
Complexity of Design in Safety Critical Interactive Systems:
Gathering, Refining, Formalizing Multi-Type and Multi-Source Information while Ensuring Consistency,

Reliability, Efficiency and Error-Tolerance

Sandra Basnyat, David Navarre, Philippe Palanque
(Basnyat, Navarre, Palanque)@irit.fr

LIIHS – IRIT, University Paul Sabatier, Toulouse, 31062, France
http://liihs.irit.fr

Abstract: The design of a usable, reliable and error-tolerant interactive safety-critical system is based on a
mass of data of multiple natures from multiple domains. In this paper we discuss the complexity and
dangers surrounding the gathering and refinement of this mass of data. This complex and currently mostly
informal process can be supported using models that allow handling data at a high level of abstraction.
However, not all relevant information can be embedded in a single model. Thus, the various models ought
to be consistent and coherent with one another. This paper discusses methodological issues. We present a
set of issues raised by the gathering and the modeling of data and some issues raised by their consistency.
These issues are addressed in a preliminary unifying framework describing the various models, the data
embedded in each model and the interconnections of models.

Keywords: Design, Verification, Safety Critical Interactive Systems, Consistency, Reliability, Error-
Tolerance

Introduction
Human-Computer Interaction and related disciplines have argued, since the early days, that interactive
systems design requires the embedding of knowledge, practices and experience from various sources. For
instance, user centered design (Norman, 1986) advocates the involvement of human factors specialists,
computer scientists, psychologist, designers … in order to design useful and usable systems. While
designing interactive software, the use of formal specification techniques is of great help as it provides
non-ambiguous, complete and concise models. The advantages of using such formalisms are widened if
they are provided by formal analysis techniques that allow checking properties about the design, thus
giving an early verification to the designer before the application is actually implemented.

During design, one should try consider all stakeholders. That is, “persons or groups that have, or claim,
ownership, rights, or interests in a corporation and its activities, past, present, or future. Such claimed
rights or interests are the result of transactions with, or actions taken by, the corporation, and may be legal
or moral, individual or collective” (Clarkson, 1995). The consideration for all stakeholders leads systems
designers and analysts to look at the same system (the one to be designed) from multiple perspectives.
Such perspectives come from, but are not limited to domains such as human factors, produce development,
training, product management, marketing, the customers, design support, system engineers and interface
designers. A number of these domains will be discussed more in detail hereafter and more precisely
describing the roles they have in supporting interactive safety-critical systems design.

Due to the large number of domains involved, it is highly unlikely that the data gathered, analyzed and
documented will be represented in the same way. For example, it is unlikely that the system engineers will
take into account all information provided by human factors analysts (for instance about work practice and
users). This is not only because of time constraints and the amount of data involved, but also and mainly,
because the kind of notation they are used to employ cannot record that information efficiently. This can
have serious effects on the reliability, efficiency and error-tolerance of a system. For example, if a task is
represented in a task model by a human factors expert and if that information is not represented (in one
way or another) in the system model by a systems engineer there is no means to ensure and check that the
system will support this task.

It is clear that there is a need for formalizing not only the process of gathering this mass of data, but also
for refining and modeling it when necessary in order to provide valuable input to the system design.

The paper is structured as follows. The next section deals with the issues raised by information gathering
per se. Section “Sharing and Embedding Information” discusses the feeding and embedding of information
from one phase to another within the design process. Section “Formalizing Information” deals with the
need for formalization of information and data. The following sections discuss multi-type and multi-source
data respectively. This data has to be gathered throughout the development process in order to allow
designers to reach the ultimate goals discussed in section “Ultimate Goals”. The last section (section
“Consistency”) presents the consistency problem that has arisen from advocating the use of multiple
models.

Gathering Information
The phase of gathering information for the design of a new system is crucial for the success of the end
product. If performed incompletely, inaccurately or indeed ignored, gaps are left in understanding the
scope, concept and function of the new system.

The process of experts gathering data from various domains for input into the system design has been
studied as part of the Mefisto Method. ‘The process cycle’ (Palanque et al., 2000) describes a path that has
to be followed to build both usable and reliable interactive systems. In the first phase of the process cycle,
the observation phase, information such as work practice, existing artefacts, business and organizational
constraints are gathered. Other approaches such as MUSE (Lim and Long, 1994) argue in the same way
although the proposed process is different. In that paper, we claimed that in a real life safety critical
system, such as in Air Traffic Control (ATC), it is unlikely that the whole domain will be analyzed in detail
due to the quantity of data required. This problem will also result in gaps in understanding the scope,
concept and function of the new system.

A rich source of information can be obtained from past experiences with similar systems. Since there is
such a large amount of data to be gathered, experts can focus on case studies to understand more about the
usability of a system and its safety. However, the process cycle (see Figure 1) does not detail how the
information is gathered, who will gather it, or how the information will be recorded and reused.

Figure 1 - Schematic view of the Process cycle

Sharing and Embedding Information
Gathering information is not a goal per se. The result of this activity should be used to feed other phases in
the design process. This feeding cannot be left informal nor at the discretion of those responsible for these
other phases. In addition, not all types of information are closely enough related to build useful bridges
between them. On the other hand, some sources of information are so close that, not merging and cross
validating them would certainly result in poorly designed and inconsistent systems.

For instance, scenarios and task models both convey information about user activities. It is thus possible to
check that scenarios and task models (for the same activity) convey not only the same information but also
the same sequencing of operations.

Similarly scenarios and system models both deal with the same operational system and thus ought to
contain compatible and coherent information which should be checked at all stages of the development
process.
These examples have not been chosen randomly. Indeed, scenarios are the perfect candidate as the corner
stone of the consistency and coherence process.

Observation Design Prototyping Development

Analysis Designing Implementation

V
e
ri
fi
c
a
ti
o
n

H
u
m
a
n
 E
rr
o
r

A
n
a
ly
s
is

Figure 2 - Scenarios as a corner stone from (Palanque and Navarre, 2000)

Formalizing Information
There is a significant amount of literature on design process for interactive systems design the more
referred to being the ones including prototyping activities and evaluations (Dix, 1998 and Hartson and Hix
1992). However little research exists on formalizing the process of 1) documenting the information such
that experts of other domains can understand and reuse information for their analysis, 2) refining the
information to share only what is necessary and 3) embedding data from one domain to another, all for
input into the system design.

Modeling Principles: We promote the use of formal notations so that we can verify the properties of
interactive safety-critical systems. Without such notations there are few means for designers to address
reliability. However, formal notations may not be adequate for recording information that is
idiosyncratically fuzzy and incomplete such as information gathered in the very early phases of the
development process. Besides, it is important to note that in most cases, each model will be created by a
different person with a different background within a different specialist domain which is likely to
influence the kind notation they are able to master. Although it is most likely that one specialist will
develop one or several models, they may also contribute to many more models. Thus the relationship
between models and specialists can be considered as a many-to-many (M:N). That is, one specialist may
contribute to one, zero or many models and one model can receive contributions from one, zero or many
specialists. Even for a system that is not safety-critical, it is still necessary to ensure the system’s efficiency
and reliability but this kind of issue is more salient for this type of system.

Examples of Models: The following section provides an overview of the multiple models used in User
Centered Design (UCD) approaches. A number of which can be supported using the UML (Rumbaugh et
al., 1997). For example the domain model is supported by class and object diagrams, and the application
model which includes the commands and data for the application providers, are the main focus of UML.
Some models are only partially accounted for. Task models and scenarios can be described informally and
incompletely using UML use cases. Other models are not at all considered in UML for example, user
model, platform model and presentation model (Bastide & Palanque, 2003).

We hereafter present more precise information about some particularly relevant models for interactive
systems design.

Requirements Model: The functional and non-functional requirements of a system are defined in the
requirements model. Requirements describe in a declarative way what a system is supposed to do. The
description of a requirement models using a precise and un-ambiguous (i.e. formal) notion allows
analysing the model and identifying errors or inconsistencies. In addition, tools can generate tests from the
requirement models useful for verifying that a system behaves as the original requirements prescribe
(Palanque et al., 1997 and Campos and Harrison, 1997).

Task Model: A task model (Diaper and Stanton, 2004) is a representation of user tasks (in order to reach a
certain goal) often involving some form of interaction with a system, influenced by its contextual
environment. Task models are used for planning and during various phases of user interface development
for example. The models are usually developed by human factor’s specialists following an extensive task
analysis phase. For the design of interactive safety critical systems, task models can be advantageous for
checking the properties of the future system.

User Model: A user model is a collection of information about a user and is a key component for
providing flexibility and adaptation. They can incorporate generic information (valid over a wide range of
potential users) such as (Card et al., 1983, Fitts 1954, Barnard and May 1994) and represent information
about perception, cognition or interaction. Other user models are aimed at representing information for
specific users such as (PUMA Blandford and Good, 1997 and OSM Blandford and Connell 2003). This
information can be for instance, fed into a system model in the design phase in order to improve flexibility
or in the evaluation phase in order to compute predictive performance evaluation (Palanque and
Bastide,1997).

Environmental Model: An environmental or contextual model is developed by inspecting aspects of the
environment of a current or future system. Information is gathered using techniques such as observation,
documentation analysis or interviews. Examples of elements to be studied include location, temperature,
artifacts, duration, social aspects and cultural ethics. The model can be used to identify causes of human
behavior. Clearly, this can be beneficial for the development of an interactive safety critical system since
contextual factors are a way of providing useful adaptation of the system to environmental changes.

Platform Model: A platform model includes a description of the platform and some platform specific
characteristics. These models contain information regarding constraints placed on the UI by the platform
such as the type of input and output devices available, computation capabilities… The model contains an
element for each platform that is supported, and has attributes belonging to each element describing the
features and constraints. Although this type of model is particularly useful for ensuring cross-platform
compatibility of systems, they are critical when a given system is expected to be made available to several
users working with different software and hardware environments.

System Model: System model is, by far, the one that has been studied the most as it is the main raw
material of system construction. In the field of interactive systems, most contributions come from the field
of software engineering and have been more or less successfully adapted to the specificities of this kind of
systems. Since the mid 80s several formalisms have been proposed that were addressing system modeling
either at a very high level of abstraction (Dix and Runciman, 1985, Harrison and Dix, 1990) (such as trying
to capture the essence of interaction) or at a lower level in order to provide detailed modeling in order to
support development activities (Paterno and Faconti, 1992, Palanque and Bastide, 1990). Specific issues
raised by interactive systems modeling include, system state, system actions, concurrency, both
quantitative and qualitative temporal evolution, input device management, rendering, interaction
techniques …

Presentation Model: A presentation model details the static characteristics of a user interface, its visual
appearance. The model contains a collection of hierarchically-ordered presentation elements such as
sliders, windows and list boxes as far as WIMP user interfaces are concerned. For post-WIMP interfaces
such graphical elements include icons, instruments … (Beaudouin-Lafon, 2000 and Van Dam 1997).
Current state of the art in the field of safety critical interactive systems is also addressing these issues. For
instance, ARINC 661 specification (ARINC 661, 2001) provides a detailed description of interactive
components and their underlying presentation platform for new generation of interactive cockpits.
Architectural Model: An architectural model is a high level model of the application which describes the
basic building blocks of the application. Examples of established architectural models are Seeheim model
(Green, 1985) which makes explicit the user interface part of the application and the Arch model (Bass et
al., 1991) which is an extension of the Seeheim model putting even more emphasis on the UI part. The
Arch model divides all user interface software into the following functional categories, Functional Core,
Functional Core Adapter, Dialogue, Logical Interaction and Presentation. From a modeling point of view,

these components are usually dealt with individually. Various modeling techniques are applied to deal with
these components and the following section address some of them i.e. domain model (related to functional
core modeling) dialogue model and device model (a sub-part of the presentation component).

Domain Model: A domain model is an explicit representation of the common and the variable properties
of the systems in a domain and the dependencies between the variable properties. (Czarnecki and
Eisenecker, 2000). The model is created by data collection, analysis, classification and evaluation. The
term domain covers a wide range of interpretations, for example, the problem domain, business domain
and the system/product domain.

Theses models are necessary to understand the domain in which the future system will be built. In the field
of safety critical systems the various domains involved (such as ATC, military systems …) have already
received a lot of attention. Domain models are readily available and are meant to be exploited before
dealing with any system within that domain.

Dialogue Model: A dialogue model is a collection of hierarchically-ordered user-initiated commands that
define the procedural characteristics of the human-computer dialogue in an interface model. (Puerta, 2002).
Dialogue modeling has been regarded as a particularly hard to tackle issue. A lot of work has been devoted
to it and the notations used have evolved in conjunction with interaction techniques. For instance, early
work focused on modal interaction techniques (Parnas 1969) and evolved to WIMP interaction styles
(Bastide & Palanque 1990) to reach recent and more demanding interaction techniques as in (Dragicevic et
2004 DSVIS) for multimodal interaction.

Device Model: Input and output devices are a critical part of the interactive systems as they represent the
bottleneck via which the interaction between users and system takes place. Their behavior is sometimes
very complex even though it may be perceived as simple by the users. This complexity may lie in the
device itself (as for haptic devices such as the Phantom (Massiem and Salisbury; 1994)) or in the
transducers in charge of extending the behaviors of the devices (such as extending the behaviour of a
mouse to cope with double or triple clicks that embed temporal constraints) (Buxton 1986, Accot et al.;
1996). Device models can also be viewed as a person's understanding of how a device works (Satchwell,
1997). In the field of safety critical systems describing the behavior of such devices is critical as it makes
precise the interaction techniques.

Multi Type Data
The data obtained and analyzed by various domain experts can be considered as multi-type data. We have
distinguished between two main types of data, pre-design data and post-design data. That is, data that is
available before a system has been designed, and data that is available after a system is designed. This
distinction and its impact on systems design are explained in more detail in the following sections.

Pre-design data: Data can be obtained throughout the design process before the system has been
developed. Of course, much of this data can be made available and used for evaluation purposes, once a
system has been designed. However; we have labeled it pre-design data because the techniques can be
applied without the need of the current system.

Within this category of pre-design data, data can be further classified according to the properties of the
data obtained. That is, formal or informal, complete or incomplete for example. Figure 3 illustrates on a
three-dimensional cube, four examples of techniques that can be applied to obtain data before the system
has been designed. By formal and informal we mean whether there only one interpretation of the models or
not. Complete and incomplete refer to the fact that the model contains a sub set of the relevant information
or deals exhaustively with it. Finally, high and low-level data refer to level of abstraction at which the
information is dealt with.

To illustrate the complexities surrounding multi-type data, we have provided an example of seven
techniques positioned in the Multi-Type Data Cube. Some of the examples presented in more detail later in
this section, have been extracted from previous work on a mining accident case study (Basnyat et al. 2005).

Informal

Formal

High-level

Low-level

Incomplete Complete

Use
Case

Scenario

Sequence
Diagram

Code Mock up

State
Charts

Petri
Net

This type of presentation is used because of the overlapping properties of the techniques. For example, a
Petri-net is considered (in this paper) as formal, complete and low level even though it is possible to use
them to represent other type of data.

Figure 3 – Multi-Type Data Cube

To give a very brief overview, the case study is a fatal US mining accident (Mine Safety and Health
Administration 2002). A Quarry and Plant system is designed to produce cement. However, the part we
focus on is the delivery of waste fuel used to heat the plant kilns. The Waste Fuel Delivery System is
comprised of two separate liquid fuel delivery systems, the north and the south. Each system delivers fuel
to the three plant kilns independently and cannot operate at the same time.

Example of low level formal complete data: Figure 4 provides a simple Petri-net which models the ability
to switch from the north waste fuel storage tank to the south waste fuel storage tank using a manual shut
off valve.

Figure 4 - Formal low level and complete data modeling using Petri-nets

Example of incomplete, informal and low level data: In safety-critical interactive systems design,
scenarios can be used to elucidate the particular chain of events that lead to an accident but can also be
used to identify alternate failure scenarios that might cause future adverse events. In this particular case
study, it could be argued that as a result of the user’s actions described in the following brief scenario, a
‘hammer effect’ occurred causing a fatal explosion. “Mr X closed the valves (after bleeding them) as
quickly as possible because of the threat of fuel spreading.”

One of the problems associated with ensuring consistency, reliability, efficiency and error-tolerance in the
design of an interactive safety-critical system, lies in the probable limited use of fruitful information.

Scenarios can be used in line with many techniques, such as task modeling, a priori and a posterior i.e. for
design or evaluation activities. A careful identification of meaningful scenarios allows designers to obtain a
description of most of the activities that should be considered in the task model. (Paterno & Mancini,
1999). Example of incomplete, formal and high level data: Figure 5 illustrates the event-based sequence
diagram that can be used to map out what happened in the lead-up to an adverse event.

Post-design data: The second distinction of data we have made is post-design data. By this, we mean data
that can only be obtained once the system in mind has been designed. Examples of such are usability
analysis, incident and accident reports or the use of metrics for risk analysis (Fenton and Neil, 1999).

The design of a safety-critical interactive system must be grounded on concrete data, of which may be of
multiple source and of multiple type. However, an additional way to compliment and enhance a system’s
safety is to take into account as much information from previous real life cases. One such type of data is an
incident or accident report. To date, input to a safety-critical interactive system design from an incident or
accident report has not been considered in a systematic way. We believe these reports can be extremely
fruitful to the design of safer safety critical systems. In most cases, these reports are used by assigned
experts to analyse why an incident or accident occurred and what could be changed to prevent future
similar scenarios from occurring. In contrast, we suggest using the reports to improve future design. To be
more concrete, we have implemented this approach on the same mining accident case study previously
mentioned.

Figure 5 - High-level data, communication sequence diagram

The reports allowed us to achieve two things, 1) obtain and 2) deduce important information that could be
embedded into future waste fuel delivery systems of mining plants. Such information obtained includes:
• Add additional fire sensors in the waste fuel containment area to detect heat from fire and activate the

fire suppression system more rapidly. Ensure the Programmable Logic Controller (PLC) connectors
are properly installed.

• Implement procedures requiring all equipment operators and their supervisors to review
manufacturers' instructions and recommendations to ensure machinery and equipment is operated
according to manufacturer's guidelines.

• Install audible and/or visual alarm systems in the waste fuel containment area.
• Ensure equipment is installed according to the manufacturer's requirements. Develop procedures and

schedules and monitor them to ensure that the required maintenance is performed

Information deduced after implementing and analyzing the results of various safety analysis techniques
resulted in the following findings. The system should be designed such that:
• A waste fuel delivery system cannot be started without being primed first.
• Motors cannot be turned on without fuel available in the pipes.
• Air is bled from the pipes before a fuel delivery system is turned on.
• Air cannot be bled while a waste fuel delivery system is on.

• An emergency shutdown button should available to operators.

Multi-Source Data
The data gathered and analyzed for input into a safety-critical interactive system design is collected by
multiple specialists of a wide-array of domains. This is due to the nature of safety-critical systems that
range from cockpits to surgical equipment to mining instruments to name just a few but also to the variety
of information that has to be gathered and the fact that this information stems from multiple domains of
expertise. This combination of diverse specialists and diverse domains adds to the complexity of design of
a safety-critical system. The following sections describe several such specialists and domains and the input
they have on the design.

Human Factors: Human factors is a domain which aims to put human needs and capabilities at the focus
of designing technological systems to ensure that humans and technology work in complete harmony, with
the equipment and tasks aligned to human characteristics (Ergonomics Society).

Examples of human factors specialists are production engineers, health and safety- practitioners and
interface designers. These are just a number of experts in the human factors field who all bring advantages
to the design of the system. However, the complexity increases when considering the background of these
experts and the ways in which their analyses will vary according to their backgrounds.

Health and Safety Practitioners: Occupational Health and Safety (H&S) practitioners are trained in the
recognition, evaluation and control of hazards which place people's safety and health at risk in both
occupational and community environments.

Techniques employed by H&S practitioners include risk assessments, postural analysis, legal and
organizational factors, work equipment. As with most occupations, health and safety practitioners also
have wide ranging educational backgrounds. Such as psychology, anthropometry or physiology. This
results in multiple perspectives and methods of working on the same system.

Interface Designers: An Interface Designer is responsible for the presentation of the interface part of an
application. Although the term is often associated to computing, the interactive part of a system can include
controls and displays in many domains such as military aircraft, vehicles, audio equipment and so on. The
educational background of an interface designer can be varied, computer science, graphics design or again
psychology. It is probable that a psychologist and a computer scientist will base their interface designs on
different principles. Stereotypically, for example, a psychologist may wish to ensure correct colors are
used, whereas a computer scientist will want to employ the latest programming techniques with a flashy
interface. Both perspectives can be advantageous to the overall design.

Engineering: Systems engineering is an interdisciplinary process referring to the definition, analysis and
modeling of complex interactions among many components that comprise a natural system (such as an
ecosystem and human settlement) or artificial system (such as a spacecraft or intelligent robot), and the
design and implementation of the system with proper and effective use of available resources. (University
of Waterloo). In the mining case study, mechanical and automation engineers were involved. However,
other types of engineers include hardware, software and systems engineers. The combination of these
engineers assists in the system development process.

Hardware Engineer: In reference to the case study, we can assume that the hardware engineers would have
been responsible for the design and development of plant components such as the motors, grinders and fuel
tank.

Software Engineers: The software engineers in the mining case study would have been responsible for the
design and development of applications running on the hardware. Programs include the PLC software and
the ‘F’ system software.

Mechanical Engineers: A mechanical engineer can have a variety of responsibilities such as, the design
and improvement of machines and mechanisms, organization and maintenance of computer controls for
production processes or even selection and installation of equipment for indoor environment control.

Automation Engineer: Automation engineers design, build and test various pieces of automated
machinery. This can include electrical wiring, tooling, software debugging etc. One of the main fields of an
automation engineer is to design automation systems from a collection of single components of different
distributors.

Engineering and the Case Study: A combination of the work performed by the above mentioned engineers
can be considered as partial cause for the fatal accident in the case study. One of the events leading to the
accident was the failure of the PLC to automatically de-energize the fuel in the pipes when it received
signals that the pressure was too high. This automated procedure operated as follows. A monitoring ‘F’
system received signals from temperature and pressure sensors located on fuel lines. The ‘F’ system
transmits data to the PLC which raises audible and visible alarms in the control room. However, during the
accident, the PLC was not connected and therefore did not automatically de-energize the pressure in the
pipes.

Certification: Certification is a phase of the development process specific to safety critical systems. This
activity involves independent organizations responsible for providing clearances prior to the actual
deployment of the systems. This activity has a significant impact over the development process as its
successful accounting is perceived by designers and developers as one of the main targets to achieve.
Indeed, in case of certification failure, the whole development can be stopped and most of the time
restarted with many negative economical and technological consequences. For this reason, certification
authorities have developed specific development processes that 'guarantee' the quality of the product by
means of structured and reliable processes. For instance DO 178 B (RCTA 1992) is a document describing
such a design process widely used in the aeronautical domain.

Incident and Accident Analysts: Incident and accident analysts are interested in understanding system
‘failures’ and human ‘error’ often using accident analysis techniques and incident reporting techniques.
(http://www.dcs.gla.ac.uk/research/gaag). Such analysts have varying educational backgrounds in
computer science for example.

Since we are particularly interested in the domain of safety-critical systems, we have provided definitions
of an incident and accident from the Federal Aviation Administration (FAA). An aircraft accident means
an occurrence associated with the operation of an aircraft which takes place between the time any person
boards the aircraft with the intention of flight and all such persons have disembarked, and in which any
person suffers death or serious injury, or in which the aircraft receives substantial damage. (49 CFR
830.2). An aircraft incident is an occurrence other than an accident, associated with the operation of an
aircraft, which affects or could affect the safety of operations. (49 CFR 830.2)

Ultimate Goals
The above mentioned issues increase complexity in the design of interactive safety critical systems due to
the necessary ultimate goals of embedding reliability, usability, efficiency and error tolerance with the end
product. Without such ultimate goals the development process would be far less cumbersome. This is a
very important aspect of the work presented here as it points out the issues that are specific to the type of
applications we are considering and thus less relevant to others more commonly considered.

Consistency
Consistency is a means to achieve reliability, efficiency, usability and error-tolerance of a system. This can
be achieved by means of systematic storage of gathered information into models and the development of
techniques for cross models consistency checking.

Model Coherence: One of the problems associated with interactive safety-critical design is the lack of
coherence between multiple viewpoints and therefore multiple design models, of the same world. We

believe there should be coherence between these design models to reduce the likelihood of incidents or
accidents in the safety-critical systems domain. Some work on model-based approaches has tried to address
these issues but there is still a lot to do before design methods actually provide a framework to support this
critical activity. Indeed, it is still not commonly agreed that there should be a framework for multiple
models as some current research argues that models of one kind could be generated from models of the
other kind. For instance (Paternò et al., 1999) proposes to generate user interfaces from task models while
(Lu et al. 1999) proposes to generate task models from system models.

A Generic Framework for Ensuring Coherence: Although highly beneficial, it is unlikely that all
techniques from all domains of all types of experts will be applied to the design of any given system. This
is an unfortunate reality and this is why we are trying to focus on providing a unifying framework to help
ensure that data of multiple domains can be gathered, refined and embedded into the design of the system.

Figure 6 - Ingredients of the system model

As previously mentioned, formalizing this unified procedure is a way of ensuring that there are no
ambiguities, that the description of the models and information is precise, that the framework allows
reasoning about the system and to ensure consistency and coherence throughout the design and
development process.

Figure 6 presents the various ingredients of the system part as described in the section detailing various
types of models. This component is reproduced in Figure 7 where interactions with other models is
emphasized. Figure 7 presents, as a summary and in a single diagram the set of information, data and
processes.

Need For Systematic Tools Support: The complexity of design in the field of safety critical interactive
systems clearly requires tool support for the creation, edition; formalisation; simulation, validation;
verification of models and information, ability to check for inconsistencies; means for sharing and
embedding data; cross-checking of hybrid models … To date, tools exist for the support of individual
models, CTTe (Paterno et al., 2001) for supporting various activities around task modeling (edition,
simulation, verification …), Petshop (Bastide et al., 1999) for supporting various activities around system
modeling. Despite some preliminary work about interaction (Navarre et al. 2001) integration needs are still
to be addressed.

Figure 7 - Generic Modeling Framework

Conclusion
This paper discussing methodological issues, advocates the use of models for the design of interactive
safety critical systems. It claims that the issues raised by the design of such systems require the use of
systematic ways to support the gathering, refinement and storage of data. This data is, by nature, multi-
disciplinary and thus requires a multi-notation approach to support individually each discipline.

However, this multi-notation approach calls for additional means in order to support additional activities
such as verification of models consistency. Besides, in order to alleviate the burden for developers and
designers, software tools supporting their activities are also at the core of the applicability of such an
approach.

We are currently studying methods for integrating the necessary models for safety critical interactive
systems design. To date, we have devised two approaches for integrating the task model and system model
while taking into account human errors. One approach uses scenarios are bridge between the two (Navarre
et al. 2001). The second approach uses task patterns as a means of cross-checking properties between the
two models. This work is part of more ambitious work dealing with multiple models for safety critical
interactive systems in several application domains including satellite command and control room,
interactive cockpits for military and civilian aircrafts, command and control rooms for drones and air
traffic control workstations.

References

Accot, J., Chatty, S., Palanque, P.(1996)A Formal Description of Low Level Interaction and its Application
to Multimodal Interactive Systems, In Proceedings of the Third Eurographics workshop on Design,
Specification and Verification of Interactive Systems, (DSV-IS 96) F. Bodard & J. Vanderdonckt Eds.
Springer Verlag 1996.pp. 92-104

ARINC 661 Cockpit Display System Interfaces to User Systems. Arinc Specification 661. April 22, 2002.
Prepared by Airlines Electronic Engineering Committee.

Barnard, P. and May, J. (1994) Interactions with Advanced Graphical Interfaces and the Deployment of
Latent human Knowledge. Interactive Systems: Design, Specification and Verification. DSVIS 1994
pp15-49

Bass, L., Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard, S., and Szezur, M. R. (1991). The Arch
Model: Seeheim Revisited. User Interface Developpers' Workshop. Version 1.0 (1991)

Bastide, R., Palanque, P., Sy, O, Duc-Hoa Le, Navarre, D. (1999) PetShop a case tool for Petri net based
specification and prototyping of Corba Systems. Tool demonstration with Application and Theory of Petri
nets ATPN'99, Williamsburg (USA), LNCS Springer Verlag, 1999.

Bastide, R and Palanque, P. (2003) UML for Interactive Systems: What is Missing in Workshop on
Software Engineering and HCI, INTERACT 2003, IFIP TC 13 conference on Human Computer
Interaction.

Bastide, R., Navarre, D., Palanque, P. and Schyn, A. (2004) A Model-Based Approach for Real-Time
Embedded Multimodal Systems in Militart Aircafts. Sixth International Conference on Multimodal
Interfaces. ICMI'04 October 14-15, 2004 Pennsylvania State University, USA.

Basnyat, S., Chozos, N., Johnson, C., and Palanque, P. (2005) Multidisciplinary perspective on accident
investigation. Submitted to the Special issue of Ergonomics on Command and Control.

Beaudouin-Lafon, M. (2000). Instrumental interaction: an interaction model for designing post-WIMP user
interfaces. CHI 2000: 446-453

Blandford, A. & Connell, I. (2003) Ontological Sketch Modelling (OSM): Concept-based Usability
Analysis Proc. Interact 2003. 1021-1022. IOS Press.

Blandford, A. and Good, J. (1997) Programmable user models - exploring knowledge transfer between
devices. PUMA working paper WP5.

Booch, G., Rumbaugh, J., Jacobson, I. (1999) The Unified Modelling Language User Guide. Addison-
Wesley

Buxton, W. & Myers, B. (1986). A study in two-handed input. Proceedings of CHI '86, 321-326
Campos, J. C. and Harrison, M. D. (1997) Formally verifying interactive systems: A review. In M. D.
Harrison e J. C. Torres, editors, Design, Specification and Verification of Interactive Systems '97, Springer
Computer Science, pp 109--124. Springer-Verlag/Wien, Junho 1997.

Card, S.K., Moran, T.P. & Newell, A. (1983). The Psychology of Human-Computer Interaction, Lawrence
Erlbaum, New Jersey

Carroll, J. M. (1995). Introduction: the scenario perspective on system development. In J. M. Carroll (Ed.)
Scenario-based design: envisioning work and technology in system development (pp. 1-18). New York:
John Wiley & Sons, Inc.

Clarkson, M. B. E. (1995). A stakeholder framework for analyzing and evaluating corporate social
performance. Academy of Management Review, 20: 39-48

Czarnecki, K and Eisenecker U. W. (2000). Generative Programming—Methods, Tools, and Applica-tions.
Addison-Wesley, 2000. ISBN 0-201-30977-7

Diaper, D. and Stanton, N.A. (2004) The Handbook of Task Analysis for Human-Computer Interaction.
Lawrence Erlbaum Associates.

Dix, A. and Runciman, C. (1985). Abstract models of interactive systems.
People and Computers: Designing the Interface, Ed. P. J. &. S. Cook. Cambridge University Press. pp. 13-
22.

Dix, A., Finlay, J., Abowd, G., & Beale, R. (1998). Human-computer Interaction. Prentice Hall, Second
Edition, Prentice Hall Europe. ISBN: 0-13-239864-8.

Fenton N. E. and Neil M, (1999). Software Metrics and Risk, Proc 2nd European Software Measurement
Conference (FESMA'99), TI-KVIV, Amsterdam, ISBN 90-76019-07-X, 39-55, 1999.

Fitts, P. M. (1954) "The Information Capacity of the Human Motor System in Controlling the Amplitude
of Movement." Journal of Experimental Psychology 47. pp. 381-91

Green, M. (1985). Report on Dialogue Specification Tools", in G. Pfaff (ed.). User Interface Management
Systems. New York: Springer-Verlag, 1985, 9-20.

Harrison, M and Dix, A. (1990) State Model of Direct Manipulation in Interactive Systems. In Formal
Methods in Human-Computer Interaction. Cambridge Series on HCI. Edited by M. Harrison and H.
Thimbleby. P.129

Hix, D. and Hartson, H.R. (1993). Developing user interfaces: ensuring usability through product and
process. John Wiley and Sons, New York. ISBN: 0-471-57813-4.

Lim, K.Y and Long, J.B (1994) The MUSE Method for Usability Engineering. Cambridge University
Press, Cambridge.

Lu, S., Paris, C., Vander Linden, K. (1999) Toward the automatic construction of task models from object-
oriented diagrams. Engineering for Human-Computer Interaction. Kluwer Academic Publishers. 169-180.

Massiem T. H. and Salisbury J. K.. (1994) The phantom haptic interface: A device for probing virtual
objects. In Proc. of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, Chicago, IL, USA, November.

Navarre, D., Palanque, P., Bastide, R., Paternó, F., and Santoro, C. (2001). "A tool suite for integrating task
and system models through scenarios.” In 8th Eurographics workshop on Design, Specification and
Verification of Interactive Systems, DSV-IS'2001; June 13-15. Glasgow, Scotland: Lecture notes in
computer science, no. 2220. Springer

Norman, D. A. (1986). Cognitive Engineering. In D. A. Norman & S. Draper (Eds.). User centered system
design: New perspectives in human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc

NTSB Title 49 – Transportation, Subtitle B – Other Regulations Relating to Transportation, Chapter VIII –
National Transportation Safety Board. Part 830 - Notification and Reporting Of Aircraft Accidents or
Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records. Section
830.2 Definitions.

Palanque, P and Bastide, R (1990) Petri nets with objects for specification, design and validation of user-
driven interfaces. In proceedings of the third IFIP conference on Human-Computer Interaction, Interact'90.
Cambridge 27-31 August 1990 (UK)

Palanque, P and Bastide, R. (1997). Synergistic modelling of tasks, system and users using formal
specification techniques. Interacting With Computers, Academic Press, 9, 12.

Palanque, P., Bastide, R., Paternò (1997) Formal Specification as a Tool for Objective Assessment of
Safety-Critical Interactive Systems. INTERACT 1997: 323-330

Palanque, P., Navarre, D. (2000) Gaspard-Boulinc, H. (2000) MEFISTO Method version 1. The Mefisto
Project ESPIRIT Reactive LTR 24963 Project WP2-7. September 2000.

Parnas, D.L (1969). On the use of transition diagrams in the design of a user interface for an interactive
computer system. In Proceedings 24th National ACM Conference, pp. 379-385.

Paternò F., Mancini, C. (1999) Developing Task Models from Informal Scenarios, Proceedings ACM
CHI’99, Late Breaking Results, ACM Press, Pittsburgh, May 1999.

Paternò. F. and Faconti, G. (1992), in Monk, Diaper & Harrison eds. On the Use of LOTOS to Describe
Graphical Interaction People and Computers VII: Proceedings of the HCI'92 Conference, Cambridge
University Press, pp.155-173, September, 1992.

Paternò, F., Breedvelt-Schouten and N. de Koning. (1999). Deriving presentations from task models. In
Engineering for Human-Computer Interaction. Kluwer Academic Pub. pp. 319-338.

Paternò, F., Mori, G. and Galimberti, R. (2001) CTTE: An Environment for Analysis and Development of
Task Models of Cooperative Applications, In ACM Proceedings of (SIGCHI'2001), March 31-April 5,
Seattle, WA. (Extended Abstracts). 21:22

Puerta, A.R. (2002) The MECANO Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In (CADUI'02), pp. 19-35.

RTCA/DO-178B. Software Considerations in Airborne Systems and Equipment Certification, December 1.
http://www.rtca.org/ (1992)

Rumbaugh, J, Jacobson, I and Booch, G. (1997) Unified Modeling Language Reference Manual, ISBN: 0-
201-30998-X, Addison Wesley, est. publication December 1997

Satchwell, R.E. (1997) Using Functional Flow Diagrams to Enhance Technical Systems Understanding.
Journal of Industrial Teacher Education. Volume 34, Number 2. Winter 1997

Stirewalt, K., and Rugaber., S. (1998) Automating UI Generation by Model Composition. Automated
Software Engineering 13th IEEE International Conference October 13-16, 1998

United States Department Of Labor Mine Safety And Health Administration Report Of Investigation
Surface Area Of Underground Coal Mine Fatal Exploding Pressure Vessel Accident January 28, 2002
At Island Creek Coal Company Vp 8 (I.D. 44-03795) Mavisdale, Buchanan County, Virginia Accident
Investigator Arnold D. Carico Mining Engineer Originating Office Mine Safety And Health
Administration
District 5 P.O. Box 560, Wise County Plaza, Norton, Virginia 24273 Ray Mckinney, District Manager
Release Date: June 20, 2002

van Dam, A. (1997) Post-WIMP User Interfaces, Communications of the ACM 40, 2, 1997, 63-67

Websites
Enterprise Architect User Guide Version 4.5
http://www.sparxsystems.com.au/EAUserGuide/index.html?sequencediagram.htm

http://www.ergonomics.org.uk/ergonomics/definition.htm

University of Waterloo. What is systems design engineering?
http://sydewww.uwaterloo.ca/SystemsDepartment/WhatIsSystems/whatissystems.html.

http://www.dcs.gla.ac.uk/research/gaag

