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Abstract 
On the 14th August 2003, a complex combination of immediate events and longer term vulnerabilities 
led to a domino-effect in which 50 million people had their power supplies interrupted.   Consequent 
losses were between $5-10 billion.   It is, therefore, one of the most serious disruptions to a national 
power distribution network.  The causes of this infrastructure failure included technical issues to do 
with network capacity and the algorithms used to predict potential distribution problems.   It also had 
managerial and human factors causes; these arguably included an over-reliance on automated 
monitoring systems.   The infrastructure failure also stemmed from governmental and regulatory 
intervention, which led to problems in the operation of the energy market.   The following paper 
applies accident investigation techniques to represent and reason about the complex interactions 
between these causes.  In particular, we use Violation and Vulnerability (V2) diagrams to map out 
arguments for and against market deregulation as a causal factor in engineering failures. 
 
Introduction 
The North American electricity network brings together some 3,700 utility organizations 
providing more than 320,000 kilometers of transmission lines.   It provides more than 950,000 
megawatts of generating capability for more than 100 million customers.    The complexity of 
this system has led to considerable investment in infrastructure reliability. In spite of these 
precautions, a ‘blackout’ on the 14th August 2003 affected almost 50 million people and 
61,800 megawatts of load in the US states of Ohio, Michigan, Pennsylvania, New York, 
Vermont, Massachusetts, Connecticut, New Jersey and in the Canadian province of Ontario. 
Power was lost for 4 days in parts of the United States and Ontario suffered rolling blackouts 
for more than a week [8].       
 
This incident has been the subject of considerable controversy.   Federal [9] and State 
investigations [7], commercial organizations [1], pressure groups [5] and media organizations 
[4] have all published alternate accounts.   Harris [3] argues that it has become “a Rorschach 
test which every viewer interprets as evidence to support his or her concerns about the 
problems in today’s electric industry”.   Many of the differences that distinguish these 
accounts stem from the authors’ attitudes towards the impact that market deregulation has 
upon the reliability of complex systems.   Some authors have argued that competition cannot 
be relied upon to provide social goods, including infrastructure reliability.   They support 
closer Federal and State regulation.  Others blame political intervention as a cause, rather than 
a remedy, of infrastructure failure.  Very few of these accounts explain the mechanisms by 
which public policy created preconditions for the infrastructure failure.   In contrast, the 
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following pages use accident investigation techniques to sketch arguments for and against 
deregulation as a cause of the blackout.  The intention is to cut through the rhetoric and look 
at the engineering consequences of different forms of market intervention. 
 
Immediate Events 
The North American distribution network was protected by an array of technical and 
organizational defenses.  For example, the Midwest Independent System Operator (MISO) 
deployed State Estimation (SE) and Real Time Contingency Analysis (RTCA) systems 
shortly before the blackout.  MISO was a reliability organization set up by a group of utility 
companies.   The SE and RTCA software was intended to help MISO member companies 
meet North American Electric Reliability Council (NERC) Policy 2.A on Transmission 
Operations; “All CONTROL AREAS shall operate so that instability, uncontrolled separation, 
or cascading outages will not occur as a result of the most severe single contingency” [8].    
The systems used Monte Carlo techniques to assess the N-1 state of the network.   
Information about the current state of N network components was used to predict the 
consequences if the network were reduced to N-1 components.  RTCA software was intended 
to run automatically, checking the state of the system every five minutes.      
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Figure 1: The Failure of MISO’s State Estimator and Real-Time Contingency Analysis 

 
Figure 1 uses V2 (violation and vulnerability) diagrams to model the loss of RTCA and SE, 
which “prevented MISO from promptly performing pre-contingency ‘early warning’ 
assessments of power system reliability over the afternoon of August 14” [8].  In this 
diagram, double ellipses denote the vulnerabilities that threaten safety.   For example, the East 
Central Area Reliability Coordination Agreement (ECAR) network was only partially 
completed. This created a potential vulnerability because there was no way for the SE and 
RTCA software to automatically detect the state of some network components.   The 
vulnerability was exposed when there was an outage on Cinenergy’s Bloomington-Dennis (B-D) 
Creek 230-kV line.  The failure of this network component is shown as an event denoted by a 
dotted rectangle.   MISO’s State Estimator did not have access to sensor data in this area and 
so it could not accurately model the state of the distribution network.  The V2 diagram also 
shows how an operator turned off the SE software to identify the cause of the discrepancy 
between the model and the available sensor values.   This led to a violation of standard 

 



operating procedures, denoted by a bold rectangle, when the operator neglected to restart the 
automated SE and RTCA monitoring functions. 
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Figure 2: The Failure of First Electric (FE’s) Emergency Management System 

 
The loss of MISO’s monitoring systems was compounded by events illustrated in Figure 2.   
In addition to MISO’s SE and RTCA applications, the First Electric generating company also 
operated an Emergency Management System (EMS).  Previous reliability problems had 
persuaded the utility to upgrade their EMS.   In the meantime, FE was not running the most 
recent version of the software.   Shortly before the blackout, substation consoles began to 
experience buffer overflows.  By 14:20, FE’s IT engineer had been ‘autopaged’ to restore the 
EMS terminals.  Meanwhile, further buffer overflows on the central EMS system disabled 
warnings to control room staff about potential network failures.  In consequence, operators 
could not use their systems to substantiate warnings from other companies when the Star-
South Canton 345-kV line tripped at 14:27.   The lack of EMS warnings together with the 
failure of MISO’s SE and RTCA applications gradually eroded the situation awareness of 
staff monitoring the generation and power distribution systems.  A ‘hot backup’ server took 

 



over FE’s EMS while their IT engineer was again automatically paged.  However, the hot 
restart used duplicate software.  The original buffer overflows went unresolved so the 
redundant server failed in the same way as the primary EMS system.  The FE IT engineers 
eventually attempted a ‘warm’ reboot of the primary EMS server.   This did not automatically 
restart the alarm system, which required a cold reboot. 
 
FE’s IT staff did not pass on information about the EMS failures to control room staff.  Figure 
2 represents this violation of standard operating procedures.  It also shows how the EMS 
server failures slowed updates to the operators’ screens.   The loss of the EMS servers also 
removed FE’s strip chart function which provided users with an overview of network loading.   
It also disabled the Area Control Error Signals that helped to control automated adjustments 
in generating and importing capacity.  
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Figure 3: Consequent Network Failures and Attempts to Relieve Transmission Loading 

 
Figure 3 shows how FE operators’ situation awareness was further compromised by the lack 
of shift handover procedures, the difficulty in sharing handwritten logs, the lack of 
communication between key staff.  It also shows how the lack of training in emergency 
procedures may have stemmed from limited NERC guidance.  This provides an initial 
example of the ways in which public policy may have contributed to particular events leading 
to the blackout.   In this case, the NERC’s self-regulatory framework arguably did not provide 
sufficient guidance for the utilities in how to prepare their operators for the events that 
unfolded on the 14th August.  
 
The V2 diagram also shows how the loss of monitoring equipment prevented operators from 
observing a series of line failures.  The initial loss of the Harding-Chamberlain 345-kV line 
increased loading on the Hanna-Juniper 345-kV line.   The rise in power loading caused 
increasing core cable temperatures on the Hanna-Juniper network that led the cables to sag.   

 



This reduction in cable tension made short-circuits more likely as the lines came into contact 
with vegetation, which had not been cut back enough over the previous Summer months. 
 
MISO’s Supervisory Control and Data Acquisition (SCADA) system detected the overload 
and staff began to warn FE.   However, the failure of Hanna-Juniper after the loss of Harding-
Chamberlain placed increased loads on the Star-Juniper and Star-South Canton lines.  
Another utility company, AEP, and their associated reliability organization, PJM, recognized 
the increased loading on the Star-South Canton line.  However, they were not alerted to the 
potential consequences of this failure.  Their N-1 contingency software did not have access to 
the necessary data about the state of FE’s lines to clearly predict the consequences of these 
different failures in the AEP and FE networks.    AEP attempted to reduce the load on Star-
South Canton by asking their reliability coordinator for Transmission Loading Relief (TLR).  
Such procedures can take more than an hour and usually involve 25-30MW rather than the 
350MW requested.   The AEP request was, therefore, delayed by repeated requests to confirm 
the size of the TLR.   
 
The Star-South Canton 345-kV lines tripped as a result of the increased loading created by the 
failures of the Harding-Chamberlain and Hanna-Juniper lines.  Voltage levels began to 
degrade and flows increased on the 138-kV system towards Cleveland and on the Sammis-
Star line which remained the only 345-kV route into the city from the South.  The failure of 
South-Star Canton lines forced a complete revision of the AEP and PJM contingency 
planning.  They had worried about the consequences of a Sammis-Star failure on South-Star 
Canton rather than the impact of the loss of South-Star Canton on the Sammis-Star lines.  As 
the 138-kV system started to trip both organizations began to realize the extent of the 
emergency but could not identify viable solutions. Calls from customers also began to alert 
FE staff to the problems in their section of the network.  These were confirmed by direct 
observations from substations. Eventually, after 15:45 the FE shift supervisor informed their 
manager that they may be ‘losing the system’.  The failure of the Sammis-Star 345-kV line 
following South-Star Canton, Hanna-Juniper and Harding-Chamberlain led to weak voltages 
in Ohio and power flows that created a further domino effect that extended across North 
America.   
 
Public Policy and Failures of Infrastructure Engineering  
Public policy is defined to be guidelines or rules that results from the actions or lack of 
actions of governmental and quasi-governmental entities.   These rules directly created the 
conditions that led to the blackout on August 14th 2003.   For example, the NERC was 
established following the Northeast blackout in 1965 as a non-governmental mechanism for 
using ‘peer pressure’ to establish reliability standards.    They coordinate the development of 
tools to enhance infrastructure reliability, including data exchange systems.   Their objectives 
include maintaining a balance between generation and demand as well as limiting the thermal 
stresses that arise from dynamic power flows through network components.  NERC policies 
influenced the events, illustrated in previous V2 diagrams.   For instance, Figure 4 uses a V2 
diagram to show how their role in promoting reliability training can be linked back to 
vulnerabilities in Figure 3.  FE personnel lacked emergency training that might have prepared 
them for the failures they faced on the afternoon of 14th August.      
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Figure 4: Conditions Created by the Development of NERC 
 

In 1978, the U.S. Congress passed the Public Utility Regulatory Policy Act (PURPA).  The 
aim was to encourage investment in more efficient technologies and, in consequence, to lower 
costs.   These regulations enabled new entrants to sell energy without many of the reliability 
obligations that governed established companies.   Delgado (2005) argues that this increased 
competition reduced the earnings of existing utility companies.  They then had fewer profits 
to reinvest in infrastructure projects.   The changes in market structure also fuelled investor 
uncertainty over infrastructure initiatives.   The uncertainty continued in 1996 with Federal 
Energy Regulatory Commission (FERC) Order 888. New industry participants, known as 
energy marketers, gained access to the distribution grid under the same conditions as the 
utilities’ native generating loads. Figure 5 uses the V2 notation to characterize some of these 
changes in public policy.  As can be seen, the FERC order and PURPA were intended to 
‘reduce costs by increasing competition’, to encourage ‘external investment in new 
technology’, to ensure that ‘new entrants didn’t have the same vertical integration with the 
distribution network’ and to provide access to the gird ‘under the same terms as utility’s 
native generating loads’.   
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Figure 5: Changes to the North American Electricity Market Structure 

 
Figure 6 sketches links between the public policy issues of Figure 5 and the particular 
engineering events that took place during the blackout of August 14th.  The changes 
introduced by PURPA and Order 888 arguably made it more difficult for reliability 
organizations, such as MISO and PJM, to predict energy movements.  This led to the drafting 
of Transmission Loading Relief (TLR) procedures.   The previous V2 diagram includes a link 

 



between the development of these procedures and the request at 15:35 from AEP to PJM to 
work on a 350-MW TLR to reduce the burdens on Star-South Canton line.   This shows how 
our analysis can identify positive as well as negative outcomes from public policy decisions.  
The development of TLR procedures in response to market changes provided the transmission 
and reliability companies with ways of seeking relief under the uncertainties of the market.   It 
was unfortunate, as we have seen from figure 3, that these procedures were insufficient to 
address the particular problems that arose on August 14th. Under other circumstances, with 
sufficient warning from RTCA tools, it might well have been possible to use the TLR 
procedures to mitigate the growing problems in the network. 
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Figure 6: Instabilities in the Market Structure Prior to 2003 

 
Figure 6 captures further links between public policy and infrastructure engineering.  
Vertically integrated utilities were caught between the demands of reducing costs in a 
competitive market place while at the same time meeting reliability obligations that were 
different from those of their competitors.  The resulting commercial pressures may have 
contributed to problems in vegetation management near power lines.   The impact of this 
failure is represented in Figure 3’s V2 diagram.  Similarly, a fairer distribution of reliability 
costs may have financed full integration of the sensor data network, for instance between the 
MISO State Estimator and Bloomington-Davis Creek 230-kV line.   The question marks used 
to annotate Figure 6 indicate that additional evidence is required to support these arguments.    
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Figure 7: Deregulation as a Causal Factor in the August Blackout 

 
Hughes [5] has argued that “deregulated companies are averse to building new generation that 
will drive down consumer prices and, therefore, their profits”.   Figure 7 builds on this 
argument to show how market deregulation created the conditions that led to the 14th August 
blackout. Utilities were dissuaded from commissioning infrastructure improvements because 
they might have been forced into a more general review of their rate structure in order to 
justify any additional funding.   They were reluctant to trigger these reviews in a partially-
deregulated market, given relatively low interest rates and oil/gas prices.   Further barriers to 
investment were created by the cap that many states placed on retail rates following 
deregulation.  This limited the utilities’ ability to recover investments in new transmission 
through price increases to retail customers.   The regulatory focus on ensuring open access to 
deregulated markets also diverted attention on reliability issues.  These factors combined to 
create the conditions for the engineering failures introduced in the first half of this paper.  
Figure 7 shows how deregulation arguably starved the industry of necessary infrastructure 
investment.  This affected everything from the development of IT data networks, such as the 
ECAR system introduced in figure 1, through to the provision of EMS systems and vegetation 
management, illustrated in Figure 3.    
 
Many supporters of deregulation reject the arguments captured in Figure 7.  Harris has argued 
that “competition enhances, rather than compromises, grid reliability. Competition, supported 
by regional grid managers brings stronger information, grid management tools and locational 
prices that make all market participants partners in reliability protection and reinforce and 
improve grid reliability” [3].  In this view, the changes of the 1980s and 1990s helped utilities 
to lower costs and increase efficiency.   The reduction in capital outlay by the utilities in the 

 



years immediately before the blackout can be explained in terms of a reduction in over 
capacity from earlier investments based on over-estimates of future demand.  Increased 
energy flows were not caused by increased competition but by artificial rate caps imposed by 
States at a time when the costs of fossil fuels were rising.  Environmental pressure groups also 
prevented generating capacity from being developed close to the point of need.  Existing 
utilities had to look for cheaper energy sources from other regions.  This created the large 
electricity flows that increased pressure on the distribution infrastructure.   
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Figure 8: Counter-Arguments to Deregulation as a Causal Factor in the August Blackout 

 
Figure 8 represents arguments in favor of market forces.  As can be seen, this interpretation 
draws upon many of the events and conditions used in the critical analysis of deregulation.  
However, an additional vulnerability is introduced by the overcapacity of the 1980s and 
1990s.   This led to public pressure to reduce costs and is one reason for local and 
environmental opposition to building additional generating capacity.  Public pressure to 
reduce costs encouraged states to intervene further in the market by introducing the price 
caps, mentioned above.   This market intervention acted as a direct restraint on investment.  It 
also created additional structural vulnerabilities; utilities were forced to look further for lower 
cost generating sources.   The increased transmission of power from those sources contributed 
to network instability.  Further barriers to investment came not from deregulation itself but 
from the manner in which that deregulation was implemented; utilities were uncertain about 
their long term viability as they bore transmission costs for new entrants. 
 
Engineering Recommendations and Public Policy Responses 
Many different lessons have been drawn from the August 2003 blackout.   For example, the 
Federal Energy Regulatory Commission (FERC) created an energy reliability division.  This 
helps to form policy and standards as the generation and distribution industries respond to 
changing market conditions.   Figure 9 illustrates how the creation of the new division can be 
seen as a response to some of the vulnerabilities that were identified from the blackout.  The 

 



creation of new organizational structures within FERC is intended to: “Allow prompt 
recovery of prudent expenses to safeguard reliability, security and safety; oversee the 
development and enforcement of grid-reliability standards; work with other agencies to 
improve infrastructure security; work with the states to support robust programs for customer 
demand-side participation” [2]. It is important not to underestimate the value of the simple 
annotations illustrated in Figure 9.  They denote the relationship between the causes of an 
adverse event and the recommendations that are intended to avoid future recurrences.  These 
links must be drawn if we are to prevent organizations from using previous incidents to justify 
recommendations that have little relationship to the detailed engineering failures.  
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Figure 9: Responses to the August 2003 Blackout 

 
In August 2005, President Bush approved the Domenici-Barton Energy Policy Act.  This 
created the Electric Reliability Organization (ERO) to enforce standards throughout the 
United States, Canada and Mexico [5].   Figure 9 shows how this and other Federal 
enforcement actions address the violations of NERC reliability requirements in the months 
before the blackout.   By encouraging compliance with NERC standards, enforcement actions 
help regulatory organizations to predict energy movements.   The V2 diagram also helps to 
identify audit requirements by explicitly linking recommendations to particular 
vulnerabilities.  In this example, it is important to identify metrics to determine whether or not 
the Domenici-Barton Energy Policy Act increases compliance with NERC requirements.  
Similarly, Figure 9 illustrates the need to determine whether these compliance actions help 
reliability organizations make more accurate predictions about energy transfers. 
 

 



There is little to be gained from Federal initiatives to ensure compliance with inappropriate 
standards.  The NERC is reviewing many different standards following the events of August 
2003.  In particular, Figure 9 illustrates the relevance of NERC drafting standards on 
vegetation management and emergency training by linking them to causes of the blackout.   
Similarly, any new standard on Transmission Loading Relief must clarify those situations in 
which this procedure will be used.  As we have seen, PJM and AEP spent valuable time trying 
to negotiate a TLR that would have had a very limited impact upon the developing failure.   
Similarly, Figure 9 illustrates the relevance of the NERC’s proposed reliability standards 
process model.   This framework describes the validation processes for standards developed 
following August 14th.   Specific revisions to Transmission Loading Relief procedures or to 
vegetation management requirements only address the symptoms of the blackout.   In 
contrast, the new process model addresses the underlying problem of ensuring relatively 
complete and consistent reliability standards for a deregulated market.   
 
The V2 diagram in Figure 9 sketches the interactions between different initiatives from 
commercial, regulatory and governmental organizations.   This helps to ensure the ‘joined-up’ 
thinking that is often lacking with piecemeal public policy reforms to highly technical, 
infrastructure provision.   In this instance, there is a danger that the provisions of the 
Domenici-Barton Energy Policy Act would be ineffective if organizations were reluctant to 
disclose NERC violations.   Figure 9, therefore, also illustrates the importance of the NERC's 
new Guidelines for Reporting and Disclosure.  This is intended to ensure that all confirmed 
violations of NERC standards are made public.    
 
Conclusions and Further Work 
There are continuing interactions between public policy and infrastructure engineering in 
North America.  There has been considerable pressure to reinforce the self-regulatory 
framework that is intended to support US infrastructure reliability.  Greater attention is being 
paid to the FERC’s role within a deregulated market.   In particular, there seems to be 
growing public and political interest in ensuring the effective policing of NERC standards.  It 
seems likely that any further reliability problems will trigger greater market intervention and 
regulation. 
 
The relevance of this work extends beyond North America.   The liberalization of European 
energy markets has created conditions that are similar to those in the United States before 
2003.   Recent fluctuations in gas prices have made some countries reluctant to pass supplies 
across national borders without first ensuring the security of their own provision.  This 
prevents transmission companies, utilities and regulators from making accurate predictions 
about future supplies.   Similarly, plans to allow for the symmetric distribution of electricity 
by plants that consume power at some times but then generate electricity at others using 
renewable sources, will only work if we have a reliable and stable information technology 
infrastructure.  This IT infrastructure must balance the supply and demand of base and 
reactive power.  It must also provide for transparent and equitable systems of payment for 
both generators and infrastructure providers. 
 
The August 14th blackout continues to inform and motivate Federal intervention, including 
FERC reliability requirements for network analysis, transactions scheduling, grid forecasting 
etc. These regulations are forcing utilities and reliability organizations to develop more 
complex information technology infrastructures to support their existing transmission 
networks.   However, initial studies have revealed important differences across the energy 
market; “a few very large utilities have invested in development and installation of the 
sophisticated, complex software tools identified as best practices needed for reliable grid 
operations” [3].   In contrast, many smaller utilities retain “old, patched EMS, state estimator 
and contingency analysis software that does not allow precise, near-real-time evaluation of 
grid conditions and threats”.  Such technological disparities create the preconditions for future 

 



failures.  You do not need to look far within the current market structure to realize that it 
contains the seeds of tomorrow’s failures. 
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