
ENHANCING CBIR THROUGH FEATURE OPTIMIZATION,

COMBINATION AND SELECTION

Xavier Hilaire and Joemon Jose

University of Glasgow

Department of Computing Science

17 Lilybank Gardens

Glasgow G12 8QQ, United Kingdom

{hilaire,jj}@dcs.gla.ac.uk

ABSTRACT

We present a Content-Based Image Retrieval (CBIR)

method based on the combination and selection of several

image features. The novelty of our approach over existing

methods is threefold: we provide a statistical optimization

of the similarity distance for each feature; we replace certain

features by a selection in a non-linear expansion of them;

and we perform a linear combination of the features. We

demonstrate superior capabilities of our method in certain

cases over support vector machines (SVM) on a COREL

image collection.

1. INTRODUCTION

Content-based image retrieval (CBIR) is concerned with the

problem of searching a database for images that match a

user query. Good surveys covering the topic may be found

in [13, 5]. Usually, the query includes a short textual de-

scription of the user expectation (for instance, “find pictures

of Tony Blair”), and a small set of image examples. The

system may or may not support user interaction during the

search.

Two critical aspects inhering in all retrieval systems are

feature selection, and similarity metric. These aspects also

depend on application scenarios. In this paper, we shall ex-

amine the case where the query consists of a small set of

image examples (20 at most), and where no interaction is

permitted with the user during the search. Three assump-

tions therefore directed our work:

• The database is assumed to be large (N > 100000
images). The images are keyframes extracted from

video files, and their resolution is therefore rather low

(typically 350x240).

• In comparison, the initial query set of images is small
(n ≈ 10 per query). Such query images can be se-
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lected, for example, as part of the query in TRECVid

or by the use of relevance feedback techniques.

• The set of query images are passed to the system all
at once, and they are moreover assumed mutually ex-

clusive one to each other (a query image relevant for

its query is assumed irrelevant for any other one). In

other words, we assume that negative sample images

for a given query can be obtained by randomly sam-

pling the set of other queries.

These assumptions are valid for searching in a database

of keyframes as well as of still images. We simply found

it more suitable to demonstrate its capabilities on COREL

image database because of its diversity and its widespread

use.

The rest of this paper is organized as follows. In sec-

tion 2, we give a brief overview of our system and detail

the three optimization steps it involves. In section 3, we

compare the results obtained on COREL images with and

without optimization and provide an analysis. We finally

close the paper with a discussion in section 4.

2. PROPOSED APPROACH

2.1. Outline of the method

An overview of the system we propose is given in Fig. 1.

It is quite conventional: fromm example images I1, ..., Im,

we predict an invariant f on N features φ1, ..., φN ; as a

real-valued function, f is then used to sort the p images
K1, ..., Kp of the database.

The originality of our approach, however, comes from

the way we compute f , as detailed in Fig. 2. In a first
step, we computeN functions x1, ..., xN , called similarity

metrics, one per feature; these metrics are then optimized

individually, and independently one to each other, so as to

minimize the integral square classification error. In a second

step, we expand the previous set of metrics to its power set,
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Fig. 1. An overview of the proposed CBIR system.

Fig. 2. Determination of the final image invariant.

and we select then q ≤ N most discriminating ones as new
functions yi. The last step performs a linear discriminant

analysis of the yi’s, and determines the final invariant as the

optimal linear combination of them.

In the next subsections, we detail each of these steps

separately.

2.2. Step 1: Similarity metrics

One of the most serious problems encountered in image re-

trieval is probably the sparseness of the images oncemapped

in the feature space. For most of features, one may not ex-

pect to observe any clear separation between positive and

negative samples, shall it be for training or testing data, as

depicted in Fig. 3.

Indeed, points in the feature space may be so sparse, and

the centers of classes so close one to each other that talking

Topic 157, first 3 components of edge hist.
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Fig. 3. Three first components of the MPEG-7 edge his-

togram descriptor obtained for different images (topic 157

of TRECVid 2005 training data).

about separability is meaningless. In such cases, it appears

more natural to consider each point as a center of class it-

self rather than a member of any other one, and rely on a

nearest neighbor selection. This is, at least, the conclusion

which came out of our experimental work on TRECVid col-

lections.

Following this idea, let I be a query image, I+ and

I− the sets of positive and negative answers to the current

query, φi a feature, and finally I+ and I− the closest posi-
tive and negative neighbours of I in the feature space w.r.t
the Euclidean distance:

I+ = arg min
X∈S+

d(φi(X), φi(I))

I− = arg min
X∈S−

d(φi(X), φi(I))

To assess the likelihood that an image I is a positive
answer according to feature φi, one may think of a criterion

such as

xi(I) = 1 − d2(φi(I), φi(I
+))

d2(φi(I), φi(I+) + d2(φi(I), φi(I−))
(1)

Despite its simplicity, this choice is still the best we have

found in terms of performance of mean average precision.

In particular, early experiments showed that it could over-

pass the performances yielded by a support vector machines

(SVM), albeit the use of an arbitrary high number of slack

variables, and regardless of the form assumed by the kernel.

The Euclidean distance in Eq. 1 can also be replaced by

a weighted square distance: putting X = φi(I) − φi(I
+),

Y = φi(I) − φi(I
−), this yields:

268



xi(I) = 1 − X.D.Xt

X.D.Xt + Y.D.Yt
(2)

where D = diag(a1, ..., adi
) is a diagonal matrix that

will enable further optimization, and di is the dimension of

feature i. If we consider the set of all positive (resp. neg-
ative) answers over all queries, we will want each of the

corresponding xi to be set as close as possible to 1 (resp. 0).

This leads to minimize

∑

I∈∪I+

1 − xi(I) +
∑

I∈∪I−

xi(I)

subject to ai ≥ 0, i = 1, ..., di

di
∑

i=1

ai = 1

(3)

Substituting Eq. 1 in Eq. 3, we can see that the problem

may be rewritten as

minimize
∑

i

Zi.D.Zt
i

Ti.D.Tt
i

subject to ai ≥ 0, i = 1, ..., di

di
∑

i=1

ai = 1

(4)

where the coefficients in Zi and Ti are defined as func-

tions of the images, and do not depend on any ai. Equa-

tion 4 is a linear fractional program that can be solved using

the techniques presented in [11] and [4], and we refer the

reader to these articles for further information.

2.3. Step 2: Non-linear expansion

Without putting the objective of the previous section into

question, one may however wonder whether the choice of

the xi’s in Eq. 1 is the most profitable one in term of sep-

arability. Indeed, Eq. 4 optimizes the xi’s individually; it

does not attend to determine whether the use of a combina-

tion of them would reduce the misclassification error. So,

we may consider using afterwards a product of xi’s rather

than xi’s directly.

A first effort in this direction was made by Ishikawa et

al. with Mindreader [6], in which feature similarity is ex-

pressed as a generalised Euclidean distance – this merely

implies that shall it had to use our xi’s as features, Min-

dreader would consider a product of them of up to order 2.

However, as pointed out by Rui in [10], a major drawback

with their approach is that it requires the learning of O(n2)
parameters for n features, which is often unrealistic given
the small number of samples usually available. This is the

well-known data overfitting problem.

To circumvent this without significant loss of perfor-

mance, we suggest to resort to the following reduction me-

thod.

Step 1. Let X = (x1, ..., xn)t be a realization of the

scores xi of the features, as obtained in Eq. 1. X being
given, we define Y (X) = (y1, ..., y2n−1)

t as

yk =





∏

i∈b(k)

xi





1
|b(k)|

, k = 1, ..., 2n − 1 (5)

where b(k) = {i ∈ N : k mod 2i−1 6= 0} is the set of
indices of bits of k which are 1’s. For instance, if

X = (x1, x2, x3, x4)
t (6)

then

Y (X) =(x1, ..., x4,
√

x1x2, ...,
√

x1x4, ...,
√

x3x4,

3
√

x1x2x3, ..., 3
√

x2x3x4)
t

Put simply, Y (X) represents an ordered version of the
“normalized” power set ofX .
Step 2. Build B = {1, ..., 2n − 1}, set V to the empty

list, and buildL as the list of the indices of the yk’s variables

ranked by decreasing integral square error (ISE):

ISEk =
∑

I∈S−

y2
k(I) +

∑

I∈S+

(1 − yk(I))2

Step 3. Let yh be the head of L. Add h to V , and update
B as B = B \ b(h).
Step 4. Let yr be the head of L. If b(r) ∩ b(h) 6= b(r)

then remove yr from L and repeat this step.
Step 5. If V has less than N elements and B is not

empty, then repeat to step 3, else stop.

To illustrate how the procedure works, let us suppose

that X is defined as in Eq. 6. At step 2, we have B =
{1, 2, ..., 15}, and the we may obtain L = {13, 9, 4, 3, 6, ...},

meaning that h13 = 3
√

x1x3x4, h9 =
√

x1x4, h4 = x3,

h3 =
√

x1x2, h6 =
√

x2x3 are the first top performing

variables. Step 3 sets V = {13}, and reduces B to {2}.
Step 4 will reduce L to {3, 6, ...}. A second iteration to
step 3 will set V to {13, 3} and steps 4 and 5 will leave it
unchanged. So in this case, the procedure exits with only

two variables: y1 = h13 and y2 = h3.

There are two underlying assumptions in this procedure:

(i) the variable hr which appears in the head of L is always
the best possible one amongst all in term of ISE; (ii) hr is

a product of variables defined on a set b(r), so all possible
products defined on a subset of b(r) are suboptimal and will
not bring anything better for the subset b(r).
This procedure determines q ≤ N new variables yi, ..., yq

from the xi’s. The choice of N as an upper bound has, for
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instance, no known theoretical foundation; it is only made

to avoid the problem of the curse of dimensionality.

2.4. Step three: linear discriminant analysis

The last step of our approach consists in combining the yi’s

in a way that best explains the output (relevant or irrelevant

document) given the input data (positive or negative sam-

ple).

An obvious method one may think of in this case is to

resort to linear discriminant analysis: we write the final de-

cision function f as a linear combination of the yi’s:

f =

q
∑

i=1

biyi (7)

and seek for the bi coefficients whichmaximize the Fisher

criterion for the two classes of positive and negative sample

images. Let H = {hij} be the m × q matrix represent-
ing the value obtained by image Ii of the collection for the

function yj: hij = yj(Ii). Without loss of generality, let
us suppose that the p first lines ofH represent the scores of
relevant images to the current query.

It can be shown (see, e.g, chap. 3 of [8]) that the prob-

lem is equivalent to minimize

f(b) =
bCC

t
b

t

bTbt
(8)

whereb = (b1, ..., bq)
t, andC = (c1, ..., cq) is a column-

vector such as

cj =

√

m(m − p)

m
(h+

j − h−

j )

where h+
j = 1

p

∑p

i=1 hij and h−

j = 1
m−p

∑m

i=p+1 hij

are the respective averages of scores obtained by the rele-

vant and irrelevant images for feature j. T = (tij) is the
general covariance matrix ofH , such as

tij =
1

q

q
∑

k=1

(hki − h̄i)(hkj − h̄j)

where h̄k = 1
m

∑m

i=1 hik. Since the value of f does
not depend on the bi’s but on their ratio, the problem can be

reformulated as

maximize bCC
t
b

t

subject to bTb
t = 1

(9)

Introducing a Lagrange multiplier λ, we obtain from
Eq. 9

CC
t
b = λTb

and sinceTmay be assumed non singular in the general

case:

T
−1

CC
t
b = λb (10)

meaning that λ is an eigenvalue. If we now premultiply
the last equation byC

t, we get

(Ct
T

−1
C)Ct

b = λ(Ct
b) (11)

and identifying member to member, we can see that λ =
C

t
T

−1
C is indeed the only possible eigenvalue to Eq. 10,

so the solution b to Eq. 10 is unique. The corresponding

eigenvector readily follows:

b = T
−1

C (12)

3. EXPERIMENTAL EVALUATION

3.1. Setup

We conducted experiments on the COREL image collec-

tion [2], which contains altogether about 23800 images, dis-

tributed on 7 CDROMs. Among those available to us, we

found that two were of particular interest for the variety their

contents: CD1 and CD4.

Each CDROM contains a number of directories, each

representing a specific topic with exactly 100 example im-

ages. Results presented in the literature very often refer

to this collection; however, most of authors do not adopt

COREL’s classification to favour their own, and it is often

difficult, if not impossible, to reconstruct the set of images

they used from the information they provide.

To give a fair idea of the performances of our system, we

did adopted COREL’s classification. We therefore assumed

one query per directory, and evaluated all of them. The mi-

nor discrepancies we observed w.r.t the official collection

are:

• official queries 119 (Los Angeles), 121 (Denmark),
and 125 (Coins and Currency) missing on our CD

• queries 129 (Germany) and 114 (Mountains) found
on ourCD, but not found on the official list of queries1

Table 1 presents the topics for CD4. CD1 contains more

than 50 topics, which we did not feel useful to detail as they

are very similar in nature to those of CD4.

3.1.1. Our method

The method described in this paper has been implemented

in C++ on an G5 Apple PowerMac. We resorted to a num-

ber of image descriptors which come with MPEG-7’s ex-

perimental code (XM), so as to dispose of at least one de-

scriptor per visual feature class (color, shape, and texture,

1See http://elib.cs.berkeley.edu/corel/disknum diskname list.txt
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qid Description qid Description

103 Wildlife of the Galapagos 115 Orchids of the World

104 North American Deer 116 France

105 Lions 117 Pacific Coasts

106 Wildlife of Antarctica 118 Greek Isles

107 Elephants 120 Hong Kong

108 Tigers 122 Israel

109 Foxes & Coyotes 123 Backyard Wildlife

110 Wolves 124 Flowering Potted Plants

111 Cities of Italy 126 Austria

112 Rhinos & Hippos 127 North American Wild flowers

113 Arabian Horses 128 Russia, Georgia & Armenia

114 Mountains 129 Germany

Tab. 1. Table of topics for the COREL CD4 collection

qid CL CS DC EH HS MT TX MAP100 MAP100/M

103 33.2 10.2 4.7 30.4 9.5 15.7 21.0 17.3 33.4

104 5.9 7.8 2.6 19.6 3.2 15.6 4.2 9.1 16.7

105 22.7 1.5 25.5 25.3 4.5 27.6 4.7 17.8 36.9

106 25.0 11.6 27.1 23.6 49.1 27.2 2.4 27.3 36.2

107 40.4 5.1 21.1 15.5 15.0 40.7 25.1 23.0 42.2

108 18.1 10.8 17.9 22.3 7.0 14.8 14.3 15.2 36.7

109 16.4 8.1 11.3 12.1 3.3 16.1 4.8 11.2 17.3

110 26.3 3.3 19.2 6.2 10.2 10.5 11.6 12.6 20.4

111 12.6 17.6 5.3 5.3 17.9 6.0 7.8 10.8 8.1

112 23.5 3.1 9.1 17.8 10.1 27.6 10.7 15.2 34.1

113 63.7 0.0 30.4 32.4 46.8 52.0 27.1 37.6 73.6

114 37.6 4.0 34.0 49.2 16.2 19.4 26.7 26.7 53.5

115 29.1 1.4 19.1 30.2 19.4 41.3 24.5 23.4 46.7

116 10.1 4.3 5.6 3.6 0.4 10.1 9.5 5.7 9.2

117 9.6 14.1 12.5 31.0 27.1 10.5 19.1 17.5 30.9

118 8.2 7.4 6.9 5.3 5.7 19.1 4.3 8.8 25.0

120 6.1 15.3 4.7 4.5 5.0 15.0 5.9 8.4 9.4

122 3.9 21.1 7.5 3.9 1.2 13.0 7.8 8.4 9.8

123 20.4 5.6 21.9 15.1 8.4 24.8 19.1 16.0 22.8

124 28.5 34.4 24.5 30.8 6.0 47.7 11.9 28.6 61.0

126 14.1 17.0 4.7 6.2 2.6 24.9 14.4 11.6 26.6

127 35.9 1.9 18.0 7.6 18.4 39.5 15.6 20.2 54.5

128 5.4 2.5 10.1 5.1 6.4 21.8 12.2 8.6 15.2

129 1.6 2.1 1.7 3.5 2.7 5.4 4.9 2.8 9.8

MAP100 20.8 8.8 14.4 16.9 12.3 22.8 12.9 16.0 30.4

Tab. 2. Individual and overall mean average precisions (AP) in percent obtained on the COREL CD4 collection with 20

training samples. CL = color layout, CS = contour shape, DC = dominant color, EH = edge histogram, HS = histogram,

MT = color moments, TX = texture. MAP100 = AP with no optimization; MAP100/M = AP obtained with our optimization

method. See text for detailed explanations.
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as described in [9], for example). These are: the color lay-

out (CL), the contour shape (CS), the dominant color (DC),

the edge histogram (EH), and the texture (TX) descriptors.

Default parameters from MPEG-7 XM were kept for all of

them.

We also resorted to a color histogram (HS) in La*b*

space with the number of bins advocated in [3], and raw

color moments up to order 9 in the same color space. These

two were added for their known performances [12]. For

each query, 20 images where used at learning stage, and in

the case of our method, 10 for solving Eq. 4, and 10 others

to estimate T and optimize the Fisher criterion, as stated in

Eq. 12.

3.1.2. SVM Light

To give a comparison of our results to those obtained with a

reference method, we ran experiments using the SVMlight,

provided by Joachims [7]. The setup was identical to that

used for our method – 20 images at learning stage for each

query, which both method accessed through the same files.

3.2. Results and analysis

3.2.1. Used metric

We evaluate performances using the mean average precision

at N documents, defined as follows:

MAP (N) =
1

N

N
∑

i=1

1

i

i
∑

j=1

δ(j) (13)

where δ(i) = 1 if document i is relevant, and 0 oth-
erwise. Note that this definition is slightly different from

that used by NIST’s trec eval program, which, keeping the

above notation, would be:

MAPtrec(N) =
1

∑N

i=1 δ(i)

N
∑

i=1

δ(i)

i

i
∑

j=1

δ(j) (14)

For a definition of average precision over all documents

according to TREC, see, e.g., part 2.1-II-B of [1]. This

means, for example, that if a system retrieves 4 documents

at ranks 1, 2, 4, and 7, our measure would raise

MAP (7) =
1/1 + 2/2 + 2/3 + 3/4 + 3/5 + 3/6 + 4/7

7
≈ 0.727

whereas NIST’s trec eval tool would raise

MAPtrec(7) =
1/1 + 2/2 + 3/4 + 4/7

4
≈ 0.83

We wished to use such a measure because it integrates

the precision over all documents, not only on those found

relevant. It is generally more penalizing than MAPtrec,

but, in our opinion, it is also more accurate to reflect the

performances of a given system. In particular, at the end of

an arbitrary “cut” at N documents (say, N=100), the last re-

trieved documents are very often not relevant; in this case,

theMAPtrec measure makes no difference on the final re-

sult, regardless of the number of irrelevant documents after

the last relevant one.

3.2.2. Results

Our method

Table 2 gives the average precision in percents obtained

at 100 documents for each topic of the CD4 collection. The

MAP100/M column isMAP (100) as defined in Eq. 13,
and is obtained with our optimization method. MAP100
follows the same definition, except that it has obtained by

taking an equal weight on the features. MAP100/M is

obtained with our optimization method.

Three essential observations can be made from this ta-

ble. Firstly, performances largely outstand those obtained

with equal weights on features, which is indeed no surprise

given the variability of performance for each visual feature.

Secondly, performances per query are very uneven: for

example, topics pertaining on animals or flowers generally

obtain anMAP100/M over 30%, whereas those related to
towns or countries rarely exceeds 10%. Indeed, this differ-

ence of average precision is directly linked to the difference

of homogeneity in contents: pictures showing a tiger or an

elephant will be very similar in visual contents; not those

showing landscape from Germany (Fig. 4).

Thirdly, the MAP obtained with our method generally

overpasses the top performing visual feature for each query,

but it may not always be the case (for example, query 104

for EH, query 106 for HS, query 120 for MT, etc.). Indeed,

it may happen that a product of variables behaves better (in

terms of ISE) than a single one when the number of avail-

able samples is too small, the trend reversal being observed

when the number of samples increases. We may therefore

still encounter data overfitting in a few cases.

Fig. 5 shows the sensitivity of our method w.r.t the num-

ber of training samples, but the last step (linear discriminant

analysis) had to be skipped. Indeed, the MAP reported here

has been obtained with taking equal weights on features in

step 3, as to avoid singularities in computing the inverse of

T in Eq. 12 as the number of samples becomes very low

– we preferred this to resorting to a pseudo-inverse in that

case. The behaviour is nevertheless quite acceptable as the

number of samples decreases, although it remains unstable

below 6.
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Fig. 4. A few result images for a same query (129, COREL CD4, “Germany”).
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Fig. 5. Mean average precisions at 100 documents obtained

on the COREL-CD4 collection with different number of

samples (2–20).

SVMlight

Results and behaviour of SVMlight on our data set were

a bit unexpected. First, we observed a great sensitivity of the

results to both the type of kernel and its parameterization.

We found that the best overall results were obtained with a

radial basis function kernel:

K(xi, xj) = exp−||xi − xj ||2
2σ2

in which the σ parameter was properly estimated from the
training data set for each feature. To provide a final result

combining all the features’ vectors, we resorted to the well-

known “flat” vector strategy, which consists in stacking all

the features’ vectors in a single one for each sample. Again,

the results were rather good, as the estimated σ parameter
from the training set turned out to be close enough to the

one estimated over the ground truth. However, we did no-

tice huge variations of the results as σ moves away from

Fig. 7. Comparison of overall performances of both meth-

ods.

the optimal value, which confirms that SVM would not be

applicable if the number of training samples becomes too

small.

On the other side, when provided enough samples, SVM

behaved in a more stable way than our method, which sug-

gests a better insensitivity to the difficulty of the queries –

although the variations are still discernible. Figure 6 reports

theMAP100 obtained for individual featureswith SVMlight,

whereas Fig. 7 compares the overall performance of both

methods. One may notice the difference of behaviour.

4. CONCLUSION

We have proposed an improved CBIR method based on sev-

eral optimization steps (on similarity in feature space and

on the linear combination of similarity metrics) and on a

procedure which substitutes certain metrics by some more

promising ones. So far, the method is used in a passive
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Fig. 6. Individual performances of SVM per feature.

learning framework, and its discriminatory power has been

verified in this case on a database built from COREL im-

ages.

We believe that furtherwork includes two important steps:

the determination of the lower bound below which to use

equal weights, and the adaptation of the method to the frame-

work of active learning.
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