

SOFTWARE CONFIGURATION MANAGEMENT FOR SAFETY-RELATED
APPLICATIONS IN SPACE SYSTEMS:

EXTENDING THE APPLICATION OF THE USAF 8-STEP METHOD

C.W. Johnson

Department of Computing Science, University of Glasgow, Scotland.
http://www.dcs.gla.ac.uk/~johnson, Email: Johnson@dcs.gla.ac.uk

+44 (0)141 330 6053 (Tel.), +44 41 330 4913 (Fax).

ABSTRACT

Configuration management ensures that the
requirements and constraints, identified in previous
stages of development, are preserved throughout the
design, implementation and operation of complex
systems. Space-related, software systems pose
particular problems because, for instance, it can be hard
to determine what code is actually running on a
platform as successive updates are performed over
many months of remote operation. It is, therefore,
important we learn as much as possible from previous
mishaps that have involved configuration management;
given that software continues to play a critical role in
the safety of many space missions. The following pages
extend the US Air Force’s 8-Step Method to identify
lessons learned from space related incidents. This
approach builds on Boyd’s OODA (Observe, Orient,
Decide and Act) Loop and provides a common
framework for the analysis of these complex incidents.
It is important to stress that the application of an
existing general approach to problem solving, rather
than the development of a specific approach for
configuration management, is intended to reduce
training costs and to increase the value added from
existing investments in the use of the 8-Step Method.
Many specialised software engineering techniques are
not used because they cannot easily be applied within
the financial limits and deadlines that constrain most
space programmes. The closing sections of this paper
identify areas for further work; in particular, we stress
the importance of links with recent European Space
Agency problem solving techniques that support the
early-stage development of long duration space
missions.

1. Introduction

Configuration management ensures that requirements
and constraints, identified in previous stages of
development, are preserved through subsequent
modifications. Within this general description there are
a range of more specific concerns - for example, one
aspect of configuration management focuses on the
maintenance of well defined interfaces between system
components (Johnson et al, 2009). More broadly,

configuration management consists of processes that are
intended to ensure the consistency of a product with
both functional and non-functional requirements
throughout the development, operational and
decommissioning lifecycles.

This paper focuses on configuration management for
complex space-related, software systems. Software
poses particular issues because, for instance, it can be
far hard to determine what code is actually running on a
remote platform. This might seem trivial; however, the
general problems can be illustrated by the Solar and
Helioscopic (SOHO) observatory. The company that
developed the satellite had a mission simulator. NASA
ran ground control and maintained a second simulator.
ESA coordinated development and ran a third. The
diagnosis and response to the subsequent mission
interruption was complicated because there were
inconsistencies between the code of the simulators and
the software that was installed on the satellite.

The importance of software configuration management
for the success and safety of future space missions
should not be underestimated. Financial constraints
imply the need for multi-agency missions where
different consortia must pool resources during the
development and operation of complex platforms
NASA/ESA, 2009). This creates complexity; it can be
hard to identify the agency that is responsible for
controlling each aspect of the shared platform during all
phases of the mission. Given the increasing importance
of software as an enabling technology, it is critical that
we ensure the integrity of our code in order to support
the success of future missions. This paper, therefore,
describes how the US Air Force’s 8-Step Method can
support software configuration management (Fletcher et
al, 2009). The 8 Step Problem Solving Model is a
standard process based on Boyd’s OODA (Observe,
Orient, Decide and Act) Loop:

1. Clarify and Validate the Problem;
2. Break Down the Problem and Identify

Performance Gaps;
3. Set Improvement Target;
4. Determine Causes and Contributory Factors;
5. Develop Countermeasures;

6. See Countermeasures Through;
7. Confirm Results and Process;
8. Standardize Successful Processes.

Previous joint work, between NASA, the USAF and
Glasgow University, has demonstrated that this
approach can be used to identify configuration
management problems in a number of previous space
missions (Johnson et al, 2009, Fletcher et al, 2009).
This previous work looked at systems safety issues and
did not focus directly on software engineering. The
application of an existing general approach to problem
solving, rather than the development of a specific
approach for configuration management, is intended to
reduce training costs and to increase the value added
from existing investments in the use of the 8-Step
Method. Many specialised software engineering
techniques are not used because they cannot easily be
applied within the financial limits and deadlines that
constrain most space programmes.

A number of significant problems remain in refining the
high-level activities of the 8-Step Method into the
detailed configuration management processes that might
support complex software engineering tasks in space
missions. For example, there are many difficulties in
‘seeing countermeasures through’ when different
organisations may be using a range of different
development practices and even different tool sets to
support the design and operation of complex code.
Similarly, it can be hard to determine the specific role
played by configuration management activities in
phases 7 and 8 of the process when a host of other
factors also contribute to successful outcomes.

2. The SPIRIT Case Study

The following pages use a mishap involving the Spirit
Mars Exploration Rover (MER) to illustrate the
application of the USAF process to software
configuration management for space applications
(NASA, 2004, Reeves et al, 2004). Spirit landed on
Mars at 04:35 Ground UTC on 4th January 2004. This
was three weeks before its twin, Opportunity, completed
Entry, Descent and Landing on the other side of the
planet. Spirit’s original mission was scheduled to last
around 90-solar days on Mars. This paper focuses on a
mission interruption that started on Sol 18 (21st January
2004). Spirit lost the ability to execute any task that
requested memory from its flight computer. The rover
operated in a degraded mode until Sol 33 (6th February),
when normal operations were restored.

The Sol 18 interruption started at around 09:00 (local
solar time), when a direct to Earth, High-Gain Antenna
communications session started as planned. By 09:11
uplink errors were detected and the signal was
unexpectedly lost around 09:16. This was some 14

minutes before the scheduled end of the transmission.
By 11:20 it was decided to command a priority
communication session using the high-gain antenna. No
response was detected from the MER.

Problems continued into Sol 19 (22nd January). The
UHF communication session between Spirit and the
Mars Global Surveyor satellite did not begin at the
scheduled time nor did it last for the anticipated
duration. Instead, a ‘PsuedoNoise’ code was received
for a little more than two minutes. By 04:00 no signal or
data had been received during the scheduled UHF
session nor was contact established during the 09:00
direct to Earth, High-Gain Antenna communications
session. This should have triggered a system response
on the rover that would have scheduled further direct to
earth communications using the low gain antenna but,
as before, no signal was observed by 11:00. Efforts to
restore communication continued and eventually by
14:40 a ‘minimal communication’ beep was seen.
However, no further data or signals were received
during the scheduled UHF communication with the
Odyssey spacecraft. No transmissions were detected
during a commanded low gain direct to earth
communication.

The ground teams concluded that a system level fault
had occurred on or before Sol 19. This had degraded
the MER’s communications system and had impaired
some of their ability to command the vehicle. The
ground teams were concerned that this was caused by a
hardware failure that could potentially end the mission.
However, there was considerable uncertainty and
commands were issued to trigger the transmission of
diagnostic data from the MER. By Sol 20, several short
low-bit rate messages were received via an X band link
to the orbiting Mars Odyssey. Data suggested that the
rover was continuing to process information rather than
entering into a sleep mode. Both commanded and
autonomous shutdowns were failing and the vehicle
probably had not closed down in a while. This created a
concern that Spirit would exhaust its finite battery
power or risk overheating. The MER continued to
ignore requests to shut down.

Attention began to focus on the possibility that the rover
had entered a reboot loop. On start-up, the MER was
designed to execute a number of initial commands that
helped to create the operating environment in which it
was possible to run subsequent programs from Random
Access Memory (RAM). Before these initial commands
could be completed, it was hypothesized, that a fault
caused Spirit to begin another reboot operation. This
cycle would then continue so that the rover was never
able to execute the code in RAM. It was argued that
the problem could have been caused by a hardware fault
or it might be due to faulty code from the boot sectors

stored in Electronically Erasable Programmable Read
Only Memory (EEPROM) flash memory.

The designers of the MER had anticipated such a
contingency and created a mechanism whereby
commands could be sent to the rover so that it would
complete the reboot cycle without attempting to access
the EEPROM. By Sol 21 (January 24), the ground
team was confident that the problem centered on the
rover’s flash memory system. The amended reboot
command that avoided the EEPROM references
appeared to have succeeded.

More detailed hypotheses formed around the file
management software. Incorrect configuration
parameters were set for two VxWorks operating system
software modules that controlled the storage of files in
the heap area of system memory. The initial reboot was
triggered by the creation of a large number of files in
flash memory. These were created when the rover
began to calibrate its instrumentation. The calibration
files were in addition to the large amount of data that
had been stored during the cruise phase of the mission.
However, much of the information gathered before EDL
was no longer needed.

The reboot was triggered because a parameter in the
dosFsLib module could temporarily assign ‘overflow’
data to system memory. This storage was usually
allocated to the heap but was itself relatively limited and
so it too quickly became exhausted. These problems
were compounded by another parameter, this time in the
memPartLib module, which was incorrectly set to
suspend any task using memory when no additional
memory was available. This task suspension forced the
reset of the flight computer. The associated NASA
‘lessons learned’ entry notes that this was ‘never
supposed to occur’ (NASA, 2004). Other side-effects
included memory corruption, inability to turn the
vehicle off as a result of task deadlock and the repeating
system resets described above.

The total size of the file system structure was
determined not by the number of current files but by the
maximum number of files that has ever existed at any
point in the mission. Rebooting the system only
deleted data in system memory. It did not create space
in the non-volatile EEPROM nor did it reset the
maximum file structure parameters, mentioned above.
This set up the cycle that was observed by the ground
teams as each successive reboot failed to address the
cause of the problem. The effects of overburdened
flash and system memory were not recognized nor
tested during system level ground testing.

The Mission Operations teams identified a number of
potential solutions. These were assessed in terms of

their potential risk as well as their ability to address the
causes, mentioned above. It was decided that operations
could best be restored by manually reallocating system
memory. Steps were also taken to delete unnecessary
directories and files. Over time, it was possible to
create a new file system. However, a plan to rewrite
elements of the dosFsLib and memPartLib modules was
rejected. Major revisions to the flight software were
considered too risky. Instead, it was decided that
changes in operation would be introduced to conduct
periodic checks on the build-up of files within the MER
flash storage.

The following sections use the 8-Step method to provide
a framework for the detailed analysis of the
configuration management issues that contributed to this
mission interruption. Before doing this, however, it is
important to identify the causes that were identified in
the NASA (2004) ‘lessons learned’ review. The
underlying causes of the interruption were associated
with tight deadlines across the MER software
development schedule. There had also been a
continuous reprioritization of activities where attention
was focused and refocused on a small number of high
priority concerns. This shift of attention between a few
major issues helped to obscure some of the apparently
more minor concerns, including configuration
management for the file structures. In addition, the
review identified a number of generic recommendations
from this incident. These can be summarized as
follows:

1. ‘Enforce the project-specific design guidelines for

COTS software, as well as for NASA-developed
software. Assure that the flight software
development team reviews the basic logic and
functions of commercial off-the-shelf (COTS)
software, with briefings and participation by the
vendor.

2. Verify assumptions regarding the expected behavior
of software modules. Do not use a module without
detailed peer review, and assure that all design and
test issues are addressed.

3. Where the software development schedule forestalls

completion of lower priority action items, maintain a
list of incomplete items that require resolution
before final configuration of the flight software.

4. Place high priority on completing tests to verify the

execution of flight software internal functions.

5. Early in the software development process, create a

comprehensive suite of tests and automated analysis
tools. Ensure that reporting flight computer related
resource usage is included.

6. Ensure that the flight software downlinks data on

system resources (such as the free system memory)
so that the actual and expected behavior of the
system can be compared.

7. For future missions, implement a more robust

version of the dosFsLib module, and/or use a
different type of file system and a less complex
directory structure’.

3. Applying the USAF 8-Step Model

This section applies the US Air Force’s 8 Step Problem
Solving Model to identify software configuration
management lessons from the MER interruption. The
intention is not to derive new insights; this would be
difficult given that NASA conducted an extensive
review after the events of Sol 18-21. Instead, the
intention is to demonstrate that the 8-Step framework
can be used to guide future investigations of software
configuration mishaps and also to determine whether
the application of this approach might alter the emphasis
of the official recommendations.

The first process in the 8-step model is to ‘Clarify and
Validate the Problem’. The ground teams’ initial
investigations helped to identify the symptoms of the
interruption. Procedural ‘work arounds’ were
introduced when it was decided too risky to update the
underlying file management software. In addition,
longer-term investigations began identified the
underlying development problems that contributed to
the mission interruption. It was argued that NASA
independent verification and validation (IV&V)
activities could have identified the configuration
management issues during development (Costello,
2004). Many aspects of the interruption stemmed from
the ways in which development teams had set up and
used a ‘Commercial off the Shelf’ (COTS) operating
system. This created particular problems for IV&V.
Independent analysts must focus on the interface
between bespoke software and the COTS applications
because they, typically, do not have access to the
commercial source code.

The second stage of the 8-step model ‘Breaks down the
problem and identifies performance gaps’. In order to
understand the detailed causes of the MER mission
interruption, it is important to understand the role of
NASA’s IV&V support within the Safety and Mission
Assurance Office. As the name suggests, a core
competency is to provide independent input to the
processes that establish mission assurance. The work
of the group is, therefore, particularly important in terms
of software configuration management. They help to
ensure that constraints and requirements are satisfied
from design through development to operations. The

process of commissioning NASA’s IV&V involvement
in software development can be summarised as follows:

1. NASA Headquarters publishes a prioritised list
of missions that are to receive IV&V resources
for the next fiscal year.

2. The IV&V Facility prepares an initial cost

estimate for their involvement in the missions
from 1 to assist in drafting the overall budget.

3. The IV&V Facility initiates a planning and
scoping effort for each new mission to
throughout the lifecycle based on software
criticality and risk assessment following
NASA NPD 8730.4A.

4. The IV&V Facility develops a breakdown of
the work associated with each project and this
is then subjected to an internal review.

5. The project's Governing Program
Management Council (GPMC) is responsible
for overseeing the project's IV&V approach.

6. Differences between the project's approach
and the IV&V Facility recommendation are
resolved by the project's GPMC.

7. The IV&V Facility determines the distribution
of resources between the project's development
sites and the IV&V Facility.

8. IV&V covers all phases of the software
development lifecycle.

9. IV&V status is reported to Project Offices,
Office of Safety and Mission Assurance, and
GPMCs.

As we shall see, stages 6 and 7 of this programme are
not as straightforward as they might seem. For now it
is sufficient to observe that a NASA press release issued
several weeks after the interruption described how:

“Based on this high level of risk, the IV&V Facility
provided full software development lifecycle
(SDLC) support to the MER program. This support
included requirements analysis, interface, design
evaluations, behavioral architecture analysis, code
analysis and test analysis of the MER flight software
(includes the spacecraft and the rovers). The goal of
the effort was to provide the MER project with a
detailed technical analysis of the software being
developed for the mission that would allow them to
make timely and informed decisions about issues
and risks in the software… The IV&V Team

analyzed the flight software in concert with the
development phase. That is, when the MER
development team was doing requirements
development the IV&V Team was doing
requirements analysis, when the MER development
team was doing design, the IV&V Team was doing
design analysis et cetera. The largest focus of the
IV&V effort, however, was performing code
analysis. This effort focused on three primary tasks,

performing a LINT analysis, determining code
complexities and assessing code changes for impact
to functionality… The work of the IV&V Facility
improved the chances of mission success for the
MER Project. Upon completion of the IV&V effort,
the IV&V Team had identified 1018 issues of which
347 were mission critical or mission catastrophic
and 6 possible risks to the project that could result in
a mission failure”. (Costello and Ozburn, 2004)

Figure 1: NASA IV&V Support across the Project Lifecycle (Acknowledgement: NASA IV&V Office)

It is difficult to underestimate the IV&V challenges for
the MER programme. There were more than 500,000
lines of source code that integrated both bespoke as well
as ‘Commercial off the Shelf’ (COTS) applications.
Figure 1 illustrates the overall approach to verification
and validation that is promoted within NASA projects.
As can be seen, there is a deliberate intention to expand
the scope of the work beyond the traditional testing
phase. There are many justifications for this. A key
limitation with late verification is that bugs tend to be
discovered too late in the lifecycle when there is limited
time and resources to put the problem right. A further
justification for early stage validation is that it can be
easier to identify critical requirements for subsequent
testing if IV&V teams are also involved in the initial
stages of development. The approach advocated in
Figure 1 is entirely consistent with the view of
configuration management as a process that must be
supported from the earliest phases of development.

The initial work to develop an IV&V plan for the MERs
began in June 2001. A risk based approach identified
that the file system routines were a critical part of the
overall system architecture; the consequences of a bug
in this code could jeopardize the mission. The initial
risk assessments also determined that some elements of
the operating system file handling code were highly
complex. However, the relative maturity of the systems
being used led the IV&V teams to conclude that the
likelihood of bugs was comparatively low. The overall
criticality assessment associated a low priority with
these routines. This analysis corresponds with the third
stage in the 8-step method ‘Set Improvement Target’ –
in this case the mishap suggests that improvements can
be made to the processes that were used in identifying
IV&V requirements for software configuration
management. In order to do this, it is first important to
understand the risk assessment processes that were used
to analyse file handling routines.

As mentioned previously, the fourth stage in the USAF
problem solving method is to ‘Determine Causes and
Contributory Factors’. This phase helps to identify the
reasons why analysts failed to associate a higher level of
criticality with the operating system routines that were
implicated in the Sol 18 mishap. One explanation is
that project management had to make tough decisions in
order to optimise the allocation of scarce resources.
The IV&V effort in the MER development process was
initially estimated to require around ten fulltime staff.
However, less than five people were allocated to these
activities within the overall project budget.

The reduction in resources forced the IV&V team to
further prioritize their activities; hence it arguably
reduced the likelihood that they would have sufficient
time to question the original risk assessments that failed
to accurately identify the criticality of the file handling
code. The goal was now to "cover the MER Flight
Software to a reasonable depth so that the IV&V Team
could feel comfortable supporting launch and
operational readiness reviews for the project” (Costello,
2004). The teams focused on establishing conformance
at the level of major systems rather than examining the
behavior of individual software components. The lack
of resources also limited the range of requirements that
were tested during the IV&V lifecycle illustrated in
Figure 1. Rather than develop a full range of test suites
to demonstrate compliance with a set of agreed
requirements, much of the activity focused on specific
scenarios without considering whether these cases
provided sufficient coverage of the range of operational
demands that might be placed on the MER. There was
also a lack of transparency when some of the teams
could not determine how particular scenarios were
identified. The scope of these scenarios remained a
critical issue because they drove the analysis of MER
configuration management.

The limitations of the IV&V activities were recognized
because requirement and test completeness had been
identified as the highest risk associated with the project.
In other words, the IV&V team was not confident that
all software requirements had been identified. In such
a situation, it was unlikely that sufficient tests would be
conducted to ensure that the code would meet all of the
demands this might be placed on it during an eventual
mission. The project team asserted that testing was
completed. However, it was recognized that portions
of the file system code were very complex and that
some of these modules were difficult to maintain. The
IV&V teams had developed Test Improvement Models
(TIMs) for further unit testing on the file system code
that accessed system memory. These were still ‘open’
issues when the code was uploaded for the mission.
Further concern focused on the stability of the code;

changes continued to be made up until the time at which
it was uploaded; around 10% of all code was affected by
the final update, including this proportion of the file
handling routines (Costello, 2004). These factors all
increased the problems associated with configuration
management; ensuring that requirements were
maintained across the development cycle from design to
operation.

It was initially planned to upload the software on the
2nd December. However, some development teams
recommended a delay at a readiness review on the 25th
November 2003 to allow for further testing, By the 5th
December, the IV&V teams continued to report
‘significant concerns’ for the ‘Final Requirements Risk’
even though the software had by this time been
uploaded. They continued testing to the extent that ‘this
was possible’ and to advocate a thorough review of all
existing test results. ‘Significant concerns’ represented
the mid-point in the internal criticality index; “IV&V
has a less optimistic view of the requirements discovery
than does the project” (Costello, 2004). Specific
concerns included system memory usage: risk tracking,
issue tracking, code analysis, requirements analysis, test
analysis, code complexity and code stability. However,
lack of resources, problems with communication
between development and verification teams, access to
lifecycle artifacts all combined to prevent more
sustained analysis of these issues before the Sol-18
interruption. A further review on the 5th December
argued that inadequate IV&V potentially threatened the
project’s scientific returns.

The remaining elements of the 8-step process focus on
the organisational response to configuration
management problems on the MER. The fifth stage is
to ‘Develop Countermeasures’. In the aftermath of the
mishap, it was determined that IV&V should receive
sufficient resources to implement the risk based
approach advocated in previous sections. This implied
sufficient funds for testing to be conducted not just at
the systems level but on the individual components
associated with ‘high risk’ operations, in accordance
with NASA NPD 8730.4A.

Further countermeasures included the identification of
critical artefacts for the software development lifecycle.
In previous missions, there had been no obligation for
teams to follow a specific software development
lifecycle. One consequence was a perceived lack of
adequate MER requirements documentation. This had
the knock-on effect of undermining the IV&V activities
that were intended to establish conformance with those
requirements. The IV&V team argued that the
development groups had been more focused on
addressing each successive project risk that emerged as
a result of poorly defined requirements than they were

in looking at the need to develop better requirements for
the project software as a whole. The development
teams were satisfied that testing mitigated the individual
risks created by the dynamic and ill-defined
requirements rather than accept the need to clarify those
requirements. This created a situation where any gaps
in the testing might exposure the MER to risks that
stemmed from partial and changing requirements.
These problems were compounded by ambitious test
schedules so that some studies had not been completed
by the time that the code was uploaded. IV&V teams
began to commission research into alternate testing
techniques that could support projects which did not
generate sufficient requirements documentation to
support existing approaches. This search for new
techniques addressed the symptoms of a deeper
problem; it did not focus on the need to develop
sufficient requirements for a standardized software
development lifecycle based on existing skills within
the IV&V facility.

The sixth phase of the 8-Step method focuses on
‘Seeing the Countermeasures Through’. A range of
actions were taken in response to the analysis of the Sol-
18 interruption. In particular, both development and
IV&V teams began to work together more closely in the
early stages of the software lifecycle to agree on the
overall testing philosophy. The intention was to avoid
disagreements, for instance about the importance of
requirements documents, that would have implications
for all subsequent software development activities. The
more pro-active role of the validation and verification
groups was intended to encourage greater acceptance of
the need for formal software development processes and
software engineering practices. However, initiatives to
introduce these countermeasures had to be balanced
against the dynamic nature of space systems
development. For example, it can be hard to draft
detailed software requirements when there is still
uncertainty over the engineering of hardware platforms.

Further ‘countermeasures’ were proposed to embed
configuration management more directly into the
development teams. This relationship was complicated
during the early phases of the MER lifecycle because
the IV&V teams were unable to work directly with the
subcontractor. They could not access the development
database that recorded critical information about the test
suites that had already been constructed. These issues
are not as straightforward as they might appear. There
is a difficult balance to be made between engagement
with development teams and the need to maintain
independence during testing and validation.

The seventh element of the 8-step method is to
‘Confirm Results and Process’ and the last stage helps
to ‘Standardize Successful Processes’. As a result of

the findings described in previous paragraphs, the
IV&V teams created an action plan to implement the
lessons that were learned from the MER interruption.
Many of these lessons reinforced existing policy, such
as the doctrine embedded in NPD 8730.4, which
required all NASA programs and projects that contain
mission or safety critical software to document
decisions concerning the use of IV&V. A news release
issued in the days after the interruption argued that;
“While missions to Mars are high risk endeavors and
always will be, NASA is gaining a better understanding
of how to control and mitigate those risks with each
successful (and unsuccessful) mission. The application
of IV&V to mission critical software is just one step on
the ladder to mission success. The IV&V Facility is
NASA's dedicated organization for ensuring software
success throughout the agency. As NASA moves
forward into an era of greater human participation in
space exploration, the need for IV&V should only
increase” (Costello and Ozburn, 2004).

4. Linking ESA TRIZ and the USAF Approach

The USAF 8-Step process is not the only generic
problem solving technique that might be used to guide
the analysis of complex, software configuration
mishaps. The Theory of inventive problem solving
(TRIZ) also provides a method for identifying
engineering issues and recommending potential
solutions (Altshuller, 1999). European Space Agency
Contract 21584/08/NL/HE recently completed initial
work to extend the application of this approach to
support the planning for complex, long-duration
missions. This project shared many similar objectives
to the USAF approach described in this paper. TRIZ
builds on idea that there is a contradiction at the heart of
most problems. If we can identify and clarify this
conflict of ideas then we will be better placed to suggest
appropriate solutions. The underlying philosophy
behind TRIZ corresponds closely to stage 1 of the
USAF approach ‘Clarify and Validate the Problem’ and
stage 2 ‘Break down the Problem and Identify
Performance Gaps’.

TRIZ categorises each conflict as physical, technical or
administrative. They are represented using the cells in a
table where each row represents a critical parameter for
the success of a mission. Each column then denotes a
hazard that might undermine the mission. For instance,
at one level of abstraction the rows could refer to critical
development activities, such as IV&V. The columns
might refer to hazards such as lack of time, insufficient
staff, and inadequate integration between teams and so
on. Each intersection represents a potential problem
scenario. During the later stages of analysis, these cells
are annotated with ways of preventing or mitigating a
hazard from affecting the corresponding mission
parameter. For instance, close adherence to the

provisions of NPD 8730.4A might be proposed as a
means of mitigating several of the problems identified
in the aftermath of the MER interruption. These stages
of the TRIZ method resemble phases 5 ‘Develop
Countermeasures’ and 6 ‘See Countermeasures
Through’ in the 8-stage process.

The TRIZ approach has recently been developed to
generate scenarios that identify the engineering and
human factors challenges that future crews might
encounter during missions to the Moon and Mars.
Future work is required to determine whether we can
build on the similarities between this TRIZ approach
and the USAF 8-Step problem solving method to
develop a unified technique for software configuration
management (Whitely et al 2008, 2008a). If this cannot
be done then there is a danger that we will develop
incompatible approaches to address common problems
that undermine the safety of future joint space missions.

5. Conclusions

Configuration management ensures that the
requirements and constraints, identified in previous
stages of development, are preserved throughout the
design, implementation and operation of complex
systems. Space-related, software systems pose
particular problems because, for instance, it can be hard
to determine what code is actually running on a
platform as successive updates are performed over
many months of remote operation. It is, therefore,
important that we learn as much as possible from
previous mishaps that have involved configuration
management problems; given that software continues to
play a critical role in the safety of many space missions.
This paper has extended the US Air Force’s 8-Step
Method to identify lessons learned from previous space
related incidents. This approach builds on Boyd’s
OODA (Observe, Orient, Decide and Act) Loop and
provides a common framework for the analysis of these
complex incidents. The closing sections of this paper
have identified areas for further work; in particular, we
have stressed links with recent European Space Agency
techniques that support the early-stage development of
long duration space missions.

6. References

G. Altshuller, The Innovation Algorithm, TRIZ,
Systematic Innovation And Technical Creativity.
Technical Innovation Center Inc, Worcester,
Massachusetts, USA, 1999.

K. Costello, IV&V Lessons Learned: Mars Exploration
Rovers and the Spirit SOL-18 Anomaly: NASA IV&V
Involvement, NASA IV&V Facility, Fairmont Virginia,
USA, S111/MAPLD, 2004

K. Costello and D. Ozburn, Mars Exploration Rover and
Independent Verification and Validation, NASA
Independent Verification and Validation Facility, 20th
February 2004. Available on:
http://www.nasa.gov/centers/ivv/news/news_mars_prt.h
tm

L.L. Fletcher, J.M. Kaiser, C.W. Johnson and C. Shea,
Configuration Management: A Critical Analysis of
Applications Using the 8-Step Problem Solving
Method. In J.M. Livingston, R. Barnes, D. Swallom
and W. Pottraz (eds), Proceedings of the 27th
International Conference on Systems Safety, Huntsville,
Alabama, USA 2009, International Systems Safety
Society, Unionville, VA, USA, 2807-2817, 2009.

C.W. Johnson, The Natural History of Bugs: Using
Formal Methods to Analyze Software Related Failures
in Space Missions, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, Volume 3582/2005, 2005.
Pages 9-25

C.W. Johnson, L.L. Fletcher, C.M. Holloway and C.
Shea, Configuration Management as a Common Factor
in Space Related Mishaps. In J.M. Livingston, R.
Barnes, D. Swallom and W. Pottraz (eds), Proceedings
of the 27th International Conference on Systems Safety,
Huntsville, Alabama, USA 2009, International Systems
Safety Society, Unionville, VA, USA, 3047-3057, 2009.

NASA, Overview of IV&V, NASA Independent
Verification and Validation Facility, 2009.

NASA Lesson Number: 1483, MER Spirit Flash
Memory Anomaly, Submitted by: M. Boyles and D.
Oberhettinger, JPL, 23rd August 2004. Available on:
http://www.nasa.gov/offices/oce/llis/1483.html

NASA and ESA Mars Joint Exploration Initiative,
NASA Headquarters, Washington, (9/11/09). Accessed
March 2010:
http://www.nasa.gov/mission_pages/mars/news/mars-
20090708.html

G. Reeves, T. Neilson and T. Litwin, Mars Exploration
Rover Spirit Vehicle Anomaly Report, Jet Propulsion
Laboratory Document No. D-22919, May 12, 2004.

I. Whiteley, O. Bogatyreva, C.W. Johnson, M. Wolff
and M. Townend, Human Missions to Mars: Designing
decision-support tools for a safety critical environment.
In Proceedings of the 3rd International Association for
the Advancement of Space Safety (IAASS) Conference,
‘Building a safer space together’, International
Association for the Advancement of Space Safety
(IAASS), Rome, Italy, 21-23 October, 2008.

I. Whiteley, O. Bogatyreva, C.W. Johnson, M. Wolff
and M. Townend, A Structured Approach to Scenario
Generation for the Design of Crew Decision Support
Tools. In Proceedings of the 3rd International
Association for the Advancement of Space Safety
(IAASS) Conference, ‘Building a safer space together’,
International Association for the Advancement of Space
Safety (IAASS), Rome, Italy, 21-23 October, 2008.

