
Fetch: A Personalised Information Retrieval Tool

Innes Martin and Joemon M Jose
Department of Computing Science, University of Glasgow

17 Lilybank Gardens, Glasgow G12 8QQ, Scotland
{innes, jj}@dcs.gla.ac.uk

Abstract

Due to both the size and growth of the internet, new tools are needed to assist with the finding and
extraction of very specific resources relevant to a user's task. Previously, the definition of relevance has
been related to the matching between documents and query terms but recently the emphasis is shifting
towards a more personalised model based on the relevance of a particular resource for one specific
user. In this paper, we introduce our system, Fetch, which adopts this concept within an information-
seeking environment specifically designed to provide users with means to describe a long-term
multifaceted information need. By taking advantage of the way in which users bundle together groups
of documents representing a particular topic, query languages as we know them can be taken to a
higher and more useful level of abstraction. The agent personalises the search experience by using this
information to formulate queries with the aim of returning documents relevant to the user’s information
need. In this paper we report on both qualitative and quantitative aspects of system use based on
information collected in the pilot evaluation.

1. INTRODUCTION

Information seekers frequently rely on the Internet, and in particular web search engines, as
their starting place, and in many cases the only place, from which to gain a better
understanding of a topic. Formulating a good query is the first step in this process. It is
widely acknowledged that query formulation, the transformation of a user’s information need
into a list of query terms, is a difficult task [16]. Users don’t find this process of serialising
their thoughts to be intuitive, often leading to poor queries and a widening of the gap between
the actual need and stated request. The problem can be circumvented once users learn how
documents are indexed and also have a basic idea of how the retrieval engine judges
relevance. Unfortunately, as not all users study in the field of information retrieval, this
knowledge is not something we can take for granted.

This problem is magnified when the information need is extremely vague (“I don’t know what
I’m looking for, but I’ll know it when I find it”). This common scenario typically results in
the formulation of short queries, consisting of 1 - 3 non-discriminatory terms. Inevitably, this
leads to the connected problem of information overload where millions of documents are
returned for a broad query. Certain users may trawl through pages and pages of results but in
reality most will view the first few result pages before accepting these to be the best possible
results, albeit mistakenly in most cases. This typically leads to extended or unproductive
search sessions where any initial time constraints are waived and users become dissatisfied.
In addition, they unknowingly miss relevant documents.

During the search process, a user’s information need is constantly developing and so therefore
is the query or queries associated with the search session. As users think, digest, interpret and
problem solve, this information need can be influenced by any number of factors, for
example, the quality of search results or the contents of a particular document. This
dynamism has been exaggerated by what Robertson et al call the interactive revolution [13]
highlighting the fact that IR systems have become increasingly interactive. Consequently, it
is important to provide effective interfaces to facilitate this interactive information seeking
process.

However, a major problem associated with information retrieval interfaces is the consistent
lack of secondary notation - functionality to organise retrieved documents within the
searching environment [9]. When sending queries to a search engine, the results are typically
delivered via a simple static list providing no secondary notation. Bookmarking does give us
the required functionality to save and arrange documents whilst searching however we lose
flexibility due to the strict hierarchical structure enforced. Informality opens up an interface,
giving access to a wider range of information seeking strategies and allowing searchers to be
as structured as they wish. Hendry goes even further by claiming “layout matters – even
novices, given the opportunity, seem to invent policies for laying out their search work”.

In this paper an information seeking environment is proposed in which the information needs
of the user can be detected. By observing the user's interaction with the system we can offset
the lack of effective query formulation by allowing the user to implicitly describe a problem
regardless of their level of understanding. So, instead of being constrained by time and
accepting the first set of results, the user's interaction with this set of results can be used to
formulate new queries with a view to satisfying a long-term search goal. Based on this
evolved query, new information can be fetched pro-actively and presented to the user.

The remainder of the paper is organised as follows. Section 2 compares and contrasts a
number of existing systems which aim to solve the problems discussed above. In Section 3
our system is introduced and then a pilot evaluation of the system is described in section 4.
Finally, the main findings are summarised in section 5 along with a brief discussion on future
work.

2. BACKGROUND / RELATED WORK

The difficulty users find in firstly describing an information need formally and also
effectively organising relevant search results has spawned an active research area. We can
address this first shortfall by moving the burden of query formulation away from the user
towards a Personal Information Agent (PIA). The PIA monitors the information seeking
environment and in doing so builds a model of the user’s interests and preferences over time.
Now the user need only formulate a vague query for each topic of interest and by monitoring
the user’s actions, the PIA can iteratively formulate new, more targeted queries. Current
systems in this field not only exhibit this important functionality but also have specifically
designed interfaces in order to facilitate these features.

Balabanovic et al [1] introduce one such agent which suggests a set of documents the user
may find interesting. Users then explicitly evaluate each document before the system adjusts
its parameters accordingly to try and improve performance. However, as details need to be
extracted from all documents without the help of any external search engines, the system
supports browsing but not searching and is therefore unsuitable when used within a large
repository such as the Internet. Unfortunately, the interface is created using HTML forms and
therefore rates poorly with respect to secondary notation.

WebMate [4] is a similar agent but can support both Internet searching and browsing. Using
multiple vectors to keep track of user's interests, relevant documents can be suggested to the
user. The system automatically attempts to learn the user's categories of interest by requiring
the explicit marking of pages during normal browsing. However, this form of relevance
feedback increases the cognitive load of the user which can cause inconvenience or introduce
confusion. Also, by attempting to automatically learn the user's categories of interest, the
system becomes susceptible to the inevitable problem of noise. The interface, once again, is
qlet down by a lack of secondary notation.

The problem of information overload, often occurring with broadly scoped searches, can
adversely affect a user's problem solving ability. Baldonado introduces a simple but powerful
interface, SenseMaker [2], allowing users to develop strategies for coping with the loss of
context occurring when a variety of independent sources are bundled together. SenseMaker
helps users to recover a degree of context by giving them tools for iteratively organising cita-
tions and articles into higher-level bundles. This interface level aggregation facility enables
users to view a collection from a variety of perspectives. Also, by increasing the fluidity
between browsing and searching, the amount of exploration undertaken by a user rises. This
occurs because real world tasks are time limited and therefore if the cost of switching between
searching and browsing was reduced, users would be more likely to undertake deeper
exploration.

As discussed in section 1, the functionality to organise results effectively is essential in any
information seeking environment. Hendry presents SketchTrieve [9] which combines a
graphic editor with dataflow notation in order to emphasise secondary notation. Searchers
create search artefacts by laying out services on the display and connecting them together.
Data from request-services flow into retrieval-services before results are computed and dis-
played. The user interface for SketchTrieve doesn't prescribe the structure for information
displays or the ordering of dialogs too stringently. This under-determined structure promotes
flexibility and helps searchers better understand their problem, just as pseudo code helps
programmers. However, the display can become cluttered requiring extensive reorganisation.

Fetch adopts the flexible environment of SketchTrieve whilst incorporating a bundling
technique allowing users to develop strategies for coping with the loss of context occurring
when a variety of independent sources are viewed together. Over a period of time, through the
observation of this bundling, the agent can build an accurate profile of the multifaceted
information need and eventually recommend relevant documents without the need for users to
explicitly mark documents.

3. FETCH : A PERSONALISED INFORMATION RETRIEVAL TOOL.

3.1 Introduction

In this section, we introduce our system. Before detailing the specific issues associated with
Fetch, an introduction to the general concepts of the system is provided together with an
insight on how it would typically be used. In the following text, numbers appearing in
parenthesis provide reference to the components of the interface as seen in figure 3.1.

A query is executed via the search area (1) and results are returned together with a query-
biased summary (2) for each link (3) in the result set. Links can then be dragged onto the
workspace (4) and grouped together with similar documents to form bundles (5) analogous to
the way in which related documents are placed in the same folder on a desktop. Bundles on
the workspace are also represented in the overview panel (6) in order to complement the
flexibility of the workspace with a more structured view. The agent will at some unspecified
future point in time analyse the bundles belonging to each user and formulate a new query for
each. The system notifies the user of this new information by changing the colour of the
bundle on the workspace from green to red (7). By double clicking the updated bundle,
instead of opening the bundle, a new search will be initiated using the associated query with
results returned as before. Relevant links can then be dragged into new or existing bundles in
the same fashion as before. The list of query terms can also be edited in the query editor (8)
based on the quality of the first result set. Iterations of this form continue as long as the
contents of the bundle are updated and thus the user’s changing information need can be
captured. The agent also checks for updated links on the workspace, alerting the user by
changing the colour of the link icon from green to red.

Figure 3.1: Main Screenshot

3.2 High Level Architecture

The high-level architecture of Fetch is based on the standard three-tier model and is shown in
figure 3.2. The personal server mediates access to both the database and the search module in
the usual way so as to decouple the two tiers. This architecture is also beneficial due to the
ease in which both interaction and search activity can be monitored and logged. As the
system may be expanded in the future to log browsing as well as searching, Internet access
within the client is also forced to use the personal server as a proxy. The personal server is a
Java servlet running on a Tomcat server; the personal server communicates with a Microsoft
SQL Server 2000 database using JDBC; and the client/interface is implemented using Java
Swing.

Figure 3.2: High Level Architecture

3.3 Data Model

The underlying data model is shown in figure 3.3 was designed with simplicity and
extensibility in mind. Each user of the system is represented by a User object consisting of a
collection of FetchComponents together with a RelationTree. This tree keeps track of the
relations between components in the collection using tuples of the form <id1, id2> where
component with id2 is the child of component with id1. For example, a Link belonging to a
Bundle which in turn belongs to the Workspace would be represented using 2 such tuples.
The root of the tree is the user’s workspace, branch nodes represent bundles and all other
FetchComponents can act as leaf nodes of the tree. By using this technique, the components
themselves do not reference each other and thus any operations on them result only in the tree
being altered. With respect to bundling, this proves to be a powerful solution allowing an
arbitrarily large level of abstraction. For example, it is possible to create bundles within
bundles within bundles while still using this reasonably trivial data model.

Figure 3.3: Data Model

3.4 The Client

The Fetch client, as seen in figure 3.1, uses a flexible interface comprising of a search area,
workspace, web browser, and query editor, enabling users to search and organise results
effectively. By providing users with an interface specifically designed to aid searching, we
can take advantage of the valuable information contained within user actions. Although this
feedback has to be described as explicit, the system is non-intrusive with users only
interacting as and when necessary. Due to the design of the system, we can reap the benefits
of noiseless explicit feedback without demanding anything from the user other than (s)he is
using the system’s intuitive bundling technique. Each component of the interface is discussed
in detail below.

3.4.1 Search Area

With searching central to this application, a dedicated area of screen real estate is used to
query repositories and display the results along with their summaries. The aim of this
component is to provide a simple and familiar searching interface which can be
complemented by other components within the application. Therefore, in order to minimise
the cognitive load of the user, each results page has similar but simplified content to that
produced by Google – one of the most popular internet search engines. The following
information is displayed on each results page: total number of results; ranking range of the
results we are viewing; title of each result (with search terms highlighted); URL and page size
of each result. This page is dynamically created at query time and shown within a simple
Java Swing component capable of displaying HTML. By clicking the hyperlink title of a
particular result, the web-page is displayed in a new window using the in-built browser

detailed later in this section. To help users judge the relevance of each result, query-biased
summaries are also returned from the personal server, appearing in a pop-up box when the
user hovers the mouse over a result. This prevents users from having to visit the page or rely
on the two-line, often irrelevant abstract as their only assessment of its relevance [15].
Finally, relevant hyperlinks can be dragged and dropped onto the workspace as described
previously.

3.4.2 Workspace

The workspace is designed to be a large, flexible area used to aid problem solving through the
adoption of the bundling technique introduced in [8]. A bundle is defined as “a grouping of
information collected, selected, elaborated and structured during problem solving”. In field
observations, bundles appear to be a widely used means of managing information to support
diverse, complex, often simultaneous tasks [8]. With respect to Fetch, users can organise
web-links on the workspace into bundles and attach notes to these bundles in the same way,
for example, a post-it note would be stuck to a pile of papers residing on a desk. This method
enables users to make use of both space and abstraction to logically break down their long-
term information need and thus provides traditional problem solving techniques within our
information-seeking environment. Users can either drag links from the search area or create
links on the workspace and these can be repositioned using the conventional drag and drop
technique. To create a bundle, users can right click the workspace and choose the ‘create
bundle’ option from the resulting pop-up menu. Links and notes can then be dragged into the
bundle in a similar way to which files are added to a folder in a standard WIMP environment.
All components on the workspace can be opened by way of double clicking and are displayed
in their respective viewers i.e. links are shown in the in-built browser; bundles in the bundle
viewer and notes in the note viewer. In order to prevent users from frequently having to open
up these viewers, useful summaries are shown in a pop-up box when users hover the mouse
over a component on the workspace. The pop-up for a link is the query-biased summary, for
a bundle it is a hierarchical representation of its contents and for a note it is the body of the
note.

3.4.3. Overview Panel

Through the use of scrollbars, the large size of the workspace provides an obvious scalability
issue. As the number of components increases, users can easily lose track of where bundles
exist on the workspace and require means to regain their orientation. It is important to
provide the user with context by complementing the flexibility of the workspace with a more
structured view. The overview window does just this with each bundle on the workspace
being represented in the window by a smaller version of its actual icon. Workspace
components can also be dragged and dropped onto these icons as a way of easily adding items
to bundles without first locating their positions on the workspace. By double clicking on an
icon in the overview window, the scrollbars are adjusted accordingly to position the
corresponding bundle at the centre of the viewable workspace. In the case where several
bundles are located closely together on the workspace, an arrow also briefly points to the
bundle in question to remove any ambiguity.

3.4.4 Query Editor

Although using a query-generation algorithm in the agent which exhibits a low noise level is
important, there is some evidence that allowing end-users to interact directly with feedback
improved not only actual (measured) retrieval performance but also perceived performance,
trust in the system, and subjective usability [12]. Seo et al [14] describes the agent as looking
over the shoulder of the user but in this case the user is also looking over the shoulder of the
agent. By allowing users to edit queries formulated by the agent we can make sure that all
remaining noise is instantly eliminated. Based on the quality of a previous result set, the

query editor can also be used to produce more effective and targeted queries by
adding/deleting terms as appropriate. The query editor component contains the list of query
terms, each with a checkbox, enabling users to quickly remove terms as necessary. Query
terms can be added using the text fields supplied.

3.4.5 Browser

An important requirement when designing an information-seeking environment is the ability
for users to view documents returned during the search process in a way they are accustomed.
With respect to web-pages, users expect browsers with bookmarking, history and caching
functionality, capable of handling javascript, applets, flash and pdf files as well as standard
HTML. Rather than externally spawning a new browser window and thus losing all the
feedback that browsing provides, it was decided to keep this functionality within the
information-seeking environment. By using a Java browser that runs on native code, it is
possible to provide the speed and functionality users expect without losing the ability to
monitor interaction. This method also allowed application-specific components to be added
to the browser, for example, a button to add the current web-page to an existing bundle.

3.5 Agent

The client interacts with the agent to access persistence as well as the ability to search and
browse the Internet. Based on the way in which users break down their information need by
bundling documents together, the agent suggests new documents which may be of interest as
well as monitoring existing documents on the workspace. A new query is attached to every
bundle stored in the database which has been updated since the previous agent iteration.
These new queries are formed by extracting relevant information from each constituent
element. For a link, the query-biased summary provided by the search component and for a
note, the entire text is used. The number of terms used in this new query is dynamic in order
to prevent information overload, for example, the agent will formulate a query which never
returns more than 65,000 documents by altering the number of query terms until this
requirement is satisfied.

When studying information seeking behaviour on the Web, Choo et al [5] discovered that
58% of pages visited during each session were re-visits. The agent eliminates the need to
frequently check these web-pages for updates, as the user is alerted when web-pages referred
to by links on the workspace, have been updated. This is achieved by storing the last
modified time stamp for each link in the database. During each cycle, the current last
modified time stamps are retrieved using HTTP connections and a flag in the data model is
set for each updated page. The client renders these updated links on the workspace using a
different coloured icon in order to alert the user to the new information.

Although the granularity of the agent’s cycle can be set to instantaneous (i.e. the agent starts
suggesting new documents as soon as the workspace has been updated), the purpose of the
system was to satisfy long-term searching goals and consequently the agent executes one
cycle every 24 hours. This produces a similar effect to the personalised newspapers presented
in [4] [7] where content matching the users’ interests was delivered each morning.

4. EVALUATION

Traditional evaluation schemes for information retrieval tools do not consider the interaction
between user and system in an information seeking situation [11]. Recent trends are moving
away from the typically system-centred evaluation towards a more user-based evaluation.
However, Borlund [3] states that increasing realism and moving away from a system-based
evaluation approach can introduce problems where we have to relinquish control over

experimental variables, observability and repeatability. To combat this, simulated work task
situations can be used as an experimental sub-component and by giving each user the same
task, we can introduce control and compare search results across systems or users. A
simulated work task situation is defined by Borlund as “a semantically rather open description
of a scenario” and can be used to trigger and develop a simulated information need by
allowing for subjective user interpretations of the situation.

4.1 Experimental Methodology

8 test subjects were used for this pilot evaluation: 5 students currently studying at the
University of Glasgow and 3 non-students from various professions. Subjects were given the
evaluation instructions detailing that they should use the system whenever it suited them, at
least once every day, for 10 days. By allowing free access to the system, work could be
completed at any time and consequently the usual pressures inflicted upon subjects by
observation were eliminated. Subjects were given 3 simulated work task situations and
instructed to choose 2 on which to base their simulated long-term information need. In
addition to this, subjects were encouraged to use the system to monitor a topic in which they
had a genuine personal interest. All important interactions (search statistics, bundling etc.)
were automatically logged in the database by adding a simple component to the Personal
Server designed to capture all relevant requests and responses. A post-evaluation
questionnaire was also used to gauge sentiment toward the more qualitative properties of the
system such as usability, interface design etc.

4.2 Hypotheses

Our main hypothesis is that Fetch is an effective tool for satisfying long-term information
need. This hypothesis is split into two sub hypotheses in order to provide a connection to the
empirical data recorded:

1. Fetch is an effective tool for satisfying long-term information need.
1.1 Fetch can be used to model the dynamic nature of a long-term multifaceted

information need.
 1.2 Fetch helps overcome the problems of information overload and query
formulation.

4.3 Results and Analysis of Log Data

4.3.1 Hypothesis 1.1 – Fetch can be used to model the dynamic nature of a long-term

multifaceted information need.

We investigate two factors relating to hypothesis 1.1 below:

- The content of each bundle and associated query evolves over time.

Through tracking each bundle from creation time, we can build up a picture of how each
develops over time. Looking firstly at the contents of bundles, as expected, the number of
links per bundle grows over time (figure 4.1). However, the differing rates of growth
observed suggest 3 distinct stages during the lifetime of a bundle. Stage 1 is the loading stage
where subjects identify a facet of their information need, create a bundle and add some links
relevant to that topic. This is followed by stage 2 where the bundle grows at a steadily
decreasing rate and in some cases a third stage where the bundle is no longer updated. This
final stage occurs due to one of the following reasons: the bundle represents a shorter-term
information need which has been satisfied and is now therefore redundant; the bundle suitably
represents a long-term information need and is now used solely to check for updated versions
of the web-pages contained within; or the user has lost interest in the topic represented by the

bundle. The growth of links throughout the system also showed similar characteristics to the
bookmaking behaviour reported by Cockburn et al [6] where the rate of bookmark addition
heavily outweighed the rate of deletion. During the evaluation, the total rate of link creation
compared to link deletion was 361 to 38.

Due to the coupling between a bundle’s contents and its associated query, as bundles evolve
over time, so too do these queries. In figure 4.2, we track the query associated with each
bundle over its lifetime and show the average percentage of new terms for each day based on
the previous days query. As the age of the bundle increases, it can be seen that the associated
query starts to converge with less and less new terms being suggested by the agent. This can
be explained in terms of the slowdown in change of a bundle’s content highlighted in the
previous graph.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Days since bundle creation

A
vg

 n
o

. L
in

ks
 p

er
 b

un
dl

e

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Days since bundle creation

%
 o

f n
ew

 q
ue

ry
 te

rm
s

Figure 4.1: Bundle Contents Figure 4.2: Bundle Queries

- The quantity of bundles for each user increases with time as new facets of the
information need are established

By logging each time a bundle is created or deleted, we can investigate how subjects used the
system to divide up their information need and organise documents returned during search
sessions. All users adopted the bundling technique with each finishing the evaluation with on
average 6.8 bundles. The minimum and maximum number of bundles was 3 and 16
respectively with the former accounting for two users who simply used one bundle per
evaluation task. 4 subjects created a bundle hierarchy to separate their different information
need facets into sub-facets with the remaining 4 subjects creating all bundles on the top-level
workspace. Of the bundle hierarchies that were created, none were extended beyond the 2nd
level.

As one could expect, the rate of bundle creation was greater during the early stages of the
evaluation with subjects using this setup phase to lay out all facets of their initial information
need. As the evaluation continued, the number of bundles grew steadily as new facets of the
information need were discovered or existing facets were subdivided for further development.
This can be seen in figure 4.3 below.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Evaluation day
N

um
be

r o
f b

un
dl

es

Avg Min Max

 Figure 4.3: Number of Bundles

4.3.2 Hypothesis 1.2 – Fetch helps overcome the problems of information overload and
query formulation.

We investigate two factors relating to hypothesis 1.2 below:

- The number of documents returned from each agent-assisted search is sensible

Firstly, looking at the average number of terms in each user-formulated query (figure 4.4), we
can see that searchers only use an average of 2.6 terms which is consistent with results
published in [10], a study of search behaviour by Jansen et al. Short queries are one of the
main causes of information overload and inevitably the average number of documents
returned for user-formulated queries was a rather overwhelming 342,000 (see figure 4.5).
When considering queries formulated by the agent, the average number of query terms
increases to 8.2, with the number of documents retrieved falling to approximately 3900. This
is undoubtedly a more realistic number of documents for users to process whilst still high
enough to retrieve a significant number of relevant results. However, in the worst case, the
agent produces over-targeted queries retrieving only a handful of documents which, despite
the possibility of high precision, is unacceptable in terms of recall. When editing queries
suggested by the agent, users submitted 5.3 terms per query returning an average of 34,000
documents. The minimum and maximum number of documents returned using this method
of query formulation was 1,300 and 141,000 respectively. This suggests that the either the
agent recommends queries containing too many terms or some of the terms are too
discriminatory or both. This view is supported when we look at the statistics from hypothesis
2.2 below.

Figure 4.4: Query Size Figure 4.5: Documents Returned

 Human Agent Human + Agent
Min 17,300 2 1,300
Avg 342,000 3,900 34,300
Max 2,570,000 64,500 141,000 0 5 10 15

Human

Agent

Human +
Agent

W
ho

 fo
rm

ul
at

es
?

Number of query terms

Min Avg Max

- The queries formulated by the agent are effective

When an agent formulated query is sent to the search module, based on the quality and/or
quantity of the result set, users can edit the initial query. Terms can be added and/or deleted
before the reformulated query is submitted. This process can deliver a good indication as to
the relevance of the originally recommended terms. Firstly, let us consider the average
number of recommended terms used (i.e. not deleted from the list) in the reformulated query
when the agent formulated query is edited. As seen in figure 4.6, no users kept less than 45%
of the recommended terms for the reformulated query, with an overall average of 65%.
Secondly, if we consider the number of recommended terms used as a percentage of all terms
in the reformulated query, the results are even more significant. Figure 4.7 shows that
recommended terms consistently make up more that 74% of the total query terms used and on
average count for 91.0%. This suggests that users are satisfied with selecting from the list of
recommended terms and so don’t add their own and/or they struggle to think of additional
terms even with some indicative examples.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8

Subject

%
 o

f
re

co
m

m
en

de
d

te
rm

s
us

ed

Average

0
10
20

30
40
50
60
70

80
90

100

1 2 3 4 5 6 7 8

Subject

%
 o

f t
ot

al
 te

rm
s

us
ed

Average

 Figure 4.6: Recommended terms used Figure 4.7: Recommended terms in new query

The claim above ascertains to what degree users perceive query terms to be relevant, an
important factor in any information retrieval system, but let us now concentrate on actual
relevance i.e. the quality of result sets between query modes. Our definition of relevance,
while typically ambiguous in web retrieval, is in this case trivial due to the nature of the
interface. A document is said to be relevant if it is dragged from the search results and placed
anywhere on the workspace. Admittedly, this is a strict definition of relevance but it is used
solely to compare the quality of result sets between query modes. As seen in figure 4.8, 6 out
of 8 subjects found that the agent formulated queries returned more relevant documents than
conventional querying. Overall, 8.9% of non-agent results were deemed to be relevant,
compared with 11.2% recommended by the agent. This relative improvement of 25.8%
suggests the documents returned by the agent formulated queries were substantially better in
terms of relevance. However, the most successful results occurred when queries suggested by
the agent were user-edited. Using this query mode, 14.1% of documents were judged to be
relevant, a 58.4% improvement over conventional querying. These results show that the
documents returned by agent-formulated queries are significantly more relevant than those
returned when queries are formulated by the user. However, our results suggest that the most
effective query mode is a combination of human and agent formulation where users simply
eliminate noise from the query-generation algorithm. Users, despite their apparent inability to
formulate queries from scratch, can easily form effective queries by eliminating inappropriate
query terms when presented with a list.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3 4 5 6 7 8

Subject

A
ve

ra
ge

 %
 o

f r
el

ev
an

t d
oc

um
en

ts

Human Agent Human + Agent

 Figure 4.8: Relevant Documents

4.4 Post-evaluation Questionnaire

After using the system for 10 days, users were asked to complete a questionnaire inviting
them to indicate, on 7-point semantic differentials (as seen is figure 4.9), their opinions
regarding the evaluation task and usability of the system. With respect to usability, the
differentials focused on the searching experience, the agent and also general interface issues.
The arrangement of positive and negative descriptors was randomised to encourage users to
think carefully prior to answering apparently similar questions. In order to gain further
insight into the users’ preferences, participants were also asked in open questions to specify
which features of the system they liked/disliked and were given the chance to elaborate on
responses given to the semantic differentials.

The task we asked you to perform was..?
1. (clear -> unclear) 2. (simple -> complex) 3. (familiar -> unfamiliar) 4. (interesting -
> boring) 5. (pleasant -> unpleasant)

Searching using Fetch was..?
1. (fast -> slow) 2. (easy -> difficult) 3. (familiar -> unfamiliar) 4. (pleasant ->
unpleasant) 5. (satisfying -> frustrating)

The documents returned by the personal agent were..?
1. (relevant -> irrelevant) 2. (important -> unimportant) 3. (useful -> useless) 4.
(appropriate -> inappropriate) 5. (complete -> incomplete)

The bundling technique was..?
1. (useful -> not useful) 2. (intuitive -> confusing) 3. (easy to use -> hard to use) 4.
(familiar -> unfamiliar)

When interacting with the system, I felt..?
1. (in control -> lost) 2. (comfortable -> uncomfortable) 3. (confident -> unconfident)

The system you have used to complete this task is..?
1. (effective -> ineffective) 2. (satisfying -> frustrating) 3. (reliable -> unreliable) 4.
(flexible -> rigid) 5. (useful -> useless) 6. (novel -> standard) 7. (fast -> slow)

 Figure 4.9: Semantic Differentials

The resulting 8 sets of scores were averaged for each question (see figure 4.10) and will now
be discussed along with the responses given to the open questions.

The evaluation was generally well received with subjects perceiving the task to be clear (2.2)
and reasonably pleasant (2.9). Borlund [3] states that a simulated work task situation can only
replace a genuine information need if the user can relate to the task given. In our carefully
chosen tasks, users found they could engage themselves in the problems and did not find the
tasks to be boring (2.6).

The aim of the searching component was to provide the ability to search multiple sources
from within the Fetch environment whilst maintaining a familiar and accepted interface. This
aim was accomplished with users rating searching as easy to use (2.2), satisfying (2.5) and
very familiar (1.9). Also, despite the extra time inflicted by creating summaries for each URL
in the results pages, users were still satisfied with the speed in which the searches were
performed (2.1).

The agent was an integral part of the system and so the quality of documents suggested to the
user was important to the overall acceptance of the system. During the evaluation, users
found the documents returned to be relevant (2.3) and useful (2.6). However, in the open
questions, two subjects raised concern as to why only a handful of documents were returned
by the agent on several occasions. This is concurrent with findings in section 4.3.2, again
suggesting that the agent can occasionally formulate over targeted queries, either with respect
to the number of query terms used or the over-discriminatory nature of these terms.

The usability of the bundling technique was well rated with subjects finding this method of
organisation both useful (1.9) and easy to use (1.7). With respect to intuitiveness (2.6), three
subjects couldn’t quite understand why they “had to actually create a bundle” before using it.
Instead of having to place components into an existing bundle, this group of users would
simply rather position components geographically close together on the workspace without
actually creating a physical bundle entity. Despite these grievances, at a semantic level the
bundling technique was seen as a real strength of the system with users reporting it both
“useful to be able to group related links together” and “good to organise result without
leaving the searching environment”.

When interacting with the system, most subjects felt reasonably confident (2.8) and in control
(3.1) and at all times, however, the application was scored poorly on flexibility (4.5).
Subjects felt the interface was over-defined with all components visible throughout regardless
of whether or not they were currently in use.

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

task-1

task-2

task-3

task-4

task-5

search-1

search-2

search-3

search-4

search-5

agent-1

agent-2

agent-3

agent-4

agent-5

bundling-1

bundling-2

bundling-3

bundling-4

interaction-1

interaction-2

interaction-3

system
-1

system
-2

system
-3

system
-4

system
-5

system
-6

system
-7

Figure 4.10: Semantic differential means (value range 1-7, lower=better)

5. SUMMARY / FUTURE WORK

We have designed, deployed and evaluated a system that aims to alleviate the problems of
query formulation, information overload and lack of secondary notation by providing an
effective problem solving environment used to express a long-term information need. By
simply formulating vague queries and organising their information objects using spatial
arrangement, users can take advantage of the targeted queries provided by the agent. As time
progresses, these queries evolve in sync with the user’s information need, becoming
increasingly targeted as a more detailed model of the user develops. Initial findings from the
pilot evaluation are positive. Users successfully adopted the bundling technique and during
our evaluation the number of bundles grew steadily as new facets of the information need
were discovered or existing facets were subdivided for further development. The contents of
these bundles evolved with time, allowing the agent to formulate increasingly targeted queries
to assist users during search sessions. On average, queries provided by the agent successfully
decreased the problem of information overload but occasionally these queries only returned a
handful of documents. Users found documents returned by the agent to be more relevant than
those returned via conventional querying with even more significant results when the agent-
formulated queries were edited. The problem of query formulation is lessened in this way by
allowing users to formulate short queries consisting of non-discriminatory terms and then
stating “I want documents like these”. In a similar manner, when the agent-formulated
queries are displayed, users can simply say “I don’t want those query terms” which helps
eliminate noise and return relevant documents without the burden of improving query
formulation skills. Future evaluation will involve a larger and more varied sample using a
slightly updated version of the interface based on feedback received during this pilot
evaluation.

6. ACKNOWLEDGEMENTS

The work reported in this paper is funded by the Engineering and Physical Research Council
(EPSRC), UK grant number GR/R74642/01.

7. REFERENCES

[1] Balabanovic, M., & Shoham, Y. (1995) Learning Information Retrieval Agents:
Experiments with Automated Web Browsing. AAAI-95 Spring Symposium on Information
Gathering from Heterogeneous, Distributed Environments.
[2] Baldonado, M., & Winograd, T. (1997) Sensemaker: An information exploration interface
supporting the contextual evolution of a user's interests, Proceedings of the ACM Conference
on Human Factors in Computing Systems.
[3] Borlund, P. (2000) Experimental Components for the Evaluation of Interactive
Information Retrieval Systems, In: Journal of Documentation, Vol. 56, no. 1, 2000, pp71-
90.
[4] Chen, L., & Syraca, K. (1998) Webmate: A Personal Agent for Browsing and Searching,
Proceedings of the 2nd International Conference on Autonomous Agents, pp132-139.
[5] Choo, C.W., Detlor, B., & Turnbull, D. (1999) Information Seeking on the Web: An
Integrated Model of Browsing and Searching, Proceedings of the Annual Conference of the
American Society for Information Science, pp.127-135.
[6] Cockburn, A., & McKenzie, B. (2001) What Do Web Users Do? An Empirical Analysis of
Web Use, International Journal of Human-Computer Studies (in press).
[7] Croft, W.B., Cronen-Townsend, S., & Lavrenko, V. (2001) Relevance Feedback and
Personalization: A Language Modelling Perspective, DELOS Workshop: Personalization and
Recommender Systems in Digital Libraries.

[8] Delcambre, L., Maier, D., Bowers, S., Deng, L., Weaver, M., Gorman, P., Ash, J., Lavelle,
M., & Lyman, J. (2001) Bundles in Captivity: An Application of Superimposed Information,
Proceedings of the 17th International Conference on Data Engineering.
[9] Hendry, D. G., (1996) Extensible Information-Seeking environment, PhD thesis, Robert
Gordon University, Aberdeen.
[10] Jansen, B. J., Spink, A. and Saracevic, T. (2000) Real life, real users and real needs: A
study and analysis of users queries on the Web, Information Processing and Management,
36(2), 207-227.
[11] Jose, J. M., Furner, J. F., and Harper, D. J. (1998). Spatial Querying for Image
Retrieval: A User-Oriented Evaluation. In Croft, B., Moffat, A., Van Rijsbergen, C. J.,
Wilkinson, R., & Zobel, J. (Eds.), Proceedings of the Twenty First ACM SIGIR Conference
on Research and Development in information retrieval, pages. 232-240. ACM Press.
[12] Koenemann, J., & Belkin, N.J. (1996) A case for interaction: A study of Interactive
Information Retrieval behaviour and effectiveness, Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, ACM, pp 205-212.
[13] Robertson, S. E. & Hancock-Beaulieu, M. M., (1992) On the evaluation of IR systems,
Information Processing and Management, 28 (4), 457-466.
[14] Seo, Y.W., & Zhang, B.T. (2000) Learning user's preferences by analyzing web
browsing behaviours, Proceedings of Int'l Conference on Autonomous Agents '2000, pp. 381-
387.
[15] White, R. W., Jose, J. M. and Ruthven, I. (2003). A task-oriented study on the
influencing effects of query-biased summarisation in web searching. Information Processing
& Management, 39(5):707-733.
[16] Cool, C., Park, S., Belkin, N.J., Koenemann, J. & Ng, K.B. (1996) Information seeking
behaviour in new searching environment, CoLIS 2, pp403-416.

