
An Object-Oriented Framework for Developing

Information Retrieval Applications on Digital

Libraries

Joemon M. Jose1, David G. Hendry2, and David J. Harper2

1 University of Glasgow, Glasgow G12 8QQ, Scotland
jj@dcs.gla.ac.uk

2 The Robert Gordon University, Aberdeen, AB25 1HG, Scotland
fdgh,djhg@scms.rgu.ac.uk

Abstract. Design and development of information retrieval (IR) sys-
tems is a complex and expensive process. In the process of building an
IR system, developers encounter a large design space: on the one hand,
they have to choose from a plethora of IR techniques developed due to
the signi�cant advances made in theoretical and experimental research
in information retrieval; on the other hand, many of these techniques
need to be tailored to the particular application in hand. Hence, an IR
system implementation tool which allows exploration and composition
of di�erent system strategies is very valuable to build e�ective and e�-
cient IR systems. To build such a tool, we need to develop modular and
extensible IR components such that these components can be used in a
mix and match fashion.This paper describes an extensible and modular
framework which can be used to construct IR applications.

1 Introduction

Rapid advancement of technology is instrumental in producing massive amounts
of digital information. Researchers in databases and information retrieval have
developed sophisticated techniques to deal with such digital libraries. Informa-
tion retrieval research has been developed a range of techniques for e�ciently and
e�ectively storing and retrieving information items based on their text content
[12, 3]. Research in databases developed sophisticated techniques for managing
structured documents. However, digital libraries such as world-wide-web, o�ce
document collections, multimedia collections etc., contain complex documents.
That is, documents that contain structured and unstructured parts and, in addi-
tion, may be composed of di�erent media types. Many such libraries may contain
heterogeneous documents as well. Retrieval applications from such libraries need
a combination of information retrieval and database functionalities.

It has been observed that many powerful IR techniques that have been de-
veloped have failed to reach application developers mainly due to the cost in-
volved in the implementation[5]. Signi�cant advances made in theoretical and
experimental research in information retrieval have many implications for sys-
tem design. Di�erent application scenarios put di�erent demands on individual

components and the optimal choice of an implementation depends on many pa-
rameters. An IR system development tool should support exploration of di�erent
designs and implementation strategies. To build such a tool, one needs to de-
compose and modularise an IR system functionally and provide a mechanism to
use these modules in a mix and match form.

In this paper, we describe an object-oriented framework that have been devel-
oped for the development of new and emerging IR applications. This framework
is based on the philosophy of the ECLAIR class library [5]. The objective for
building such a system is two fold: one to develop an extensible and exible
IR architecture; two, to achieve the integration of database and information re-
trieval functionalities. In the following section, we shall briey review the process
of information retrieval. Followed to that we shall introduce the framework.

2 Information Retrieval

Information retrieval is concerned with identifying documents in a collection
that best match a description of a searcher's information need and are likely to
contain the information one is looking for. Central to any e�ective retrieval sys-
tem is the identi�cation and representation of document content, the acquisition
and representation of the information need, and the speci�cation of a matching
function that selects relevant documents based on these representations.

Indexing is the process of deriving relevant features from the document to
characterise it and is performed to support the computation of relevance values.
In general terms, it is the process of identi�cation and selection of features (or
signals) that are considered as the representative characteristics of the document
content. In the simplest, and the most common representation, each document
is described by a set of keywords. This process involves removing most com-
monly occurring terms (stop-word removal) and conation of terms (stemming),
generally known as the normalisation process.

The output of the indexing process is a set of indexing features. These in-
dexing features need to be organised on storage devices to enable e�cient search
and retrieval. Most often, these features are stored in a data structure like an
inverted index. A retrieval module makes use of this access structure to compute
e�ciently the similarity between a document and a query. The result of this op-
eration is a set of documents ranked in decreasing order of their similarity to the
query. Most retrieval systems require the representation of queries in the same
format in which documents are represented, and hence have to be processed
(indexed) in the same way as a document.

A retrieval model speci�es the details of the document representation, the
query representation, and the matching function. Various retrieval models repre-
sent di�erent strategies for making assertions about the relevance of a document
to a query. Depending on the operational aspects related to the choice of in-
dexing language and also depending on the time space trade-o� a number of
implementation strategies can be followed for any of the above retrieval models.
Each has di�erent performance characteristics both in terms of retrieval e�ec-

Extensible
Retrieval Model

Flexible IR Architecture

Customisation Application

Persistent Storage/DBMS

Fig. 1. Implementation architecture of the FLAIR system

tiveness and computational requirements. These left the application developer
with a number of choices to make in building an IR system.

In comparison to traditional full text search systems, new digital library ap-
plications di�ers in many respects. One aspect is the structure of the documents
that need to be dealt with. Second issue is the possible heterogeneity of un-
derlying documents. Third issue is that for e�ective retrieval one has to apply
di�erent retrieval mechanisms to di�erent components [7, 9]. Moreover, many
such applications require functionalities of DBMS as well [5].

We addressed these issues by developing an extensible and modular architec-
ture called FLAIR. In the following, we shall introduce the FLAIR system.

3 FLAIR: Flexible Architecture for Information Retrieval

The basic idea is to develop an extensible retrieval framework so that application
developers can build systems easily by using the framework and extending its
components. FLAIR provides abstraction and functional modularisation of the
information retrieval processes. In addition, FLAIR provides a light weight data
model for the representation of the documents. It also integrates the exact and
inexact match retrieval in one system.

Figure 1 illustrates the FLAIR implementation architecture. In this scheme,
we implement an IR framework on top of a persistent storage. An extensible
design is most easily realised using an object-oriented programming language and
most OODBMSs support one or more object-oriented programming languages.
The underlying OODBMS used in implementing the framework can be used
to implement applications and extensions to the framework. By using object-
oriented paradigm, the framework can be adapted for applications that use it,

IR_Object_Fragments IndexFeature

Document
Representation

Extraction
Context

Transformation
Normalisation &

(Converter Mechanism)

(Filter Mechanism)

(Object Composition)

Document
(IR_Object)

Index Preparation
Access Structure

InvertedIndex-1

InvertedIndex-2

Fig. 2. Conceptual View of an IR System Building Process

and customised as needed. The architecture is exible in a sense that it can be
integrated with any kind of persistent storage. For the current implementation,
we used ObjectStore OODBMS and C++ as the programming language. One
important feature of FLAIR is the built in extensible retrieval model based on the
Dempster-Shafer theory [8]. It allows seamless integration of exact and similarity
matching thus providing integration of database and IR functionalities.

FLAIR is designed and implemented using object-oriented methods such as
the scenarios of use [1] and the design patterns techniques [4]. A series of mock
scenarios was constructed to identify the abstractions needed. Design patterns
have been used to describe the components of the class library and also to capture
the static and dynamic structure of solutions.

4 FLAIR Process Model

Building indexes is a main activity in the development of an information re-
trieval system. In this, documents or their components have to undergo a series
of normalisations (like tokenising, stemming, stop-word removal) before being
transformed into a set of indexing features. We view this activity as a distilla-
tion process applied on a set of documents. That is, in the course of the system
building, a document, (and thereby its components), passes through many stages
of transformation before being converted into an index structure. This view is
depicted in Figure 2.

An IR process starts with the representation of documents. The distillation
starts with extraction of the various components of the documents along with
their context for indexing, deriving indexing features from these components,
normalising and representing these features in appropriate access structures.

The result of this distillation view is that we were able to abstract and mod-
ularise the IR system building process. IR design process abstracted into the
FLAIR systems is based on this distillation view.

4.1 Abstracting IR Process

We have developed an abstraction for information retrieval process which is
shown in Figure 3 . The major processes of IR modelled in the FLAIR sys-
tem are: modelling of retrievable objects, extraction of components, normalising
(or �ltering) these components, conversion of these normalised components into
indexing features, representation of these features for e�cient access, query mod-
elling, query feature extraction, query normalisation, matching (i.e. comparison
of query features with document features) and the result generation.

IRObjects represent retrievable documents in the system. IRObjects are sub-
ject to a process of indexing (which generates indexing features). Indexing is
achieved by a combination of three types of action; Extractor, for extracting
components along with their context; Filters, for applying various �ltering (nor-
malisation) algorithms like stemming, stop word removal etc.; and Converters
for converting a set of normalised features into the form of index features. The
class InvertedIndex provides an abstraction for the inverted index access struc-
ture in which various kinds of indexing features are organised for e�cient access.
IRQuery models a searcher's query and is subjected to the same normalisation
activity applied to the IRObjects when constructing the indexes for the repre-
sentation of the documents. The resulting features are stored in instances of a
class called QueryRep. A Matcher takes each QueryRep and computes similarity
values for each document by comparing them to the access structure (InvertedIn-
dex). The resulting document number and the corresponding similarity values are
stored in a class called IRResult. The major activities involved are coordinated
in a class called IRModel. IRModel abstracts the particular implementation of
a retrieval model, generally known as a retrieval engine.

In new IR applications, it is possible to have multiple index structures (In-
vertedIndexes) in one retrieval system. This may be the result of applying various
retrieval models to various components of the document. Similarly, a query can
have multiple components and as a result of these there will be multiple query
representatives (QueryReps) and results (IRResults). FLAIR can support these
and also provides mechanisms to combine these component results into a �-
nal overall result. In the following, we shall introduce the document modelling
scheme in FLAIR.

5 Document Modelling

Document abstraction, that is the speci�cation of the retrievable objects and
their operations, is needed to accommodate the full range of document types
which may be simple textual documents, structured documents, or complex mul-
timedia documents. For this purpose, we introduced a light-weight data model
which allows to treat documents and their components uniformly. During the
course of building a system, as shown in the distillation view 2, a document or
part of it will be transformed into various forms of data until we derive indexing
features of interest. A uniform interface for all components of a document will

IRObject IRQuery

Extractor QueryExtractor

Filters

Handler

Tokeniser

Stopper

Stemmer

Converters

IndexHead

InvertedIndex

IndexHead

Tokeniser

Stopper

Stemmer

Filters

Converters

IndexFeature
QueryFeature

QueryRep

Matcher

IRResult

PostingPosting

Pre-Processor

Fig. 3. Main Process in an IR system

enhance the exibility of the system. In addition, it permits representation of
diverse and complex documents.

The model consists of two parts; a hierarchical data typing scheme and a
meta-information table. The hierarchical data typing scheme provides a number
of ready made data types which are helpful for the content modelling. The meta-
information table provides a mechanism to combine these data types to model
complex documents.

The data model hierarchy is shown in the Figure 4 based on the Com-

posite pattern [4, p. 163]. In this scheme, a document is an aggregation
of complex and/or atomic components. This data model composes documents
into tree structures of their components. We provide data types to represent
atomic and composite components; composite types represent group of atomic
ones. The class DataElement constitutes the root of the hierarchy. Common
functionalities needed for both atomic and complex types are de�ned in the
class DataElement which provides a common interface. Speci�c implementa-
tions of these functionalities are provided in the derived classes. Concrete atomic
classes derived from the DataElement are IntegerDE, StringDE, PointDE and

IRObject

SetValue(const char*)
Add(DataElement*)
GetValue()
At(int)

DataElement

IntegerDE StringDEPointDEDoubleDETupleDE ListDE

Fig. 4. Data Element Hierarchy

DoubleDE. TupleDE and ListDE are two concrete composite classes derived from
the class DataElement. TupleDE class is used to hold a sequence of data types
and ListDE is used to group a list of same types of DataElement. This type hier-
archy is extensible so that new types can be created and added to the hierarchy
if needed.

All documents modelled using this data modelling technique are wrapped
in instances of a class called IRObject. It has an instance variable to hold a
DataElement or any of its derived classes. By this mechanism any complex object
of any structure can be represented in an IRObject. A collection of documents is
grouped in a class called IRObjectSet. IRObjectSet holds a list of IRObjects. It
has functions to return an IRObject given its identi�er. An IRObjectSet groups
same types of documents and heterogeneous types of documents are grouped in
di�erent IRObjectSets.

One of the recurrent problems in IR system development is the manipula-
tion of input �les marked up in any scheme. We developed a general purpose
parser generator mechanism, the details of which are described in Hendry [6,
pages. 188-195]. An experimenter can specify the structure of a document in a
simple scripting language. The scripting language has constructs to represent
atomic components and also complex components. From these scripts, a parser
is generated automatically. Details of this scheme is available in [7].

6 Feature Indexing and Representation

In the FLAIR system indexing is initiated by an external speci�cation of the
indexing scheme. In this speci�cation, one can denote the index structure name
to be used, combinations of �lters and converters to be applied and the compo-
nents of the document on which indexing is performed. The distillation process
(as shown in Figure 5) starts with an activity of extraction. An Extractor visits
all the documents and extracts all those components needed to build di�erent
indexes. Each extracted component will go through a chain of �lters and then
through a converter before being transformed and placed into an index structure.
In the following subsections, this distillation process is explained in detail.

Normalisation
Series Filter Chains

Converters IndexingFeature
(Index Head + Posting)

Extracted List of

IndexSpec

Extractor

IRObject

Document Fragments

List of
IndexingFeatures

Inverted
Index-1

title author

IRObjectSet

Handler Tokeniser Stemmer

author; context

DocFrag

DocFrag

title; context

Fig. 5. Distillation Process in FLAIR

6.1 Extractor

The role of an Extractor is to extract di�erent components of IRObjects for
deriving indexing features. Extractor takes an IRObjectSet together with a list
of component identi�ers and extracts the components corresponding to those
identi�ers from the IRObjects. This list of component identi�ers is speci�ed in
the index speci�cation. In deriving indexing features from an IRObject, one may
need to have the context such as document number, component information etc.
Hence, along with the components, the Extractor generates the necessary con-
textual information. A context and the corresponding data component together
are wrapped in an instance of a class called DocumentFragment. An Extractor
generates a list of DocumentFragments, which can then be used to build one
or more access structures. As shown in Figure 5, Extractor extracts document
components for all the indexes in one go and stores them in a list for normali-
sation.

6.2 Filters

Normalisation is achieved in the FLAIR architecture by de�ning a set of �lters
and passing the document fragments through this �lter set. A �lter takes an ex-
tracted component (i.e. DocumentFragment) and applies its �ltering algorithm
to it. In the course of this process it may generate a set of fragments of the
document, as in the case of tokenising a piece of text. Currently, we have the fol-
lowing �lters built into the library: Handler, Tokeniser, Stopper, Stemmer.
The �lter hierarchy is shown in Figure 6.

In the front of the �lter set is the �lter Handler which is used to check whether
a document fragment can be �ltered using the �lter chain or not. Tokeniser
tokenises a piece of text, Stopper removes stop words and Stemmer applies a
stemming algorithm to the document fragment.

These �lters play an important role in the distillation process and are de-
signed to provide maximum exibility and extensibility in deriving indexing fea-
tures for an IR system. In this distillation scheme, a document fragment passes

through di�erent �lters to get normalised before generating indexing features.
Depending on the application, a developer has to apply various combinations of
normalisation methods, in various orders. There are situations in which one has
to apply di�erent normalisations (e.g. phrase indexing and term indexing) to the
same component of the document or di�erent normalisation schemes to di�erent
components. The combinations of �lters and their order is speci�ed in the exter-
nal index speci�cation thus allowing maximum exibility in the normalisation.
By varying the order of �lters in the sequence, we could achieve di�erent forms
of normalising. The output of the �ltering is a normalised document fragment
or fragments. Multiple indexing is achieved in the FLAIR by creating a set of
�lter chains.

. . .

Filter

DoFilter()

DoFilter()DoFilter()

Handler Tokeniser Stopper Stemmer

DoFilter() DoFilter()

Fig. 6. Filter Hierarchy

A variant of the pattern called `Chain of Responsibility' [4, p. 223] is used in
the design of this �ltering mechanism. This �lter hierarchy is extensible so that
we can create new �lters, place them in a �lter chain, thus achieving di�erent
normalising e�ects.

6.3 Access Structure

Currently, in FLAIR, we provide abstractions for the inverted index data struc-
ture. In an inverted index, features and their corresponding posting list (list of
documents in which those features appeared) are stored. The class InvertedIndex
has functions to provide statistics needed by various retrieval engines.

Building an access structure for an IR system is a complex task, which in-
volves taking a document, generating features from the document and represent-
ing these features in a form which is useful for access and involves less storage
overhead. These transformations and the resulting representations depends on a
number of design parameters involving time-space trade-o�. To reduce the size
of the database, we need to optimise the size of the inverted index by controlling
various parameters like the head of the index, and also the organisation of the
posting information. For this purpose, we have de�ned a set of Converters.

6.4 Converters

Applying converters is the last phase in the distillation process. As shown in
Figure 5, the output of the conversion is the indexing features. The idea of a
converter is to take a piece of data and convert it into another form. During the

IndexFeature

GetHead() Posting

PostingDocField

PostingDoc

GetValue()

IndexHeadRect

GetValue()

GetDocId()

GetDocId()

GetRect()

IndexHead

GetValue()

IndexHeadChar

PostingImage

GetPosting()

GetFieldId()

Fig. 7. Two Converter Hierarchies and the Composition of IndexingFeature

indexing process, a piece of document along with its context is converted into
an indexing feature. An indexing feature contains two parts: �rst the head of
the index, which goes into the head of an access structure like inverted index;
and the second the posting entry which goes into the list part of an inverted
index. The classes IndexHead and Posting represents both the indexing head
and posting entry respectively. Depending on the requirement of the applica-
tion one can specify the type of the IndexHead and the Posting in the external
speci�cation of the index. The normalised document fragment is automatically
transformed into the speci�ed form. This is achieved by de�ning two converters
in our normalisation scheme. The IndexHead and Posting are the two convert-
ers we use in our index building process. Both the IndexHead and Posting take
a DocumentFragment and absorb some or all of the information, thus achiev-
ing a conversion. Converters are selected based on an input speci�cation and
by extending the converter hierarchy we could derive di�erent type of indexing
features.

7 Data Management

In the process of building an IR system, one has to manage various kinds of
data like document collection, indexes, and stop word lists. In the FLAIR sys-
tem the management of these is achieved in a class called IRBase. The purpose
of an IRBase is to manage all kinds of data arising out of the development of an
IR system. These include document collections, index structures built to sup-
port di�erent retrieval engines, and collection of stop words. New applications
demand management of heterogeneous collections and incorporation of multi-
ple retrieval models in one application. In the FLAIR system, multiple retrieval

models can be built into an IRBase; IRBase has an instance variable called IR-
ModelList to store multiple IRModels. In the IRBase, a set of retrievable objects
are grouped in an IRObjectSet. Heterogeneous collections can be organised in an
IRBase; the instance variable IRObjectList manages a number of IRObjectSets.
Similarly, depending on the application, collection speci�c stop term set can be
maintained in the instance variable StopTermList. IRBase also provides func-
tions for combining results from multiple searches using di�erent IRModels. The
relationship between StopTermList, IRObjectList, and IRModelList is not one-
to-one; one StopTermSet can be associated with any number of IRObjectSet;
one IRObjectSet can be associated with any number of IRModelList.

IRBase

IRObjectList

ComputeFinalScore()

IRModelList

StopTermList

IRModel

IRObjectSet

DoQuery(...)

DoBuildIndex(...)

IndexHead
Posting

Filters...

InvertedIndex

IRResult

ComponentResult

StopTermSet

Fig. 8. Data Management in FLAIR

Given a set of IRObjects (IRObjectSet) and an index speci�cation of the
system a developer wants to build, FLAIR automatically extracts the appropri-
ate components of the documents, processes them (distillation) and stores the
results in access structures (e.g. Inverted Index).

8 Search and Retrieval

The purpose of an IR system is to provide e�ective and e�cient access to the
information stored in the system. Once a retrieval system has been built, it can
be used for accessing information and a retrieval task involves query speci�ca-
tion, query feature extraction, query feature normalisation, matching and result
generation. This activity is shown in the right hand side of the Figure 3. A query
can be speci�ed in di�erent ways and in general, the representation of the query
depends on the retrieval (search) engine (more speci�cally it depends on the
way information is organised in the underlying access structure). Examples of
search (query) types include: simple term based search, boolean search, proxim-
ity search, structural search etc. In many modern IR applications, one needs to
retrieve documents employing multiple retrieval engines, quite often applied to
di�erent components of the document. This in turn demands representation of

various types of query mechanisms in one search. FLAIR supports a query spec-
i�cation mechanism that can represent and can be extended to represent various
types of query schemes. To achieve consistency the normalisation applied at the
building stage of the system is applied to the query feature normalisation.

In FLAIR, a searcher's information need is represented in a class called
IRQuery. In IRQuery one can model various kinds of queries. IRQuery is mod-
elled using the same data model used to represent the documents. This facilitates
the application of the same distillation that is used at the building stage of the
system to the IRQuery and hence helps to achieve consistency in generating
indexing features. The features resulting from the normalisation are stored in
an instance of a class called QueryRep. In the case of queries involving multiple
components, di�erent QueryReps are used. Finally, the entries in QueryReps are
matched with the entries in the corresponding access structure stored in an in-
stance of the class IRModel. The results generated after the matching are stored
in an instance of a class called ComponentResult. Finally, the the Componen-
tResults generated are combined together and the �nal result is stored in an
instance of a class called IRResult.

The process of computing a similarity value between the query and the doc-
uments is organised in an instance of a class called Matcher. The Matcher class
takes the QueryRep and an instance of the InvertedIndex and generates the
results. New matching schemes can be provided by extending the matcher hier-
archy.

In the FLAIR system, queries are represented in a simple query description
language. In this description, a searcher can specify the name of the IRModel to
which the query needs to be compared, the con�dence of the searcher in that
component of the query, and the matching algorithm to be employed. A query
parser built into the FLAIR system converts this representation into an instance
of the class IRQuery. FLAIR employs the corresponding matching scheme from
the speci�cation thus allowing us to apply di�erent types of matching schemes
to di�erent query components. The inbuilt result combination mechanism uses
the con�dence values for evidence combination [8]. Developers can provide their
own combination scheme by extending the IRBase class.

Developers can specify the kind of matching mechanism they want to apply
for a query component in the query description. From this, FLAIR employs
the corresponding matching scheme. This allows us to apply di�erent types of
matching schemes to di�erent query components.

9 Discussion

A number of object-oriented frameworks or class libraries for IR have been pro-
posed [2, 5, 11, 10]. However, FLAIR addresses many limitations of these ap-
proaches. Indeed, FLAIR follows the same approach as ECLAIR [5] by building
a framework on top of an OODBMS. However, the similarity ends there, the
design and the resulting abstractions are di�erent. No other approaches pro-
vides the exibility of FLAIR in dealing with heterogeneous collections, dealing

with multiple indexes and also specifying and composing systems from external
speci�cations.

The development of the FLAIR system progressed hand in hand with its
utilisation for the building of IR applications. We have used this architecture to
build a photograph retrieval system [9]. We have also modelled di�erent kind of
IR documents (e.g. documents from CISI collection, various TREC collections)
using the FLAIR data model.

10 Conclusion

This paper describes FLAIR, an extensible architecture, which can be used to
construct IR applications. FLAIR provides abstractions for IR activities so that
developers can use them in a mix-and-match fashion. The salient features of the
FLAIR library are: creation of representation for documents based on an in-
put description; building multiple access structures based on an external index
speci�cation; and query representation from an external query description. Ex-
perimenters can change a very large number of parameters involved in a search
strategy, for example, what �elds in a document need to be indexed, what com-
bination of normalisation has to be applied, etc. One can build new retrieval
models and access structures by extending a few of the abstractions provided
thus achieving a great deal of extensibility. The FLAIR architecture is exible
in that these building blocks can be combined in various ways at run time to
build various retrieval engines without extending any of the classes and without
re-compilation.

Acknowledgements

We would like to thank Jan-Jaap IJdens for being a constant source of ideas
and criticism. The work presented here has been supported by the Principal's
Research Fund at the Robert Gordon University.

References

1. Carroll, J. M., Mack, R. L., Robertson, S. P., and Rosson, M. B. Binding
objects to scenarios of use. International Journal of Human-Computer Studies 41
(1994), 243{276.

2. Cutting, D., Pedersen, J., and Halvorsen, P. An object-oriented architecture
for text retrieval. In Proceedings of RIAO'91, Intelligent Text and Image Handling
(Barcelona, Spain, 1991), CID, France, pp. 285{298,.

3. Frakes, B. W., and Baeza-Yates, R., Eds. Information Retrieval Data Struc-
tures and Algorithms. Prentice Hall, Englewood Cli�s, New Jersey, 1992.

4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. Harper, D. J., and Walker, A. D. M. ECLAIR: an extensible class library for
information retrieval. The Computer Journal 35, 3 (June 1992), 256{267.

6. Hendry, D. G. Extensible Information-Seeking Environments. PhD thesis, The
Robert Gordon University, Aberdeen, September 1996.

7. Jose, J. M. An Integrated Approach For Multimedia Information Retrieval. PhD
thesis, The Robert Gordon University, Aberdeen, October 1998.

8. Jose, J. M., and Harper, D. J. A retrieval mechanism for semi-structured
photographic collections. In LNCS 1308 (Proceedings of DEXA 97) (September
1997), Springer, pp. 276{292.

9. Jose, J. M., and Harper, D. J. Epic: A photograph retrieval system based on
evidence combination approach. In Proceedings of the IFMIP 98 Conference (May
1998), M. Jamshidi, C. W. Silva, F. Pierrot, M. Fathi, Z. Bien, and M. Kamal,
Eds., Alaska, TSI Press.

10. Mills, T., Moody, K., and Rodden, K. Cobra: A new approach to IR system
design. In Proceedings of RIAO'97, Computer-Assisted information searching on
Internet (Montreal, Canada, June 1997), pp. 425{449.

11. Sonnenberger, G., and Frei, H. P. Design of a reusable IR framework. In
Proceedings of the Eighteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (July 1995), E. Fox, P. Ingw-
ersen, and R. Fidel, Eds., ACM Press, pp. 49{57.

12. Van Rijsbergen, C. J. Information Retrieval. Butterworths, 1979.

