
Haptic Granular Synthesis: Targeting, Visualisation and Texturing 
 

Andrew Crossan,1 John Williamson,2 Roderick Murray-Smith1,2 
1 Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare Ireland. 

 
2 Department of Computing Science, University of Glasgow, Glasgow, Scotland. 

andrew.crossan@may.ie, {jhw, rod}@dcs.gla.ac.uk 
 
 

Abstract 
This paper introduces the idea of haptic rendering 

using granular synthesis – an established technique for 
synthesising audio.  It describes the technique along with 
potential application areas, and initial results from an 
implementation on a PHANToM force feedback device.  
Three main applications are considered.  Firstly, 
rendering of probabilistic vector fields for presenting 
ambiguity and context information to the user.  Secondly, 
the possibility of producing textured virtual objects using 
granular synthesis is discussed.  Thirdly, we use the 
approach to display scatterplot data on haptic devices. 

 
 

1. Introduction 

There are many situations where non-visual 
presentation of data is desirable or even essential.  This is 
particularly the case when designing systems for visually 
impaired users.  This paper examines probabilistic 
methods of texturing to present information to a user 
through a force-feedback device.  The methods outlined 
in this paper, and tested on a PHANToM force-feedback 
device [7] (from SensAble Technologies) allow the 
design of textures to be linked to audio files accompanied 
by weighting functions, which are used to blend these in 
space and time. We describe a haptic design environment 
where the system (or the user) is able to place different 
distribution functions around regions in the state-space, 
and associate these with audio files, which then render 
different textures. The distribution functions allow 
localization of effects, blends of multiple effects and 
could be smooth, differentiable functions, or discrete 
functions with compact support in the space. The 
distribution function could also be a corridor around a 
trajectory in the space. Designers could use their auditory 
experience to browse potential sound files, or generate or 
mix their own. This could be so easy to do that end-users 
could further customize their interfaces, or provide 
sample sounds that provided textures that were 
meaningful to themselves. 

Granular synthesis is an inherently probabilistic 
rendering method, and can be used to display probability 
densities composed of a number of component densities – 
known as mixture models in statistics [10]. 

Forces synthesised in granular fashion on a force-
feedback haptic device can therefore be used to attract the 
user to different regions of space, or to change the closed 
loop dynamics to make it easier to follow certain 
trajectories. These forces, however, as well as attracting 
the user to a particular point or trajectory, would carry a 
recognizable signal in the form of the texture or 
disturbance associated with its audio file. This means the 
user can ‘browse’ the space for the target texture. It also 
means that unlike alternative approaches, such as 
gravitational effects, the user does not merely perceive the 
vector field associated with the average of the multiple 
local flow systems, but perceives a mixture of 
components. With granular synthesis, the long-term time-
average force at a given point in the state-space will 
converge towards the average of the raw flows (assuming 
infinite grains, and balanced power content in each audio 
file), but the local behaviour will contain information 
about multiple nearby attractors, with their signature 
haptic effects.   

The approach is therefore ideal for the design of 
probabilistic model-based displays, where multiple 
uncertain hypotheses must be displayed, and the user is 
made aware of the uncertainty of the different options, 
and the strength of evidence for each. The likelihood of 
these hypotheses will typically be conditioned on the 
system state history and user inputs. An example might be 
a target acquisition task such as button-pressing, where 
the hypothesis Hi would be ‘user wishes to press button i’, 
and would be conditioned on the position represented by 
the current cursor state variables x,y.  Alternatively we 
might have a gesture recognition task, where the 
hypothesis might be ‘User intends to open new file’, 
where the user’s intention is inferred from the time-series 
of input actions. In this case the likelihood of the 
hypothesis would vary over time, as the trajectory was 
incrementally processed by a pattern recognition system. 
In both cases the density functions associated with a given 
sound file could represent the conditional probability of 



the various hypotheses, providing the user with time and 
state-varying textures and attractive forces. The model 
and inference mechanisms map directly to display 
rendering. The probabilities can obviously also be 
context-dependent, and modelling tools such as Bayesian 
networks can be used to encode the appropriate models 
for the display. 

With granular synthesis being an accepted technique 
for synthesising audio, development of a similar haptic 
rendering technique naturally lends itself to multimodal 
presentation of information.  Using the scatterplot 
example described in Section 4.2, a user could 
simultaneously explore the data using haptic and auditory 
cues based on the same models.  However, there are open 
questions as to how the audio and haptic synthesis 
techniques will combine.  The different effective filters 
inherent to the different displays, and the frequencies 
ranges perceived by both senses will present different 
frequency ranges of the common audio file. 

2. Introduction to Granular Synthesis  

Granular synthesis is an established method for the 
creation of interesting and dynamic audio.  The technique 
was originally developed in its current form by Xenakis 
(see [13]) in the late 1950’s; see [9] for a modern 
overview of the topic.  

 
Figure 1. A description of the granular synthesis 

process. 

The fundamental idea is that a meaningful 
macroscopic waveform structure can be created from a 
large number of small waveforms.  This process is 

somewhat analogous to particle systems in computer 
graphics. All of the low-level elements (“grains”) are 
controlled by a small number of global parameters, 
usually statistical distributions over the individual element 
parameters. Such a formulation means that statistical 
models can easily be mapped to the synthesis algorithm. 
For example, the output probabilities from a pattern 
recognition process can be directly mapped to the 
probability of drawing a grain from a source 
corresponding to each of the potential goals.   

In audio granular synthesis, the grains are short 
sections of a source waveform, e.g. a pre-recorded section 
of audio, although it can also be the output of other 
synthesis algorithms.  Each grain is shaped (amplitude 
enveloped) to eliminate discontinuities (perceivable as 
clicks) and all of the active grains are mixed down into a 
single output stream. The particular qualities of the sound 
are manipulated by changing the distribution parameters. 
Most importantly, the distribution over waveforms from 
which each element is drawn can be modified to 
interpolate between audio textures.  Normally several 
hundred to several thousand elements would be 
simultaneously present. Figure 1 shows the overall 
process. 

The technique can be applied to any situation in 
which complex waveforms with consistent but rich and 
continuously-varying properties are required. The output 
of the synthesis could be transformed into time-varying 
force vectors in a haptic setting, to produce a rich, 
complex sensation, which can easily be controlled  by a 
small number of intuitive parameters. This is particularly 
true when the system with which the user is interacting is 
based upon some statistical model, or can easily be 
transformed into one, e.g. in pattern recognition of 
context. In this case, the model can be directly translated 
into force output parameters, given some reasonable 
choice of source waveforms.  

3. Force Vector Fields 

Barrett et al. [1] demonstrate how changing the 
dynamics of interaction can be used to aid targeting.  
Using the concept of negative inertia – using additive 
derivative control – they demonstrate how perceived 
sluggishness in an isometric interface can be negated.  A 
force vector field throughout a space can similarly be 
used to affect the dynamics of the system.  It can be used 
to provide context information about the space, and can 
be dependent on both spatial and time-varying properties.   
One example of a spatial vector field would be a 
gravitational field.  If a user were to navigate through a 
space with a number of fixed targets that were exerting a 
gravitational force on the user's cursor, the gravitational 
force felt would purely be as a result of the position of the 
cursor in the space with respect to the targets.  The user 



will then feel a constant gravitational pull that will 
provide information about the direction of and distance to 
nearby targets.  It will provide a pull on the user that will 
assist in targeting tasks.  As the user gets closer to a 
target, and it therefore becomes more certain which target 
is of interest to the user, it will provide a stronger pull 
towards the target. 

However, in the event of two approximately 
equidistant targets that are in opposite directions from the 
cursor, the forces from these targets may to a large extent 
cancel each other out.  If the user has a decision to make 
as to which target to aim for, the spatially distributed 
vector field may not always provide the information 
required.  The user may be aware, because of the low 
force exerted, that there is an area of high uncertainty, but 
will not be given the context information required to find 
a particular target.  In this instance, vector fields that vary 
in time as well as space may provide a better solution – 
the approach we develop is one based on haptic granular 
synthesis.  

3.1 Granular Synthesised Methods 

As in audio granular synthesis, at each time step, 
every target in the space will have an amplitude value 
associated with it. If no grain is currently being played 
from a source, this value will be zero.  Otherwise, this 
value will be the amplitude of the synthesised waveform.  
For example, for an 8 bit sound source there are 256 
possible amplitude levels. The time-varying properties of 
granular synthesis can be displayed to the user through a 
force feedback device by directly varying the force from 
the actuators of the device using these variations in 
waveform amplitude.  While the frequencies in audio 
rendering are considerably higher than would be expected 
in a haptic system, the rate of playback or chosen 
sampling rate can be adjusted accordingly. 

In a system such as the gravity example above, grains 
emitted by a target can be set to produce a force of 
magnitude determined by the current waveform amplitude 
in the direction of the target.  For a single grain, the user 
would feel a short tug towards the target.  With multiple 
grains from different sources, vector summation can be 
used to calculate a resultant force.  In some instance, these 
grains will cancel each other out.  However, as the grains 
are generated at random intervals, it is likely that the user 
will feel a series of short tugs towards each of the 
different sources (shown in Figure 2).  A probability 
distribution function can be used to control the number of 
grains generated from each source.  For example, if we 
assume that a user is more interested in a close target than 
a far away target, we can propose a probability density 
P(Interest|Distance) such that a higher density of grains 
are drawn from the closer target.  The user will feel 
stronger tugs towards the close target, but may also be 

able to perceive and locate a more distant target based on 
the sparse but recognisable grains generated from that 
target. 

In an area of high uncertainty such as the saddle point 
(where the forces from different targets largely cancel 
each other out) described in the above gravity field 
example, the grains will be drawn in opposite directions 
and will cancel each other out to some extent.  The user 
may not feel much force in any one direction, but will be 
able to appreciate short bursts of force in the direction of 
each of the targets.  If they then explore the region close 
to this point, they can detect the change in the texture and 
disturbances locally, and move towards their desired goal. 
Texture can therefore be used as a type of quickening [5].  
By structuring the texture relative to hypothesized goals, 
we can display to the user a prediction of the 
consequences of maintaining the current trajectory. We 
expect that most applications will use a weighted 
combination of textures and disturbances generated by 
granular synthesis. 
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Figure 2(a). Force vectors varying in time as the 
user holds the cursor between two sources. The 

“tugging” force vectors are visible. 
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Figure 2(b). Magnitude of force vectors from two 
sources as the user moves left to right between 

their associated densities (the bell curves). 



4. Texturing 

In real world haptic object exploration, an object’s 
texture is often important for object identification.  
Texture display in a virtual environment is therefore 
desirable to provide the user with more information about 
the object and increase the fidelity of the simulation.  
Haptic texture rendering, which has been examined 
extensively in the literature, can be separated into 3 main 
categories: abstract models, record and playback models, 
and stochastic models.  For example, McGee [8] 
examines perception of roughness using sinusoidal force 
feedback textures – an abstract texture model.  Jansson [6] 
examined the perception of real world and virtual sand 
paper textures.  The virtual models used in this study were 
built from recorded properties of the real world 
sandpapers.  Fitz and Barner [3] describe a stochastic 
method for generating textures that can be combined with 
a granular synthesis approach, where the time-series 
would be generated by the chosen probabilistic model 
instead of audio files.   

However, generating textures can still prove 
challenging for designers of virtual environments.  One 
goal of this research is to provide a method of virtual 
texture generation that is easy to include in a simulation 
for a non-technical designer. 

The changing texture of a surface is one method of 
conveying information to a user in a virtual environment.  
McGee [8] demonstrated that – despite the lack of 
cutaneous cues – a force feedback device can provide 
discriminable textures that can be ordered by their 
perceived roughness.  Wall [15] describes the possibility 
of encoding information in the different haptic properties 
of an object – including friction, stiffness and texture – 
for displaying graph data to visually impaired users. 

4.1 Granular Synthesis for Surface Texturing 

In a granular synthesis surface texture system, there 
are two different methods of rendering the texture by 
using the waveform amplitude to vary either the height of 
the surface or lateral forces applied when moving across 
the surface.  Using amplitude to vary the height of the 
surface seems to be the more intuitive, as with a force 
profile representation, the texture is invariant of related 
object properties such as friction and damping.  Figure 3 
shows the amplitudes generated when moving across a 
flat surface textured using granular synthesis.  For one 
source it can be seen that the texture consists of a number 
of distinct bumps.  The density of the bumps can be 
changed by increasing the number of grains generated per 
second.  For three sources, the texture is generated from a 
mixture of grains from different sources, and is therefore 
more variable.  For any point in time, the playback rate 
from the grain sources can be altered due the velocity of 

the cursor such that a higher rate of grains is felt by the 
user with a higher cursor velocity. 

Due to the stochastic nature of the granular synthesis 
process, the same area of surface will not have exactly the 
same texture at different points in time although the 
perceived qualities will be similar. The implementation 
described in this paper displays the haptic granular 
synthesis on a PHANToM force feedback device [7].  We 
use the PHANToM as it provides a high-resolution force 
feedback and allows intuitive interactions with a three-
dimensional space.  It allows a user to interact with a 
virtual environment through a single point of contact.  
The user can move freely in 6 degrees of freedom (X, Y, 
Z, roll, pitch, and yaw).  The device can also provide 3 
degrees of high-resolution force feedback to resist or 
assist motion in the X, Y and Z dimensions. 

In the implemented system, users can select a variety 
of sound files and drag and drop them over a flat surface 
using the PHANToM device.  The width of effect of each 
of the files can be altered along with the number of grains 
generated per second.   

 
Figure 3. Change in the height of a texture 

generated by granular synthesis. Top: granules 
from individual waveforms. Bottom: summation 
of the granules generated from the 3 sources. 

Different feels can be generated by simply clicking 
and dragging the grain sources to different areas of the 
surface.  To generate a surface that is approximately 
uniformly textured, a single source can be used and a 
uniform density can be associated with every position on 
the surface.  This can be achieved by the normalisation of 
the probability density function, which ensures that the 
source will have the same contribution everywhere on the 



surface.  It is important to determine whether conditional 
probabilities of hypotheses are being used which sum to 
one at every state, or whether they integrate to one over 
the whole state-space.   

4.2 Display of Scatterplots and Probability 
Density Functions  

This mechanism provides an interesting approach to 
the display of scatterplots – an area of great interest to 
blind users. Existing work in haptic visualization of 
graphs and mathematical functions includes [14] and [16].  

 
Figure 4(a). A cursor trace from a user exploring 

the granular synthesised scatterplot using a 
PHANToM. 

 
Figure 4(b). A contour plot of the Gaussian 
distributions around the data points of the 

scatter plot shown in Figure 4(a). 

For display of point data where all points belong to 
the same class, we have a common audio file for each 
point, and we associate the same form of density function, 
e.g. a Gaussian density, with each data point. This is 
analogous to nonparametric modelling in statistics based 
on Kernel density estimation, also known as Parzen 

smoothing [4]. The average density then becomes a 
smoothed version of the original data and approximates 
the probability density function. In cases with multiple 
classes of data point, each class uses a different audio file. 
The changing signature files would allow users to identify 
clusters of data points from a common class and find 
outliers. 

Other features of data points could potentially be 
represented by transformations of the associated audio 
files – e.g. if the data could be enhanced by a regression 
line, or other parametric models, such as mixture models 
[10], the position the granules that are taken from the 
audio file could be linked to the arc length of the point on 
the function normal to each data point. 

 
Figure 5(a). A cursor trace from a user exploring 

the granular synthesised scatterplot using a 
PHANToM. 

 
Figure 5(b). A contour plot of the Gaussian 
distributions around the data points of the 

scatter plot shown in Figure 5(a). 

Figures 4 and 5 display two scatterplots (with 3 
classes of data) built using the system described.  Figure 4 
shows a scatterplot with few data points where there is 
little overlap between the distributions.  Figure 5 
demonstrates a more realistic situation where more data 
points are included.  There is more overlap between the 
data points and data classes.  One key feature of this 



system is that blending of the textures between data 
classes is handled smoothly by the probabilistic model.  
This blending can be controlled by setting the width of the 
Gaussian distribution around the data points.  A wide 
distribution will provide the user with information about 
targets that are further away, but there will be more 
overlap of the distributions between the data points.  A 
narrow distribution will allow users to experience a 
smaller but more focussed area of the environment.   

The discriminability of granular synthesised signals 
becomes an issue for perceiving scatterplot data.  One 
relevant study is presented by Bensmaia and Hollins [2], 
which examines the discriminability of complex 
vibrotactile waveforms produced by superimposing 
sinusoids.  A similar study would be required for 
assessing the discriminability of signals generated by 
granular synthesis. 

5. Conclusions 

We have presented a new approach to non-visual 
presentation of mixtures of probabilities in haptic 
displays. The information is provided by either changing 
textures or disturbance patterns, which modulate force-
fields acting on the user. This has applications in selection 
of targets in multi-target environments, display of mixture 
densities and in display of scatterplots. The sources used 
in this case are audio files, which makes the approach 
well suited for non-programmers to develop or adapt 
haptic displays, and also makes multimodal displays 
incorporating aligned audio and haptic effects more 
straightforward.  The approach can also be incorporated 
into mobile settings where input is provided by an 
accelerometer, with a vibrotactile display.  The display 
can then become a powerful method for providing 
probabilistic feedback for gesture input methods, as we 
have already used in audio displays [12], and for text 
entry [11].  Future research is needed to investigate the 
ease with which users can develop displays with this 
approach, and the extent to which the granular synthesis 
approach to rendering textures compares with existing 
methods, and to whether it is better suited to cutaneous 
stimulation approaches, or to use force-feedback.  
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