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ABSTRACT
In this paper we are mainly concerned with discussion of a
formal model, based on the basic concept of divergence from
information theory, for automatic query expansion. The ba-
sic principles and ideas on which our study is based are de-
scribed. A theoretical framework is established, which al-
lows the comparison and evaluation of different term scor-
ing functions for identifying good terms for query expan-
sion. The approaches proposed in this paper have been im-
plemented and evaluated on collections from TREC. Prelim-
inary results show that our approaches are viable and worthy
of continued  investigation.
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1. INTRODUCTION
One of the major difficulties in textual information re-

trieval is the description and representation of information
needs in terms of a query. Usually, the original query state-
ment consists of just a few terms related to the subject of
interest. Given such a scenario a retrieval system cannot
be expected to accurately distinguish between relevant and
irrelevant documents, which in general are long and often
have complex structures.

Automatic query expansion and relevance feedback tech-
niques have been proposed to address this issue. These tech-
niques supplement the original query with additional good
terms, and they can be expected to produce an improvement
in retrieval performance. In relevance feedback, the expan-
sion terms come from the user-identified relevant documents.
In pseudo-relevance feedback systems, the expansion terms
come from the top retrieved documents which are assumed
to be relevant. An extensive bibliography of papers on the
approaches to accomplish these techniques was reviewed by
Efthimiadis [I].  One of the approaches is to use analysis of
term distributions. The underlying assumption of such an
analysis is that the diversity between the different sets of
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documents might be associated with certain semantic rela-
tionships between terms. A theoretical argument that sup-
ported the assumption by using of the difference of term
distributions to select and re-weight the expansion terms
was presented by Robertson [2].

Based on the term distribution analysis, Carpineto et al.
[3]  [4]  proposed a novel pseudo-relevance feedback approach
using the concept of divergence studied in information the-
ory. A basic condition that must be satisfied in applications
of divergence is that the two components of divergence must
be absolutely continuous with respect to one another [5],
the divergence does not converge or, is meaningless, other-
wise. Usually, the condition may not be satisfied when we
attempt to derive the probability distributions from the dif-
ferent sets of documents for the purpose of query expansion.
It is therefore a key issue that, for the rationality of applying
the concept of divergence to feedback technique, needs to be
carefully analysed and rigorously proven. Carpineto, et al.
thoroughly discussed this issue, and suggested a scheme that
attempted to find out a discounting factor p (0 < ~1  < 1)
for discounting the probability distribution of terms in or-
der to solve the problem. In their work, however, it seemed
that the factor ~1 was not really derived, and the main ex-
periments described still relied on p = 1. In fact, the the-
oretical problem of applying divergence to query expansion
technique still remains an open problem, and is one of the
focal points of this study.

This leads to the research questions we address in this pa-
per. We aim to develop a formal model that resolves some of
the difficulties in existing approaches that apply information
theory ideas to information retrieval. The developed model
does not require any a priori knowledge about relevance in-
formation in a sample set of documents, is computationally
simple, can be easily implemented, and is effective in im-
proving retrieval performance.

In the remainder of this paper, we proceed as follows.
First, in section 2, we discuss the representing scheme for
documents and queries. We then describe a formal approach
based on the concept of divergence for constructing a scor-
ing function for query expansion, and illustrate how it can
be applied in a realistic retrieval system. Followed to that,
in section 4, we evaluate the retrieval effectiveness of our
proposed approach and expound on how the effectiveness
varies according to the quality of original query. In section
5, we describe an alternative formal approach based on the
concept of relative entropy for query expansion. Finally, we
comment on the necessity of this study, and conclude our
discussions by emphasising some of the difficulties encoun-
tered in the design of a query expansion retrieval system.
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2. KNOWLEDGE REPRESENTATION
In a textual information retrieval system, the  objects one

deals with are documents and quer&s.  In order to develop an
appropriate quantitative retrieval model, one has to design
a reasonable scheme to represent documents and query.

In information retrieval, each object z is represented by
means of a set of concepts, in which, the semantics involved
is a key issue. So far, the simplest way of characterising
each concept involved in a object is to use index terms that
appear in the object.

Usually, an individual index term may contain a piece
of information, and there exists complex semantic relation-
ships between the index terms. Each object may therefore
be composed of an arbitrary amount of information. No as-
sumptions are made regarding the structure of the objects,
although in practice structured subdivisions of the docu-
ments can be accommodated.

To arrive at a precise representation of entire information
content of an object by means of a set of index terms is
arduous task because it is very difficult to obtain sufficient
statistical data for the estimation of the amount of informa-
tion contained in index terms, and for the indication of the
semantic relationships between index terms.

Let, D = {dl,dz,‘..  ,di,... ,d~} be a document collec-
tion, and let a finite ordered tuple V = {tl,  t2, . . , tj, . . , t,}
be the vocabulary of terms indexed from the whole collection
D. Let y be a query. Assume that the distribution of the
amount of information of terms tj E V (called information
distribution) in each object x = di E  D or x = q can be
approximately quantitatively represented, with a weighted
vector u,  = (wp(tl),wm(t2),...  ,w*(tj),...  ,w=(L)).  W i t h
such a knowledge representation, the relationships between
the objects will become transparent when dealt with a spe-
cific quantitative retrieval model.

Under an idealised retrieval environment, the knowledge
representation will be perfect and the interpretation of weights
of terms should be entirely independent of any individual
model. However, a feasible scheme for computing accurately
the amount of information contained terms and also captur-
ing effectively the semantic relationships between terms is
not available. Thus interpretation of the weights has to de-
pend on a specific model itself, and it is frequently consistent
with the statistical nature of indexing procedure. Generally,
the weights wr(tj)  are considered to ‘indicate’ the relative
importance of the term tj E V for the object x. The terms
with higher weights are regarded to ‘contain’ more informa-
tion than those with lower weights.

3. A MODEL FOR TERM SELECTION
This section focuses on the development of a formal model

for automatic query expansion. The approach proposed is
based on the concept of divergence studied in information
theory. We will prove that the methodology discussed in
this study is theoretically justified.

3.1 Background
In probabilistic retrieval, the random event ‘which term

will occur’ can be viewed as a random variable on V, denoted
by<,whichmaybeamapping[:V+{l,...,n}ifwesup-
pose that [(tj)  = j. The random variable 6(t)  have some
kind of uncertainty, which can be characterised  by means
of a probability distribution P=({<(tj)  = j}) (j = l,...  ,n),
denoted by Px(t)  for convenience, over probability space (V,

2”). The interpretation of P,,(t)  will depend on the popula-
tion 7r  from which it is derived and on the statistical nature
associated with 7r  in a specific indexing procedure.

Let populations 1Tk  = Dk C D (k = 1,2) be two sets of
documents, and PDF  (t) probability distributions over (V, 2”),
derived from Dk  (k = 1,2). Here PD, (t) are interpreted as
information distributions of Dk  (L = 1,2).

The divergence between the distributions PD,  (t) and PQ (t)
due to Kullback  & Leibler [5]  is defined by

PD, (t)
J(pD~  cth  PDz  (t)) = ~(PD, (t)  - pDz (t)) log mo

tcv

which can be used  to measure the average difierence  of
the information contained in PDF  (t) and that contained in
PDF  about Pal  (t), and vice versa.

In order to avoid meaningless expressions in the discussion
that follows, we use the following notational conventions:

O.log(~)=O, 0 . log(  g,  = 0

(0 - a) . log( 8) = lim,+.+o(E  - a) . log($) = +co,

(a - 0) . log(g)  = lim,++o(a  - s) . log(z)  = +c0.

where 0 < a < +oo.  That is, for some t’ E V, if PD,(~‘)  = 0
(but PDF  # 0),  or if  PD,(t’)  = 0 (but PDF  # 0),
the conventions that (0 - PDF  (t’)) log * = +oo  and

(PD,  (t’) - 0) log pDb(t’)  = +oo are accepted.
It can be easily verified that the divergence has the fol-

lowing properties: .~(PD,  , PO,) 2 0 with equality if and
only if PDF  = PD,(~) for all t E V, and J(PD,,  PDF)  =
J(PD, , PD,  ). This is, the divergence is non-negative and
symmetric.

In practice, it might be sometimes desired to have a con-
sistency in the measure of the average difference between
distributions. The divergence J(.,  .)  is explored so as to
product a symmetric dissimalarity  measure between two dis-
tributions when we have no particular reason to emphasise
either of them. Thus, it should be more natural and reason-
able for us to think of the divergence J(.,  .)  as a ‘distance’
measure (even it is not) between distributions in a realistic
retrieval environment.

3.2 Some Explanations and Notation
The divergence is a basic concept in information theory.

It has different applications in a variety of research areas, in
particular, it has been becoming a useful tool in estimation
problems. We believe that this is also certainly true in the
statistical and probabilistic information retrieval.

Perhaps the usefulness of divergence can be best illus-
trated by the following situation. In an information retrieval
context, it is desirable or necessary to consider the diver-
gence between the information distributions derived from
some specific populations (sets of documents) can expose
some semantic relations between terms. A feasible scheme
of capturing true semantic relations of complicated seman-
tics is not yet available. But if the divergence in the form of
population distributions can be obtained, and if the distri-
butions can approximately reflect information distributions
in the populations, then one will know for sure that the
divergence meets one’s needs.

Underlying all of our discussions in this study is the as-
sumption that the divergence between information distribu-
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tions derived from the different sets of documents can reveal
some semantic relations between terms.

Let the population r = R be the set of relevant doc-
uments with respect to original query q, and VR be the
sub-vocabulary consisted of the terms that appear in the
relevant documents, which constitute a source of candidate
terms. The set of candidate terms contains terms that may
be added to the query, whereas the set of expansion terms
contains terms that the system actually adds to the query.
Let VeCq) be the set of expansion terms of the query q (then
VeCp) C VR). Let V”  be the set of terms that appear in the
object 2.

We denote 1~1 as the size of population 7~  (e.g., (DI  =  N
when n = D), IV”I  and IV”1 as the sizes of sub-vocabularies
If” and V”, respectively. And we denote llzll as the length
of object 2,  llv211  = (C,ev w~(t))~  as the norm (or length)
of vector 21,  representing object 2.  Also we denote f=(t)
as the occurrence frequency  of the term t in the object z,
Fe(t)  as the document frequency of term t relative to the
collection D, and awe(D) = & C,eD  lldll  is the average
length of documents in D.

Note that, in this study we denote t E V”  instead oft E z
(e.g., t E Vd rather than t E d) because from the set theory
viewpoint the duplicate terms in the set of terms should be
represented with one element. Thus we have, for instance,
Ml 2 lVdL

Many empirical results show that the difference of distri-
butions of terms in the relevant and non-relevant document
sets might reflect some semantic relations between terms.
One would expect, the terms related to the query q will oc-
cur frequently in relevant documents to q, rather than in
non-relevant ones. A reasonable function to score candidate
terms for query expansion should be the one that can reflect
semantic relations between the candidate terms t E VR and
the terms t E Vq.

Suppose that the selection of the expansion terms t E
VeCq) are based on the scores, obtained by means of the
divergence J(.,  .), of candidate terms t E VR. The basic
idea of the selection is that the candidate terms assigned
high scores are considered as being likely to contain infor-
mation relevant to the query, and that the terms relevant
to the query should be much more concentrated on the sub-
vocabulary VR than the whole vocabulary V.

In a practical retrieval environment, the relevant docu-
ment set R is frequently replaced with the pseudo-relevant
document set R for the purpose of the query expansion.
That is, we will generate VeCq) from V’,  the sub-vocabulary
consisted of the terms that appear in the pseudo-relevant
documents in 8,  instead of from VR. In what follows, we
attempt to theoretically propose a approach of constructing
a scoring function by using divergence .J(Ps,  Pn), which is
assumed to be able to reveal some semantic relations inher-
ent in the candidate terms t E V” and the terms t E VP.

3.3 A Scoring Function
We are now in a position to investigate the query expan-

sion by applying the divergence J(Pgz, F’D).
Let &(t)  be a probability distribution on V derived from

the pseudo-relevant document set ?I& and Ps  (t) > 0 for every
t E V’ and Pn(t)  = 0 for every t E V - V’.  Let PD(t)
be a probability distribution on V derived from the whole
collection D, and PD(~)  > 0 for every t E V”.

Obviously, if  [RI = IDI ( in this case,  P%(t)  > 0  and
Pa(t)  > 0 for every t E Vn = V) the divergence J(PR  : PO)

is entirely meaningful for the distributions PR(~)  and Pa(t)
over the same probability space (V,2”)  = (V”,2”*).  We
can therefore directly apply the J(PR, PD) as a dissimilarity
measure to construct a score function

P%(t)
score,(t)  = (h(t)  - PD(t))log  &-@ (t E V”)

for query expansion (for the interpretation of this see the
last paragraph in section 3.4).

Otherwise, without losing generality, assume that IRl  <
IDI. Let us denote the item of divergence J(PR, PD) as a
function of terms t E V, that is,

PR(t)
f(t)  = (PR(t)  - PD(t))  1%  m (t E V).

Note that Ps(t)  = 0 for every t E V - VR, therefore f(t)  =
(0 - PD(t))  1%  F+q = +oo (when PD(t) # 0), and this
results in the J(PR, PD) being meaningless. That is, we can
not directly apply J(PR, PO) as a dissimilarity measure for
P%(t)  and PD(~)  in a query expansion application.

In order to resolve this problem theoretically, we design
decomposed probability distributions over probability space
(V$,  2”3)  for both &(t)  and PD(t),  where V$ = V”U{t*}
(let t* sf  V be a fictitious ‘term’ without containing any in-
formation content). The scheme adopted in this study is
simply based on discounting some value of density of RR(~),
say PR(to)  of the term to  E V” (satisfying Ps(to)  # l),
with a discounting factor p = PR(to)  (then 0 < ~1  < 1).
Whereas the discounted value of density Ps(to)  -,LLPR(~~)  =
PR(to)  - Pi(h)  is restored by redistributing it onto the fic-
titious term t*. We may formulate this scheme by the de-
composed probability distribution PR(t, to, t”) as follows.

P&t) when t E V$ - {to} - {t’}

PR(t, to, t*) =

1

P&to) when t = to  E Vt?

RPg(to) - Pi(to)  when t = t’  E V,. .

Similarly, for the distribution PI, the decomposed prob-
ability distribution PD(t,  to, t*) can be expressed by

PD(t,tO,t*)  =

i

PD  (t) when t E V$ - {to} - {t’}

&(tO)PD(tO) when t = to  E V,“l’

PD(t0)  - h(tO)PD(tO)  + &V-VR  PD(t)

whent=t’EV$.

It is easily seen that both Ps(t,  to, t*) and PD(t,  to,  t”)
satisfy two axioms of probabilit

B
distribution, they are hence

probability distributions on V,.. . In fact, it is readily viewed
that Ps(t,  to, t*) > 0 and Po(t,  to, t*) > 0 hold for every
t E v$!.

Thus the divergence .l(P~(t),  Pa(t))  is modified to J(Ps(t,
to, t’),  PD(~,  to, t”)), which is rewritten as follows.

J(PlR(t,  to, t*),  PD(t,  to,  t’))

= Ctw,,82 (h(t,tO,  t’)  - PD(t,tO,t*))  1%’  $$;:“,;::;

=c t~“%-{to}-{t’}  f(t)  + El(tO)  + ~z(t*),

in which,
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EZ(t*)  = [(PR(to)  - G(to))-

-(pD(tO)  - PR(tO)PD(tO) + ctEv-@  PD(t))]x

Thus, the J(Ps(t,  to,  t*),  PD(& to,  t’)) is entirely meaning-
ful for the distributions PR(t, to, t*) and PD(~,  to, t’)  over
the same probability space (V$,  2K5).

As discussed above, the modified divergence J(PR(t, to,  t*),
PD(~,  to, t*)) can be used to measure the difference of the
information contained in Pa(t, to, t*)  and that contained in
PD(~,  to, t’)  about Ps(t,  to, t*), and vice versa. While the
difference is assumed probably to reveal some semantic re-
lations between terms t E V$ and terms t E Vq. Thus,
the expansion terms selected (from t E I$?) should be those
which mostly conM~ute  to the difference. The greater differ-
ence the terms make, the more likely they are to be related
semantically to the query q.  These statements may be fur-
ther formulated by means of a scoring function

1

f(t) when t E V$ - {to} - {t’}

score,(t,  to, t’)  = El (to) when t = to E V$

EZ(t*) whent=t*  EV$,

in conjunction with a decision rule: If score,(tj,  to, t*) >
score,(tk,  to,  t’)  then tj is more relevant to q than tk.

Thus our task is reduced to calculating the scores using
score,(t,  to, t‘)  for every t E V$,  and then to decide which
of them should be selected as expansion terms for query
expansion by means of the decision rule.

Note that, in the discussion above, to E VR is completely
arbitrary, and the values of scoring function score,(t,  to, t*)
are entirely independent to to when t E V$ - {to} - {t*}  =
v”  - {to}.

3.4 Simplification of the Scoring Function
We have formally derived a scoring function based on the

modified divergence as discussed above. We now wish to
make a further simplification so that it is reasonable for
us to use the scoring function directly for the terms t E
VR  without considering what the terms to and t* should
be. In other words, we wish to be able to ignore the score
values .e~(to) and Ed of terms to and t* at all when we
use scoreq(tj,  to,  t’)  as a query expansion approach.

For this purpose, let us look at again the modified diver-
gence and the scoring function as discussed above. We wish
that, for every t E VS - {to}, the item f(t) of divergence,
i.e., the score score,(t,  to, t’)  satisfies the inequality

f(t) = (h(t)  - PD(t))  1%  $$$

> (P&to)  - &2(tO)PD(tO))log m = El(tO).

This inequality explicitly indicates that the difference be-
tween PR(t,to,t*)  and PD(t,  to,  t”)  mostly comes from the
terms t E VR - {to}, rather than from the term to.

In fact, it is easily seen that the following inequality

f (to) = (p?R(tO)  - PD(tO))  log  m

> (P&to) - &(tO)PD(tO)) log  f$$ = El(tO)

holds iff (if and only if)

(h(b) - PD(t0))  - (&&I) - PR(tO)PD(tO))

= PR(to)(l  - PR(t0)) - PD(to)(l  - P&to))

= (PR(tO)  - PD(tO))(l  - &?(tO)) > 0

holds iff Pa(ta)  2  PD(tO)  holds.
Therefore, taking to E V” such that

Lzt?&df (to)  = (P%(h))  - PD(to))  log  pD(tOj

= min{ f (i?) 1 t E V’},

we immediately obtain

f(t) = (h(t)  - PD(t))  1% m

2 (&(tO) - PD(t0))  log  $$$ = f (to)

> (P&to)  - Psz(to)PD(to))log  $$$  = El(t0)

holds, for every t E V ‘, iff PR(ta)  > Pu(ta) holds.
In a real retrieval environment, the set of pseudo-relevant

documents is usually very small compared with the whole
collection. Thus the size of V (i.e., IVl)  is much larger
than the size of V’ (i.e., IVRj).  Accordingly, the densi-
ties of P@(t) are relatively much greater than the densities
of PD  (t) for all t E v” . Therefore, from the viewpoint of
applications, it should not be a problem for satisfying the
constraint &(tO)  2  PD(tO)  for to E vR at all.

On the other hand, t' is a fictitious term without contain-
ing any information content, it is of course impossible to be
relative to any given query. So there is no need to consider
the score ~2(t*)  for the term t' at all during query expansion
procedure.

Note that the scoring function score,(t,  to, t’)  is indepen-
dent to to and t" when t E VR - {to}. From the discussion
above, score,(t,  to,  t’)  can then be actually simplified to

f&SCOreq(t)  = f(t) = (h(t)  - PD(t))log  PD(t) (t E vy,

along with a decision rule: If score,(tj)  > score,(tk)  then
tj is more relevant to q than tk. This turns out to be simple
computationally and constructively.

Thus each candidate (t E V’)  can be assigned a score
by the ‘intelligent judgementor’ score,(t). The candidate
terms with the top scores should be given a top priority as
the expansion terms t E VeCq), and these expansion terms
actually make the most contribution to the J(Ps,  PD), the
difference between PR(~)  and PD(t), among the terms t E
V”. Consequently, as the assumption given in section 3.2,
they might be more relevant to the query q than the others
or, in other words, might be regarded as good discriminators
to distinguish relevant documents in the whole collection
from non-relevant ones with respect to the query.

3.5 Application of the Scoring Function
An appropriate question is ‘How should I set components

of J(PR, PD) for applying the scoring function score,(t) to
effectively improve retrieval performance?‘. This is very
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tricky problem indeed. In any probabilistic retrieval model,
the information distribution of a certain population will have
to be approximately estimated by means of the estimation
of term distribution based on the statistics derived from the
population. The population may be a small set of sample
documents, or be any set of documents, whatever the pop-
ulation may be, depends on a specific application. Conse-
quently, the estimation of term distribution plays an essen-
tial part in determining retrieval effectiveness for any proba-
bilistic retrieval model. In fact, the accuracy and validity to
approximately estimate information distribution by the esti-
mation of term distribution are for a long time a crucial and
open problem. This is because, as mentioned in section 2, it
is very difficult to obtain sufficient statistics for the estima-
tion of the amount of information contained in terms, and
for the indication of the semantic relations between terms.
So far, almost all existing probabilistic models might still
suffer from the same problem. This study does not give es-
timation rules for the distributions Pn(t) and PD(t), which
will be regarded as a significant subject for further study.

However, we have made some preliminary attempts and
studies of estimating components and testing results. One
of them is illustrated here, and its experimental result will
be given in the following section.

In practice, we have only observations, i.e., the statistics
of the occurrence frequency of terms, from the different sets
of documents !R and D. In this case, for each term t E Vd
and d E 3?, let

sim d,q)
‘g’d(‘,  4)  =  Pd(t)  X P,(d)  =  f# X xdEa  s(im(d,q)  >

indicates the agreement of term t E Vd with the query q.
The probability p,(d) is relative similarity defined over R
and derived based on the similarity measure sim(d,q)  ob-
tained in initial retrieval procedure. The choice of sim(d,  q)
depends on a specific model itself. Therefore, when t E V’,
the component Pa(t)  can be approximately estimated by

&2(t)  = Cd&T?  Tvd(t%q)ct~“aEd~:n  %7rd(t&))

= Z&e  pa(tbsW
c,~,a(C~Ea~.dt)~d4) = &~P&hJdd),

since xteVd pd(t)  = 1,  ~~enp.,(d)  = 1, and pd(t)  = 0 when
t E V’ - Vd, hence, for denominator in the expression of
PR(~),  we have

ctg/e(&RPd(t)pq(d))  = Cd,a(Ct~vIRpd(t)pq(d))

= Cd&Pq(d)  &vd pd(t))  = l.

It is easily verified that PR(t)  > 0 for every t E V”.
Similarly, for each term t E Vd and d E D, let

impo(t,d)  =  pd(t)  X idfD(t)  =  ff$  X log&,

indicates the importance of term t E Vd to document d (rel-
ative to D). Therefore, when t E V, the component PD(t)
can be approximately estimated by

PD(t)  =
LED impD(%d) Cde~pd(tbdf~(t)

&v(&D  impD(td)  = CtEv(CdE~  pd(t)WD(t))’

It is easily verified that PD(t)  > 0 for every t E V (2 VR).
More discussions on the estimation of components and

their corresponding experimental results will be given in the

next section.
Finally, we would like to point out that in this formal

model the postulates of PD(t)  > 0 and Pn(t) > 0 for every
t E V”  C V are not excessive. They are necessary and the
least of conditions for applying the divergence J(P,,  PD)
to construct a scoring function in this model. Because the
vocabulary V is a finite tuple, these postulates are not in-
feasible and are practical in a realistic information retrieval
context.

4. PRELIMINARY EXPERIMENTS
The main purpose of this section is to evaluate the re-

trieval effectiveness of the strategy proposed in this study.
We compared the overall retrieval performance of query ex-
pansion using our approach, with that of the original query
without query expansion, and with that of query expansion
using reduced Rocchio’s formula.

4.1 Description and Setting
In order to investigate to what extent our approach of

query expansion constitutes an improvement in retrieval per-
formance, we have carried out a number of experiments.
Our experiments use two collections from the TREC ad hoc
data: AP90 (Associated Press newswire, 1990) with 78,321
documents, and FT (the Financial Times) with 210,158 doc-
uments. Regarding the queries for the experiments, we use
two sets of queries, which were automatically derived from
two sets of 50 natural language topics (201-250 and 351-
400) without any manual intervention. The average length
of the topics in the two sets are 16.3 terms and 14.3 terms,
respectively.

The classical approach of query expansion due to Roc-
chio’s formula [6]  has been shown to achieve good retrieval
performance [7]. The reduced formula, which can be used
both to rank candidate terms and to re-weight the expansion
terms for obtaining expanded query q’,

is employed in our experiments with Xi = XZ  = 1. The
strategy of query expansion based on the reduced formula
will be adopted as one of the baselines in our study.

In the initial retrieval, we use Okapi’s weighting scheme
due to Robertson, el at. in [8], which has also been shown
to produce good initial retrieval performance. That is, for
every t E V the weights for the document d and the query
q are approximately represented, respectively, byz.zfd(t)
Wd(t)  = fd(t)+l.Z(0.Z5+0.7511dll/ave(D)) when t E Vd

0 when t E V - Vd

wq(t) = $$$j$& X l”og’“&~$‘,‘,“” when t E VP
whentEV-Vq.

And we simply use the inner product between the docu-
ment vector ud  and the query vector vq as a decision function
to compute the similarity between d and q, that is,

sim(d,  q) = ‘ud . vq = c wd(t) x uJq(t).

tevdnvs

Based on the initial retrieval, for each original query q,
the set LQ  of top (Y pseudo-relevant documents, and the cor-
responding V” can be derived. Then our scoring func-
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tion score,(t) is applied to score and rank candidate terms
t E vR, and pick out the top /J terms for obtaining ex-
panded query q’ from q. The re-weighting scheme, using re-
duced formula above, is performed over the terms t E VP’  =
V”cq)  U Vq, and the weights of terms t E V”(q)  n VP are
probably modified. The whole collection then goes through
the second retrieval iteration with respect to the expanded
query q’, and documents are re-ranked using the similarity
sim(d,  q’). Finally, the results are presented to the user.

All parameters, such as o = 10 and /3 = 30, are set be-
fore the query is submitted to the system, and before going
through retrieval

The approach proposed in this study to select the expan-
sion terms is not complex, the time necessary for perform-
ing solely the query expansion is negligible, and the time
required for the second retrieval iteration is comparable to
standard query expansion approaches, e.g., [2].

4.2 Components and Estimates
As discussed in the last section, estimating the compo-

nents of score,(t)  is crucial for effectively distinguishing
the potentially relevant terms t E VR to the query q from
non-relevant ones using our approach. We now show some
more examples of the approximate estimates of components,
which generate the ‘different’ scoring functions. The exper-
iments based on these estimates, which are discussed below,
have been designed and performed for the comparison of re-
trieval performance using these scoring functions to obtain
expanded query.

Table 1 gives the statistics in terms of standard evaluation
measures when 6 scoring functions with different schemes (a
- f) of component estimates below are applied to collection
AP90  for queries 201-250. The statistics that apply to the
original queries can be found in the 2nd column (Ori),  and
columns a - f pertain to the statistics of the different schemes
(a - f) for query expansion.

Table 1: Comparison o for difl !rent  schemes

In which,

a) ugTd(t,!d  =Pd(t)XPq(d),  imPD(&d) =Pd(t)XidfD(t);

b)  agrd(hq)  =Pd(t)XPq(d),  imPD(t,d)  = fd(t)XidfD(t);

c, agrd(t,q)  =Pd(t)  x p,(d), impD(t,d)  = fd(t);

4 agTd(bq)  =  fd(t)  x P , ( d ) , imPD(hd)  = fd(t);

e)  wd(hC?)  = fd(t)  x  Sim(Vd,vq), imPD(hd)  = fd(t);

f) wrd(t,  4) = fd(t), imPD(k d)  = fd(t);

are used to approximately estimate components

C&a avd(t,q)
p%(t)  = CtE”(R(Cd~a  avd(t4))’

PII(t)  =
C&D  imPD(t*d)

c~EVC&D  impD(t,d))’

The results, obtained in Table 1, for retrieval using the
different schemes are consistently better than the one for
retrieval using the original query. The level of improvement
(based on all 7 standard evaluation measures) is substantial
at most evaluation points for all of schemes listed above.
It seems that scheme c give better performance, but the
difference between applying these schemes is inconsiderable.

4.3 Results and Analysis
Another aspect of experiments is the comparison of per-

formance of retrieval using our approach of query expansion,
with retrieval using the original query, and with retrieval us-
ing the reduced Rocchio’s formula of query expansion. The
corresponding testing statistics given in the Table 2.

The results, in Table 2, give us a view when the different
strategies are applied to collection AP90  for queries 201-250.
The statistics that apply to the original query can be found
in the 2nd column (Ori).  The 3th Column pertains to apply
reduced Rocchio’s formula (Rot), and 4th column (c) per-
tains to apply scheme c.

Table 2: Comparison of performance for different strategies

~1

The results show that the three strategies obtain rather
different average retrieval performance, and the differences
are significant. On close inspection, the strategy proposed
in this study works markedly better than others.

The statistics from the 5th to 7th column, in Table 2, how-
ever, give us the dissimilar view when the different strategies
are applied to collection FT for the queries 351-400. The
results show that it seems that the retrieval with two strate-
gies of query expansion does not achieve markedly better
performance than the retrieval without query expansion.

It is clear that any query expansion approach may behave
very differently depending on the quality of the initial re-
trieval. The negative effects of using poor pseudo-relevant
documents for the query expansion are well-known. As some
studies in earlier literature have shown, query expansion of-
ten has a negative effect in retrieval effectiveness regardless
of the source of the candidate terms unless (and sometimes
even if) relevance feedback is employed [9]  [lo].  There is
ample evidence to indicate that improvements in retrieval
effectiveness do not occur during query expansion unless the
terms added are good terms.

In fact, all the results shown above are obtained averaging
over the set of queries q E Q. In what follows, we will
examine carefully the results in Table 2 for the collection FT,
and give an alternative way to further investigate how the
retrieval effectiveness varies as the variations of the quality
of the query by means of a query by query analysis.

4.4 Query Quality and Query expansion
Query quality is quantitatively characterised  in this study

by the evaluation measure qq(q)  = prec-at-a-docs(q)  ob-
tained from the initial retrieval with respect to the given
query q E Q. The greater the value qq(q)  is, the higher
quality the query q has. In fact, the query quality qq(q)
highly depends on the specific retrieval system. In our ex-
periments, the parameters a is set to 10, it hence takes
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qq(q) = prec-at-lo-dots(q).
Table 3 gives the statistics, as discussed in Table 2 for

the collection FT, but query by query. The statistics that
express the query qualities qq(q) can be found in the column
0. The statistics that apply to the original queries can be
found in the column 1 and 2. Column 3 and 4 pertain to
apply reduced formula, and column 5 and 6 pertain to apply
scheme c of component estimate proposed in this study.

The results in Table 3 show distinct levels of improve-
ment in retrieval performance query by query. In fact, if we
split intervals [0, l]  for the domain of the evaluation measure
qq(q),  and compute the performance of each query within
corresponding sub-interval, then it is easily seen that the
performance improvement is stable and significant in the
interval (0.7,1.0].  The performance improvement is rela-
tively stable and relative significant in the interval (0.4,0.7].
Some exceptions (i.e., queries are harmed because of ex-
pansion) in this range emerge indeed, but it is infrequent.
Whereas in the interval (0.2,0.4],  it seems that there is no
clear pattern to emerge. There is a relatively greater fluc-
tuation compared with ones in the intervals (0.4,0.7]  and
(0.7,1.0],  but the performance improvement still tends to
be positive, even though the improvement for some queries
might be insignificant, or even be zero or negative. In the
interval [O.O,  0.21,  however, the performance improvement al-
most tends to zero, even tends to negative, even though the
improvement might be emerged for some queries, it is in
general negligible.

The results in Table 3 also give us a view that two strate-
gies of query expansion are consistently better in the im-
provement of performance than the initial retrieval for all

queries with the qualities in the interval (0.7,1.0],  and for
most queries with the qualities in the interval (0.4,0.7].  The
level of improvement is substantial at most evaluation points.
On close inspection, the performance when applying reduced
formula seems slightly better than the one applying our ap-
proach, but the differences are inconsiderable.

Similarly, Table 4 give the statistics, as discussed in Table
3 for the collection AP90,  but query by query. The results,
on the relation between measure qq(q) and improvement in
retrieval performance, give us rather similar view to the re-
sults of FT. The only difference is that the performance ap-
plying our approach seems better than one applying reduced
formula for those queries with the qualities in the interval
(0.7,1.0].

In addition, from Table 3 we see that it seems that, for
those queries that are harmed due to applying the techniques
of query expansion, the degree of average harm by using our
approach is less than the one by using reduced formula.

In fact, in order to avoid the insignificant, zero and nega-
tive effects of query expansion, one should attempt to pro-
duce a higher query quality by improvement of the initial
retrieval. Finally, we conclude that the approach studied in
this study for query expansion is practical and effective, pro-
vided that it is used in conjunction with an efficient retrieval
system.

5. AN ALTERNATIVE
We also investigate an alternative approach which applies

the concept of relative entropy studied in information theory
to the technique of automatic query expansion.

Let the distributions Pn(t)  and Pn(t) be defined as in
section 3.3. The relative entropy due to Kullback  & Leibler
[5]  is defined by

Pdt)q&?(t)  : h(t)) = c e?(t) log -,tcv PD(t)
which can be used to measure the average difference of the
information contained in Pa(t)  and that contained in PD(~)
about PR  (t) .

Obviously, the relative entropy is not necessarily symmet-
ric, i.e., Z(Ps  : PD)  = Z(PD  : Ps) does not hold always,
even though, in practical, it is perhaps useful to think of
relative entropy as a ‘distance’ between distributions.

Taking advantage of the relative entropy, the scoring func-
tion can be given by

P?=(t)
score;(t) = Pa(t)  log -

pD  (t)
(t E  m,

which has the same interpretation as scoring function dis-
cussed in section 3.3 and 3.4. Namely, because the Z(P%  :
PD)  can be used to measure the difference of the informa-
tion contained in PR(~)  and that contained in PD(~)  about
PR(t), while the difference is assumed probably to reveal
some semantic relations between terms t E V (2 VR) and
terms t E Vq, therefore, the expansion terms selected (from
t E VR) should be those, which mostly contribute to the
difference.
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It is worth mentioning that the item fl (t) = Pa(t)  log w
in the expression of Z(Z’s : PD)  is well-defined even when
P@(t)  = 0 (t E V -If’). Noted that, in this case, we implic-
itly use the conventions: 0 . log( $) = 0 when Z%(t)  = 0 and

0.w  PO(t)“-) = 0 when PD(i!)  # 0 for t E V-V’. Therefore,
we can directly apply Z(PR  : PD) as a dissimilarity measure
for the distributions P%(t)  and PD(t) (t E V). There is no
need to relocate the probability densities as discussed for
the divergence J(PR,PD)  in the sections 3.3 and 3.4, and
the necessary arguments could be much simpler.

The duplicate experiments are also carried out by using
score:(t)  to expand two sets of queries (201-250 and 351-
400), and applying it to two collections AP and FT. A very
interesting fact in our experiments is that using two ap-
proaches, applying the relative entropy Z(PR  : PO) and the
divergence J(PB,  PO) to construct scoring functions, to ex-
pand queries arrives at very consistent results of improve-
ment in retrieval performance.

6. REMARK
We would like to point out that the arguments in sections

3.3 and 3.4 are theoretically necessary. First, our discussions
provide a theoretical basis to be able to directly apply the
concept of divergence as a dissimilarity measure to construct
score functions for query expansion, and in some similar
applications of divergence, as long as PR(~)  and PD(~)  at
least satisfy the postulates: PR(~)  > 0 and Z%(t)  > 0 when
t E VR c V, in which V is a finite tuple.

Furthermore, noted that the equality

J(Pdt),  PD(t))  =  1(&(t)  :  PD(t))  +  z(PD(t)  :  h(t))

does not hold for the distributions P%(t)  and Z%(t)  over the
same probability space (V,2”).  This is because the corre-
sponding items

f(t) = cPdt)  - PD(t))  log MY

h(t) = &(t)log  a, h(t) = PD(t)log  $$$+

do not always satisfy f(t)  = fl(t)  + fi(t)  since both f(t)
and fz(t) are undefined when PR(t) = 0 (but Z%(t)  # 0) for
tcv-VR.

However, based on the arguments in sections 3.3 and 3.4,
the equality below is perfectly meaningful. That is,

J(&(t,  to, t*), PD(t,  to, t*))

= I(PR(t,tO,t*)  : PD(t,tO,t*))+I(PD(t,tO,t*)  : &(t,tO,t*))

does hold for the distributions PR(t, to, t*) and PD(t,  to,  t*)
over the same probability space (V$,  2@  ).

Consequently, we immediately elicit that

score,(t) = score:(t)  + f2(t) (t E VR = Vi?  - {t*}).

It is interesting to note that the values of fi(t)  are in our ex-
periments inconsiderable compared with the values score;(t)
when t E V”. This is because the densities z%(t)  are rela-
tively much smaller then the densities P%(t)  when t E VR if
we take the set ?I?  very small (such as (Y = 10). It is probably
the best explanation of the reason why the scoring functions
score,(t) and score;(t)  achieve a very consistent effect on
the improvement of retrieval performance.

7. CONCLUSIONS
This study focuses on the subject of query expansion within

a theoretical framework. An important theoretical problem
remaining is discussed, which directly forms the basis of our
approaches. A formal model is then designed based on the
strategies of applying divergence and relative entropy as dis-
similarity measures in a practical retrieval environment. By
means of such measures, a methodology to assign scores to
candidate terms for query expansion is proposed. The query
expansion procedure has been designed, implemented, and
evaluated on two standard TREC collections. The prelim-
inary results obtained so far are encouraging and further
development and evaluation of the model are in progress.

The problems, however, of how to approximately estimate
the information distribution by the term distribution for a
certain population, and of what is a better way to generate
a good sample population for such kind of estimate, remain
open problem. It will be impossible to build a effective re-
trieval system with the mechanism of query expansion with-
out the satisfactory solutions of these problems.

In addition, in this study, we only report the experimental
results on two seemingly homogeneous TREC collections.
Further work will be to apply the proposed approaches to
heterogeneous collections such as a full TREC volume.

Acknowledgements
The authors are very grateful to the anonymous review-
ers for their detailed comments. Special thanks are to Ian
Ruthven and Gianni Amati for their valuable advice on this
study. Hearty thanks are extended to Juliet van Rijsbergen
for her help in improving the readability of the paper.

This research is supported in part by EPSRC.

References
PI

PI

131

[41

[51

PI

[71

PI

PI

[lOI

Efthimiadis, E. N. Query Expansion. Annual Review of In-
formation Systems and Technology, 31, pp.121-187,  1996.

Robertson, S. E. On Terms Selection for Query Expansion.
Jownal  of Documentation, 46(4), pp.359-364,  1990.
Carpineto, C., Mori, R. and Romano, G. Informative Term
Selection for Automatic Querv Expansion. In The 7th Text
REtrieval  Conference, pp.363:369,-1998.

Carpineto, C. and Romano, G. (1999). TREC-8 Automatic
Ad-Hoc Experiments at Fondazione Ugo Bordoni. In The
8th Text REtrieval  Conference, pp.377-380,  1999.

Kullback,  S. and Leibler, R. A. On information and suffi-
ciency. Annual Mathematical Statistics, 22, pp.79-86,  1 9 5 1 .

Rocchio, J.  Relevance Feedback in Information Retrieval.
The SMART Retrieval System - Experiments in Automatic
Document Processing, Prentice Hall Inc., pp.313-323,  1971.

Buckley, C. and Salton,  G. Optimisation of Relevance Feed-
back Weights. In Proceedings of the 18th ACM-SIGIR  Con-
ference, pp.351-357,  1995.

Robertson, S. E., Walker, S. and Beaulieu, M. Okapi at
TREC-7: Automatic ad hoc, Filtering, VLC, and Interactive
Track. In The 7th Text REtrieval  Conference, pp.363.369,
1998.
Van Rijsbergen, C. J.,  Harper, D. and Porter, M. The Se-
lection of Good Search Terms. Information Processing and
Management, 17(2),  pp.77-91,  1981.
Smeaton, A. and Van Rijsbergen C. J. The Retrieval Effects
of Query Expansion on a Feedback Document Retrieval Sys-
tem. The Computer Journal, 26(3), pp.lO-18,  1983.

426


