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Abstract   Risk assessment plays a key role in Safety Management Systems.  For 
more than forty years, likelihood and consequence have been used to guide the 
allocation of finite resources.   Standards, such as IEC61508 and the DO-178 
series, extended these concepts to support the development of software related 
systems.   Human reliability analysis developed risk assessment techniques to rep-
resent and reason about operator ‘error’ and management failure.   However, 
new challenges raise questions about the utility of traditional approaches to the 
development of safety-critical systems.   The introduction of artificial intelligence 
within autonomous systems makes it hard to reason about the probability and 
consequences of adverse events when control applications must use previous 
training sets to guide their response to novel situations.  This paper struggles to 
retain the foundations of risk assessment as a tool for safety engineering in the 
face of these new challenges for the development of safety-critical applications. 

1 Introduction 

Risk assessment guides the development of safety-critical systems. The conse-
quence and likelihood for a range of hazards can be combined to focus the alloca-
tion of finite development resources.   Engineers and managers coordinate their 
activities to mitigate the impact and reduce the likelihood of adverse events (John-
son, 2010).   A host of qualitative and quantitative approaches support the use of 
risk assessment ranging from Fault Trees to Markov models and Common Cause 
Analysis (Ostrom and Wilhelmsen, 2012).  Risk matrices map out different levels 
of risk within the cells that denote particular combinations of likelihood and con-
sequence.   The impact of mitigations can then be shown as movement between 
these columns and rows (Rausand, 2013).   At the same time, hazard analysis 
techniques including both HAZOPS and FMECA provide structured tools for 
                                                             
1 johnson@dcs.gla.ac.uk 



2      C.W. Johnson 

 

teams of designers to represent and reason about the precursors to adverse events 
(Ericson, 2016).  These, in turn, can be included as evidence within the leaf nodes 
of a safety-case to show that an implementation is acceptably safe (Maguire, 
2006). 

2 Existing Limits on Probabilistic Risk Assessment 

Risk assessment techniques have evolved to support the design of software-
intensive applications and also of interactive systems; where human factors play a 
critical role in safe and successful operation.  Subsequent sections will argue that 
similar changes are required if these approaches are to support the future devel-
opment of complex, safety-critical applications that embed AI and ML algorithms. 

2.1 Human Factors 

The early applications of risk assessment techniques focussed narrowly on 
hardware; statistical observation of previous systems yielded valid predictions of 
future reliability.   In particular, the derivation of failure probability distributions 
to reflect both burn-in and burn-out times enabled engineers to make accurate 
judgements about the impact on reliability of maintenance and replacement tech-
niques.  The use of graphical approaches, including Fault Trees, helped to general-
ise this Probabilistic Risk Assessment (PRA) from individual component failures 
to more complex, system hazards; with particular successes in the development of 
nuclear (US NRC, 1984) and military applications (Saleh and Marais, 2006).  A 
key strength of PRA was the ability to drive predictions of future risk from obser-
vations of past performance.  Monte Carlo simulations yielded further benefits.  
The synthesis of more complex systems behaviors could help predict potential 
traces of interaction based on statistical data about individual sub-systems, even 
when the eventual application had yet to be developed (Greenland, 2001).    

 
The statistical foundations for PRA created particular problems when it was ex-

tended to more interactive applications.  In such environments, it proved hard to 
ignore the impact that human operators might have upon system behaviors. Indi-
vidual cognitive and perceptual factors had a profound impact on error probability 
and were difficult to generalize between complex applications.   

 
The desire to include the impact of operator interaction in risk assessments led 

to the development of Human Reliability Analysis (UK HSE, 2009).  The inten-
tion was to assess the human contribution to risk using techniques that were inte-
grated with existing methods for PRA.  A number of factors complicated this inte-
gration. 
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Limits of Determinism.  From the perspective of reliability engineering, non-

determinism implies that the sample inputs do not always yield the same outputs.  
Risk assessment relies on probability distributions to characterize this variance.   
However, the use of such techniques raises problems when moving from hardware 
to more interactive applications. In particular, probability distributions for the var-
iance of human performance are determined by a host of individual and contextual 
factors. 

 
Limits of Induction.  Inductive reasoning combines multiple premises, all of 

which are usually assumed to be true, to support particular conclusions. It is in-
formally known as bottom-up reasoning.  Evidence can be obtained for probability 
distributions through inductive reasoning.   This relies on statistical observations 
of past performance to inform predictions of future behavior.  We can subject 
hardware to many thousands of hours of operation to yield data on the likely fre-
quency of future failure modes.  In a similar way, we can employ user studies to 
determine the likely frequency of human error during the operation of complex 
safety-related systems.  However, this raises numerous concerns.  Experimental 
effects cannot easily be eliminated when, for example, users know that they are 
interacting with simulated control systems rather than safety-critical processes.   It 
is also difficult to sustain the longitudinal studies needed to provide statistically 
reliable results, especially when highly skilled operators are often a scarce re-
source; 
 

Limits of Deduction.  Deductive reasoning supports particular conclusions by 
establishing the truth of multiple premises. This is a ‘top-down’ approach. Many 
existing risk assessment techniques, which support hardware analysis, rely on de-
ductive reasoning.  Functional and structural decomposition can be used to derive 
the probability of more complex failures based on the past performance of indi-
vidual sub-components.   For example, the likelihood of a fault tree is calculated 
from the disjunction and conjunction of basic events; for which we have probabili-
ties.   Deductive approaches are harder to apply to human behavior where physi-
ology, perception and cognition remain active areas of research.  Without some 
appreciation of these factors it is hard to determine how an initial mistake might 
influence the likelihood of subsequent slips or lapses (Reason, 2000). 

 
Limits of Context.  A final concern over the introduction of human error and 

resilience into probabilistic risk assessments is the difficulty in assessing the im-
pact of changing contextual factors.   In traditional, hardware focused applications 
of PRA, it is possibly to control or exclude a host of influences that might other-
wise have a profound affect on component reliability – including vibration, heat, 
pressure etc.  This is far harder when humans play a key role in the operation of 
complex systems.  While some factors such as alcohol and drug misuse can be 
controlled, it is typically impossible to entirely exclude their potential influence on 
behavior.  Similarly, probability distributions that might characterize the impact of 
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organizational and social factors, of fatigue and of stress are all hard to assess and 
to validate.  

 
Early approaches to Human Reliability Analysis addressed these challenges by 

exploiting relatively simple deductive techniques.   They decomposed higher-level 
activities into their component sub-tasks.  This mirrored the manner in which ex-
isting risk analysis techniques used functional or structural decomposition to iden-
tify the hazards associated with hardware components. However, the objections, 
listed above, were addressed through the inclusion of modifying factors, including 
the impact of time pressure, equipment design, fatigue etc, were then applied to 
the base sub-tasks to derive estimates of Human Error Potential. 

 
Early forms of Human Reliability Analysis, including THERP (Swain and 

Guttman, 1983) and HEART (Williams, 1985), failed to consider the impact of 
working environment and organizational context.  Critics also claimed that they 
were ‘psychological vacuous’; they lacked any explicit basis in cognitive psychol-
ogy (Hollnagel, 1998).  A subsequent generation of HRA techniques used Perfor-
mance Shaping Factors to modify the raw probability that operators might fail to 
perform necessary actions or might intervene when not expected.  The effects of 
PSFs were determined with reference to underling cognitive and perceptual mod-
els of performance, including ATHEANA (US NRC, 1996) and CREAM 
(Hollnagel, 1998). 

2.1 Software 

The identification of weaknesses in existing risk assessment techniques and the 
development of potential solutions do not always lead to the uptake of more ad-
vanced methods.   In particular, the UK Health and Safety Executive’s (2009) re-
view of HRA argues that most human factors risk assessments are narrowly based 
on expert judgment rather than the statistical foundations of hardware analysis or 
the cognitive approaches proposed in CREAM or ATHENA.  In contrast, a num-
ber of techniques have extended the application of risk assessment to guide the 
development of software intensive safety-critical systems. 

 
The early applications of probabilistic risk assessment did not have to consider 

the integration of software because most safety-related applications relied entirely 
on hardware devices until the late 1980s.   However, the increasing pressure to 
enable rapid reconfiguration and the desire to exploit a growing array of Commer-
cial Off the Shelf (COTS) microprocessors meant that new techniques needed to 
be developed (Butler and Finelli, 1993). 

 
Limits of Determinism.  Software is deterministic in the sense that the same 

inputs to the same code should always yield the same results.  In practice, howev-
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er, things are seldom this simple.   The impact of any sequence of operator com-
mands and sensor readings on the behavior of code depends upon the underlying 
state of the system. It is increasingly difficult to determine both the state of the 
system and the impact of particular command sequences without significant foren-
sic effort given the complexity of modern microcode and the range of software 
architectures embedded in processors/‘Smart’ sensor-actuators. At a higher level, 
operators and managers are often surprised by the consequences of interaction 
when they are unaware of the detailed configuration of their systems.  It is increas-
ingly hard to enumerate all of the potential interactions that can arise between 
dozens of highly networked systems.  We can increase determinism by placing 
limits on software.  For example, the time triggered network protocols used in 
many recent modular avionics systems allocate particular time slots to particular 
processes.  This supports predictions about network traffic and the consequent 
behavior of any safety-critical software that relies on this communication.  Simi-
larly, the difficulty of predicting how long it will take to retrieve variables into a 
CPU can be eased by disabling any associated caches; supporting predictions 
about Worst Case Execution Time.  These controls help to increase the apparent 
determinism of complex, safety critical software.  They support predictions about 
the future behaviour of complex systems. 
 

Limits of Induction. As with the integration of human factors into probabilis-
tic risk assessment, software also creates challenges to the use of inductive tech-
niques based on statistical observations of previous failures. These include the 
exponential complexity of computer algorithms. Any code with a sequence of n 
decisions has up to 2^{n} paths. There is no general method for identifying infea-
sible paths; such a method would imply a solution to the halting problem.   Path 
complexity undermines inductive approaches that can be used to assess the relia-
bility of software related systems. Code coverage metrics, including MCDC, 
measure the degree to which the source code of a program is executed when a 
particular test suite runs. However, we cannot estimate the probability that code 
contains a bug by exhaustive testing; following Dijkstra’s maxim that ‘testing 
proves the presence of bugs, not the absence’.  Even if a sustained verification 
discovered few additional errors, different testers using different techniques might 
uncover many more bugs.  Fault injection provides a proxy; developers deliberate-
ly insert a known number of bugs into the code.  Independent testing teams work 
until they find all of the deliberately inserted errors, hopefully finding many other 
bugs.   The proportion of injected errors found versus the total number introduced 
can be related to the likelihood of any remaining bugs.  However, it makes no 
sense to halt the verification process until all the injected faults have been re-
moved.   At the end of all this, even if every deliberate fault is discovered, we 
have no means of assessing the residual probability of software failure.  Alterna-
tive approaches have been developed, for example trying to compute the raw 
probability that code contains a bug based on statistical methods.  However, these 
approaches hit against problems that include the expansion ration between a high-
level language and the underlying machine code delivered from a compiler.  
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Measurement of software failure rates must include the speed of the processor and 
the locality of reference within any particular trace (Miller et al, 1992).  In conse-
quence, they have largely been abandoned. 

 
Limits of Deduction.  Given the inherent difficulties in the use of inductive 

techniques to quantify the future probability of software failures, deductive tech-
niques offer significant benefits; especially where formal mathematical approach-
es can be used to represent and reason about potential errors.   Deductive verifica-
tion proceeds by developing a specification of the system under consideration to-
gether with a number of proof obligations that are intended to demonstrate the 
correctness of the underlying design.   Examples of this approach include the ap-
plication of PVS and HOL.  Alternatively, model based techniques proceed by 
checking whether particular theorems, typically expressed in Linear Temporal 
Logic or Computational Tree Logic, hold across all given states of a potential de-
sign.  This can be seen as a hybrid of induction, to generate the states of the sys-
tem, and deduction, to determine whether or not a theorem holds true.  In both 
cases, there are theoretical and practical concerns when using these techniques to 
drive probabilistic risk assessment of safety-related software.  Model checking can 
only be applied to a subset of systems with potentially infinite states.  It can also 
be hard to ensure that an eventual implementation accurately satisfies the assump-
tions that guided the mathematical modeling. Legacy systems and intellectual 
property barriers prevent the use of formal modeling to accurately represent and 
reason about many of the components in complex systems. Although the use of 
deductive, formal reasoning increase confidence in the correctness of software 
applications, we cannot assume that it reduces the probability of failure to zero nor 
does there seem to be any agreement on the impact of these methods on residual 
risk. 

 
Limits of Context.   A final barrier to the estimation of software failure proba-

bilities arises from the differences between test environments and the eventual 
context in which software is deployed.  Software offers significant benefits in 
terms of flexible reconfiguration and consequent reuse.  The parameters that guide 
a particular application can be tailored to support different environments.  Equally 
assumptions that were valid in previous contexts can led to software related fail-
ures in new situations.  This is exacerbated because many bugs stem not from im-
plementation errors but from flaws in the underlying requirements. This also af-
fects hardware but such requirements failures are, typically, compounded when 
software is specifically intended to support rapid reconfiguration.  Legacy code 
again creates problems when operators do not have access to the source or to the 
underlying assumptions that guided initial development processes.   In such situa-
tions, it may only be feasible to use black box verification techniques that suffer 
from the limitations of inductive testing, mentioned above.  It is hard to underes-
timate the consequences of these barriers given that the widespread adoption of 
risk assessment has been mirrored by the increasing integration of software into 
safety-related applications.   One solution is to move away from objective forms 
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of software failure probabilities and instead to rely on expert judgment.  However, 
this is as controversial, and arguably as (un)reliable, as subjective predictions of 
human error (Authen and Holmberg, 2012). 

 
A number of development standards have been proposed in the absence of ef-

fective means for estimating the likelihood of software failure in safety-critical 
systems.  These include IEC 61508 for programmable devices, IEC 62279 for rail, 
ISO26262 for automotive software and EUROCAE ED-109A/ED-153 for ground-
based software in aviation.  Although there are significant differences, these doc-
uments build on common foundations in traditional risk assessment.  They mini-
mize any reliance on software failure rates by focusing instead on the likelihood 
and consequence of hazards associated with Equipment (and processes) Under 
Control (EUC).  These are distinguished from the safety functions that are intend-
ed to reduce any residual risks to an acceptable level.   The greater the level of risk 
associated with the EUC then the greater will be the required level of risk reduc-
tion and hence the desired level of integrity that must be met by any software re-
lated safety function.  In 61508, this is encapsulated within the notion of a Safety 
Integrity Level (SIL).  At SIL4, strong requirements are placed on the software 
development techniques intended to meet the target failure rates identified in the 
standard.  Defensive programming is highly recommended; including the use of 
error detection and correction codes.  Diversity may also be required when the 
same bug in any common code will undermine redundant or fallback processes.  
In other words, the development techniques associated with particular SILs are 
intended to achieve levels of reliability in the safety processes that protect EUC, 
without having to directly measure the actual failure rates associated with the 
software that supports those processes. The success of these standards can be 
measured by their widespread adoption.  The identification of SILs as a proxy for 
the calculation of software failure rates provides means of retaining risk assess-
ment as the foundation for system safety. 

   
IEC 61508 and similar standards do not resolve the problems associated with 

human reliability assessment (HSE, 2001).   It is also hard to establish any statisti-
cal evidence to quantify the benefits of standards like 61508 (HSE 1995, Foord et 
al, 2011).  Some studies have examined the relationship between particular soft-
ware development techniques and our ability to meet target levels of reliability 
demanded by particular SILs (Littlewood and Strigini, 2013). 

3 Machine Learning and Emerging Risks for Risk Assessment 

We have identified continuing concerns over the integration of human factors and 
software failures into the qualitative and quantitative risk assessments that under-
pin safety-critical systems development. These stem from the limits of deductive 
and inductive reasoning; compounded by the impact of non-determinism and by 
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differences between the intended and actual context of use in critical infrastruc-
tures.  The following paragraphs build on this analysis and identify a new genera-
tion of challenges that share common roots with those identified in previous sec-
tions. 
 
Standards such as IEC61508 and ISO26262 sidestep the need to directly assess the 
likelihood and consequence of software failure. SILs provide a proxy where de-
velopment resources are focused in proportion to the target level of reliability re-
quired to protect end-users and the public from the risks associated with equip-
ment under control.  At higher levels of integrity, more rigorous requirements are 
placed upon the recommended software development practices.   Conversely, oth-
er approaches are explicitly ‘not recommended’ because they are perceived to be 
incompatible with the necessary levels of reliability.   These ‘not recommended’ 
approaches include machine learning.  This is justified because noisy data, non-
convex objectives, model misspecification, and numerical instability can all cause 
undesired behaviors in machine learning systems. Detecting actual implementa-
tion errors can be extremely difficult (Selam et al, 2017).  However, such prohibi-
tions are increasingly hard to sustain when more and more industries are seeking 
to integrate the benefits of ML and AI into safety related applications. 

 
Limits of Determinism. Machine learning exploits various forms of induction 

to generalize models of decision-making based on a number of training sets.  A 
key attribute is that the associated algorithms can automatically identify salient 
features of the training set without being explicitly guided to extract them.  These 
features are then recognized and used to guide future decision-making when pre-
viously unseen cases are presented.  Machine learning algorithms include artificial 
neural networks, regression analysis, Bayesian techniques etc.  These approaches 
pose particular concerns for the development of safety-critical systems.  They can 
increase apparent non-determinism. ML algorithms often seem to exhibit unex-
pected behaviors when developers lack a detailed understanding of the inductive 
processes that guide future decision-making.  At the heart of this concern is not 
only the possibility that a machine learning algorithm will fail to recognize and 
respond to potential dangers but that developers may not be able to predict when it 
will fail in this manner.  

 
The prohibition on machine learning at higher levels of integrity in existing 

software safety standards cannot be sustained in the face of innovative applica-
tions for these technologies.  New generations of airborne and ground-based vehi-
cles rely on ML algorithms for collision avoidance but also to optimize on-board 
systems; in particular to sustain battery life and support senor fusion.   It is hard to 
envisage how these platforms might be developed without the use of machine 
learning. 

 
The incentives for innovation outweigh the arguably conservative restrictions 

embodied within some existing safety standards.  Regulatory agencies are under 
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increasing pressure to facilitate the deployment of these applications even though 
they use software techniques that cannot meet existing reliability requirements 
(Johnson, 2016).  In 2012, the United States Congress mandated the FAA to issue 
specific guidance on the regulations governing the introduction of Remotely Pi-
loted Airborne Systems into the national airspace.   The intention was to provide a 
comprehensive framework that would replace the ad hoc exemptions that support-
ed the commercial operation of these drones.   However, the anticipated deadlines 
were hard to meet and by 2015 more than 1,000 companies had been issued 
FAA333 exemptions.  This caution is justified –the use of waivers enables the 
FAA to gain sufficient operational expertise to inform the subsequent develop-
ment of regulatory requirements. The UK government has advocated a Code of 
Practice to promote safety.  Such guidance can be extended to support the integra-
tion of ML algorithms into safety-related applications, for instance by constraining 
the use of reinforcement techniques.  Reinforcement increases non-determinism 
when dynamic programming alters underlying algorithms in response to interac-
tion with an eventual operating environment.  The key concern is that a system, 
which initially met an acceptable level of safety, might learn unsafe responses  
 

Limits of Induction.   Approval for the integration of machine learning in 
safety-related applications depends upon our confidence that it will recognize and 
respond to potential hazards.  The proponents of these technologies almost univer-
sally rely on longitudinal field trials to convince politicians and the public that 
they can achieve acceptable levels of safety.   They reject the use of proxies for 
software failure rates.  Rather than assess SILs as a guide for the allocation of fi-
nite development resources, many of the proponents of machine learning justify 
their systems by demonstrating equivalence with conventional applications.  In 
other words, the application of machine learning is acceptably safe if the overall 
system is at least as safe as an application that does not use these technologies. 
Waymo (formerly Google Cars) has driven almost two million miles in autono-
mous mode.  These verification techniques sustain inductive safety arguments that 
previous sections of this paper have criticized as a basis for software safety.   How 
can we be confident that longitudinal testing has mitigated software failures to an 
‘acceptable’ level when we cannot test all potential sequences of interaction in 
uncertain and changing contexts of operation?  When do we know that we have 
conducted sufficient tests to deploy the technology into a particular environment?  
Can we ensure that controlled tests accurate resemble the context of use or if we 
test in the eventual working environment how can we be sure that the tests do not 
create unacceptable risk for the general pubic?   How do we ensure that our tests 
have considered a sufficient range of interactions between ML algorithms and 
human end-users (Weiner and Smith, 2016)? 

 
  In the USA, individual state laws vary significantly and “no state has fully de-

termined how existing traffic laws should apply to automated vehicles” (UK DfT, 
2015).   Four states have explicit provisions supporting the introduction of this 
technology.  Fifteen have rejected bills related to automated driving even though 
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the US Department of Transport and the National Highway Traffic Safety Admin-
istration (NHTSA) remain committed to the introduction of these technologies.  
Similar inconsistency can also be seen within Europe.   For example, the Germany 
Federal Highway Research Institute has argued that fully automated vehicles do 
not comply with existing traffic law. Each Federal state can grant exemptions 
from the German Road Traffic Licensing Regulations to allow the longitudinal 
tests required for inductive safety arguments ‘provided there is a driver in the 
driver’s seat who has full legal responsibility for the safe operation of the vehicle’ 
(UK DfT, 2015).  In France, specific zones have been established for testing, in-
cluding changes to driver training. There is also provision to allow ‘large-scale’ 
testing of self-driving cars and trucks.  Sweden has followed a similar approach, 
allowing tests as part of the Volvo ‘Drive Me’ project in restricted areas around 
Gothenburg.   

 
Limits of Context.   One of the key objectives in the empirical analysis of AI 

and ML algorithms is to determine whether the initial training sets enabled the 
support sufficient generalization for the platform to safely respond to the broad 
range of environmental conditions that might be anticipated through eventual de-
ployment.   This represents an evolution of the previous generation of “proven in 
use” arguments that have been challenged as a basis for the verification of safety-
critical software. IEC 61508-7 Annex D explains how these arguments may be 
used when, for instance, developers do not have access to underlying source code.   
It is expected that: 

 
• the previous context of operation was the same or sufficiently close to 

that in which the new system will be applied; 
 

• if the context differs in any way then analytical techniques and testing 
must demonstrate that the likelihood of unrevealed faults is low 
enough to achieve the required SIL for the safety function using that 
code. 
 

EN 50129 also provides a basis for proven in use arguments.  One million 
hours operation time and at least 2 years experience with different equipment in-
cluding safety analysis, detailed documentation also of minor changes during op-
eration time is recommended for SILs 3 and 4.   However, none of these standards 
explains the basis on which these ‘proven in use’ arguments might be extended to 
support the development of appropriate training sets to demonstrate the accepta-
bility of AI/ML in safety related systems.  Salay et al (2017) summarize the impli-
cations of this approach for the ISO26262 automotive software safety standard.   
They argue that there is an assumption in this and other standards that that com-
ponent behavior is fully specified and each refinement can be verified with respect 
to its specification. However, this cannot be sustained in AI/ML applications 
where a training set is used in place of a specification and the training set by defi-
nition cannot fully determine all potential operating environments.  “Furthermore, 
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the training process is not a verification process since the trained model will be 
‘correct by construction’ with respect to the training set, up to the limits of the 
model and the learning algorithm”. 

 
From a practical point of view, companies across many different industries 

have responded in one of two ways – through the development of aggressive train-
ing environments and through the control of eventual operating environments.   
The first approach demonstrates acceptable levels of safety through the develop-
ment of training sets and then the use of sustained testing environments that show 
the platform is capable not simply of meeting anticipated operating conditions but 
also of responding safely in extreme conditions.  This may include ‘adversarial 
AI’ where it is assumed that external agents deliberately seek to undermine partic-
ular platforms; for instance through LIDAR hacking to disrupt or direct the opera-
tion of autonomous vehicles.   

 
The use of training sets and test conditions that place the system in ‘extreme’ 

operating environments may increase confidence that AI/ML algorithms are capa-
ble of coping safely with eventual demands in operation.  At the same time, the 
application of these algorithms is further supported by techniques that constrain or 
control the working environment.  For example, by establishing segregated air-
space for Remotely Piloted Airborne Systems or using separate traffic lanes for 
autonomous vehicles.   These constraints help to ensure that safety-related appli-
cations meet situations that have previously been encountered during the training 
of the associated algorithms.  As we have seen, however, there are strong com-
mercial reasons to challenge this segregation.  It can also be hard to ensure the 
integrity of constraints on the context of operation – for instance when conven-
tional emergency flights need to cross the segregated airspace devoted to RPAS 
operations. 

 
There is a clear role for conventional risk assessment techniques to identify the 

range of scenarios that might be used during the more aggressive forms of train-
ing/testing mentioned above.  They can also be applied to characterize the con-
straints that should be placed on eventual operating environments – for example, 
to consider the probability and impact of those constraints being violated.   How-
ever, such approaches need to be reinforced by deductive arguments to demon-
strate the correctness of the AI/ML algorithms that are embedded within safety-
related applications. 

Limits of Deduction.   A key reason why the integration of AI and ML algo-
rithms poses such a threat to the use of risk assessment is that there are few recog-
nized means of deductive reasoning that might be used to inform the use of induc-
tive empirical approaches.  In other words, it is hard to identify similar mecha-
nisms to the functional and structural decomposition that has supported the use of 
Fault Trees and Cause Consequence Diagrams in existing approaches.   Initial 
steps have been proposed by Ramanathan et al (2016); `’While we depend on the 
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flawless functioning of such intelligent systems, and often take their behavioral 
correctness and safety for granted, it is notoriously difficult to generate test cases 
that expose subtle errors in the implementations of machine learning algorithms… 
the validation of intelligent systems is usually achieved by studying their behavior 
on representative data sets, using methods such as cross-validation and bootstrap-
ping”. In contrast, they propose the use of symbolic decision procedures coupled 
with statistical hypothesis testing to validate machine-learning algorithms. They 
have applied this approach to identify bugs, including bit flips, in implementations 
of the k-means algorithm that could not easily have been identified using standard 
validation methods including randomized testing.   However, their approach is far 
from the panacea to the integration of AI into safety-related applications.   It re-
mains laborious and time-consuming especially when these approaches are inte-
grated into complex cyber-physical systems. 

The need to develop forms of deductive reasoning to improve the correctness of 
ML algorithms forms part of a wider argument advanced by leading researchers in 
Machine Learning that ‘Advances in Artificial Intelligence Require Progress 
Across all of Computer Science’:  “Although AI will be an engine for progress in 
many areas, creating real-world systems that realize these innovations will in fact 
require significant advances in virtually all areas of computing, including areas 
that are not traditionally recognized as being important to AI research and devel-
opment… future AI systems will not only draw from methods, tools, and themes 
in other areas of computer science research, but will also provide new directions 
for research in areas such as efficiency, trustworthiness, transparency, reliability, 
and security” (Hager, Bryant, Horvitz, Mataric ́, and Honavar 2017).  These au-
thors identify the development of formal methods as a key enabler for the de-
ployment of AI techniques in dependable applications.  However, despite a num-
ber of recent research initiatives there are no formal standards or widely accepted 
frameworks for constructing, manipulating or reasoning about the neural networks 
and other ML approaches being embedded within a host of autonomous and semi-
autonomous systems.  Connection Set Algebra has been developed to represent 
generative operations in neural networks but “none of these approaches are truly 
formal or general” (Jackson et al, 2017).  There are some signs of progress, for 
example Selsam et al (2017) have used interactive proof assistants to implement 
ML algorithms and to state a formal theorem defining what it means for that im-
plementation to be correct. Any residual implementation errors are detected be-
cause they would cause the proof to fail. Again, however, the approach has opnly 
been demonstrated on a small subset of the algorithms being used in safety-related 
systems.  In this case they focus on the correctness of stochastic computation 
graphs with a machine-checkable proof that the gradients sampled by the system 
are unbiased estimates. 
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5 Conclusions and Further Work 

Risk assessment techniques have evolved in response to changes in the demands 
of safety-related engineering.  An increasing focus on the impact of operator in-
tervention motivated the refinement of human reliability analysis.  In parallel, the 
integration of software into control systems led to the development of standards 
that use proxies, including SILs, to avoid the explicit quantification of probability 
distributions for bugs that cannot be measured with any certainty.   

 
We are facing new challenges to the continued use of risk assessment.  Resurgent 
Artificial Intelligence and Machine Learning have matured to the point where they 
offer significant benefits across a host of safety-related applications.    
 
Formal techniques are being developed to represent and reason about the behavior 
of systems that include AI based algorithms, these are in their infancy and none 
can, as yet, be integrated with traditional forms of risk assessment.   In conse-
quence, designers and regulators have very limited means of using deductive in-
ference to demonstrate that this new generation of applications is acceptably safe.    
We also lack inductive tools to integrate these approaches into statistical forms of 
risk assessment.  It is hard to anticipate how complex training sets will inform the 
detailed future operation of these applications when exposed to their eventual op-
erating environment; past interactions may not provide clear predictions of future 
hazards.    
 
Companies have responded to these concerns by developing safety arguments that 
assume significant constraints on the eventual context of use and that rely on lon-
gitudinal testing.   These pragmatic approaches cannot sustain continued commer-
cial development, especially in autonomous systems.  There are fundamental 
questions about whether it is possible to maintain the segregation of these systems 
from more conventional vehicles as a means of simplifying the operating envi-
ronment.  Similarly, there is an urgent need for engineering and scientific founda-
tions to the ‘proven in use’ approaches that are being exploited by a host of manu-
facturers that have abandoned existing software safety standards.  
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