
ES3 Lecture 5ES3 Lecture 5
InterfaceBuilder and UI development

Creat ing views programmatical ly

• The loadView method of a UIViewController subclass creates the view for the view

controller

• Can add in UI components here

▫ You have to manually specify properties like color, position, etc.

▫ Remember, you must add the control to the view of the viewcontroller

• This can be very verbose

▫ But some people prefer it because it involves less "magic"

- (void) loadView {
//Full size
self.view = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 320, 480)];

UILabel *label = [[UILabel alloc] initWithFrame:CGRectMake(50, 50, 100, 20)];
label.text = @"Test";
[self.view addSubview:label];

[label release]; // the view will hold onto a reference now
}

Using Inter faceBui lder

• InterfaceBuilder is a visual editor for iPhone applications

▫ Allows you to quickly and easily add and arrange views

▫ These views are linked to objects in your code

• If you're making an app with conventional GUI components, InterfaceBuilder is the

way to goway to go

• Can seem a bit like magic

▫ Connections between objects are not visible in source

▫ NIB files store archived objects which store this data

• Once you get used to it, it's very powerful

IntefaceBui lder

• IB can create objects and store them in archives (NIB files)

• These objects can be connected to your code in several ways

▫ Outlet: a reference to an IB object in your code

� e.g. so you can set the text of a label

▫ Action: a message that an IB object can send to your code

� e.g. a message to be sent when a button is pushed

▫ And other miscellaneous ways...

� Delegate: an object in your code which is a delegate for an IB object

� e.g. responding to actions on a table

� Data source: an object that provides data for a view

� e.g. a table data source can provide row entries when requested

NIB f i les

• NIB files (actually extension xib) store data from InterfaceBuilder

• You can open them in XCode, InterfaceBuilder will be launched

• When creating new UIViewController subclasses, XCode can create a blank NIB file

and use it to create the viewController

• initWithNibName initialises a viewcontroller and links it to an NIB file

• mainwindow.xib is automatically created as and linked to the main UIApplication

UIViewController *controller = [[UIViewController alloc]
initWithNibName:@"mainview.xib"];

Using Inter faceBui lder (I I)

• Right-click (or control-click) to bring up the list of connections an object or UI

component can make

▫ drag to another object

▫ a list of possible connections appear

▫ click on the connection you want to make

If a connection doesn't appear the receiving object is not of the right type, or doesn't have � If a connection doesn't appear the receiving object is not of the right type, or doesn't have

methods or variables of the right type

Using Inter faceBui lder (I I)

• The inspector lets you set properties of objects and check connections

▫ it has four panes -- third pane is just size information

Inspector panes

• The first pane (attributes) allows things like font, color, and other

appearance attributes to edited without using any code

• The second (connections) shows a permanently available record of

connections to and from this objectconnections to and from this object

• The third has size and alignment options

• The fourth (identity) allows the class of the object to be set and various

underlying attributes of the object to be accessed

IBAct ion and IBOut let

• You can link instance variables and methods between your code and

InterfaceBuilder

• Mark a method as an "action receiver" by making it of return type IBAction

▫ InterfaceBuilder will then recognize it as a valid receiver of actions

you will be able to create connections from actions to an object with methods ▫ you will be able to create connections from actions to an object with methods

returning IBAction

• To link an object to an object in InterfaceBuilder, mark it's property with IBOutlet

- (IBAction) buttonPushed {
// do something with a button push
}

UILabel *myLabel;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

IBOut let

• You can then link a user interface component of that type in InterfaceBuilder

• Note: Do not instantiate that object!

▫ InterfaceBuilder creates an instance of the object and stores it in the NIB file

• All linking the object to the interface component does is give you a reference that

you can manipulate

▫ e.g. setting the text of a label, reading the value of a slider

- (IBAction) buttonPushed
{
myLabel.text = [NSString stringWithFormat:@"%f", mySlider.value];

}

Protocols

• InterfaceBuilder requires strict adherence to protocols

• IB checks whether objects are of the right type or conform to the protocol before

it allows you to even create a connection

▫ if a method is not marked IBAction, it won't appear as an option when

connecting actionsconnecting actions

▫ if an outlet is not of the right type, a referencing connection cannot be made (it

just won't appear)

▫ components which have delegates or dataSources (like UITableView) must be

linked to objects which conform to the appropriate protocol

� UITableViewDelegate, UITableViewDataSource, for example

UIViewControl ler

• Combines a UIView and UIResponder

▫ UIView is the view property

▫ UIViewController Inherits from UIResponder

� UIResponder handles events (i.e. touches)

• touchesBegan message

▫ indicates a finger has gone down

• touchesEnded message

▫ indicates a finger has been lifted

• It is very common to use a subclass of UViewController as a "whole

screen"

▫ adding controls to the viewcontrollers view

UIViewControl ler

• loadView

▫ this is where construction of subviews should go

� e.g. populating a form with buttons

• viewDidLoad

▫ this message is sent after the view is loaded▫ this message is sent after the view is loaded

▫ other initialisation should go here

▫ this is where initialisation should go if your are using InterfaceBuilder

• UIViewControllers also respond to screen rotation changes

▫ portrait <-> landscape

▫ see the API docs

Handl ing events

• Use target action

▫ Tell a component which object to send messages to

▫ Note that you need to specify what events you want to listen to:

� UIControlEvent*

� UIControlEventTouchUpInside / DownInside most common

� also for drags, event changes, editing start and stopping� also for drags, event changes, editing start and stopping

• This will send the message doSomethingInteresting to self (the view controller

object in this case) when the user touches down then up on a button:

//Inside view controller's loadView
UIButton *pressMe = [[UIButton alloc] initWithFrame:CGRectMake(10,10,50,50)];
[pressMe addTarget:self action:@selector(doSomethingInteresting)
forControlEvents:UIControlEventTouchUpInside];

Responding to a button push

- (void) loadView
{

...

//Inside view controller's loadView
//pressMe is UIButton instance variable of this class//pressMe is UIButton instance variable of this class
pressMe = [[UIButton alloc] initWithFrame:CGRectMake(10,10,50,50)];
[pressMe addTarget:self action:@selector(doSomethingInteresting)
forControlEvents:UIControlEventTouchUpInside];
}

- (void) doSomethingInteresting:(id)sender {
if(sender==pressMe) {

doSomethingElse(); // doSomethingElse is called when finger goes up inside the
button
}

}

The tag property

• Every UIView (include UIButton etc.) has a tag property

• This is a NSInteger which you can set so as to identify the control or group

- (void) doSomethingInteresting:(id)sender {

if([(UIView*)sender.tag intValue] == 60) {if([(UIView*)sender.tag intValue] == 60) {
doSomethingElse(); // doSomethingElse is called when finger goes up inside any

control tagged with 60
}

}

Text Entry

• UITextField is the basic text field component

• Text entry widgets need configuration on the iPhone

▫ Different types of entry (numbers, words)

▫ Different actions on finishing entering text

• You must also specify a delegate for the textfield object

▫ This, at a minimum, must specify what to do when the return key is pressed

▫ If you don't set this, the virtual keyboard will never be dismissed!

• You can set the type of entry in InterfaceBuilder

▫ numeric or alphabetic

▫ whether or not autocorrect is enabled

▫ what capitalization rules to apply (first, never, all)

UITextF ieldDelegate

//assume there is an instance variable myTextField

//self should conform to the UITextFieldDelegate protocol
myTextField.delegate = self; // you can also do this in InterfaceBuilder

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
[textField resignFirstResponder]; // ESSENTIAL -- this dismisses the keyboard![textField resignFirstResponder]; // ESSENTIAL -- this dismisses the keyboard!
// do something with the text...
return YES;

}

// You can validate text by implementing this method

- (BOOL)textField:(UITextField *)textField
shouldChangeCharactersInRange:(NSRange)range replacementString:(NSString *)string
{

if([self isValid:replaceString])
return YES;

else
return NO;

// can also directly correct the string in this method
}

Animation ef fects

• Easy support for animation effects

▫ Key part of "flashy iPhone effect"

• Views (any UI component)... can be dynamically altered

� Alpha

� Coloring

� Transform (rotation, position, scale)� Transform (rotation, position, scale)

• You simply set a target state and specify:

▫ how long it will take

▫ what curve to use (just linear, or with ease in/ease out)

▫ whether it repeats

▫ and a target/action to use when the animation finishes

• Then commit the animation and it will play in the background

▫ Notified when it is complete

Animation ef fects

• Animations are done with class methods of UIView

▫ Begin an animation with [UIView beginAnimation]

� need to give a unique name, and a context -- usually nil for the context will do

▫ End it with [UIView commitAnimation]

▫ Specify all parameters between these two calls!

Important things you can set• Important things you can set

▫ duration [UIVIew setAnimationDuration:(double)d] in seconds

▫ repeats [UIView setAnimationRepeatCount:(int)repeats]

▫ autoreversing [UIView setAnimationRepeatAutoreverses:(BOOL)doesReverse]

▫ curve [UIView setAnimationCurve:curveType]

� Interesting -- can have simple linear transitions, or ones which "ease in" or "ease out" or both

� i.e. gradually accelerate or decelelate

▫ when it happens [UIView setAnimationStartDate:(NSDate) when] or [UIView

setAnimationDelay:(double)seconds]

� default is to start immediately

Animation delgate

• Often need to tell when an animation stops or starts

▫ Set a delegate inside the begin/commit block

▫ set selectors for setAnimationWillStartSelector /

setAnimationWillStopSelector

[UIView beginAnimations:@"myAnimation context:nil];[UIView beginAnimations:@"myAnimation context:nil];

[UIView setAnimationDelegate:self];
[UIView setAnimationWillStopSelector:@selector(animationOver)];

[UIView commitAnimations];

// later...

- (void) animationOver
{
// do something interesting, like reseting the
// properties of the view

}

Example: A table view

• Tables are very common in iPhone applications

▫ Often used full screen

• Tables can have text, images and controls

• Each cell is a view

▫ i.e. it can have contain other controls

• Each table needs a delegate and a data source

▫ delegate: messages relating to actions of tables are sent here

▫ dataSource: this must provide the cells that populate the table

• NB cells are requested from the dataSource as needed

• Must link the table to a delegate and dataSource, either in InterfaceBuilder or in

your code

▫ Without a dataSource nothing will be drawn!

UITableViewDataSource

• Essential part of table construction

• Supplies data about the table

▫ Number of sections

▫ Number of rows in a section

▫ The cells for each row

� Note: cells are not strings, but general views� Note: cells are not strings, but general views

▫ A pool of cell objects is maintained and reused

� don't need to worry about this if you subclass UITableViewController in XCode

• need to implement:

▫ numberOfSectionsInTableView -- return number of sections

▫ sectionTitleIndexTitlesForTableView -- return array of titles

▫ numberOfRowsInSection -- given a section number, return no. of rows

▫ cellForRowAtIndexPath -- return a cell given an index path (row +

section)

UITableViewDelegate

• Responds to user interaction with the table

▫ key messages

� didSelectRowAtIndexPath

� didEndEditingRowAtIndexPath

▫ Sent when user selects or edits row respectively

• Uses NSIndexPath

▫ Represents a section and a row

▫ Can be read from the section and row properties of the NSIndexPath instance

▫ Construct with [NSIndexPath indexPathForRow:row inSection:section]

UITableViewControl ler

• Combines a UITableView with delegate and dataSource

• Simple, all-in-one solution for fullscreen table views

▫ Not very flexible, unsuitable for tables which are part of a larger interface

• Just override the necessary methods

▫ XCode fills them in for you when you create a subclass of

UITableViewController

UINavigat ionControl ler

• Makes managing multi-page hierarchical views easy

• You can "push" a view onto a UINavigationController

▫ and pop it off again

• Controller automatically creates a back button at top of screen

▫ will automatically pop the view when pressed

• Use: create UINavigationController instance with a root view controller

▫ this is view controller for the "base" page of the controller

• When you want to replace it with a new view, call pushViewController

UINavigationController *navigationController = [[UINavigationController alloc]
initWithRootViewController:baseViewController];

// later

[navigationController pushViewController:newDisplay animated:YES];

UINavigat ionControl ler

• Can jump back to the root page by calling popToRootViewControllerAnimated

• Navigation bar visibility can be toggled with setNavigationBarHidden

• UINavigationController is excellent for navigation in conjunction UITableView• UINavigationController is excellent for navigation in conjunction UITableView

▫ When the user selects a table element, drill down, and push on a new view

with new more detailed table

pushViewController

popViewController

UITabBarControl ler

• An analogue of UINavigationContoller, but for for short linear lists, not hierarchies

▫ (optionally) allows user to rearrange tab bar

• Displays a set of page tabs at the bottom

▫ Each is linked to a view

• You can link them in code, or directly in InterfaceBuilder (using the Inspector)

▫ Just create, and pass an NSArray of UIViewControllers

▫ These will appear as tabs

• Has a UITabBar property, which in turn takes an array of UITabBarItems

▫ Each tab bar item can have a title and an image

▫ image should be 30x30 pixels

MapView

• Map view is a ready made widget for display maps

▫ Provided by MKMapView

• Many handy features

▫ Can center on current location (or other specified location)

▫ Add, remove and select annotations (i.e. pins on the map)

▫ Convert screen co-ordinates to and from world co-ordinates

▫ Optionally allow user to zoom and pan the map

• Part of the MapKit framework -- you need to add it to your project, and import

<MapKit/MapKit.h>

Using MapView

• Create an instance of MKMapView with the frame it's to go in

▫ add it to your view controller

- (void) viewDidLoad { mapView = [[MKMapView alloc]
initWithFrame:self.view.bounds];
[self.view addSubview:mapView];

▫ Show current location by setting showsUserLocation to YES

▫ Drop a pin by using addAnnotationwith a MKPinAnnotationView instance

� Can make more complex annotations by subclassing MKAnnotation

▫ Recenter with setCenterCoordinate or setRegion to set a visible region (sets

zoom level too, based on a lat/long span)

[self.view addSubview:mapView];
}

//drops a pin somewhere near Glasgow...
self.mapView.showsUserLocation = YES;
MKPinAnnotationView *annotation = [[MKPinAnnotation alloc] init];
annotation.coordinate.latitude = 55.0;
annotation.coordinate.longitude = -4.0;
[self.mapView addAnnoation:annotation];

Deal ing with Mult i touch

• Lots of iPhone applications make a big deal of multitouch

▫ But there aren't any built in methods to deal with multitouch interaction

• You get touchesBegan, touchesMoved and touchesEnded calls

▫ with a set of touches

� assuming you set the view to respond to multitouch!

• Assume we want to make a stretch to scale gesture, a la the image viewer

• We need to record initial finger positions when both fingers are down

▫ when they move, we need to update the scale appropriately

▫ note: UITouch objects persist throughout a multitouch interaction

� no longer, but that's enough...

Simple s t retch gesture

// in the class definition
UITouch *firstTouch, *secondTouch;
CGPoint firstPosition, secondPosition;

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
// get the touches on this control
NSSet *touches = [event touchesForView];NSSet *touches = [event touchesForView];

// only if we now have two touches (we ignore the first touchesBegan, where
the first finger went down)

if(touches.count==2) {
NSEnumerator *touchEnumerator = [touches objectEnumerator];
firstTouch = [touchEnumerator nextObject];
secondTouch = [touchEnumerator nextObject];
firstPosition = [firstTouch locationInView:self];
secondPosition = [secondTouch locationInView:self];

}
}

d1

d2
firstPosition

secondPosition

newSecondPositionnewFirstPosition

Simple s t retch gesture

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
// get the touches on this control

NSSet *touches = [event touchesForView];

// if we have two touches, we must have had two-finger touchesBegan before
if(touches.count==2) {

CGPoint newFirstPosition, newSecondPosition;CGPoint newFirstPosition, newSecondPosition;
newFirstPosition = [firstTouch locationInView:self];
newSecondPosition = [secondTouch locationInView:self];

double dx1,dx2,dy1,dy2,d1,d2;
// compute distance
dx1 = newFirstPosition.x - newSecondPosition.x;
dx2 = firstPosition.x - secondPosition.x;
dy1 = newFirstPosition.y - newSecondPosition.y;
dy2 = firstPosition.y - secondPosition.y;
d1 = sqrt(dx1*dx1+dy1*dy1);
d2 = sqrt(dx2*dx2+dy2*dy2);

// new scale is ratio of distances...
self.scale = d1/d2;

}

}

Summary

• InterfaceBuilder provides a way of visually connecting objects

▫ actions send messages, marked IBAction

▫ outlets make references to objects, marked IBOutlet

• Table views provide powerful table support

▫ read data as needed from a dataSource

• Navigation controllers make it easy to manipulate a stack of "pages"

▫ great for hierarchical viewing

• Tab bars provide simple multi-page interaction

• MapKit provides a ready made map viewer and annotation tool

