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Abstract:   The design of a usable, reliable and error-tolerant interactive safety-critical system is based on a 
mass of data of multiple natures from multiple domains. In this paper we discuss the complexity and 
dangers surrounding the gathering and refinement of this mass of data. This complex and currently mostly 
informal process can be supported using models that allow handling data at a high level of abstraction. 
However, not all relevant information can be embedded in a single model. Thus, the various models ought 
to be consistent and coherent with one another. This paper discusses methodological issues.  We present a 
set of issues raised by the gathering and the modeling of data and some issues raised by their consistency. 
These issues are addressed in a preliminary unifying framework describing the various models, the data 
embedded in each model and the interconnections of models. 
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Introduction 
Human-Computer Interaction and related disciplines have argued, since the early days, that interactive 
systems design requires the embedding of knowledge, practices and experience from various sources. For 
instance, user centered design (Norman, 1986) advocates the involvement of human factors specialists, 
computer scientists, psychologist, designers … in order to design useful and usable systems. While 
designing interactive software, the use of formal specification techniques is of great help as it provides 
non-ambiguous, complete and concise models. The advantages of using such formalisms are widened if 
they are provided by formal analysis techniques that allow checking properties about the design, thus 
giving an early verification to the designer before the application is actually implemented. 
 
During design, one should try consider all stakeholders. That is, “persons or groups that have, or claim, 
ownership, rights, or interests in a corporation and its activities, past, present, or future. Such claimed 
rights or interests are the result of transactions with, or actions taken by, the corporation, and may be legal 
or moral, individual or collective” (Clarkson, 1995). The consideration for all stakeholders leads systems 
designers and analysts to look at the same system (the one to be designed) from multiple perspectives. 
Such perspectives come from, but are not limited to domains such as human factors, produce development, 
training, product management, marketing, the customers, design support, system engineers and interface 
designers. A number of these domains will be discussed more in detail hereafter and more precisely 
describing the roles they have in supporting interactive safety-critical systems design. 
 
Due to the large number of domains involved, it is highly unlikely that the data gathered, analyzed and 
documented will be represented in the same way. For example, it is unlikely that the system engineers will 
take into account all information provided by human factors analysts (for instance about work practice and 
users). This is not only because of time constraints and the amount of data involved, but also and mainly, 
because the kind of notation they are used to employ cannot record that information efficiently. This can 
have serious effects on the reliability, efficiency and error-tolerance of a system. For example, if a task is 
represented in a task model by a human factors expert and if that information is not represented (in one 
way or another) in the system model by a systems engineer there is no means to ensure and check that the 
system will support this task.  
 
It is clear that there is a need for formalizing not only the process of gathering this mass of data, but also 
for refining and modeling it when necessary in order to provide valuable input to the system design. 



 
The paper is structured as follows. The next section deals with the issues raised by information gathering 
per se. Section “Sharing and Embedding Information” discusses the feeding and embedding of information 
from one phase to another within the design process. Section “Formalizing Information” deals with the 
need for formalization of information and data. The following sections discuss multi-type and multi-source 
data respectively. This data has to be gathered throughout the development process in order to allow 
designers to reach the ultimate goals discussed in section “Ultimate Goals”. The last section (section 
“Consistency”) presents the consistency problem that has arisen from advocating the use of multiple 
models.  
 
Gathering Information 
The phase of gathering information for the design of a new system is crucial for the success of the end 
product. If performed incompletely, inaccurately or indeed ignored, gaps are left in understanding the 
scope, concept and function of the new system. 
 
The process of experts gathering data from various domains for input into the system design has been 
studied as part of the Mefisto Method. ‘The process cycle’ (Palanque et al., 2000) describes a path that has 
to be followed to build both usable and reliable interactive systems. In the first phase of the process cycle, 
the observation phase, information such as work practice, existing artefacts, business and organizational 
constraints are gathered. Other approaches such as MUSE (Lim and Long, 1994) argue in the same way 
although the proposed process is different.  In that paper, we claimed that in a real life safety critical 
system, such as in Air Traffic Control (ATC), it is unlikely that the whole domain will be analyzed in detail 
due to the quantity of data required. This problem will also result in gaps in understanding the scope, 
concept and function of the new system. 
 
A rich source of information can be obtained from past experiences with similar systems. Since there is 
such a large amount of data to be gathered, experts can focus on case studies to understand more about the 
usability of a system and its safety. However, the process cycle (see Figure 1) does not detail how the 
information is gathered, who will gather it, or how the information will be recorded and reused. 
 

 
Figure 1 - Schematic view of the Process cycle 

  
Sharing and Embedding Information 
Gathering information is not a goal per se. The result of this activity should be used to feed other phases in 
the design process. This feeding cannot be left informal nor at the discretion of those responsible for these 
other phases. In addition, not all types of information are closely enough related to build useful bridges 
between them. On the other hand, some sources of information are so close that, not merging and cross 
validating them would certainly result in poorly designed and inconsistent systems.  
 
For instance, scenarios and task models both convey information about user activities. It is thus possible to 
check that scenarios and task models (for the same activity) convey not only the same information but also 
the same sequencing of operations.  
 
Similarly scenarios and system models both deal with the same operational system and thus ought to 
contain compatible and coherent information which should be checked at all stages of the development 
process. 
These examples have not been chosen randomly. Indeed, scenarios are the perfect candidate as the corner 
stone of the consistency and coherence process.  
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Figure 2 - Scenarios as a corner stone from (Palanque and Navarre, 2000) 

 
Formalizing Information 
There is a significant amount of literature on design process for interactive systems design the more 
referred to being the ones including prototyping activities and evaluations (Dix, 1998 and Hartson and Hix 
1992). However little research exists on formalizing the process of 1) documenting the information such 
that experts of other domains can understand and reuse information for their analysis, 2) refining the 
information to share only what is necessary and 3) embedding data from one domain to another, all for 
input into the system design.  
 
Modeling Principles:  We promote the use of formal notations so that we can verify the properties of 
interactive safety-critical systems. Without such notations there are few means for designers to address 
reliability. However, formal notations may not be adequate for recording information that is 
idiosyncratically fuzzy and incomplete such as information gathered in the very early phases of the 
development process. Besides, it is important to note that in most cases, each model will be created by a 
different person with a different background within a different specialist domain which is likely to 
influence the kind notation they are able to master. Although it is most likely that one specialist will 
develop one or several models, they may also contribute to many more models.  Thus the relationship 
between models and specialists can be considered as a many-to-many (M:N). That is, one specialist may 
contribute to one, zero or many models and one model can receive contributions from one, zero or many 
specialists. Even for a system that is not safety-critical, it is still necessary to ensure the system’s efficiency 
and reliability but this kind of issue is more salient for this type of system.  
 
Examples of Models:  The following section provides an overview of the multiple models used in User 
Centered Design (UCD) approaches. A number of which can be supported using the UML (Rumbaugh et 
al., 1997). For example the domain model is supported by class and object diagrams, and the application 
model which includes the commands and data for the application providers, are the main focus of UML. 
Some models are only partially accounted for. Task models and scenarios can be described informally and 
incompletely using UML use cases. Other models are not at all considered in UML for example, user 
model, platform model and presentation model (Bastide & Palanque, 2003).  
 
We hereafter present more precise information about some particularly relevant models for interactive 
systems design. 
 
Requirements Model:  The functional and non-functional requirements of a system are defined in the 
requirements model. Requirements describe in a declarative way what a system is supposed to do. The 
description of a requirement models using a precise and un-ambiguous (i.e. formal) notion allows 
analysing the model and identifying errors or inconsistencies. In addition, tools can generate tests from the 
requirement models useful for verifying that a system behaves as the original requirements prescribe 
(Palanque et al., 1997 and Campos and Harrison, 1997).  
 



Task Model:  A task model (Diaper and Stanton, 2004) is a representation of user tasks (in order to reach a 
certain goal) often involving some form of interaction with a system, influenced by its contextual 
environment. Task models are used for planning and during various phases of user interface development 
for example. The models are usually developed by human factor’s specialists following an extensive task 
analysis phase. For the design of interactive safety critical systems, task models can be advantageous for 
checking the properties of the future system. 
 
User Model:  A user model is a collection of information about a user and is a key component for 
providing flexibility and adaptation. They can incorporate generic information (valid over a wide range of 
potential users) such as (Card et al., 1983, Fitts 1954, Barnard and May 1994) and represent information 
about perception, cognition or interaction. Other user models are aimed at representing information for 
specific users such as (PUMA Blandford and Good, 1997 and OSM Blandford and Connell 2003). This 
information can be for instance, fed into a system model in the design phase in order to improve flexibility 
or in the evaluation phase in order to compute predictive performance evaluation (Palanque and 
Bastide,1997).  
 
Environmental Model:  An environmental or contextual model is developed by inspecting aspects of the 
environment of a current or future system. Information is gathered using techniques such as observation, 
documentation analysis or interviews. Examples of elements to be studied include location, temperature, 
artifacts, duration, social aspects and cultural ethics. The model can be used to identify causes of human 
behavior. Clearly, this can be beneficial for the development of an interactive safety critical system since 
contextual factors are a way of providing useful adaptation of the system to environmental changes. 
 
Platform Model:  A platform model includes a description of the platform and some platform specific 
characteristics. These models contain information regarding constraints placed on the UI by the platform 
such as the type of input and output devices available, computation capabilities… The model contains an 
element for each platform that is supported, and has attributes belonging to each element describing the 
features and constraints. Although this type of model is particularly useful for ensuring cross-platform 
compatibility of systems, they are critical when a given system is expected to be made available to several 
users working with different software and hardware environments. 
 
System Model: System model is, by far, the one that has been studied the most as it is the main raw 
material of system construction. In the field of interactive systems, most contributions come from the field 
of software engineering and have been more or less successfully adapted to the specificities of this kind of 
systems. Since the mid 80s several formalisms have been proposed that were addressing system modeling 
either at a very high level of abstraction (Dix and Runciman, 1985, Harrison and Dix, 1990) (such as trying 
to capture the essence of interaction) or at a lower level in order to provide detailed modeling in order to 
support development activities (Paterno and Faconti, 1992, Palanque and Bastide, 1990). Specific issues 
raised by interactive systems modeling include, system state, system actions, concurrency, both 
quantitative and qualitative temporal evolution, input device management, rendering, interaction 
techniques …  
 
Presentation Model: A presentation model details the static characteristics of a user interface, its visual 
appearance. The model contains a collection of hierarchically-ordered presentation elements such as 
sliders, windows and list boxes as far as WIMP user interfaces are concerned. For post-WIMP interfaces 
such graphical elements include icons, instruments … (Beaudouin-Lafon, 2000 and Van Dam 1997). 
Current state of the art in the field of safety critical interactive systems is also addressing these issues. For 
instance, ARINC 661 specification (ARINC 661, 2001) provides a detailed description of interactive 
components and their underlying presentation platform for new generation of interactive cockpits.  
Architectural Model:  An architectural model is a high level model of the application which describes the 
basic building blocks of the application. Examples of established architectural models are Seeheim model 
(Green, 1985) which makes explicit the user interface part of the application and the Arch model (Bass et 
al., 1991) which is an extension of the Seeheim model putting even more emphasis on the UI part. The 
Arch model divides all user interface software into the following functional categories, Functional Core, 
Functional Core Adapter, Dialogue, Logical Interaction and Presentation. From a modeling point of view, 



these components are usually dealt with individually. Various modeling techniques are applied to deal with 
these components and the following section address some of them i.e. domain model (related to functional 
core modeling) dialogue model and device model (a sub-part of the presentation component).  
 
Domain Model:  A domain model is an explicit representation of the common and the variable properties 
of the systems in a domain and the dependencies between the variable properties. (Czarnecki and 
Eisenecker, 2000).  The model is created by data collection, analysis, classification and evaluation. The 
term domain covers a wide range of interpretations, for example, the problem domain, business domain 
and the system/product domain.  
 
Theses models are necessary to understand the domain in which the future system will be built. In the field 
of safety critical systems the various domains involved (such as ATC, military systems …) have already 
received a lot of attention. Domain models are readily available and are meant to be exploited before 
dealing with any system within that domain.  
 
Dialogue Model:  A dialogue model is a collection of hierarchically-ordered user-initiated commands that 
define the procedural characteristics of the human-computer dialogue in an interface model. (Puerta, 2002). 
Dialogue modeling has been regarded as a particularly hard to tackle issue. A lot of work has been devoted 
to it and the notations used have evolved in conjunction with interaction techniques. For instance, early 
work focused on modal interaction techniques (Parnas 1969) and evolved to WIMP interaction styles 
(Bastide & Palanque 1990) to reach recent and more demanding interaction techniques as in (Dragicevic et 
2004 DSVIS) for multimodal interaction.  
 
Device Model:  Input and output devices are a critical part of the interactive systems as they represent the 
bottleneck via which the interaction between users and system takes place. Their behavior is sometimes 
very complex even though it may be perceived as simple by the users. This complexity may lie in the 
device itself (as for haptic devices such as the Phantom (Massiem and Salisbury; 1994)) or in the 
transducers in charge of extending the behaviors of the devices (such as extending the behaviour of a 
mouse to cope with double or triple clicks that embed temporal constraints) (Buxton 1986,  Accot et al.; 
1996). Device models can also be viewed as a person's understanding of how a device works (Satchwell, 
1997). In the field of safety critical systems describing the behavior of such devices is critical as it makes 
precise the interaction techniques.  
 
Multi Type Data 
The data obtained and analyzed by various domain experts can be considered as multi-type data. We have 
distinguished between two main types of data, pre-design data and post-design data. That is, data that is 
available before a system has been designed, and data that is available after a system is designed. This 
distinction and its impact on systems design are explained in more detail in the following sections. 
 
Pre-design data:  Data can be obtained throughout the design process before the system has been 
developed. Of course, much of this data can be made available and used for evaluation purposes, once a 
system has been designed.  However; we have labeled it pre-design data because the techniques can be 
applied without the need of the current system.  
 
Within this category of pre-design data, data can be further classified according to the properties of the 
data obtained. That is, formal or informal, complete or incomplete for example. Figure 3 illustrates on a 
three-dimensional cube, four examples of techniques that can be applied to obtain data before the system 
has been designed. By formal and informal we mean whether there only one interpretation of the models or 
not. Complete and incomplete refer to the fact that the model contains a sub set of the relevant information 
or deals exhaustively with it.  Finally, high and low-level data refer to level of abstraction at which the 
information is dealt with. 
 
To illustrate the complexities surrounding multi-type data, we have provided an example of seven 
techniques positioned in the Multi-Type Data Cube. Some of the examples presented in more detail later in 
this section, have been extracted from previous work on a mining accident case study (Basnyat et al. 2005). 
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This type of presentation is used because of the overlapping properties of the techniques. For example, a 
Petri-net is considered (in this paper) as formal, complete and low level even though it is possible to use 
them to represent other type of data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Multi-Type Data Cube 

 
To give a very brief overview, the case study is a fatal US mining accident (Mine Safety and Health 
Administration 2002). A Quarry and Plant system is designed to produce cement. However, the part we 
focus on is the delivery of waste fuel used to heat the plant kilns. The Waste Fuel Delivery System is 
comprised of two separate liquid fuel delivery systems, the north and the south.  Each system delivers fuel 
to the three plant kilns independently and cannot operate at the same time.  
 
Example of low level formal complete data:  Figure 4 provides a simple Petri-net which models the ability 
to switch from the north waste fuel storage tank to the south waste fuel storage tank using a manual shut 
off valve. 
 

 

Figure 4 - Formal low level and complete data modeling using Petri-nets 

Example of incomplete, informal and low level data:  In safety-critical interactive systems design, 
scenarios can be used to elucidate the particular chain of events that lead to an accident but can also be 
used to identify alternate failure scenarios that might cause future adverse events. In this particular case 
study, it could be argued that as a result of the user’s actions described in the following brief scenario, a 
‘hammer effect’ occurred causing a fatal explosion. “Mr X closed the valves (after bleeding them) as 
quickly as possible because of the threat of fuel spreading.” 

 
One of the problems associated with ensuring consistency, reliability, efficiency and error-tolerance in the 
design of an interactive safety-critical system, lies in the probable limited use of fruitful information.  



Scenarios can be used in line with many techniques, such as task modeling, a priori and a posterior i.e. for 
design or evaluation activities. A careful identification of meaningful scenarios allows designers to obtain a 
description of most of the activities that should be considered in the task model. (Paterno & Mancini, 
1999). Example of incomplete, formal and high level data:  Figure 5 illustrates the event-based sequence 
diagram that can be used to map out what happened in the lead-up to an adverse event.  
 
Post-design data:  The second distinction of data we have made is post-design data. By this, we mean data 
that can only be obtained once the system in mind has been designed. Examples of such are usability 
analysis, incident and accident reports or the use of metrics for risk analysis (Fenton and Neil, 1999).  
 
The design of a safety-critical interactive system must be grounded on concrete data, of which may be of 
multiple source and of multiple type.  However, an additional way to compliment and enhance a system’s 
safety is to take into account as much information from previous real life cases. One such type of data is an 
incident or accident report. To date, input to a safety-critical interactive system design from an incident or 
accident report has not been considered in a systematic way. We believe these reports can be extremely 
fruitful to the design of safer safety critical systems. In most cases, these reports are used by assigned 
experts to analyse why an incident or accident occurred and what could be changed to prevent future 
similar scenarios from occurring. In contrast, we suggest using the reports to improve future design. To be 
more concrete, we have implemented this approach on the same mining accident case study previously 
mentioned. 

 

Figure 5 - High-level data, communication sequence diagram 

The reports allowed us to achieve two things, 1) obtain and 2) deduce important information that could be 
embedded into future waste fuel delivery systems of mining plants. Such information obtained includes: 
• Add additional fire sensors in the waste fuel containment area to detect heat from fire and activate the 

fire suppression system more rapidly. Ensure the Programmable Logic Controller (PLC) connectors 
are properly installed.  

• Implement procedures requiring all equipment operators and their supervisors to review 
manufacturers' instructions and recommendations to ensure machinery and equipment is operated 
according to manufacturer's guidelines. 

• Install audible and/or visual alarm systems in the waste fuel containment area. 
• Ensure equipment is installed according to the manufacturer's requirements. Develop procedures and 

schedules and monitor them to ensure that the required maintenance is performed 
 
Information deduced after implementing and analyzing the results of various safety analysis techniques 
resulted in the following findings.  The system should be designed such that: 
• A waste fuel delivery system cannot be started without being primed first. 
• Motors cannot be turned on without fuel available in the pipes. 
• Air is bled from the pipes before a fuel delivery system is turned on. 
• Air cannot be bled while a waste fuel delivery system is on. 



• An emergency shutdown button should available to operators. 
 
Multi-Source Data 
The data gathered and analyzed for input into a safety-critical interactive system design is collected by 
multiple specialists of a wide-array of domains. This is due to the nature of safety-critical systems that 
range from cockpits to surgical equipment to mining instruments to name just a few but also to the variety 
of information that has to be gathered and the fact that this information stems from multiple domains of 
expertise. This combination of diverse specialists and diverse domains adds to the complexity of design of 
a safety-critical system. The following sections describe several such specialists and domains and the input 
they have on the design. 
 
Human Factors:  Human factors is a domain which aims to put human needs and capabilities at the focus 
of designing technological systems to ensure that humans and technology work in complete harmony, with 
the equipment and tasks aligned to human characteristics (Ergonomics Society).  
 
Examples of human factors specialists are production engineers, health and safety- practitioners and 
interface designers. These are just a number of experts in the human factors field who all bring advantages 
to the design of the system. However, the complexity increases when considering the background of these 
experts and the ways in which their analyses will vary according to their backgrounds.   
 
Health and Safety Practitioners:  Occupational Health and Safety (H&S) practitioners are trained in the 
recognition, evaluation and control of hazards which place people's safety and health at risk in both 
occupational and community environments. 
 
Techniques employed by H&S practitioners include risk assessments, postural analysis, legal and 
organizational factors, work equipment. As with most occupations, health and safety practitioners also 
have wide ranging educational backgrounds. Such as psychology, anthropometry or physiology.  This 
results in multiple perspectives and methods of working on the same system.   
 
Interface Designers:  An Interface Designer is responsible for the presentation of the interface part of an 
application. Although the term is often associated to computing, the interactive part of a system can include 
controls and displays in many domains such as military aircraft, vehicles, audio equipment and so on. The 
educational background of an interface designer can be varied, computer science, graphics design or again 
psychology. It is probable that a psychologist and a computer scientist will base their interface designs on 
different principles. Stereotypically, for example, a psychologist may wish to ensure correct colors are 
used, whereas a computer scientist will want to employ the latest programming techniques with a flashy 
interface. Both perspectives can be advantageous to the overall design. 
 
Engineering:  Systems engineering is an interdisciplinary process referring to the definition, analysis and 
modeling of complex interactions among many components that comprise a natural system (such as an 
ecosystem and human settlement) or artificial system (such as a spacecraft or intelligent robot), and the 
design and implementation of the system with proper and effective use of available resources. (University 
of Waterloo). In the mining case study, mechanical and automation engineers were involved. However, 
other types of engineers include hardware, software and systems engineers. The combination of these 
engineers assists in the system development process.  
 
Hardware Engineer:  In reference to the case study, we can assume that the hardware engineers would have 
been responsible for the design and development of plant components such as the motors, grinders and fuel 
tank. 
 
Software Engineers:  The software engineers in the mining case study would have been responsible for the 
design and development of applications running on the hardware. Programs include the PLC software and 
the ‘F’ system software.  
 



Mechanical Engineers:  A mechanical engineer can have a variety of responsibilities such as, the design 
and improvement of machines and mechanisms, organization and maintenance of computer controls for 
production processes or even selection and installation of equipment for indoor environment control. 
 
Automation Engineer:  Automation engineers design, build and test various pieces of automated 
machinery. This can include electrical wiring, tooling, software debugging etc. One of the main fields of an 
automation engineer is to design automation systems from a collection of single components of different 
distributors. 
 
Engineering and the Case Study:  A combination of the work performed by the above mentioned engineers 
can be considered as partial cause for the fatal accident in the case study. One of the events leading to the 
accident was the failure of the PLC to automatically de-energize the fuel in the pipes when it received 
signals that the pressure was too high. This automated procedure operated as follows. A monitoring ‘F’ 
system received signals from temperature and pressure sensors located on fuel lines. The ‘F’ system 
transmits data to the PLC which raises audible and visible alarms in the control room.  However, during the 
accident, the PLC was not connected and therefore did not automatically de-energize the pressure in the 
pipes. 
 
Certification:  Certification is a phase of the development process specific to safety critical systems. This 
activity involves independent organizations responsible for providing clearances prior to the actual 
deployment of the systems. This activity has a significant impact over the development process as its 
successful accounting is perceived by designers and developers as one of the main targets to achieve. 
Indeed, in case of certification failure, the whole development can be stopped and most of the time 
restarted with many negative economical and technological consequences. For this reason, certification 
authorities have developed specific development processes that 'guarantee' the quality of the product by 
means of structured and reliable processes. For instance DO 178 B (RCTA 1992) is a document describing 
such a design process widely used in the aeronautical domain.  
 
Incident and Accident Analysts:  Incident and accident analysts are interested in understanding system 
‘failures’ and human ‘error’ often using accident analysis techniques and incident reporting techniques. 
(http://www.dcs.gla.ac.uk/research/gaag).  Such analysts have varying educational backgrounds in 
computer science for example.  
 
Since we are particularly interested in the domain of safety-critical systems, we have provided definitions 
of an incident and accident from the Federal Aviation Administration (FAA). An aircraft accident means 
an occurrence associated with the operation of an aircraft which takes place between the time any person 
boards the aircraft with the intention of flight and all such persons have disembarked, and in which any 
person suffers death or serious injury, or in which the aircraft receives substantial damage.  (49 CFR 
830.2). An aircraft incident is an occurrence other than an accident, associated with the operation of an 
aircraft, which affects or could affect the safety of operations.  (49 CFR 830.2) 
 
Ultimate Goals 
The above mentioned issues increase complexity in the design of interactive safety critical systems due to 
the necessary ultimate goals of embedding reliability, usability, efficiency and error tolerance with the end 
product. Without such ultimate goals the development process would be far less cumbersome. This is a 
very important aspect of the work presented here as it points out the issues that are specific to the type of 
applications we are considering and thus less relevant to others more commonly considered.  
 
Consistency 
Consistency is a means to achieve reliability, efficiency, usability and error-tolerance of a system. This can 
be achieved by means of systematic storage of gathered information into models and the development of 
techniques for cross models consistency checking.  
 
Model Coherence:  One of the problems associated with interactive safety-critical design is the lack of 
coherence between multiple viewpoints and therefore multiple design models, of the same world. We 



believe there should be coherence between these design models to reduce the likelihood of incidents or 
accidents in the safety-critical systems domain. Some work on model-based approaches has tried to address 
these issues but there is still a lot to do before design methods actually provide a framework to support this 
critical activity. Indeed, it is still not commonly agreed that there should be a framework for multiple 
models as some current research argues that models of one kind could be generated from models of the 
other kind. For instance (Paternò et al., 1999) proposes to generate user interfaces from task models while 
(Lu et al. 1999) proposes to generate task models from system models.  
 
A Generic Framework for Ensuring Coherence:  Although highly beneficial, it is unlikely that all 
techniques from all domains of all types of experts will be applied to the design of any given system. This 
is an unfortunate reality and this is why we are trying to focus on providing a unifying framework to help 
ensure that data of multiple domains can be gathered, refined and embedded into the design of the system.  
 

 

Figure 6 - Ingredients of the system model 

 
As previously mentioned, formalizing this unified procedure is a way of ensuring that there are no 
ambiguities, that the description of the models and information is precise, that the framework allows 
reasoning about the system and to ensure consistency and coherence throughout the design and 
development process. 
 
Figure 6 presents the various ingredients of the system part as described in the section detailing various 
types of models. This component is reproduced in Figure 7 where interactions with other models is 
emphasized.  Figure 7 presents, as a summary and in a single diagram the set of information, data and 
processes. 
 
Need For Systematic Tools Support:  The complexity of design in the field of safety critical interactive 
systems clearly requires tool support for the creation, edition; formalisation; simulation, validation; 
verification of models and information,  ability to check for inconsistencies; means for sharing and 
embedding data; cross-checking of hybrid models … To date, tools exist for the support of individual 
models, CTTe (Paterno et al., 2001) for supporting various activities around task modeling (edition, 
simulation, verification …), Petshop (Bastide et al., 1999) for supporting various activities around system 
modeling. Despite some preliminary work about interaction (Navarre et al. 2001) integration needs are still 
to be addressed. 



 

Figure 7 - Generic Modeling Framework 

 
Conclusion 
This paper discussing methodological issues, advocates the use of models for the design of interactive 
safety critical systems. It claims that the issues raised by the design of such systems require the use of 
systematic ways to support the gathering, refinement and storage of data. This data is, by nature, multi-
disciplinary and thus requires a multi-notation approach to support individually each discipline.  
 
However, this multi-notation approach calls for additional means in order to support additional activities 
such as verification of models consistency. Besides, in order to alleviate the burden for developers and 
designers, software tools supporting their activities are also at the core of the applicability of such an 
approach.  
 
We are currently studying methods for integrating the necessary models for safety critical interactive 
systems design.  To date, we have devised two approaches for integrating the task model and system model 
while taking into account human errors.  One approach uses scenarios are bridge between the two (Navarre 
et al. 2001). The second approach uses task patterns as a means of cross-checking properties between the 
two models. This work is part of more ambitious work dealing with multiple models for safety critical 
interactive systems in several application domains including satellite command and control room, 
interactive cockpits for military and civilian aircrafts, command and control rooms for drones and air 
traffic control workstations.  
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