Image & Video Capture

- An image is captured when a camera scans a scene
 - Colour => Red (R), Green (G) and Blue (B) array of digital samples
 - Density of samples (pixels) gives resolution
- A video is captured when a camera scans a scene at multiple time instants
- Each sample is called a frame giving rise to a frame rate (frames/sec) measured in Hz
 - TV (full motion video) is 25Hz
 - Mobile video telephony is 8-15 Hz … jerky

Image Data (RGB)

- Colour still image:
 - 420 x 315 pixels, 8 bits/pixel = 387KB

Red Green Blue
8 bits: 0-255

(R,G,B) = (153,102,204)
(R,G,B) = (17,0,0)
(R,G,B) = (204,153,205)
Video Technology: generating a colour

- Frame buffer (2D array of 24 bit values)
- Colour guns
- Phosphor dots on display

<128, 128, 255>

RGB value

8 bits per colour

What you see

Human Visual Perception

- Mixing three primary colours in varying proportions, the perception of different colours can be created.

- Human eye build up of:
 - Cones to perceive colour
 - By exciting retina using different intensities of the three primary colours, the same colour may be perceived by the brain even if its unique wavelength is not present.

Human Information processing

- Identical colour combinations can cause different colour sensation under different conditions.
- Likewise two different colour can be perceived identical ...

- the human eye & brain
 - Interpolation
 - Pictures and events that can still be identified as separate
 - Colour interaction in the brain

- Adaptation
 - General-brightness adaptation
 - Lateral adaptation
 - Chromatic adaptation

Colour

- Colour is a visual feature which is immediately perceived.

- Salient chromatic properties are captured.

- Presence and distributions of colours induce sensations and conveys meanings in the observer according to specific rules.

- Representing colour on digital images and reproducing accurately on output devices are not at all straightforward.

- Distances in colour space should correspond to human perceptual distance.
Colour Space

- To deal with colour we need to quantify it in some way
 - gives us the notion of colour space or domain

- Hierarchy of colour sets
 - Perceivable by human beings
 - Displayed on a monitor screen
 - Calculated and stored in a frame memory

Representation of Colour Stimuli

- Points in three dimensional space
 - Perceivable by human beings
 - Displayed on a monitor screen
 - Calculated and stored in a frame memory

- Colorimetric models
 - CIE Chromaticity diagram

- Physiologically inspired models
 - CIE XYZ, RGB

- Psychological models
 - HSV, HW

- Hardware-oriented models
 - RGB, CMY, YIQ

- User-oriented models
 - HLS, HSV, HSB

Video Technology:
representing colour

- Colour models: RGB
 - RGB = Red Green Blue
 - directly modelled in device (i.e., corresponds to colour guns in display)
 - easy to implement

- Not based on visual (perceived) colours
- Not perceptually uniform
Video Technology: Colour Models: RGB Colour Space

- Cyan
- White
- Black
- Red
- Magenta
- Blue
- Green
- Yellow

Video Technology: Colour Models: RGB Colour Space

- Blue
 - (0,0,1)
- Cyan
 - (0,1,1)
- Red
 - (1,0,0)
- Yellow
 - (1,1,0)
- Green
 - (0,1,0)
- White
 - (1,1,1)
- Black
 - (0,0,0)
- Magenta
 - (1,0,1)

Video Technology: Colour Models: RGB

- Colour is labeled as a relative weights of three primary colours, in an additive system using the primaries Red, Green, Blue.
- It is perceptually non-linear space.
 - Equal distances in the space do not necessarily correspond to perceptually equal sensation.
- Non-linear relationship between RGB values & the intensity produced in each phosphor dot, low intensity values produce small changes in response to screen.
- It is not a good colour description system.

Video Technology: Colour Models: HSV

- HSV = hue, saturation, value (intensity)
- "painter's model"
- better model for representing colours as we see them ("I want a bright highly saturated apple green.")
- can be converted to/from RGB
- like RGB, axes not perceptually uniform
- variant: HLS (hue, lightness, saturation)
Video Technology: Colour Models: HSV Colour Space

- Non-linear transformation of RGB cube
- Hue: quality by which we distinguish one family from others
- Chroma: quality by which we distinguish a strong colour from weak ones
- Value: It is that quality by which we distinguish a light colour from a dark one
- H corresponds to selecting a colour; S corresponds to selecting the amount of white; selecting V corresponds to adding black
- Perceptually non-linear
 - Perceptual in the sense that we are using attributes that we normally think of
 - Attributes are not independent
- Variant: HLS (hue, lightness, saturation)

Video Technology: Colour Models: YUV

- Colour model used for TV signal transmission
- Y represents luminance (intensity of monochrome signal)
- U,V carry separate colour information (colour difference values)
- \[Y = 0.2125R + 0.7154G + 0.0721B \]
- \[U = B - Y, \ V = R - Y \]
- Typically, Y contributes most to signal bandwidth

Image Data (YUV)

- See:
Video Technology: CIE Colour Specification System

- Commission Internationale d’Éclairage
- colour labelling system
- “XYZ” space
- international standard (1931)
- based on colour matching functions determined by experiments with human subjects
- gives uniform colour spaces
- needs transformation into one of the other models

Video Technology: Colour Models: CMYK

- CMYK = cyan, magenta, yellow, black
- "printer’s model"
- a subtractive model
- set of practically available CMYK colours (“process colours”) are not equivalent to RGB set

Image & Video Capture

- Red, Green, Blue
- 8 bits: 0-255
- Y (luminance)
- U, V
- Time
- 0(black), ..., 255(white)

Video Sequence

- Consists of number of frames
 - Images produced by digitising time-varying signal generated by the sensors in a camera
 - Bit-mapped images
- Camera
 - Circuitry Inside a Camera
 - Purely digital signal (data stream) is fed into a computer via a high speed interface
 - IEEE 1394 (FireWire)
- Computer
 - Broadcast video is fed into a video capture card attached to the computer
 - Video capture card - analogue signal is converted into a digital form
Video Data

- **Desktop PC**
 - CIF (352 x 288), 8 bpp, 30hz = 8.7 MB/sec
 - 30 sec clip = 261 MB

- **Video to mobile device**
 - QCIF (176 x 144), 8 bpp, 30hz = 2.2 MB/sec
 - 30 sec clip = 65 MB

- **High Definition TV (HDTV)**
 - 1280 x 720, 24 bpp, 50hz = 0.4 GB/sec
 - 2.5 hour movie = 3.4 TB

Pushing the hardware

- **Consumers expectations are based on broadcast television**
- **Consumer equipment plays back at reduced frame rate resulting in jittery- dropped frames**
- **In order to accommodate low-end PCs considerable compromises over quality must be made**

Persistence of vision

- **If a sequence of still images is presented to our eyes at sufficiently high rate (frame rate~40 fps), we experience a continuous visual sensation rather than perceiving individual images**
 - A lag in the eye's response to visual stimuli which results in after images

- **If the consecutive images only differ by a small amount, any changes from one to next will be perceived as movement of elements within images**

- **Film projector displays an image twice (24 fps becomes 48 fps)**

Human Perception

- **What frame rate perceived as smooth?**
 - No identification of single frames if refresh frequency is high enough
 - Perception of 16 frames/s as continuous sequence
 - Depends on material

- **More sensitive to low frequencies**
- **More sensitive to changes in luminance and blue-orange axis**
- **Vision emphasizes edge detection**
Digitization: camera vs computer

- **Advantage**
 - Analogue signal transmitted on a cable get corrupted by noise
 - Noise will creep in if analogue data is stored on a magnetic tape
 - Camera is resistant to corruption by noise and interference

- **Disadvantage**
 - User has no control over digitization
 - Most conform to an appropriate standard

Image & Video Processing

- When processing image/video data we have two choices:
 - Raw data … termed uncompressed domain
 - Direct processing of the pixel values on either a global or local basis
 - Slow - more data, may require decode process
 - Possible to extract a wide range of expressive information from raw data
 - Encoded data … termed compressed domain
 - Fast - partial image reconstruction, real-time possible
 - Restricted to image/video data in bitstream
 - Compression is about throwing away information for efficient representation and transmission

Video Bit Rate Calculation

\[
\text{width} \times \text{height} \times \text{depth} \times \text{fps} \times \text{compression factor} = \text{bits/sec}
\]

- width ~ pixels (160, 320, 640, 720, 1280, 1920, …)
- height ~ pixels (120, 240, 480, 485, 720, 1080, …)
- depth ~ bits (1, 4, 8, 15, 16, 24, …)
- fps ~ frames per second (5, 15, 20, 24, 30, …)
- compression factor (1, 6, 24, …)

Examples

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
<th>fps</th>
<th>Comp</th>
<th>Kb/sec</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>120</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>92</td>
<td>Basic Rate ISDN</td>
</tr>
<tr>
<td>320</td>
<td>240</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>480</td>
<td>16</td>
<td>24</td>
<td>1232</td>
<td>MPEG1 (Primary Rate ISDN)</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>480</td>
<td>16</td>
<td>24</td>
<td>1232</td>
<td>MPEG1</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>480</td>
<td>24</td>
<td>30</td>
<td>36,864</td>
<td>MPEG2</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>480</td>
<td>24</td>
<td>30</td>
<td>221,184</td>
<td>Uncompressed</td>
<td></td>
</tr>
</tbody>
</table>
Video Data Size

<table>
<thead>
<tr>
<th>Image Size</th>
<th>1280x720</th>
<th>640x480</th>
<th>320x240</th>
<th>160x120</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec</td>
<td>0.19</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>1 min</td>
<td>11.20</td>
<td>4.98</td>
<td>1.66</td>
<td>0.41</td>
</tr>
<tr>
<td>1 hour</td>
<td>671.85</td>
<td>298.60</td>
<td>99.53</td>
<td>24.88</td>
</tr>
<tr>
<td>1000 hours</td>
<td>871,846.40</td>
<td>298,598.40</td>
<td>99,532.80</td>
<td>24,883.20</td>
</tr>
</tbody>
</table>

Image size of video

- 1280x720 (1.77)
- 640x480 (1.33)
- 320x240
- 160x120

Compression

- When captured, audio/video data is referred to as "raw" or "uncompressed"
- In practice, undergo software/hardware process to compact data:
 - Termed "compression" or "encoding"
 - Results in an efficient bitstream that can be stored or transmitted
- Requires a (less) complex process to uncompress (decode) before it can be displayed
- A system for encoding & decoding is termed a "codec"

Image Compression

- Use frequency domain analysis
 - The discrete cosine transform (DCT)

- Use Pass Filter
 - Ignore low frequency info
 - Gain better compression

- Reuse inverse transform
 - Use inverse transform
 - Less perceptual losses

Image Compression

- Use more blocks
 - Less information to store or transmit over network
Effects of Compression

storage for 1 hour of compressed video in megabytes

<table>
<thead>
<tr>
<th>Resolution</th>
<th>1920x1080</th>
<th>1280x720</th>
<th>640x480</th>
<th>320x240</th>
<th>160x120</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>671,846</td>
<td>298,598</td>
<td>99,533</td>
<td>24,883</td>
<td>6,221</td>
</tr>
<tr>
<td>3:1</td>
<td>223,949</td>
<td>99,533</td>
<td>33,178</td>
<td>8,294</td>
<td>2,074</td>
</tr>
<tr>
<td>6:1</td>
<td>111,974</td>
<td>49,766</td>
<td>16,589</td>
<td>4,147</td>
<td>1,037</td>
</tr>
<tr>
<td>25:1</td>
<td>26,874</td>
<td>11,944</td>
<td>3,981</td>
<td>995</td>
<td>249</td>
</tr>
<tr>
<td>100:1</td>
<td>6,718</td>
<td>2,986</td>
<td>995</td>
<td>249</td>
<td>62</td>
</tr>
</tbody>
</table>

3 bytes/pixel, 30 frames/sec

Compression

- Two types:
 - Lossless: doesn’t change data “simply” reorganizes
 - Used in medical applications (e.g. X-Rays) and document scanning (e.g. FAX)
 - Lossy: throws some data away during encoding
 - Used in most multimedia applications
- Popular image/video compression standards for multimedia applications:
 - JPEG (still images)
 - JPEG 2000 (enhanced functionality/quality)
 - MPEG-1 (video from CD-ROM)
 - MPEG-2 (Digital TV, DVD)
 - MPEG-4 (mobile and content-based functionality)
 - Also: ITU-T real-time telecommunications standards e.g. H.261, H.263, H.264/MPEG-4 AVC

Video codecs

- Video capture boards
 - Digitization and compression
 - Decompression and digital to analogue transformation
 - Devices compressor/decompressor (codecs)
- Hardware codecs
 - Store them on a computer
 - Then play them back to an external video monitor (TV set) attached to the VCC
 - Most hardware codecs can not provide full motion video to monitor
 - We can not know our audience will have any hardware codec available
- Software codec
 - Program that performs the same operation

What is MPEG

- MPEG: Moving Picture Experts Group (Created in 1988)
- ISO (Int. Standards Organization) / IEC (Int. Electro-technical Commission)
 - ISO/IEC JTC 1 / SC 29 / WG 11
- Develop standards for the coded representation of moving pictures and associated audio
Video Technology:

MJPEG

- motion JPEG
- just applies JPEG to each frame
 - YCbCr
 - apply to each channel
- used for compression during video capture
- compression ratios of 7:1
- no temporal compression
- allows users to set quality parameters
- not a standard
 - MJPEG-A

Vector Quantization

- Iterative algorithm
 - Pick set of reference blocks (code book)
 - Code picture blocks by code book entries
 - Entropy/RLE code the code symbols
- How to select code book
 - Step 1: pick reference blocks
 - Step 2: compare reconstructed image to original
 - Step 3: add additional reference blocks
 - REPEAT UNTIL ERROR IS SMALL
- Slow encode, fast decode

MPEG Standards

- **MPEG-1:** Storage of moving picture and audio on storage media (CD-ROM) 11 / 1992
 - aimed at low bit-rates of 1.5 Mb/s
 - typical of CD-ROM
- **MPEG-2:** Digital television 11 / 1994
 - aimed at bit rates of 8-15 Mb/s
 - DVD
- **MPEG-4:** Coding of natural and synthetic media objects for multimedia applications v1: 09 / 1998
 v2: 11 / 1999
 - introduction of objects into the specification
 - wide range of data rates
 - important for multimedia
- **MPEG-7:** Multimedia content description for AV material

Video Technology:

MPEG-1 compression approach

- Spatial compression for individual frames
- based on JPEG-like technique
- temporal compression of sequences of frames
 - looks for areas of change
 - creates difference frames
- based on 16X16 macroblocks
Temporal Compression

- Make use of similarities of frames
 - Only difference between frames is encoded
 - Process often termed motion compensation

 ![Image of S1 and S2 frames](Image)

 Second one (S2) can be approximated by pieces of the first one (S1)
 - S1 acts as a reference frame

Motion Vectors

- Algorithm searches for Best matching Block
- Needs to calculate error term (Matching block)
- Needs to capture/convey spatial translation
 - Motion vector

 ![Image of Motion Vectors](Image)

Predicted Frames

- Consider S3
 - Has macroblocks in common with S1
 - Could be reconstructed from S1
 - S3 would be then a Predicted (P) frame

 ![Image of Predicted Frames](Image)

Bidirectional frames

- Consider S2
 - Has macroblocks in common with S1 and S3
 - Could be constructed using pieces of S1 and S3
 - S2 would be then a Bidirectional (B) frame
 - Both S1 and S3 acting as reference frames

 ![Image of Bidirectional Frames](Image)
Question?

- How can we know at the time S2 is coded that there will be a matching block in S3?
- Answer:
 - S3 needs to be available for reference at the time of F2 is coded
 - i.e., S1, S2, S3 would need to be buffered
 - S2 only sent (transmission order) once it has been interpolated from S1 and S3

Summary (from example)

- S1 is an I frame – it is encoded without reference to any other frame
- S3 is a P frame – it is predicted from a reference frame: in this case S1
- S2 is a B frame – it is interpolated from S1 and S3

Display Order

Bitstream order

- What about decoder ...
- How to handle B frames
 - Needs info from later I or P frames in order to construct B frame
- Display Order

- Solution: reorder the sequence

GOPS...

- Encoders typically use a repeating sequence of I, P and B frames
- This is known as a GOP (Group of pictures)
 - Always begin with an I frame
 - Common sequence (display Order)
 - IBBPBBBI or IBBPBPPBB
 - N=9
 - Bitstream order
 - IPBBBIIBBB or IPBBPBBBIIB
Video Sequence

- Commence with a sequence header
- Followed by n GOPS where n> 0
- End with a sequence_end_code
- GOP
 - Each GOP must contain at least I frame
 - Assist random access into the sequence
 - Therefore greater apps need for RA the shorter should be the size of GOP

Role of I frames

IPBBPBBIBBB

You want to resume from a given frame …

What if frame is I frame
P frame
B frame

I frames act as synchronisation points
Delay between occurrence of successive I frames should not exceed 400ms

Video Technology: MPEG
Frame Types: I Frames

- Intra-coded images
 - similar to a JPEG still of the frame
- Expensive but required
 - I-frames expensive as they have to compress the entire scene
 - needed as start frame for differences
 - needed for scene changes

Video Technology: MPEG
Frame Types: P Frames

- Predictive coded frames
 - based on predicting the movement of blocks from their position in the previous frame (I or P)
Video Technology: MPEG

Frame Types: B Frames

- Bi-directional frames
 - based on pair of I/P frames, before and after

Profiles and levels

- MPEG-2 supports greater choice of bit rate
 - Up to HDTV picture size and resolution
 - Allows greater chrominance resolution
 - 4:2:2; 4:4:4
 - Support for wider range of apps
 - Family of compression schemes
 - Schemes defined by a profile and level
 - No single encoder/decoder has to implement all functionality
 - Comparability between newer and older equipment
 - 5 Profiles
 - High, Main, Simple, Spatially scalable, SNR scalable, 4:2:2, multiview etc.

MPEG 2

- Motivation …
 - Provide different qualities if image for different domains (with differing target bit rates)
 - E.g., studio quality motion video
 - MPEG-2 took on the mantle of MPEG-3
 - Encoding and compression for HDTV
 - Standard for digital broadband TV
 - Interlaced video
 - DVD quality

MPEG-4

- Motivation …
 - Original objective: develop a low bit rate video compression method
 - Now a set of tools for interactive multimedia scene composition, multiplexing and synchronisation
 - Digital television
 - Interactive graphics application
 - Interactive multimedia
 - MPEG-4 provides
 - The standardised technological elements enabling the integration of production, distribution and content access paradigm of the fields of interactive multimedia, mobile multimedia,…