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ABSTRACT 

Configuration management ensures that the 
requirements and constraints, identified in previous 
stages of development, are preserved throughout the 
design, implementation and operation of complex 
systems.  Space-related, software systems pose 
particular problems because, for instance, it can be hard 
to determine what code is actually running on a 
platform as successive updates are performed over 
many months of remote operation.  It is, therefore, 
important we learn as much as possible from previous 
mishaps that have involved configuration management; 
given that software continues to play a critical role in 
the safety of many space missions.  The following pages 
extend the US Air Force’s 8-Step Method to identify 
lessons learned from space related incidents.   This 
approach builds on Boyd’s OODA (Observe, Orient, 
Decide and Act) Loop and provides a common 
framework for the analysis of these complex incidents.  
It is important to stress that the application of an 
existing general approach to problem solving, rather 
than the development of a specific approach for 
configuration management, is intended to reduce 
training costs and to increase the value added from 
existing investments in the use of the 8-Step Method.  
Many specialised software engineering techniques are 
not used because they cannot easily be applied within 
the financial limits and deadlines that constrain most 
space programmes. The closing sections of this paper 
identify areas for further work; in particular, we stress 
the importance of links with recent European Space 
Agency problem solving techniques that support the 
early-stage development of long duration space 
missions. 
 
 
1. Introduction 

Configuration management ensures that requirements 
and constraints, identified in previous stages of 
development, are preserved through subsequent 
modifications.  Within this general description there are 
a range of more specific concerns - for example, one 
aspect of configuration management focuses on the 
maintenance of well defined interfaces between system 
components (Johnson et al, 2009).   More broadly, 

configuration management consists of processes that are 
intended to ensure the consistency of a product with 
both functional and non-functional requirements 
throughout the development, operational and 
decommissioning lifecycles.   
 
This paper focuses on configuration management for 
complex space-related, software systems.   Software 
poses particular issues because, for instance, it can be 
far hard to determine what code is actually running on a 
remote platform.  This might seem trivial; however, the 
general problems can be illustrated by the Solar and 
Helioscopic (SOHO) observatory.  The company that 
developed the satellite had a mission simulator.   NASA 
ran ground control and maintained a second simulator.   
ESA coordinated development and ran a third.  The 
diagnosis and response to the subsequent mission 
interruption was complicated because there were 
inconsistencies between the code of the simulators and 
the software that was installed on the satellite. 
 
The importance of software configuration management 
for the success and safety of future space missions 
should not be underestimated.   Financial constraints 
imply the need for multi-agency missions where 
different consortia must pool resources during the 
development and operation of complex platforms 
NASA/ESA, 2009).   This creates complexity; it can be 
hard to identify the agency that is responsible for 
controlling each aspect of the shared platform during all 
phases of the mission.  Given the increasing importance 
of software as an enabling technology, it is critical that 
we ensure the integrity of our code in order to support 
the success of future missions. This paper, therefore, 
describes how the US Air Force’s 8-Step Method can 
support software configuration management (Fletcher et 
al, 2009).   The 8 Step Problem Solving Model is a 
standard process based on Boyd’s OODA (Observe, 
Orient, Decide and Act) Loop:  
 
1. Clarify and Validate the Problem;   
2. Break Down the Problem and Identify 

Performance Gaps;   
3. Set Improvement Target; 
4. Determine Causes and Contributory Factors;  
5. Develop Countermeasures;  



 

6. See Countermeasures Through;   
7. Confirm Results and Process; 
8. Standardize Successful Processes. 
 
Previous joint work, between NASA, the USAF and 
Glasgow University, has demonstrated that this 
approach can be used to identify configuration 
management problems in a number of previous space 
missions (Johnson et al, 2009, Fletcher et al, 2009).  
This previous work looked at systems safety issues and 
did not focus directly on software engineering.    The 
application of an existing general approach to problem 
solving, rather than the development of a specific 
approach for configuration management, is intended to 
reduce training costs and to increase the value added 
from existing investments in the use of the 8-Step 
Method.  Many specialised software engineering 
techniques are not used because they cannot easily be 
applied within the financial limits and deadlines that 
constrain most space programmes.    
 
A number of significant problems remain in refining the 
high-level activities of the 8-Step Method into the 
detailed configuration management processes that might 
support complex software engineering tasks in space 
missions.  For example, there are many difficulties in 
‘seeing countermeasures through’ when different 
organisations may be using a range of different 
development practices and even different tool sets to 
support the design and operation of complex code.  
Similarly, it can be hard to determine the specific role 
played by configuration management activities in 
phases 7 and 8 of the process when a host of other 
factors also contribute to successful outcomes. 
 
2. The SPIRIT Case Study 

The following pages use a mishap involving the Spirit 
Mars Exploration Rover (MER) to illustrate the 
application of the USAF process to software 
configuration management for space applications 
(NASA, 2004, Reeves et al, 2004).   Spirit landed on 
Mars at 04:35 Ground UTC on 4th January 2004.  This 
was three weeks before its twin, Opportunity, completed 
Entry, Descent and Landing on the other side of the 
planet.   Spirit’s original mission was scheduled to last 
around 90-solar days on Mars.   This paper focuses on a 
mission interruption that started on Sol 18 (21st January 
2004).  Spirit lost the ability to execute any task that 
requested memory from its flight computer. The rover 
operated in a degraded mode until Sol 33 (6th February), 
when normal operations were restored.   
 
The Sol 18 interruption started at around 09:00 (local 
solar time), when a direct to Earth, High-Gain Antenna 
communications session started as planned.   By 09:11 
uplink errors were detected and the signal was 
unexpectedly lost around 09:16.  This was some 14 

minutes before the scheduled end of the transmission.   
By 11:20 it was decided to command a priority 
communication session using the high-gain antenna.  No 
response was detected from the MER. 
 
Problems continued into Sol 19 (22nd January).  The 
UHF communication session between Spirit and the 
Mars Global Surveyor satellite did not begin at the 
scheduled time nor did it last for the anticipated 
duration.   Instead, a ‘PsuedoNoise’ code was received 
for a little more than two minutes. By 04:00 no signal or 
data had been received during the scheduled UHF 
session nor was contact established during the 09:00 
direct to Earth, High-Gain Antenna communications 
session.   This should have triggered a system response 
on the rover that would have scheduled further direct to 
earth communications using the low gain antenna but, 
as before, no signal was observed by 11:00.  Efforts to 
restore communication continued and eventually by 
14:40 a ‘minimal communication’ beep was seen.   
However, no further data or signals were received 
during the scheduled UHF communication with the 
Odyssey spacecraft.  No transmissions were detected 
during a commanded low gain direct to earth 
communication. 
 
The ground teams concluded that a system level fault 
had occurred on or before Sol 19.   This had degraded 
the MER’s communications system and had impaired 
some of their ability to command the vehicle.  The 
ground teams were concerned that this was caused by a 
hardware failure that could potentially end the mission.  
However, there was considerable uncertainty and 
commands were issued to trigger the transmission of 
diagnostic data from the MER.  By Sol 20, several short 
low-bit rate messages were received via an X band link 
to the orbiting Mars Odyssey. Data suggested that the 
rover was continuing to process information rather than 
entering into a sleep mode.   Both commanded and 
autonomous shutdowns were failing and the vehicle 
probably had not closed down in a while.  This created a 
concern that Spirit would exhaust its finite battery 
power or risk overheating. The MER continued to 
ignore requests to shut down. 
 
Attention began to focus on the possibility that the rover 
had entered a reboot loop.   On start-up, the MER was 
designed to execute a number of initial commands that 
helped to create the operating environment in which it 
was possible to run subsequent programs from Random 
Access Memory (RAM).  Before these initial commands 
could be completed, it was hypothesized, that a fault 
caused Spirit to begin another reboot operation.   This 
cycle would then continue so that the rover was never 
able to execute the code in RAM.   It was argued that 
the problem could have been caused by a hardware fault 
or it might be due to faulty code from the boot sectors 



 

stored in Electronically Erasable Programmable Read 
Only Memory (EEPROM) flash memory.    
 
The designers of the MER had anticipated such a 
contingency and created a mechanism whereby 
commands could be sent to the rover so that it would 
complete the reboot cycle without attempting to access 
the EEPROM.   By Sol 21 (January 24), the ground 
team was confident that the problem centered on the 
rover’s flash memory system.   The amended reboot 
command that avoided the EEPROM references 
appeared to have succeeded.   
 
More detailed hypotheses formed around the file 
management software.   Incorrect configuration 
parameters were set for two VxWorks operating system 
software modules that controlled the storage of files in 
the heap area of system memory. The initial reboot was 
triggered by the creation of a large number of files in 
flash memory.  These were created when the rover 
began to calibrate its instrumentation.  The calibration 
files were in addition to the large amount of data that 
had been stored during the cruise phase of the mission.  
However, much of the information gathered before EDL 
was no longer needed.      
 
The reboot was triggered because a parameter in the 
dosFsLib module could temporarily assign ‘overflow’ 
data to system memory.  This storage was usually 
allocated to the heap but was itself relatively limited and 
so it too quickly became exhausted.  These problems 
were compounded by another parameter, this time in the 
memPartLib module, which was incorrectly set to 
suspend any task using memory when no additional 
memory was available. This task suspension forced the 
reset of the flight computer.  The associated NASA 
‘lessons learned’ entry notes that this was ‘never 
supposed to occur’ (NASA, 2004).  Other side-effects 
included memory corruption, inability to turn the 
vehicle off as a result of task deadlock and the repeating 
system resets described above. 
 
The total size of the file system structure was 
determined not by the number of current files but by the 
maximum number of files that has ever existed at any 
point in the mission.   Rebooting the system only 
deleted data in system memory.  It did not create space 
in the non-volatile EEPROM nor did it reset the 
maximum file structure parameters, mentioned above.  
This set up the cycle that was observed by the ground 
teams as each successive reboot failed to address the 
cause of the problem.   The effects of overburdened 
flash and system memory were not recognized nor 
tested during system level ground testing. 
 
The Mission Operations teams identified a number of 
potential solutions.   These were assessed in terms of 

their potential risk as well as their ability to address the 
causes, mentioned above.  It was decided that operations 
could best be restored by manually reallocating system 
memory.  Steps were also taken to delete unnecessary 
directories and files.   Over time, it was possible to 
create a new file system. However, a plan to rewrite 
elements of the dosFsLib and memPartLib modules was 
rejected.   Major revisions to the flight software were 
considered too risky.   Instead, it was decided that 
changes in operation would be introduced to conduct 
periodic checks on the build-up of files within the MER 
flash storage. 
 
The following sections use the 8-Step method to provide 
a framework for the detailed analysis of the 
configuration management issues that contributed to this 
mission interruption.  Before doing this, however, it is 
important to identify the causes that were identified in 
the NASA (2004) ‘lessons learned’ review.   The 
underlying causes of the interruption were associated 
with tight deadlines across the MER software 
development schedule. There had also been a 
continuous reprioritization of activities where attention 
was focused and refocused on a small number of high 
priority concerns.   This shift of attention between a few 
major issues helped to obscure some of the apparently 
more minor concerns, including configuration 
management for the file structures. In addition, the 
review identified a number of generic recommendations 
from this incident.  These can be summarized as 
follows: 
 
1. ‘Enforce the project-specific design guidelines for 

COTS software, as well as for NASA-developed 
software. Assure that the flight software 
development team reviews the basic logic and 
functions of commercial off-the-shelf (COTS) 
software, with briefings and participation by the 
vendor.  
 

2. Verify assumptions regarding the expected behavior 
of software modules. Do not use a module without 
detailed peer review, and assure that all design and 
test issues are addressed.  

 
3. Where the software development schedule forestalls 

completion of lower priority action items, maintain a 
list of incomplete items that require resolution 
before final configuration of the flight software.  

 
4. Place high priority on completing tests to verify the 

execution of flight software internal functions. 
 
5. Early in the software development process, create a 

comprehensive suite of tests and automated analysis 
tools. Ensure that reporting flight computer related 
resource usage is included.  



 

 
6. Ensure that the flight software downlinks data on 

system resources (such as the free system memory) 
so that the actual and expected behavior of the 
system can be compared.  

 
7. For future missions, implement a more robust 

version of the dosFsLib module, and/or use a 
different type of file system and a less complex 
directory structure’.  

 
3. Applying the USAF 8-Step Model 

This section applies the US Air Force’s 8 Step Problem 
Solving Model to identify software configuration 
management lessons from the MER interruption.   The 
intention is not to derive new insights; this would be 
difficult given that NASA conducted an extensive 
review after the events of Sol 18-21.   Instead, the 
intention is to demonstrate that the 8-Step framework 
can be used to guide future investigations of software 
configuration mishaps and also to determine whether 
the application of this approach might alter the emphasis 
of the official recommendations.   
 
The first process in the 8-step model is to ‘Clarify and 
Validate the Problem’.  The ground teams’ initial 
investigations helped to identify the symptoms of the 
interruption.  Procedural ‘work arounds’ were 
introduced when it was decided too risky to update the 
underlying file management software.  In addition, 
longer-term investigations began identified the 
underlying development problems that contributed to 
the mission interruption.   It was argued that NASA 
independent verification and validation (IV&V) 
activities could have identified the configuration 
management issues during development (Costello, 
2004).   Many aspects of the interruption stemmed from 
the ways in which development teams had set up and 
used a ‘Commercial off the Shelf’ (COTS) operating 
system.  This created particular problems for IV&V.  
Independent analysts must focus on the interface 
between bespoke software and the COTS applications 
because they, typically, do not have access to the 
commercial source code. 
 
The second stage of the 8-step model ‘Breaks down the 
problem and identifies performance gaps’.   In order to 
understand the detailed causes of the MER mission 
interruption, it is important to understand the role of 
NASA’s IV&V support within the Safety and Mission 
Assurance Office.   As the name suggests, a core 
competency is to provide independent input to the 
processes that establish mission assurance.   The work 
of the group is, therefore, particularly important in terms 
of software configuration management.  They help to 
ensure that constraints and requirements are satisfied 
from design through development to operations.  The 

process of commissioning NASA’s IV&V involvement 
in software development can be summarised as follows: 
 

1. NASA Headquarters publishes a prioritised list 
of missions that are to receive IV&V resources 
for the next fiscal year. 

 
2. The IV&V Facility prepares an initial cost 

estimate for their involvement in the missions 
from 1 to assist in drafting the overall budget. 
 

3.  The IV&V Facility initiates a planning and 
scoping effort for each new mission to 
throughout the lifecycle based on software 
criticality and risk assessment following 
NASA NPD 8730.4A. 
 

4. The IV&V Facility develops a breakdown of 
the work associated with each project and this 
is then subjected to an internal review. 
 

5.  The project's Governing Program 
Management Council (GPMC) is responsible 
for overseeing the project's IV&V approach. 
 

6.  Differences between the project's approach 
and the IV&V Facility recommendation are 
resolved by the project's GPMC. 
 

7.  The IV&V Facility determines the distribution 
of resources between the project's development 
sites and the IV&V Facility. 
 

8.  IV&V covers all phases of the software 
development lifecycle. 
 

9.  IV&V status is reported to Project Offices, 
Office of Safety and Mission Assurance, and 
GPMCs. 
 

As we shall see, stages 6 and 7 of this programme are 
not as straightforward as they might seem.   For now it 
is sufficient to observe that a NASA press release issued 
several weeks after the interruption described how: 
  

“Based on this high level of risk, the IV&V Facility 
provided full software development lifecycle 
(SDLC) support to the MER program. This support 
included requirements analysis, interface, design 
evaluations, behavioral architecture analysis, code 
analysis and test analysis of the MER flight software 
(includes the spacecraft and the rovers). The goal of 
the effort was to provide the MER project with a 
detailed technical analysis of the software being 
developed for the mission that would allow them to 
make timely and informed decisions about issues 
and risks in the software… The IV&V Team 



 

analyzed the flight software in concert with the 
development phase. That is, when the MER 
development team was doing requirements 
development the IV&V Team was doing 
requirements analysis, when the MER development 
team was doing design, the IV&V Team was doing 
design analysis et cetera. The largest focus of the 
IV&V effort, however, was performing code 
analysis. This effort focused on three primary tasks, 

performing a LINT analysis, determining code 
complexities and assessing code changes for impact 
to functionality… The work of the IV&V Facility 
improved the chances of mission success for the 
MER Project. Upon completion of the IV&V effort, 
the IV&V Team had identified 1018 issues of which 
347 were mission critical or mission catastrophic 
and 6 possible risks to the project that could result in 
a mission failure”. (Costello and Ozburn, 2004) 

 

 
 
 
Figure 1: NASA IV&V Support across the Project Lifecycle (Acknowledgement: NASA IV&V Office) 
 
 
It is difficult to underestimate the IV&V challenges for 
the MER programme.  There were more than 500,000 
lines of source code that integrated both bespoke as well 
as ‘Commercial off the Shelf’ (COTS) applications. 
Figure 1 illustrates the overall approach to verification 
and validation that is promoted within NASA projects.  
As can be seen, there is a deliberate intention to expand 
the scope of the work beyond the traditional testing 
phase.   There are many justifications for this.  A key 
limitation with late verification is that bugs tend to be 
discovered too late in the lifecycle when there is limited 
time and resources to put the problem right.  A further 
justification for early stage validation is that it can be 
easier to identify critical requirements for subsequent 
testing if IV&V teams are also involved in the initial 
stages of development.   The approach advocated in 
Figure 1 is entirely consistent with the view of 
configuration management as a process that must be 
supported from the earliest phases of development.    

The initial work to develop an IV&V plan for the MERs 
began in June 2001.   A risk based approach identified 
that the file system routines were a critical part of the 
overall system architecture; the consequences of a bug 
in this code could jeopardize the mission.  The initial 
risk assessments also determined that some elements of 
the operating system file handling code were highly 
complex.  However, the relative maturity of the systems 
being used led the IV&V teams to conclude that the 
likelihood of bugs was comparatively low.  The overall 
criticality assessment associated a low priority with 
these routines.  This analysis corresponds with the third 
stage in the 8-step method ‘Set Improvement Target’ – 
in this case the mishap suggests that improvements can 
be made to the processes that were used in identifying 
IV&V requirements for software configuration 
management.  In order to do this, it is first important to 
understand the risk assessment processes that were used 
to analyse file handling routines. 

 
 



 

 
As mentioned previously, the fourth stage in the USAF 
problem solving method is to ‘Determine Causes and 
Contributory Factors’.   This phase helps to identify the 
reasons why analysts failed to associate a higher level of 
criticality with the operating system routines that were 
implicated in the Sol 18 mishap.  One explanation is 
that project management had to make tough decisions in 
order to optimise the allocation of scarce resources.   
The IV&V effort in the MER development process was 
initially estimated to require around ten fulltime staff.   
However, less than five people were allocated to these 
activities within the overall project budget.    
 
The reduction in resources forced the IV&V team to 
further prioritize their activities; hence it arguably 
reduced the likelihood that they would have sufficient 
time to question the original risk assessments that failed 
to accurately identify the criticality of the file handling 
code.  The goal was now to "cover the MER Flight 
Software to a reasonable depth so that the IV&V Team 
could feel comfortable supporting launch and 
operational readiness reviews for the project” (Costello, 
2004).  The teams focused on establishing conformance 
at the level of major systems rather than examining the 
behavior of individual software components.   The lack 
of resources also limited the range of requirements that 
were tested during the IV&V lifecycle illustrated in 
Figure 1.  Rather than develop a full range of test suites 
to demonstrate compliance with a set of agreed 
requirements, much of the activity focused on specific 
scenarios without considering whether these cases 
provided sufficient coverage of the range of operational 
demands that might be placed on the MER. There was 
also a lack of transparency when some of the teams 
could not determine how particular scenarios were 
identified.  The scope of these scenarios remained a 
critical issue because they drove the analysis of MER 
configuration management.    
 
The limitations of the IV&V activities were recognized 
because requirement and test completeness had been 
identified as the highest risk associated with the project.   
In other words, the IV&V team was not confident that 
all software requirements had been identified.   In such 
a situation, it was unlikely that sufficient tests would be 
conducted to ensure that the code would meet all of the 
demands this might be placed on it during an eventual 
mission.   The project team asserted that testing was 
completed.   However, it was recognized that portions 
of the file system code were very complex and that 
some of these modules were difficult to maintain.    The 
IV&V teams had developed Test Improvement Models 
(TIMs) for further unit testing on the file system code 
that accessed system memory.   These were still ‘open’ 
issues when the code was uploaded for the mission.  
Further concern focused on the stability of the code; 

changes continued to be made up until the time at which 
it was uploaded; around 10% of all code was affected by 
the final update, including this proportion of the file 
handling routines (Costello, 2004).  These factors all 
increased the problems associated with configuration 
management; ensuring that requirements were 
maintained across the development cycle from design to 
operation.   
 
It was initially planned to upload the software on the 
2nd December.  However, some development teams 
recommended a delay at a readiness review on the 25th 
November 2003 to allow for further testing,  By the 5th 
December, the IV&V teams continued to report 
‘significant concerns’ for the ‘Final Requirements Risk’ 
even though the software had by this time been 
uploaded.  They continued testing to the extent that ‘this 
was possible’ and to advocate a thorough review of all 
existing test results.   ‘Significant concerns’ represented 
the mid-point in the internal criticality index; “IV&V 
has a less optimistic view of the requirements discovery 
than does the project” (Costello, 2004).   Specific 
concerns included system memory usage: risk tracking, 
issue tracking, code analysis, requirements analysis, test 
analysis, code complexity and code stability.  However, 
lack of resources, problems with communication 
between development and verification teams, access to 
lifecycle artifacts all combined to prevent more 
sustained analysis of these issues before the Sol-18 
interruption.  A further review on the 5th December 
argued that inadequate IV&V potentially threatened the 
project’s scientific returns. 
 
The remaining elements of the 8-step process focus on 
the organisational response to configuration 
management problems on the MER.    The fifth stage is 
to ‘Develop Countermeasures’.  In the aftermath of the 
mishap, it was determined that IV&V should receive 
sufficient resources to implement the risk based 
approach advocated in previous sections.  This implied 
sufficient funds for testing to be conducted not just at 
the systems level but on the individual components 
associated with ‘high risk’ operations, in accordance 
with NASA NPD 8730.4A.   
 
Further countermeasures included the identification of 
critical artefacts for the software development lifecycle.   
In previous missions, there had been no obligation for 
teams to follow a specific software development 
lifecycle.  One consequence was a perceived lack of 
adequate MER requirements documentation.  This had 
the knock-on effect of undermining the IV&V activities 
that were intended to establish conformance with those 
requirements.  The IV&V team argued that the 
development groups had been more focused on 
addressing each successive project risk that emerged as 
a result of poorly defined requirements than they were 



 

in looking at the need to develop better requirements for 
the project software as a whole.  The development 
teams were satisfied that testing mitigated the individual 
risks created by the dynamic and ill-defined 
requirements rather than accept the need to clarify those 
requirements.   This created a situation where any gaps 
in the testing might exposure the MER to risks that 
stemmed from partial and changing requirements.  
These problems were compounded by ambitious test 
schedules so that some studies had not been completed 
by the time that the code was uploaded.  IV&V teams 
began to commission research into alternate testing 
techniques that could support projects which did not 
generate sufficient requirements documentation to 
support existing approaches.  This search for new 
techniques addressed the symptoms of a deeper 
problem; it did not focus on the need to develop 
sufficient requirements for a standardized software 
development lifecycle based on existing skills within 
the IV&V facility.    
 
The sixth phase of the 8-Step method focuses on 
‘Seeing the Countermeasures Through’.  A range of 
actions were taken in response to the analysis of the Sol-
18 interruption.  In particular, both development and 
IV&V teams began to work together more closely in the 
early stages of the software lifecycle to agree on the 
overall testing philosophy.  The intention was to avoid 
disagreements, for instance about the importance of 
requirements documents, that would have implications 
for all subsequent software development activities.  The 
more pro-active role of the validation and verification 
groups was intended to encourage greater acceptance of 
the need for formal software development processes and 
software engineering practices.   However, initiatives to 
introduce these countermeasures had to be balanced 
against the dynamic nature of space systems 
development.  For example, it can be hard to draft 
detailed software requirements when there is still 
uncertainty over the engineering of hardware platforms. 
 
Further ‘countermeasures’ were proposed to embed 
configuration management more directly into the 
development teams.   This relationship was complicated 
during the early phases of the MER lifecycle because 
the IV&V teams were unable to work directly with the 
subcontractor.  They could not access the development 
database that recorded critical information about the test 
suites that had already been constructed.   These issues 
are not as straightforward as they might appear.  There 
is a difficult balance to be made between engagement 
with development teams and the need to maintain 
independence during testing and validation. 
 
The seventh element of the 8-step method is to 
‘Confirm Results and Process’ and the last stage helps 
to ‘Standardize Successful Processes’.   As a result of 

the findings described in previous paragraphs, the 
IV&V teams created an action plan to implement the 
lessons that were learned from the MER interruption.  
Many of these lessons reinforced existing policy, such 
as the doctrine embedded in NPD 8730.4, which 
required all NASA programs and projects that contain 
mission or safety critical software to document 
decisions concerning the use of IV&V.   A news release 
issued in the days after the interruption argued that; 
“While missions to Mars are high risk endeavors and 
always will be, NASA is gaining a better understanding 
of how to control and mitigate those risks with each 
successful (and unsuccessful) mission. The application 
of IV&V to mission critical software is just one step on 
the ladder to mission success. The IV&V Facility is 
NASA's dedicated organization for ensuring software 
success throughout the agency. As NASA moves 
forward into an era of greater human participation in 
space exploration, the need for IV&V should only 
increase”  (Costello and Ozburn, 2004). 
 
4. Linking ESA TRIZ and the USAF Approach 

The USAF 8-Step process is not the only generic 
problem solving technique that might be used to guide 
the analysis of complex, software configuration 
mishaps.  The Theory of inventive problem solving 
(TRIZ) also provides a method for identifying 
engineering issues and recommending potential 
solutions (Altshuller, 1999).  European Space Agency 
Contract 21584/08/NL/HE recently completed initial 
work to extend the application of this approach to 
support the planning for complex, long-duration 
missions.  This project shared many similar objectives 
to the USAF approach described in this paper.  TRIZ 
builds on idea that there is a contradiction at the heart of 
most problems.  If we can identify and clarify this 
conflict of ideas then we will be better placed to suggest 
appropriate solutions.  The underlying philosophy 
behind TRIZ corresponds closely to stage 1 of the 
USAF approach ‘Clarify and Validate the Problem’ and 
stage 2 ‘Break down the Problem and Identify 
Performance Gaps’.   
 
TRIZ categorises each conflict as physical, technical or 
administrative.  They are represented using the cells in a 
table where each row represents a critical parameter for 
the success of a mission.  Each column then denotes a 
hazard that might undermine the mission.  For instance, 
at one level of abstraction the rows could refer to critical 
development activities, such as IV&V.  The columns 
might refer to hazards such as lack of time, insufficient 
staff, and inadequate integration between teams and so 
on.   Each intersection represents a potential problem 
scenario.   During the later stages of analysis, these cells 
are annotated with ways of preventing or mitigating a 
hazard from affecting the corresponding mission 
parameter.  For instance, close adherence to the 



 

provisions of NPD 8730.4A might be proposed as a 
means of mitigating several of the problems identified 
in the aftermath of the MER interruption. These stages 
of the TRIZ method resemble phases 5 ‘Develop 
Countermeasures’ and 6 ‘See Countermeasures 
Through’ in the 8-stage process.   
 
The TRIZ approach has recently been developed to 
generate scenarios that identify the engineering and 
human factors challenges that future crews might 
encounter during missions to the Moon and Mars.   
Future work is required to determine whether we can 
build on the similarities between this TRIZ approach 
and the USAF 8-Step problem solving method to 
develop a unified technique for software configuration 
management (Whitely et al 2008, 2008a).   If this cannot 
be done then there is a danger that we will develop 
incompatible approaches to address common problems 
that undermine the safety of future joint space missions. 
 
5. Conclusions  

Configuration management ensures that the 
requirements and constraints, identified in previous 
stages of development, are preserved throughout the 
design, implementation and operation of complex 
systems.  Space-related, software systems pose 
particular problems because, for instance, it can be hard 
to determine what code is actually running on a 
platform as successive updates are performed over 
many months of remote operation.  It is, therefore, 
important that we learn as much as possible from 
previous mishaps that have involved configuration 
management problems; given that software continues to 
play a critical role in the safety of many space missions.  
This paper has extended the US Air Force’s 8-Step 
Method to identify lessons learned from previous space 
related incidents.   This approach builds on Boyd’s 
OODA (Observe, Orient, Decide and Act) Loop and 
provides a common framework for the analysis of these 
complex incidents.  The closing sections of this paper 
have identified areas for further work; in particular, we 
have stressed links with recent European Space Agency 
techniques that support the early-stage development of 
long duration space missions. 
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