
Human Error, Interaction and the Development of Safety-Critical Systems

This chapter summarises the theoretical and practical consequences of human error for the design,

operation and maintenance of interactive systems. The focus is on safety-critical applications, in

industries ranging from aviation to healthcare. However, human error has an impact on all systems that

require human intervention. Individual failures have enormous financial consequences, although most cost

less than the 40.5 billion yen that was lost in 2005 when a Japanese trader agreed to sell 610,000 shares for as

little as 1 yen each, rather than one share for 610,000 yen (New York Times, 2005). Human error also has a

cumulative effect. Less dramatic errors contribute to the frustration that many computer users experience as

they work to complete deadlines and make deliveries in everyday working environments (Reason, Human

Error, 1990). If designers, managers and regulators can identify those situations in which users are likely to

make errors then we can help to minimise their impact (Johnson, Handbook of Accidents and Incidents, 2003).

This may save lives, avoid financial disaster or simply increase the sense of satisfaction that users experience

when they operate complex systems.

Part 1: What is Error?

This opening section summarises different perspectives on human error. The aim is to distinguish

between different types of failure and also to identify the situations or contexts in which they are

likely to occur. There is an increasing recognition that part of the responsibility for human error lies

with designers and operators and not just with the end users of interactive systems (Hollnagel E. ,

The ETTO Principle: Efficiency-Thoroughness Trade-Off, 2009). This joint responsibility can be

illustrated by a simple example. If an end user selects the wrong item from a menu then we might

say that it was ‘their fault’. If the user had read the manual then they would not have made this

mistake. Equally, it can be argued that the menu item should have been given a more appropriate

label so that the user never had to refer to the manual in the first place. This joint responsibility for

error between the user and designer extends beyond the human-machine interface into the working

environment. Many regulatory organisations take an increasingly broad view of the contexts in

which errors are likely to occur (Kirwan, 1994). Even if end-users are provided with excellent user

interfaces, errors will still happen if people are expected to work in noisy environments or cramped

conditions against tight deadlines.

Resilience and the Myth of Expert Performance

It is difficult to understand human error unless we first consider the strengths that justify user

involvement in complex tasks (Hollnagel, Woods, & Leveson, 2006). It is important to recognise that

people are particularly good at coping with failure. We constantly adapt to problems in our working

lives. We learn to operate poorly designed human-machine interfaces. The limitations of previous

systems have been well documented in the other chapters of this book. These coping mechanisms

help to explain why we find so many legacy applications that continue to be used even though they

show no evidence of even the most basic human factors involvement in their design.

Over time users learn through their mistakes (Reason, Human Error, 1990). They find new ways of

doing frequent tasks so that they avoid problems in the user interface. Hence, failure is a necessary

component of learning. By making mistakes, users develop expertise and so paradoxically, error is a

necessary component of expert performance (Rasmussen, 1983). Over time, frequent computer

users will develop higher-level coping strategies that help them to reduce the number of errors that

they make and hence to learn to use new systems faster. For instance, many graphical user

interfaces deliberately encourage users to experiment with different aspects of their functionality.

Desktop publishing systems will automatically update font selections as the user scrolls through a list

of options. Frequent users quickly learn how to apply ‘undo’ commands to these selections so that

they can get back to the previous version of document if they make a mistake. This supports further

experimentation that, in turn, increases familiarity with the system and reduced the likelihood of

further errors. Hence, it is possible to identify a ‘virtuous circle’ in which experimentation and error

lead to learning and the accumulation of expertise. Equally, one can identify a ‘vicious circle’ in

which novice users inadvertently change the font of their document but do not know enough about

the user interface to be able to undo the change. This may lead them into further problems as they

get further and further away from the original version of their document with every subsequent

interaction.

A great deal of attention has recently been devoted to the topic of ‘resilience engineering’

(Hollnagel, Woods, & Leveson, 2006). This assumes that we should focus less on the causes of

human error and more on the promotion of recovery actions, such as the application of undo in the

previous desktop publishing example. Resilience engineering starts from the assumption that

humans are not simply the cause of error, they act as a key means of mitigating failure in complex

systems. This is a critical observation (Reason, 2008). For many years, developers have responded

to the problem of human error in safety-critical systems by attempting to engineer-out the human

involvement in these systems (Dekker, 2006). The argument is made that because even experts

make mistakes we should minimise the opportunity for operator error to undermine safety. For this

reason, engineers have worked hard to develop autonomous spacecraft, such as NASA’s DART or the

European Space Agency’s Autonomous Transfer Vehicle, they have also developed automated

systems that intervene for instance to apply automatic braking equipment in rail applications.

However, these systems have had very mixed success. For instance, accidents and collisions have

been caused when automated braking systems have been inadvertently triggered. In other words,

removing or restricting operator intervention tends to move the opportunity for error to other areas

of the development lifecycle (Johnson, Handbook of Accidents and Incidents, 2003). The end user

may not be responsible for particular failures; however, errors tend to occur in the design and

maintenance of the automated systems that are assuming new levels of control. It seems likely,

therefore, that ‘human error’ will remain a significant concern for the development of complex

systems.

Slips, Lapses, Mistakes and Violations

In this chapter we are mainly concerned with ‘errors’ as opposed to deliberate violations. A

violation occurs when users knowingly break a rule (Reason, Human Error, 1990). These rules may

take the form of Standard Operating Procedures (SOPs) that govern the interaction with complex

systems in the military, aviation or maritime environments. Other rules stem from the operating

requirements placed on companies and individuals by regulatory agencies, for instance within the

nuclear industry. Violations can also occur in more ‘every day’ settings – for instance when users

ignore security policies by sending unencrypted emails or by accessing social networking sites in

company time.

The distinction between errors and violations is not always as clear as it might seem. For instance,

users can unwittingly violate rules if they are unaware of them or the rule is not clearly expressed.

In such circumstances, it can be argues that an error has occurred rather than a deliberate violation.

In other words, it is difficult to distinguish between errors and violations because these two forms of

failure stem from different intentions even though the observable actions can be identical.

One way of identifying errors is to break down a task into its component steps (Kirwan, 1994). Any

departure from those steps can be seen as a potential failure on the part of the user. Unfortunately,

this does not really help designers very much. Many recent styles of interface enable the same task

to be accomplished in many different ways. For example, this document is being composed on a

desktop publishing system that offers at least seven different ways of changing the font associated

with a word in the text. This can be done directly by altering the font associated with a selected

word through a scroll down menu or through a text input box. It can be done as part of a more

complex dialogue by right clicking over the word. It can also be done indirectly by editing the style

associated with the word and so on. This leads to immense complexity even over a relatively simple

and frequent task. It seems rather harsh to argue that the user committed an error if they

inadvertently fail to select precisely the best means of changing the font at any single point during

the editing of a document providing that they eventually achieve the desired goal. Very few users

ever perform complex tasks in exactly the same way that a designer might envisage. There are also

tremendous variations in performance between different users. Hence, what might seem to be an

optimal trace of interaction for a novice might be seen as an ‘error’ for more expert users.

Instead of defining errors to be a departure from optimal performance, they might instead be

defined as a departure from ‘normal’ operation. This definition acknowledges that we might

normally expect tremendous variation between different users. It, therefore, addresses one of the

problems that arose in comparing performance with a ‘perfect approach’. What might be a

‘normal’ error to expect from a novice might not be expected for an expert. This definition also

recognises that we might be able to recognise unusual or erroneous performance that differs from

expected interaction. However, a number of theoretical and practical problems complicate this

approach. For instance, we tend to commit hundreds of small errors every day. This is a

consequence of the key role that errors play in learning. As we have seen, most people deploy

‘coping strategies’ so that they can recover from tiny failures within minimum disruption to their

higher level tasks (Tversky & Kahneman, 1974). Errors often occur in successful interactions in

which the user managed to achieve their goal. In many cases, we may not even realise that an error

has occurred.

James Reason has approached the problem of defining error by looking at differences between

intentions, actions and consequences (Reason, Human Error, 1990). If a user has an intention then

they act in a manner that is intended to achieve a particular goal. For instance, I might plan to print

a double-sided version of this document using my desktop publishing application. Errors of omission

can occur when users forget to perform an action – these are known as lapses. This could occur if I

select the print dialogue but forget to click on the check-box for double sided printing. Errors of

commission occur when users perform an action that does help them to achieve their goal- these

are known as slips. For instance, I might inadvertently close the document while scrolling down the

File menu. Finally, users may not be able to identify a plan of action that is an appropriate means of

achieving their goal – these are known as mistakes. It would be a mistake to try and find the print

option in the Edit menu of most publishing applications.

Situation Awareness and Team-Based Interaction

The discussion up to this point has focused narrowly on individual users interacting with particular

applications. However, the topic of human error is often associated with the loss of situation

awareness that occurs when users fail to identify the consequences of changes in their environment

(Endsley, 2004). This is most apparent in safety-critical domains. For instance, if an Air Traffic

Controller becomes preoccupied in other tasks then they may fail to hear the Short Term Conflict

Alerts which are issued when two aircraft are in a dangerous proximity to each other. This oversight

can lead to a loss of situation awareness that, in turn, can lead a controller to divert one aircraft into

the path of another. This loss of awareness not only applies to the user’s failure to monitor changes

in software systems; it also arises when individuals fail to observe the actions of their colleagues.

Hence it is an important aspect of team-based error. For instance, one person might send an email

without realising that their co-worker had just sent exactly the same request moments earlier. In

this context, a loss of situation awareness is closely associated with ‘distributed cognition’ – this is

the process by which teams work together to achieve collective goals.

Endsley (2004)has developed a number of conceptual models that help us to understand the ways in

which a loss of situation awareness can contribute to team-based errors. He argues that in order to

interact with complex systems we must first be able to perceive key changes in our environment. If

we miss warnings, such as the Short Term Conflict Alert, then we are likely to make mistakes. At a

second level, we may perceive key information but fail to comprehend what those signals mean.

For instance, it is unlikely that a lay person would be able to recognise the meaning of an STCA even

if they heard the warning. Finally, a loss of situation awareness may contribute to errors if we

cannot use the information that we obtain to make accurate predictions about future states. In

other words, even if we recognise that a warning has been issues we must be able to identify those

aircraft that are in danger.

A number of other researchers have extended this work in different directions. For instance, Klein

has developed the ideas of Recognition Primed Decision Making – this suggests that we do not

conduct detailed explicit analysis of the changes in our environment prior to making a plan for action

(Klein, 1998). Instead we attempt to approximate a ‘best fit’ between what we see around us and

things that we have met in previous interactions. Hence the user of a desktop publishing system

does not spend hours reading manuals and experimenting with tutorials before starting to use an

application. Instead, they are more likely to have a go by applying analogies and expertise gained in

other similar systems. Because these analogies may be misleading, this ‘best fit’ process will

inevitably lead to errors that call upon the coping strategies identified within resilience engineering.

Workload and Performance Shaping Factors

A range of factors can affect the likelihood that a user will make an error. These factors also

determine whether, having committed an error, we can detect the problem and intervene to resolve

or mitigate any adverse consequences. For instance, increasing workload can make a user more

likely to make mistakes. Distractions and a number competing priorities can combine to undermine

situation awareness (Endsley, 2004). If teams are working to the limit then individuals may not have

enough time to update their colleagues on their actions and this can degrade distributed cognition in

complex multi-user tasks. It is, however, notoriously difficult to predict the impact of workload on

user performance. Some people commit errors in situations where their co-workers continue

without any problems. There may be gender differences in the ability to juggle multiple tasks or to

gain an overview across many competing priorities. These variations in performance are

compounded by the difficulty in defining or measuring workload. One approach is to measure

physical effort, for instance in terms of oxygen consumption over time using techniques developed

within sports medicine. However, these metrics hardly apply to the mental workload that

characterises most human computer interaction. Subjective approaches have also been used, for

example, within NASA’s Task Load Index (Hart, 2006). However, great care is required to calibrate

these approaches and also to ensure that external influences do not bias the users’ answers about

their subjective impressions of an interactive system. A further problem is it can be difficult to

extrapolate from subjective impressions as a means of predicting future errors under carrying levels

of workload.

Alternatively, secondary tasks can assess the impact of workload on errors. It can be difficult to

force users to make errors if their primary task is to focus on interaction with a particular user

interface. As we have seen, users quickly become skilled at overcoming minor set-backs to achieve

their overall task. From this it follows that designers can introduce additional secondary tasks to

determine whether increasing workload will have an impact on the frequency and consequences of

errors during interaction with a primary system. For example, users might be requested to perform

a number of simple mental calculations as they use an interface. Overall performance can be

judged both in terms of the number of errors made using the primary system and the number of

errors made in the secondary task over time. Workload can be varied by adjusting the difficulty of

the calculations or by reducing the time to complete each mental task.

Users react to increasing levels of workload in many different ways. Encysting occurs when

individuals become so preoccupied with the details of a particular task that they ignore the bigger

picture (Reason, Human Error, 1990). For example, a user may be so busy trying to alter the font in

their title that they no longer have enough time to complete the rest of the report. In contrast,

thematic vagabonding occurs when users move from one task to the next without devoting

sufficient time to make real progress on any of them. It is important also to see these responses as

part of a wider set of psychological mechanisms that users adopt when faced with a broader range

of ‘performance shaping factors’ (Hollnagel E. , 1998). As mentioned previously, users are

remarkably resilient to errors. They learn from them and work around them. However, these

processes can be undermined by a range of issues including fatigue, distraction, heat, noise, work

related stress, domestic stress, alcohol or drug consumption and so on. These negative

performance shaping factors can have such a profound impact on users that they undermine

resilience to poor interface design. For instance, traders may continue to use a securities trading

system without error until they are forced to make a series of complex trades before the close of

business on a Friday afternoon. The additional pressure created by the deadline and the complexity

of the transactions may combine to provide the performance shaping factors that lead to error.

Balanced against PSF’s such as fatigue or stress, are a number of positive performance shaping

factors – these include explicit training that is intended to help individuals and teams of operators

understand the causes and consequences of human error. For instance, Crew Resource

Management (CRM) techniques have been widely applied in aviation and in healthcare to encourage

good practice in communication between groups of co-workers (Civil Aviation Authority, , 2006).

The aim is to encourage mutual monitoring to support distributed cognition and mutual situation

awareness. CRM is also intended to encourage a flexible allocation of tasks between groups as a

means of responding to increasing levels of workload. In the previous example, teams of traders

might work together to make final checks before a transaction is completed. This cooperation

increases the level of mutual resilience against errors that continue to be made even after designers

have ‘optimised’ interfaces to reduce the likelihood of erroneous transactions.

Context and Systemic Failures

Very often performance shaping factors are independent of the human computer interface. Stress,

heat, noise, distraction and fatigue are all issues that emerge from the environment or context in

which a system is being used (Johnson, Handbook of Accidents and Incidents, 2003). In safety-

critical systems this has led to an escalation in the scope of accident investigations. In previous

generations, the focus would have been on the system operator as the source of a potential error.

Problems might then have been acknowledged in the human factors of complex systems – looking at

the design and layout of critical controls as well as the format of information being displayed to the

end user. Increasingly, however, the focus has moved to management and regulation to identify the

ways in which higher level decisions create the working environment in which an error is more likely

to occur. The user may not have been trained properly, they may have been asked to complete

tasks with insufficient time to check for potential errors, they may not have access to adequate

communications infrastructure to communicate with their colleagues and so on. In such

circumstances, we must look at the management of an organisation which is responsible for creating

the context in which users will make mistakes (Reason, 1997). Many Western countries have

acknowledged this change in perspective by enacting legislation dealing with Corporate Killing or

Corporate Manslaughter in addition to the Health and Safety Legislation that considers individual

violations and errors (Johnson, 2008).

If we trace the links of influence back from the ‘sharp end’ at which an operator makes a mistake we

can follow responsibility through middle and senior management. Ultimately, however, we can

reach the regulator or government organisation that is responsible for supervising the market in

which a company can operate. It is for this reason that many regulatory agencies have organised

initiatives to address the human factors of error. Crew Resource Management is a requirement for

all commercial aircrew within European and North American air space. Individual agencies have

gone further – for instance EU-OPS and JAR-OPS 3 Subpart N contain requirements for anyone

delivering CRM training. The UK Civil Aviation Authority has issued specific requirements within a

document known as CAP 737- "Crew Resource Management (CRM) Training" and a CAA Standards

Document 29.

Emotional Aspects of Error

The previous paragraphs might have given the impression that human error was a subject for

abstract academic research and of concern to engineers in a narrow range of safety or security

related industries. However, it is important to reiterate that error is part of the human condition.

The ability to learn from mistakes is a key component of resilience in every form of interaction

ranging from the use of spreadsheets through to mobile phones and missile systems. It is also

important to stress that there is an emotional aspect to error (Dekker, 2006). The process of

learning from previous incidents or accidents can be undermined by the feelings of guilt and blame

that are often felt by the individuals who are involved in adverse events. Fear of retribution or

sanction can encourage users to destroy logs or other forms of evidence that might be used to avoid

future errors – for example by improved training or through redesign. These emotions can also

create a situation in which one error can trigger further failures. For instance, users may become so

preoccupied with replaying the previous failure ‘in their head’ that they commit further errors. It is

for this reason that Air Traffic Control Officers will, typically, be removed from further duties if they

have been involved in a near miss incident. In the same way, the users of more general application

can experience increasing levels of frustration as time pressure or stress lead from one error to the

next.

Part 2: Consequences of Error for the Design of Complex User Interfaces

The first part of this chapter has provided an overview of human error – for example by

distinguishing between violations, slips, lapses and mistakes (Reason, 1990). We have also pointed

out the remarkable resilience that enables users to overcome and learn from the hundreds of small

errors that characterise everyday interaction. In contrast, this second part of the chapter looks at

the consequences of error for the design and operation of complex user interfaces. In particular, we

look at attempts to model human error and thereby to minimize the likelihood of slips, lapses and

mistakes. We also look at the problems that arise when trying to validate predictions of particular

errors rates in a given context of use (Bainbridge, 1987).

Simulation and Verification?

One of the problems that complicate the development of interactive systems is that it is hard for

designers to anticipate the problems that users will experience. Simply being involved in the

development of a complex application will give developers insights that would often never occur to

everyday users. These insights can be derived from hours of work on dialogue design, as well as a

direct knowledge of implementation mechanisms or the probable error modes that could complicate

the use of software systems. It is difficult, therefore, to convey the sense of surprise that

development teams often experience when they see users struggling to operate the systems that

they have delivered (Norman, 1990).

One reason for the difficulty in anticipating errors is that it can be difficult to reproduce errors under

experimental or laboratory conditions. People behave differently if they know they are being

watched – they read instructions more diligently and often will obey warnings that would simply

elicit an automatic cancel in the workplace. Other problems relate more directly to the practical

difficulty of testing for errors. It can be difficult to recreate the full range of performance shaping

factors, including stress and fatigue that might be encountered in the workplace – often there are

ethical concerns about running these types of evaluations prior to deployment. Serious errors will

hopefully be relatively rare events; hence tests may have to run for weeks or months before one is

observed. Even if such events are never detected during a test then this may provide developers

with little confidence about the eventual reliability of their system. Dijkstra noted that testing only

ever established the presence of a design problem but not its absence. If the tests were continued

over a longer period, with different input data or with different users then further evidence may be

obtained about mistakes, slips and lapses.

A number of alternate techniques might be recruited to help identify problems of situation

awareness, workload or distributed cognition during the development of complex, interactive

systems. For example, participatory design techniques recruit potential end-users to development

teams. Part of their role can be to alert designers to potential errors that might complicate the

operation of the system in the eventual working environment. However, this can be difficult to

manage. Over time it can be increasingly hard for end users to disassociate themselves from the

development team. By working with a design for a prolonged period of time, it can be increasingly

difficult for individuals to place themselves back in the position of one of their co-workers using an

interactive system for the first time (Beyer & Holtzblatt, 1998).

User modelling techniques a provide alternative for the development of interactive systems. These

try to model some of the cognitive mechanisms that both support resilience but which also lead to

errors involving software applications. For instance, they can be used to model the limited capacity

of short term memory or the interference effects from high workload that have been observed as

triggers for slips and lapses (Johnson, 1999). This approach can be used not only to predict

potential error mechanisms but also to provide an explanation for why those errors might occur.

This is important if development teams are to identify potential design solutions. Unfortunately, the

application of user modelling creates new challenges. Rather than simply establishing that error

predictions are observed in the use of an interactive system, it also becomes important to ensure

that the models also provide a valid explanation of the underlying error mechanisms.

Human Reliability Analysis

Risk analysis continues to play a key role in the design of safety-critical systems. This process

provides numeric estimates of the likelihood and consequences of the different hazards that can

lead to an adverse event. Quantified risk assessments works best for hardware systems for which it

is possible to derive statistical estimates of the probability of random failures over time. For

example, the US military publish handbooks that contain the probability of failure for a range of

components over time (US Department of Defense, 1995). Designers can use this data to calculate

the probability of failure for a system that is built from these various individual components. In the

same way, Swain and Guttman (1983) have sought to publish handbooks of human reliability that

provide high-level estimates for the likelihood of particular types of error. For example, the

probability that a user might incorrectly read back a series of figures from a display might be 1 in 200

attempts. This approach has numerous advantages for the engineering of complex systems – the

same risk-based approaches can be applied throughout all aspects of the development process.

A number of concerns limit the practical application of human reliability analysis. Firstly, critics of

the approach have argued that the probabilities can be difficult to validate (Reason, 1990). If users

know that their actions are being observed then they may be less likely to make an error; they will

exploit a range of self-monitoring techniques to catch and rectify any mistakes that might jeopardise

their tasks. Secondly, even if accurate data is available for previous errors in similar systems then

gross estimates do not take into account a host of more complex cognitive and social factors.

Hollnagel (1998) voices this criticism when he describes Human Reliability Analysis as

‘psychologically vacuous’. In other words, this approach often neglects the impact of performance

shaping factors on the likelihood of user errors. More recent methodologies have sought to address

these criticisms by helping designers to first calculate the base probability for particular errors and

then apply deltas or modifying terms to equations that account for the impact of performance

shaping factors. If a user is likely to be acting under time pressure then the probability of incorrectly

reading back some data is increased. If they have prior training in techniques like Crew Resource

Management then a delta may be applied to reduce the probability of such errors. Although these

developments help to address caveats about the application of Human Reliability Analysis, they also

raise further concerns about the validation of both the base probabilities and also the ‘fudge factors’

that are introduced to account for performance variations.

In less critical domains, it can be difficult to make an appropriate business case to justify the

investments that are needed to support human reliability analysis as a means of predicting potential

errors with mass-market interactive systems. These techniques have been used in financial software

and in other forms of secure applications. The longevity of the approach is certainly surprising given

the sustained theoretical objections, mentioned in previous paragraphs.

Incident and Accident Reporting

Incident and accident reports can be used to identify the base probabilities that are used in Human

Reliability Analysis (Johnson, 2003). They provide useful evidence about those human errors that

have the potential to threaten safe and successful operation. Unlike more heuristic forms of design,

they provide a clear and tangible link with operational experience and hence usually provide clear

insights into the impact of performance shaping factors, including fatigue, interruptions and stress.

It is important not only to focus on the role of human error in major adverse events. By focusing on

the individual errors that led to the loss of billions of Yen, as in the example cited in the opening

sections, we might waste resources trying to protect against the last failure rather than preparing for

the next. Similarly, we might also neglect the many less significant errors that have a greater

cumulative impact on successful interaction over the life time of a system. The Heinrich ratio is

widely used to relate the number of accidents to serious and to minor incidents. Typically, this is

written as 1 accident to 30 major incidents to 300 minor incidents (Johnson, 2003). The precise

figures in the Heinrich ratio remain a focus for considerable debate and they vary between

industries. For example, studies of railway maintenance have shown that there is a bi-polar

distinction between accidents which tend to be fatal and near-miss incidents that were a long way

from resulting in an accident.

In everyday environments, system logs and critical incident diaries provide equivalents of accident

and incident reports in safety-related applications. For example, web server logs can be

instrumented to monitor for situations in which users decide to terminate a transaction before

payment is confirmed. These can then form the focus for other types of usability study based on

scenarios that mimic the trajectory of failure that is illustrated in the logs. Critical incident diaries

require users to note down any adverse events that arise during their interaction with interactive

applications. They may also be prompted to provide evidence about any performance shaping

factors that may have influenced the problems that they experienced or which increased the

likelihood of an error even if they managed to spot the problem in time.

In spite of these different approaches to eliciting evidence about previous failure, considerable

uncertainty remains over the reliability of any information obtained in this way. For example,

incident diaries depend upon users being motivated enough to remember to pause after an error

which will already have delayed their primary task in order to complete an entry in their diary. In

the initial phase after an incident reporting system has been installed, companies can quickly

become overwhelmed by a mass of relatively low priority incidents as users learn to report their

concerns. After this ‘confessional phase’, the number of incident reports often dries up. Under-

reporting remains a problem even in safety-critical industries where staff may be concerned that

they will be punished if they confess to particular errors. Management may be worried about

subsequent litigation or the loss of operating licenses if they are informed about near-miss incidents.

Although automated logs can provide a trace of the interactions that lead to potential failures, they

provide relatively few insights into the cognitive mechanisms and performance shaping factors that

might have led users to make particular errors (Dekker, 2006).

As one might expect, accident and incident analysis have been profoundly affected by changes in

wider research into human error. For example, many previous studies have been conducted to

derive estimates for the number of accidents that are caused by mistakes, slips and lapses (Reason,

1997). These studies have typically been used in one of two ways – either to increase spending on

human factors and interface design to reduce operator error or to justify increased spending on

automation to entirely remove user input. There is, however, a growing recognition that human

error only acts as a catalyst or trigger for underlying problems in the management and operation of

complex systems. In this view, we can think of interactive systems being protected by different

barriers. If an industry is well regulated, the company is well managed and the operator follows

standard operating procedures then an accident is unlikely to occur. If, however, there are

ambiguities in the regulatory regime and the management have not provided a suitable working

environment or equipment and the user switches off elements of the protection system then we can

see how holes appear in each layer of defence. This model is sometimes referred to as Reason’s

Swiss cheese model, for obvious reasons (Reason, 1990).

It can be difficult to ensure that organisations and individuals act on information about previous

errors, even if such insights can be obtained in a reliable manner. For instance, attribution bias is

one of several cognitive phenomena that affect the way we determine who was responsible for an

adverse event (Johnson, 2003). Salience is a particularly important aspect of this bias because

issues that were critical for the person involved in an adverse event may not be apparent to outside

observers. This makes it difficult for designers to understand the reasons why an individual might

have made a mistake, slip or lapse. Further problems arise when we are quick to condemn the

errors of others while we are eager to identify the impact of performance shaping factors in

explaining our own failures.

Lifecycle issues: Design, Operation, Maintenance and Decommissioning

Incident and accident reporting can be used to form a feedback look that is intended to ensure that

organisations learn from those failures that do occur. In systems engineering, prospective risk

assessments that were used to guide the early stages of development can be validated against the

data that is derived about real hazards during the operation of complex, interactive systems. As we

have seen, however, these feedback loops will only work if users are encouraged to provide

information about the errors that they commit or observe. In addition there also needs to be

appropriate mechanisms that enable end user concerns to be communicated back to development

teams. This is not as simple as it might sound. Very often the groups who are involved in the design

of an interactive system will move to subsequent projects as soon as an application has been

delivered. From this it follows that they may never hear about the problems that end users

experience in the everyday operation of complex systems (Beyer & Holtzblatt, 1998). Other

problems arise when applications are developed for one market place and are then transferred to

new user groups with minimal changes in their user interface. For instance, many GPS units that

were designed to help private pilots are now being sold into the maritime market. A new crop of

navigation errors and accidents have occurred with marine systems because some designers have

failed to learn the lessons provided by the initial application of these units within the aviation

community.

Further problems arise when the end users of safety-critical systems have to learn to cope not only

with design problems in their user interfaces but also with problems in underlying applications.

Many accidents have occurred during what are termed ‘degraded modes of operation’ (Johnson,

Kirwan, & Licu, 2009). These arise when users struggle to maintain levels of service even though

they may have lost key components in their underlying systems infrastructure. Examples include

situations in which Air Traffic Controllers have tried to keep aircraft moving in low visibility during a

failure of their ground movement radar system or when train drivers have proceeded through red

lights without being able to confirm that the track ahead is clear because of faulty communications

with signalling staff or systems. Such situations represent particular challenges for the development

of complex, interactive systems because designers must consider not simply the errors that can

occur with a ‘perfect application’ but also what could happen weeks and months into the future

when imperfect maintenance activities lead to degraded modes of operation.

Not only do designers have to consider the problems that arise during the development and

maintenance of complex systems, there is also a requirement to consider decommissioning

activities. Increasing concerns over the environmental impact of safety-related applications has

persuaded regulators to extend a lifecycle approach to the mitigation of operator error. Lessons

learned from the decommissioning of nuclear and military installations have been used to persuade

the operators of complex systems that they must consider the hazards that can arise from mistakes,

slips and lapses at the end of the working lives of many applications.

Safety Cases and Safety Management Systems

Safety Management Systems have been developed to formalise the processes of organisational

learning that are intended to ensure we learn the lessons from previous errors. They, typically,

include guidance on the documentation both of risk assessments and of incident reports. They also

help to formalise responsibility for ensuring that the concerns of end users are considered and,

where necessary, are acted upon. Safety cases are an increasingly important component of safety

management systems. These can be thought of as arguments about why a complex system is

‘acceptably safe’ (Johnson, 2003). Safety cases are significant from the perspective of this

handbook because they often include assumptions and evidence about operator intervention. For

instance, it might be argued that a control system is acceptably safe, in part, because the user can

respond to a critical warning by shutting down operations within a fixed time period. This argument

might, in turn, be supported by evidence derived from user testing in simulators. The safety case

might later be amended to reinforce this argument with further data derived from operational

experience with the application. As we have seen, however, the theoretical and practical problems

in predicting potential errors makes it difficult to place high levels of confidence in arguments that

rest on the ability of operators to meet such requirements. Safety cases must, therefore, often

extend arguments about operator intervention to demonstrate that the system will still be

acceptably safe even when a user fails to intervene in the manner that might initially be expected.

The processes and products that help to define Safety Management Systems are important from

another perspective. They illustrate the extent to which developers must go to mitigate the

consequences of human error not simply in the operation of complex systems but in the design,

implementation, operation, maintenance and decommissioning of safety-related applications.

Mistakes, slips and lapses complicate every stage of the lifecycle in human machine systems. This

makes it difficult to identify the boundaries of safety-critical applications. For instance, it is obvious

that the systems used by clinicians, pilots or nuclear engineers have a direct impact on safety.

However, it can also be argued that the user interfaces to the tools that designers employ in the

development of aerospace, healthcare and nuclear systems will also indirectly have an impact on the

safety of the final applications. The care and thought that goes into the development of safety-

critical systems is often lacking in the design of software and interface development tools. Similarly,

the user interfaces of the reporting systems that are often intended to elicit information about

previous errors with other systems are often poorly designed. In such circumstances, it can hardly

be a surprise that so little is known about the mistakes, slips and lapses that end users experience in

their everyday work.

Part 3: Conclusions and Looking to the Future

This chapter has provided a broad overview of human error in the context of both safety-critical and

mass market applications. It is impossible to provide a complete survey of such a vast and active

area of research. The continued prevalence of human error as a contributory cause in accidents

across many industries also demonstrates that much remains to be learned in this area. However,

we have identified key insights that emerge from the application of research ideas in a range of

different industries. The distinctions between violations, mistakes, slips and lapses, the interaction

between performance shaping factors and the quantitative predictions of human reliability analysis,

the importance of workload and situation awareness, as well as the Swiss cheese model of accident

causation have all informed the development and operation of complex interactive systems in

domains ranging from healthcare to power distribution, from aviation to the military.

Looking to the future, it seems likely that we will see increasing levels of automation as a potential

means of reducing the impact of human error. This is already apparent, for example in the

development of autonomous space craft for future manned missions to Mars and the Moon or in

proposals to extend the role of Unmanned Autonomous Vehicles into controlled airspace. However,

these developments will not reduce the importance of human error. Instead the focus may shift

away from the immediate operator of a safety critical system onto the teams that must develop and

maintain increasing levels of complexity.

Bibliography
Bainbridge, L. (1987). Ironies of Automation. In J. Rasmussen, K. Duncan, & J. Leplat, New technology

and human error. New York: Wiley.

Beyer, H., & Holtzblatt, K. (1998). Contextual design: Defining customer-centered systems. San

Francisco: Morgan Kaufmann.

Civil Aviation Authority, . (2006). CAP 737: Crew Resource Management Training. Farnham, UK: UK

Civil Aviation Authority.

Dekker, S. (2006). THE FIELD GUIDE TO UNDERSTANDING HUMAN ERROR. Aldershot, UK: Ashgate.

Endsley, M. (2004). Situation awareness: Progress and directions. In S. Banbury, & S. Tremblay, A

cognitive approach to situation awareness: Theory, measurement and application (pp. 317–341).

Aldershot, UK: Ashgate.

Hart, G. (2006). NASA-Task Load Index (NASA-TLX); 20 years later. Proceedings of the Human Factors

and Ergonomics Society 50th Annual Meeting (pp. 904-908). Santa Monica, CA: Human Factors &

Ergonomics Society.

Hollnagel, E. (1998). CREAM (Cognitive Reliability and Error Analysis Method). North Holland:

Elsevier.

Hollnagel, E. (2009). The ETTO Principle: Efficiency-Thoroughness Trade-Off. Farnham, UK: Ashgate

Publishing.

Hollnagel, E., Woods, D., & Leveson, N. (2006). Resilience Engineering: Concepts and Precepts.

Aldershot, UK: Ashgate.

Johnson, C. (2003). Handbook of Accidents and Incidents. Glasgow, Scotland.: Glasgow University

Press.

Johnson, C. (2008). Ten contentions of corporate manslaughter legislation: Public policy and the

legal response to workplace accidents. Safety Science , 46:3(349-370).

Johnson, C. (1999). The Application of User Modeling Techniques to Reason about the Human

Contribution to Major Accidents. Proceedings of the 7th International Conference on User Modelling,

Banff Canada, (pp. 13-22). New York, USA: Springer Verlag.

Johnson, C., Kirwan, B., & Licu, T. (2009). The Interation Between Safety Culture and Degraded

Modes: A Survey of National Infrastructures for Air Traffic Management. Risk Management ,

11:3(241-284).

Kirwan, B. (1994). A Guide to Practical Human Reliability Assessment. London, UK: Taylor and

Francis.

Klein, G. (1998). Sources of Power: How People Make Decisions. Boston, USA: MIT Press.

New York Times. (2005, December Friday 9th). Japan rebukes exchange for costly trading error.

Norman, D. (1990). The "problem" of automation: Inappropriate feedback and interaction, not

"over-automation. In D. Broadbent, A. Baddeley, & J. Reason, Human factors in hazardous situations

(p. 585). Oxford: Oxford University Press.

Rasmussen, J. (1983). Skills, rules, and knowledge: Signals, signs, and symbols and other distinctions

in human performance models. IEEE Transactions on Systems, Man, and Cybernetics , SMC-13, 257-

267.

Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.

Reason, J. (1997). Managing the Risks of Organisational Accidents. Aldershot, UK: Ashgate.

Reason, J. (2008). The Human Contribution: Unsafe Acts, Accidents and Heroic Recoveries. Aldershot,

UK: Ashgate.

Swain, A. D., & Guttman, H. E. (1983). Handbook of human reliability analysis with emphasis on

nuclear power plant applications. Washington DC, USA.: NUREG/CR-1278.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science ,

185, 1124-1131.

US Department of Defense. (1995). MIL-HDBK-217: Reliability Prediction of Electronic Equipment.

Washington DC, USA.: US Department of Defense.

