ES3 Lecture 5

InterfaceBuilder and Ul development

Creating views programmatically

The loadView method of a UlViewController subclass creates the view for the view
controller

Can add in Ul components here

You have to manually specify properties like color, position, etc.

(void) loadView {
//Full size

self.view = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 320, 480)];

UILabel *label = [[UILabel alloc] initWithFrame:CGRectMake(50, 50, 100, 20)];
label.text = @"Test";

[self.view addSubview: label];

[Label release]; // the view will hold onto a reference now

Remember, you must add the control to the view of the viewcontroller
This can be very verbose

But some people prefer it because it involves less "magic"

Using InterfaceBuilder

InterfaceBuilder is a visual editor for iPhone applications
Allows you to quickly and easily add and arrange views
These views are linked to objects in your code

If you're making an app with conventional GUI components, InterfaceBuilder is the

way to go

Can seem a bit like magic
Connections between objects are not visible in source
NIB files store archived objects which store this data

Once you get used to it, it's very powerful

IntefaceBuilder

IB can create objects and store them in archives (NIB files)
These objects can be connected to your code in several ways

Outlet: a reference to an IB object in your code
e.g. so you can set the text of a label

Action: a message that an IB object can send to your code
e.g. a message to be sent when a button is pushed

And other miscellaneous ways...
Delegate: an object in your code which is a delegate for an IB object
e.g. responding to actions on a table

Data source: an object that provides data for a view
e.g. a table data source can provide row entries when requested

NIB files

NIB files (actually extension xib) store data from InterfaceBuilder

You can open them in XCode, InterfaceBuilder will be launched

When creating new UlViewController subclasses, XCode can create a blank NIB file
and use it to create the viewController

UIViewController *controller = [[UIViewController alloc]
initWithNibName:@"mainview.xib"];

initWithNibName initialises a viewcontroller and links it to an NIB file

mainwindow.xib is automatically created as and linked to the main UlApplication

Other Sources
Rescurces

% MainWindow.xib

" Ralé +~ MainWindow.xib

oo
oo

View Mode Inspectar Search Field

File's ODwner First Responder Lab2 App Del... Window

1 Lab2.xcodeproj

L] MainWindow.xib

ez o |

View Mode

U
Inspector Search Field

Marne Type

@ File's Owner UlApplication

.:'E- First Ft:'::'.l;::l'_'pr'|.::.‘§1'-_-r'

UIResponder

Lab2 App Delegate Lab2AppDelegate

Window LIWind o

1 Lab2 .xcodeproj

Using InterfaceBuilder (I1)

Right-click (or control-click) to bring up the list of connections an object or Ul
component can make

drag to another object
a list of possible connections appear
click on the connection you want to make

If a connection doesn't appear the receiving object is not of the right type, or doesn't have
methods or variables of the right type

Rounded Rect Button (Push me}
Did End On Exit
Editing Changed
Editing Did Begin
Q Rounded Rect Button (Push me) Editing Did End
¥ Events 1 Touch Cancel
D bR e Touch Down
Editing Changed
Editing Did Begin Touch Down Repeat
Editing Did End Touch Drag Enter
T Touch Drag Exit
Touch Drag Inslde
Touch Drag Outside

Touch Down Repeat
Touch Drag Enter

Touch Up Inside ® First Responder
cut:

(+ K13

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed

¥ Referencing Outlets
New Referencing Outlet

Touch Drag Exit
Touch Drag Inside
Touch Drag Cutside
Touch Up Inside

Touch Up Qutside
Touch Up Outside

Value Changed
¥ Referencing Outlets
New Referencing Outlet

Value Changed
¥ Referencing Outlets
New Referencing Outlet

O 0000000000000
O 00 ®O0O00O00QOOO000

0 D00eQOO0C0000000

Using InterfaceBuilder (I1)

The inspector lets you set properties of objects and check connections
it has four panes -- third pane is just size information

Button Attributes . Button Connecticns (=]] Buttan Identity
o O) o & @ 9 & o
Button ~ Evenls Class ldentity
Did End On Exit & —
| Type Rounded Rect - Editing Changed A Class [Butto v_]
Default State Configuration % Editing Did Begin O A rarcihiis
_ Editing Did End @ -
Title Push me Touch Cancel) Accessiblity Iif! Enabled
Touch Down)
b Label
Image B Touch Down Repeat)
Background -] Touch Drag Enter U Hint
- Touch Drag Exit) S gy < &)ik
Text Color | [N Clear Touch Drag Inside O o S e
Touch Drag Outside) _! Image _| Static Text
Shadow Clear Touch Up Inside ® First Responder (& IET Button : Search Field
cut B :
- = li'"! User Interaction Enabled
= " Touch Up Outside B =
Shadow 0.00 |3l 0.00 3l Valie Changed O | Updates Frequently
¥ Offset ¥ Offset Referencing Outlets | Summary Element
[| Highlight Reverses Direction New Referencing Outlet) | Keyboard Key
i ot o]
Drawing | Shows Touch On Highlight _| Selected
IE1 Highlighted Adjusts Image Interface Bullder Identity
IE Disabled Adjusts Image
Name
Font | Helvetica Bold, 15.0 -
Cshirct 10 1

Inspector panes

The first pane (attributes) allows things like font, color, and other
appearance attributes to edited without using any code

The second (connections) shows a permanently available record of
connections to and from this object

The third has size and alignment options

The fourth (identity) allows the class of the object to be set and various
underlying attributes of the object to be accessed

IBAction and IBOutlet

You can link instance variables and methods between your code and
InterfaceBuilder

Mark a method as an "action receiver" by making it of return type IBAction
InterfaceBuilder will then recognize it as a valid receiver of actions
you will be able to create connections from actions to an object with methods
returning IBAction

- (IBAction) buttonPushed {
// do something with a button push

}

To link an object to an object in InterfaceBuilder, mark it's property with IBOutlet

UILabel *mylLabel;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

IBOutlet

You can then link a user interface component of that type in InterfaceBuilder

Note: Do not instantiate that object!
InterfaceBuilder creates an instance of the object and stores it in the NIB file

All linking the object to the interface component does is give you a reference that
you can manipulate

e.g. setting the text of a label, reading the value of a slider

- (IBAction) buttonPushed

{
myLabel.text = [NSString stringWithFormat:@"%sf", mySlider.value];

}

Protocols

InterfaceBuilder requires strict adherence to protocols

IB checks whether objects are of the right type or conform to the protocol before
it allows you to even create a connection

if a method is not marked IBAction, it won't appear as an option when
connecting actions

if an outlet is not of the right type, a referencing connection cannot be made (it
just won't appear)

components which have delegates or dataSources (like UlTableView) must be
linked to objects which conform to the appropriate protocol
UlTableViewDelegate, UlTableViewDataSource, for example

UlViewContiroller

Combines a UlView and UIResponder
UlView is the view property

UlViewController Inherits from UIResponder
UIResponder handles events (i.e. touches)

touchesBegan message
indicates a finger has gone down

touchesEnded message
indicates a finger has been lifted

It is very common to use a subclass of UViewController as a "whole
screen”

adding controls to the viewcontrollers view

UlViewContiroller

loadView

this is where construction of subviews should go
e.g. populating a form with buttons

viewDidLoad
this message is sent after the view is loaded
other initialisation should go here
this is where initialisation should go if your are using InterfaceBuilder

UlViewControllers also respond to screen rotation changes
portrait <-> landscape
see the API docs

Handling events

Use target action
Tell a component which object to send messages to
Note that you need to specify what events you want to listen to:

UlControlEvent*

UlControlEventTouchUplnside / Downlnside most common
also for drags, event changes, editing start and stopping

This will send the message doSomethinginteresting to self (the view controller
object in this case) when the user touches down then up on a button:

//Inside view controller's loadView
UIButton *pressMe = [[UIButton alloc] initWithFrame:CGRectMake(10,10,50,50)];

[pressMe addTarget:self action:@selector(doSomethingInteresting)
forControlEvents:UIControlEventTouchUpInside];

Responding to a button push

- (void) loadView

{

//Inside view controller's loadView

//pressMe is UIButton instance variable of this class

pressMe = [[UIButton alloc] initWithFrame:CGRectMake(10,10,50,50)];
[pressMe addTarget:self action:@selector(doSomethingInteresting)
forControlEvents:UIControlEventTouchUpInside];

}

- (void) doSomethingInteresting: (id)sender {
if(sender==pressMe) {
doSomethingElse(); // doSomethingElse is called when finger goes up inside the
button

}

The tag property

Every UlView (include UlButton etc.) has a tag property
This is a NSInteger which you can set so as to identify the control or group

- (void) doSomethingInteresting: (id)sender {

if([(UIView*)sender.tag intValue] == 60) {
doSomethingElse(); // doSomethingElse is called when finger goes up inside any
control tagged with 60

}

Text Eniry

UlTextField is the basic text field component

Text entry widgets need configuration on the iPhone
Different types of entry (numbers, words)
Different actions on finishing entering text

You must also specify a delegate for the textfield object
This, at a minimum, must specify what to do when the return key is pressed
If you don't set this, the virtual keyboard will never be dismissed!

You can set the type of entry in InterfaceBuilder
numeric or alphabetic
whether or not autocorrect is enabled
what capitalization rules to apply (first, never, all)

UlTextFieldDelegate

//assume there is an instance variable myTextField

//self should conform to the UITextFieldDelegate protocol
myTextField.delegate = self; // you can also do this in InterfaceBuilder

- (BOOL) textFieldShouldReturn: (UITextField *)textField

{
[textField resignFirstResponder]; // ESSENTIAL -- this dismisses the keyboard!
// do something with the text...
return YES;

}

// You can validate text by implementing this method

- (BOOL)textField: (UITextField *)textField
shouldChangeCharactersInRange: (NSRange)range replacementString: (NSString *)string

{
if([self isValid:replaceString])
return YES;
else
return NO;

// can also directly correct the string in this method

}

Animation effects

Easy support for animation effects
Key part of "flashy iPhone effect"
Views (any Ul component)... can be dynamically altered
Alpha
Coloring
Transform (rotation, position, scale)

You simply set a target state and specify:
how long it will take
what curve to use (just linear, or with ease in/ease out)
whether it repeats
and a target/action to use when the animation finishes

Then commit the animation and it will play in the background
Notified when it is complete

Animation effects

Animations are done with class methods of UlView

Begin an animation with [UIView beginAnimation]
need to give a unique name, and a context -- usually nil for the context will do

End it with [UIView commitAnimation]
Specify all parameters between these two calls!

Important things you can set
duration [UIVIew setAnimationDuration:(double)d] in seconds
repeats [UIView setAnimationRepeatCount:(int)repeats]
autoreversing [UIView setAnimationRepeatAutoreverses:(BOOL)doesReverse]

curve [UIView setAnimationCurve:curveType]
Interesting -- can have simple linear transitions, or ones which "ease in" or "ease out" or both
i.e. gradually accelerate or decelelate

when it happens [UIView setAnimationStartDate:(NSDate) when] or [UIView
setAnimationDelay:(double)seconds]
default is to start immediately

Animation delgate

Often need to tell when an animation stops or starts
Set a delegate inside the begin/commit block

set selectors for setAnimationWillStartSelector /
setAnimationWillStopSelector

[UIView beginAnimations:@"myAnimation context:nil];

[UIView setAnimationDelegate:self];
[UIView setAnimationWillStopSelector:@selector(animationOver)];

[UIView commitAnimations];
// later...
- (void) animationOver

{

// do something interesting, like reseting the
// properties of the view

Example: A table view

- Ya)

Tables are very common in iPhone applications

Cupertino

Often used full screen About I Giendate

Range Los Angeles

| Palo Alto
Motwork

Tables can have text, images and controls ocmonsorces T | S0 Dieso

San Francisco

Each cell is a view

Auto-Lock

i.e. it can have contain other controls Passcode Lock ot > ||l santa Monica

Restrictions ¥ Sherman Oaks i

Homa

Each table needs a delegate and a data source
delegate: messages relating to actions of tables are sent here
dataSource: this must provide the cells that populate the table

NB cells are requested from the dataSource as needed

Must link the table to a delegate and dataSource, either in InterfaceBuilder or in
your code

Without a dataSource nothing will be drawn!

UlTableViewDataSource

Essential part of table construction
Supplies data about the table
Number of sections
Number of rows in a section

The cells for each row
Note: cells are not strings, but general views

A pool of cell objects is maintained and reused
don't need to worry about this if you subclass UlTableViewController in XCode

need to implement:
numberOfSectionsinTableView -- return number of sections
sectionTitleIndexTitlesForTableView -- return array of titles
numberOfRowsInSection -- given a section number, return no. of rows

cellForRowAtIndexPath -- return a cell given an index path (row +
section)

UlITableViewDelegate

Responds to user interaction with the table

key messages
didSelectRowAtIndexPath
didEndEditingRowAtIindexPath

Sent when user selects or edits row respectively

Uses NSIndexPath
Represents a section and a row
Can be read from the section and row properties of the NSIndexPath instance
Construct with [NSIndexPath indexPathForRow:row inSection:section]

UlTableViewConiroller

Combines a UlTableView with delegate and dataSource

Simple, all-in-one solution for fullscreen table views

Not very flexible, unsuitable for tables which are part of a larger interface

Just override the necessary methods

XCode fills them in for you when you create a subclass of
UlTableViewController

UINavigationController

Makes managing multi-page hierarchical views easy
You can "push" a view onto a UINavigationController
and pop it off again

Controller automatically creates a back button at top of screen
will automatically pop the view when pressed

Use: create UINavigationController instance with a root view controller
this is view controller for the "base" page of the controller

When you want to replace it with a new view, call pushViewController

UINavigationController *navigationController = [[UINavigationController alloc]
initWithRootViewController:baseViewController];

// later

[navigationController pushViewController:newDisplay animated:YES];

UINavigationController

Can jump back to the root page by calling popToRootViewControllerAnimated

Navigation bar visibility can be toggled with setNavigationBarHidden

UINavigationController is excellent for navigation in conjunction UlTableView

When the user selects a table element, drill down, and push on a new view
with new more detailed table

popViewController

pushViewController
7

UlITabBarController

An analogue of UINavigationContoller, but for for short linear lists, not hierarchies
(optionally) allows user to rearrange tab bar

Displays a set of page tabs at the bottom
Each is linked to a view

You can link them in code, or directly in InterfaceBuilder (using the Inspector)
Just create, and pass an NSArray of UlViewControllers
These will appear as tabs

Has a UlTabBar property, which in turn takes an array of UlTabBarltems
Each tab bar item can have a title and an image
image should be 30x30 pixels

MapView

Map view is a ready made widget for display maps
Provided by MKMapView

Many handy features
Can center on current location (or other specified location)
Add, remove and select annotations (i.e. pins on the map)
Convert screen co-ordinates to and from world co-ordinates

Optionally allow user to zoom and pan the map

Part of the MapKit framework -- you need to add it to your project, and import
<MapKit/MapKit.h>

Using MapView

Create an instance of MKMapView with the frame it's to go in
add it to your view controller

- (void) viewDidLoad { mapView = [[MKMapView alloc]
initWithFrame:self.view.bounds];
[self.view addSubview:mapView];

}

Show current location by setting showsUserLocation to YES
Drop a pin by using addAnnotationwith a MKPinAnnotationView instance

Can make more complex annotations by subclassing MKAnnotation

Recenter with setCenterCoordinate or setRegion to set a visible region (sets
zoom level too, based on a lat/long span)

//drops a pin somewhere near Glasgow. ..
self.mapView.showsUserLocation = YES;

MKPinAnnotationView *annotation = [[MKPinAnnotation alloc] init];
annotation.coordinate.latitude = 55.0;
annotation.coordinate.longitude = -4.0;

[self.mapView addAnnoation:annotation];

Dealing with Multitouch

Lots of iPhone applications make a big deal of multitouch
But there aren't any built in methods to deal with multitouch interaction

You get touchesBegan, touchesMoved and touchesEnded calls

with a set of touches
assuming you set the view to respond to multitouch!

Assume we want to make a stretch to scale gesture, a la the image viewer

We need to record initial finger positions when both fingers are down
when they move, we need to update the scale appropriately
note: UlTouch objects persist throughout a multitouch interaction

no longer, but that's enough...

Simple stretch gesture

// in the class definition
UITouch *firstTouch, *secondTouch;
CGPoint firstPosition, secondPosition;

- (void)touchesBegan: (NSSet *)touches withEvent: (UIEvent *)event {
// get the touches on this control
NSSet *touches = [event touchesForView];

// only if we now have two touches (we ignore the first touchesBegan, where
the first finger went down)
if(touches.count==2) {
NSEnumerator *touchEnumerator = [touches objectEnumerator];
firstTouch = [touchEnumerator nextObject];
secondTouch = [touchEnumerator nextObject];
firstPosition = [firstTouch locationInView:self];
secondPosition = [secondTouch locationInView:self];

newFirstPosition newSecondPosition

d2

secondPosition
firstPosition

Simple stretch gesture

- (void) touchesMoved: (NSSet *)touches withEvent: (UIEvent *)event {
// get the touches on this control
NSSet *touches = [event touchesForView];

// if we have two touches, we must have had two-finger touchesBegan before
if(touches.count==2) {
CGPoint newFirstPosition, newSecondPosition;
newFirstPosition = [firstTouch locationInView:self];
newSecondPosition = [secondTouch locationInView:self];

double dx1,dx2,dyl,dy2,dl,d2;

// compute distance

dx1 newFirstPosition.x - newSecondPosition.x;
dx?2 firstPosition.x - secondPosition.Xx;

dyl newFirstPosition.y - newSecondPosition.y;
dy2 firstPosition.y - secondPosition.y;

dl sqrt(dx1*dx1l+dyl*dyl);

d2 sqrt(dx2*dx2+dy2*dy2) ;

// new scale is ratio of distances...
self.scale = d1/d2;

Summary

InterfaceBuilder provides a way of visually connecting objects
actions send messages, marked IBAction
outlets make references to objects, marked IBOutlet

Table views provide powerful table support
read data as needed from a dataSource

Navigation controllers make it easy to manipulate a stack of "pages"
great for hierarchical viewing

Tab bars provide simple multi-page interaction

MapKit provides a ready made map viewer and annotation tool

