▫ If you need to keep it longer, you must retain it by sending it a retain message

Convent ions

• When you add an object to a container, it calls retain on it

▫ So that it will remain allocated until it is removed from the container or the

container itself is released

▫ Releasing a container calls release on all its elements

If an API call begins alloc, copy or new it will allocate memory• If an API call begins alloc, copy or new it will allocate memory

▫ You must release it explicitly

• If it begins with something else (e.g. stringWithCString) it will return an object in

an autorelease pool

▫ DO NOT RELEASE IT YOURSELF UNLESS YOU RETAIN IT!

▫ You MUST call retain on it if it will leave the current call

� For example if you are caching it in an instance variable

▫ Match each retain with a release

Convent ions (I I)

//Object created with alloc, so must be explicitly released
Vehicle *vehicle = [[Vehicle alloc] initWithName:@"Car"];
...
[vehicle release]

// This will be autoreleased
NSString *name = [NSString stringWithCString:"Hello, World!"];
myName = name;myName = name;
// if this is an instance variable, watch out -- name will be autoreleased after
this function returns

[myName retain];
// now it's safe, but must call release on it in dealloc or whenever you're
finished with it

• Conventions are very important

• Like everything in Objective-C they are not enforced but should be obeyed

▫ All API calls obey these conventions

Memory management: us ing

propert ies

• This can get pretty tedious

▫ Properties to the rescue!

• Properties can use the retain attribute

@class Racer {
Engine *engine;

• When you assign to the engine variable, the runtime will automatically send a

retain message to it

• When the object is deallocated, it will automatically send release

Engine *engine;
}

// Note the qualifiers in brackets!
@property (nonatomic, retain) NSString *engine;
@end
...
//In the implementation
@synthesize engine;

Memory management: us ing

propert ies (I I)
@property (nonatomic, retain) NSString *engine;
@end
...
@synthesize engine;

//becomes:
- (void) setEngine:(Engine *)newEngine {
engine = newEngine;
[engine retain];

}

• One thing to note -- you must use property syntax to get the behaviour

▫ If you are setting instance variables, you must use self.x = y

▫ Not just x = y -- this sets the variable without calling the property

▫ [self setx:y] works as well

}

- (void) dealloc {
...
[engine release]; // adds this in invisibly
...
}

engine = [engine createWithName:@"car"]; // won't retain it
self.engine = [engine createWithName:@"car"]; // WILL retain it
[self setEngine:[engine createWithName:@"car"]]; // WILL retain it

NS*, UI* vs CF*, CG*

• API sections beginning NS or UI are Objective-C

▫ They use objects and inherit from NSObject

▫ These are mainly the higher level parts of the API

• Parts of the API beginning C are pure C APIs (logically enough)

▫ e.g. Core Graphics is CG (CGPoint, CGContext)

▫ Doesn't use Objective-C objects, just plain C

� structs, char*, void * etc.

//These convenience functions return C structs
CGPoint pt = CGPointMake(5,8);
CGRectMake rect = CGRectMake(20,20,5,5);

Containers : Mutable and Immutable

• Containers can either be immutable (cannot change, insert or remove items after

creation) or mutable (change after creation)

• Mutable versions inherit from immutable ones

▫ All built in containers have a mutable and immutable version

Because of the inheritance, any method taking an immutable collection can ▫ Because of the inheritance, any method taking an immutable collection can

take a mutable collection in its place

• Immutable versions have a performance benefit

Basic Containers

• Ordered arrays (roughly like Java vectors):

▫ NSArray, NSMutableArray

▫ Can slice and enumerate. Mutable arrays can have objects removed and

inserted

▫ Key methods:

filteredArrayUsingPredicate -- returns array of elements where predicate is true� filteredArrayUsingPredicate -- returns array of elements where predicate is true

� objectEnumerator -- returns an enumerator

� count -- returns size of array

� objectAtIndex -- gets a specific object

� reverseObjectEnumerator -- reads the array backwards!

� indexOfObject -- searches for an object and returns its index

� makeObjectsPerformSelector -- applies a function to an array

� sortedArrayUsingFunction:context -- sorts an array

� arrayWithObjects -- creates a new array with a list of objects

Basic Containers

• Sets (unordered collections):

▫ NSSet, NSMutableSet

▫ Similar to arrays, but no indices or reverse enumerator

• Dictionaries (hash tables, associative arrays)• Dictionaries (hash tables, associative arrays)

▫ NSDictionary, NSMutableDictionary

� keyEnumerator, objectEnumerator -- iterate over keys or values

� setObject:forKey -- inserts/replaces an object

� objectForKey -- gets an object given a key

Enumerat ion

• Generally, NSEnumerator used to iterate through objects

▫ Idiom goes like this:

NSArray *array = [NSArray arrayWithObjects:first,second,nil];
NSEnumerator *arrayEnumerator = [array objectEnumerator];
id value;
while(value=[arrayEnumerator nextObject])
{

• If an object implements the NSFastEnumerator protocol (the built in containers

do), you can do the much more elegant:

{
// do something with value
}

for(id value in array)
{
// do something with value
}

An aside

• Why isn't there syntactic sugar for containers, since there is for NSString?
//In an ideal world...
@[firstCar, secondCar, thirdCar]; // makes an NSMutableArray
@(firstCar, secondCar, thirdCar); // makes an NSArray
@{@"first"=firstCar, @"second"=secondCar}; // makes an NSMutableDictionary
@<firstCar, secondCar, thirdCar>; // makes an NSSet

▫ Only Apple knows

� But it's pretty inconvenient sometimes

� Writing a few simple macros can help (despite the fact that C-style macros

are generally evil)

Model-View-Control ler pattern

• A key idea in Cocoa programming is the model-view-controller pattern

• Data (the model) is separated from how it is displayed (the view) and how it is

interacted with (the controller)

These components communicate by sending messages• These components communicate by sending messages

▫ Usually three separate classes

• Model has no knowledge of view or controller

• View and controller usually has knowledge of model

View

Model

Controller

Bundles

• You will often need to access external data files in your application (graphics, sounds, text

data,...)

▫ Bundles provide a convenient way of storing and accessing such files

• NSBundle handles bundle access

▫ [NSBundle mainBundle] returns the main bundle (which is all we'll cover)▫ [NSBundle mainBundle] returns the main bundle (which is all we'll cover)

▫ Add and remove files to the main bundle via XCode

• Most common idiom is to get an path from a bundle:

• Bundles are read-only

▫ cannot be modified after application is built/signed!

//Get path of texture.png and load it into an image
NSString *texturePath = [[NSBundle mainBundle] pathForResource:@"texture" ofType:@"png"]
UIImage *textureImage = [UIImage imageWithContentsOfFile:texturePath];

Good Pract ice

• Use Objective-C naming convention

▫ Verbose, no abbreviations, camelCase names

▫ Adhere and observe the memory management naming convention

• Types

▫ Use container types, not C arrays

▫ Use classes, not C structs

▫ Use properties

▫ Allow compile-time checking where possible

• Messaging

▫ Don't break the message passing model

▫ Avoid invoking directly methods where possible -- instead notify objects that

things need done

� The lazy, loosely-coupled approach is strongly encouraged in Cocoa programming

