910 10.95 12

A Principled Approach To The Integration Of
Human Factors And Systems Engineering For
Interactive Control System Design

Christopher William Johnson
Submitted for the degree of Doctor of Philosophy
The University of York

The Human Computer Interaction Group,
The Department of Computer Science.

April 1992

Abstract

This thesis argues that principles provide a framework which helps to ensure that
human factors and systems engineering are integrated at all stages of development.
The argument ranges from the fundamental problems of control, to the problems of
a development architecture, to the problems of designing a particular interface.

Part I of this thesis justifies an attempt to use principles as a means of integrating
human factors and systems engineering.

Part II argues that principles provide common objectives for the human factors
and systems engineering of interactive control systems. They provide criteria against
which to assess the utility of potential solutions for problems that are common to
many different interfaces: dynamism; complexity and openness. Interval temporal
logic is proposed as an appropriate notation in which to represent these solutions.

Part IIT argues that principles provide criteria against which to assess the util-
ity of architectures for human factors and systems engineering. In particular, it is
argued that a strength of object orientation is that it supports the development of
consistent and predictable interfaces. A weakness of this architecture is that dis-
play objects can provide inaccurate views of the physical components which they
represent. Abstract analyses of design principles and architectures are frequently
conducted at a level that is inappropriate for the development of particular interfaces
to particular control systems. PRELOG, a tool for the Presentation and REndering
of LOGic specifications, has been implemented to avoid this limitation. It is ar-
gued that human factors and systems engineers might use prototypes to determine
whether particular principles have any relevance for system operators.

Part IV argues that the principled approach advocated in this thesis is method-
ologically inadequate. It does not support the integration of human factors and
systems engineering during all stages of development. Further work is proposed to
rectify this limitation.

Contents

I Introduction 1
1 The Justification For Integration 3
1.1 Introduction 3
1.2 An Assessment Of Systems Engineering 4
1.2.1 Automation And Sensing 4

1.2.2 Decision Support 5

1.2.3 Dialogue Design 5

1.2.4 System Modelling 6

1.3 An Assessment Of Human Factors Engineering 6
1.3.1 Physiological Ergonomics 7

1.3.2 Social Ergonomics 0oL 7

1.3.3 Perceptual Psychology 7
1.3.4 Cognitive Psychology 8

1.4 Integration Through The Task-Artifact Cycle 9
1.4.1 Hermeneutics And Openness 10

1.4.2 Hermeneutics And Complexity 10

1.4.3 Hermeneutics And Dynamism 11

1.5 Integration Through Principled Design 11
1.5.1 Principles And Openness 12

1.5.2 Principles And Complexity 12

1.5.3 Principles And Dynamism 13

1.6 A Principle, A Notation And A Tool 13
1.6.1 The Principle: Predictability 14
1.6.2 The Notation: Interval Temporal Logic 14

1.6.3 The Tool: PRELOG 18

1.7 Structure Of This Thesis. 19
1.8 Insights Provided By This Thesis 21
1.8.1 Dialogue Cycles And Optimised Display Design 21
1.8.2 Transparency, Focusing And Restriction 21
1.8.3 Input And Output Protocols 21
1.8.4 Object Orientation And Consistency 22
1.8.5 Break-Down And Indirect Presentation 22

1.8.6 Input Events And Structured Graphics 22

ii

II Principles And The Fundamental Problems Of Control

2 Dynamism

2.1 Imtroduction

2.1.1
2.1.2
2.1.3

Consequences: Stress And Unpredictability
Causes: Process And Dialogue Dynamics
Solution: Formal Notations

2.2 Production Systems

2.2.1
2.2.2
2.2.3
2.24

Factsand Rules.
Rule Competition And Task Allocation
Rule Collision And Display Design
The Problems Of Production Systems

2.3 First Order Predicate Logic

2.3.1
2.3.2
2.3.3
2.34

Sets And Predicates
Context Dependent Effects And Task Allocation
Visible Input Effects And Display Design
The Problems Of First Order Predicate Logic

2.4 Logic And Time

24.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6

Time Stamps L
Time-Variables L
Modal Logico
Interval Temporal Logic
Bounded Effects And Task Allocation
Dialogue Cycles And Display Design

2.5 Conclusions s

3 Complexity
3.1 Introduction

3.1.1
3.1.2

3.1.3

Consequences: Poor Performance And Unpredictability
Causes: Command-View, Display And

State Correspondence
Solution: Abstract Design Principles

3.2 State Correspondence

3.2.1
3.2.2

State Correspondence And Predictability
Resolving State Correspondence

3.3 Display Correspondence

3.3.1
3.3.2

Display Correspondence And Predictability
Resolving Display Correspondence

3.4 Command-View Correspondence

3.4.1
3.4.2

Command-View Correspondence And Predictability
Resolving Command-View Correspondence

3.5 Conclusions e

4 Openness

4.1 Introduction

4.1.1
4.1.2
4.1.3

Consequences: Operator Error And Unpredictability
Causes: Input Contention And Output Contention
Solution: Generic Design Principles

iii

23

25
25
25
26
26
27
27
28
29
30
31
31
34
35
36
37
37
38
39
40
42
42
44

46
46
46

47
48
49
50
50
53
o4
o4
o7
o8
99
62

4.2 TInput Contention 65
4.2.1 Input Contention And Predictability 66
4.2.2 Resolving Input Contention 67

4.3 Output Contention L 71
4.3.1 Output Contention And Predictability 71
4.3.2 Resolving Output Contention 72

4.4 Conclusions e 76

IIT Principles And The Problems Of Detailed Design 78
5 Inconsistency 80

5.1 Introduction. L 80
5.1.1 Consequences: Skill Dependency And Unpredictability 80
5.1.2 Causes: Different Designers And Different Requirements . . . 81
5.1.3 Solution: Object Oriented Design 81

5.2 Inconsistency And Object Oriented Design 82
5.2.1 Image Inconsistency 84
5.2.2 Resolving Image Inconsistency 85
5.2.3 State Incomsistency oo 85
5.2.4 Resolving State Inconsistency 86
5.2.5 Method Inconsistency 87
5.2.6 Resolving Method Inconsistency 87

5.3 Predictability And Message Passing 88
5.3.1 Image Inconsistency And Image Unpredictability 88
5.3.2 State Inconsistency And State Unpredictability 89
5.3.3 Method Inconsistency And Method Unpredictability 90

5.4 Consistency Through Type Instantiation 90
5.4.1 Image Consistency And Instantiation. 92
5.4.2 State Consistency And Instantiation 93
5.4.3 Method Consistency And Instantiation 94

5.5 Conclusions Lo 94

6 Break-Down 96

6.1 Introduction 96
6.1.1 Consequences: Alienation And Unpredictability 96
6.1.2 Causes: Different States; Images And Methods 97
6.1.3 Solution: Object Conformance 97

6.2 Break-Down And Image Failure 98
6.2.1 Image Failure And Predictability 101
6.2.2 Image Conformance 102

6.3 Break-Down And Method Failure 103
6.3.1 Method Failure And Predictability 104
6.3.2 Method Conformance 105

6.4 Break-Down And State Failure 105
6.4.1 State Failure And Predictability 106
6.4.2 State Conformance 107

6.5 Break-Down And Direct Perception 107

v

6.5.1 Direct Perception And Predictability
6.5.2 Indirect Presentation Techniques
6.6 Conclusions o

7 Design Bias
7.1 Introduction
7.1.1 Consequences: Distrust And Unpredictability
7.1.2 Causes: Different Disciplines And Design Techniques
7.1.3 Solution: Prototyping
7.2 From Abstract Requirements To Specifications
7.2.1 Instantiating Architectural Models
7.2.2 Instantiating Generic Principles
7.3 From Specifications To Executable Systems
7.3.1 Object Oriented Programming Languages
7.3.2 PROLOG
7.3.3 Tempura
734 Tokio
7.3.5 PRELOG And Tokio
7.4 From Executable Systems To Graphical Interfaces
7.4.1 Unstructured Graphics
7.4.2 Procedural Graphics
7.4.3 Structured Graphics
744 Regions e
7.4.5 PRELOG And Presenter
7.5 From Graphical Interfaces To Working Prototypes
7.5.1 Device Handlers
7.5.2 Device Specific Models
7.5.3 Input Events
7.5.4 PRELOG And Input Events
7.6 Conclusions

IV Conclusions And Further Work

8 Methodological Inadequacy

8.1 Introduction.,
8.1.1 Consequences: Ad Hoc Design And Unpredictability
8.1.2 Causes: Inadequate Techniques; Notations And Tools
8.1.3 Solution: Further Research

8.2 Improved Development Techniques
8.2.1 Requirements Elicitation.
8.2.2 Verification and Refinement
8.2.3 Validation

8.3 Improved Notations
83.1 Real-Time.
832 Risk
8.3.3 Expertise L L.

8.4 TImproved Tools

113
113
113
114
114
114
115
116
117
117
119
120
120
121
122
122
122
124
127
128
130
130
131
132
133
133

136

8.4.1 Specification Generation
8.4.2 Display Development,
8.4.3 Implementation L.
85 Conclusion

Conclusions

9.1 The Contribution Of This Thesis

Appendices

The Interval Temporal Logic Language

Al Background

A2 Syntaxo
A2.1 Symbols
A.2.2 Operators And Quantifiers
A23 Terms
A24 Formulas

A3 Semantics

A.4 Predicate Or Propositional Logics?

Theorems Of Interval Temporal Logic

B.1 Complement Law
B.2 Idempotent Law
B.3 Implication Laws
B.4 De Morgan’s Laws o o
B.5 Commutative Laws L
B.6 Associative Laws

Appendices To Chapter 3

C.1 Re-writing Of no_state_correspondence
C.2 Re-writing Of no_display_correspondence
C.3 Re-writing Of no_command_view_correspondence

Appendices To Chapter 4
D.1 Re-writing Of no_input_contention

Appendices To Chapter 5

E.1 First Re-writing Of inconsistent
E.2 Second Re-writing Of inconsistent
E.3 Third Re-writing Of inconsistent
E.4 Re-writing Of consistent

Appendices To Chapter 6

F.1 First Re-writing Of break down
F.2 Second Re-writing Of break_ down
F.3 Third Re-writing Of break down
F.4 Fourth Re-writing Of break down

vi

158
158

161

162
162
162
162
163
163
163
163
165

167
169
169
169
170
171
172

174
174
174
175

176
176

177
177
178
179
180

G The Design And Implementation Of PRELOG 186

H Temporal Logic And Multi-User Systems 187

vii

List of Figures

1.1
1.2

21
2.2
2.3

3.1

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The task-artifact cycle o Lo
The structure of this thesis

The Mithra autonomous robot
A high-level model of interaction
A dialogue cycle

The layers of correspondence
A model of interaction with an open control system
A diagram of aflow valve

An object display for aircraft fuel distribution
The horizontal situation indicator for Boeing 757 and 767 aircraft . .
A plan-view display for aircraft collision detection
A perspective display for aircraft collision detection
A pictorial status display for avionics
A time-tunnel display for aircraft engine status
An indirect display

The continuous casting process,
Aninlet image
An incorrect inlet imageo Lo L
The graphical decomposition of the coolant_on_display
The graphical decomposition of the coolant_error_display
The region decomposition for part of the coolant_on_display
The PRELOG architecture
A PRELOG prototype of the casting control system
A data structure for a device driver
The distributed PRELOG architecture

A three stage model of interface development
A part of a task description hierarchy
Afault-tree
A cause-consequence diagram
A Petri net specification of interaction
The relationship between Petri nets and fault-trees
The visual specification of graphical images
A graphical generation tool for PRELOG

viii

Acknowledgements

I would like to thank the members of the Department of Computer Science at
the University of York who have encouraged the work that is presented in this thesis.
Professor lan Wand provided the initial impetus to continue my studies. Dr Colin
Runciman provided valuable guidance at every stage in this research. Professor
Michael Harrison originally proposed the application of interval temporal logic to
support the design of interactive systems. Without his friendship and advice this
thesis would not have been written.

The research described in this thesis has benefited from the help of researchers
in a number of different disciplines. Dr Andrew Monk and Dr John McCarthy from
the Department of Psychology, University of York provided useful correctives to pre-
conceptions about their discipline. Dr Henning Anderson of the Cognitive Systems
Group, National Research Laboratories, Risg, Denmark arranged for my participa-
tion in an experimental analysis of direct perception displays and provided valuable
insights into the potential of interval temporal logic as a tool for cognitive mod-
elling. Professor Jim Crowley from the Laboratoire d’ Informatique Fondamentale
et d’ Intelligence Artificielle and Professor Joélle Coutaz from the Laboratoire de
Génie Informatique, Grenoble, France arranged for my participation in the Mithra
robotics project.

The work presented in this thesis has benefited from the support of a number
of commercial companies. British Telecom provided funding. British Aerospace
provided information about commercial and military avionics. The McGibbon Con-
sultancy and Agie Industrial Electronics supplied information about interactive ma-
chine tools.

This work has been supported by a CASE award funded by British Telecom, by
SERC grant 88503497 and by the 1990 Gibbs-Plessey travel award.

X

Declaration

Professor Michael Harrison first suggested that interval temporal logic might be
applied to support the design of interactive systems. With this exception, the work
presented in this thesis is entirely that of the author.

Some of the material presented in Chapters 1 and 4 is based upon a joint paper
presented with Victoria Miles, Dr John McCarthy and Professor Michael Harrison
at HCI'91 [210]. Chapter 4 is also based upon a paper presented by the author at
HCI'91 [162]. The implementation of the PRELOG prototyping tool, described in
Chapter 7, was presented in a joint paper with Professor Michael Harrison at EU-
ROGRAPHICS’90 [163]. The incorporation of an interval temporal logic interpreter
into this system was discussed in a paper, again with Professor Michael Harrison, at
EUROGRAPHICS’91 [164]. We also discuss the application of PRELOG to support
the development of interactive control systems in a forthcoming article to appear in
the International Journal Of Man-Machine Studies [165]. This thesis only exploits
those parts of collaborative papers that are directly attributable to the author.

Part 1

Introduction

Introduction To Part 1

This part of the thesis argues that human factors and systems engineering must be
integrated in order to improve the usability of interactive control systems.

Chapter 1 argues that the task-artifact cycle does not support the integration of
human factors and systems engineering. This approach assesses an interface late in
the development cycle when the costs of making changes are likely to be prohibitive.
Alternatively, designers might use properties of previous systems as heuristics to
guide subsequent development. It is argued that these heuristics, or principles,
provide criteria against which to assess the usability of existing interfaces. In order
to exploit this approach designers must be provided with a precise and concise
means of representing techniques that could be used to achieve these principles. It
is argued that formal, mathematically based, notations can be used to satisfy this
requirement.

Chapter 1

The Justification For
Integration

“The purpose here is to show what has gone wrong in the past and to
suggest how similar incidents might be prevented in the future. Unfor-
tunately, the history of the process industries shows that many incidents
are repeated after a lapse of a few years. People move and the lessons
are forgotten” (Kletz, [179]).

1.1 Introduction

Accidents at Bhopal, Chernobyl, Flixborough, Seveso, Three Mile Island and Wind-
scale have raised questions about the safety and reliability of many production
processes. This is illustrated by the quotation that opens this chapter. Public anx-
iety increasingly focuses upon the role of the operator within control systems. The
Commission of the European Community [158], the Japanese Fifth Generation Ini-
tiative [316] and United States’ Presidential Task Forces [243] have all cited human
intervention as a primary factor in the cause and exacerbation of accidents in the
process industries. This thesis argues that the role of human error extends from
the operation of control systems to include their design. Previous accidents have
occurred because systems engineers have paid insufficient attention to the demands
posed by operating interactive control systems. This observation is far from novel.
Both the Zeebruge [283] and King’s Cross [98] enquiries concluded that operators
were not the main instigators of the disasters, rather that they inherited defective
systems created by poor design and management. Such findings have also been a
central inspiration for recent research in the field of human factors. Much of this
work has not been accompanied by the provision of tools that would enable designers
to carry human factors research beyond the ‘laboratory bench’ and onto the ‘shop
floor’. This thesis argues that principles might provide such a tool. Properties of
previous interfaces can be used as heuristics to guide the human factors and systems
engineering of interactive control systems.

The first question to be answered in any attempt to enhance the usability of
interactive control systems is: what are they? For the purposes of this thesis, ‘in-
teractive control systems’ are defined to be systems in which operators intervene
to regulate the behaviour of application processes. They include chemical and en-

4 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

ergy production control systems. They include avionics, as well as maritime and
rail transportation control systems. They include dependent and semi-autonomous
robotics control systems. Within such systems there can be applications that do
not directly control process behaviour, such as databases of production information.
These are included in our definition because they are essential components of the
control system. This thesis focusses upon the interaction between a system and its
user, the interested reader is directed to [64, 29] for background information on the
more general causes of system failure.

The second question to be answered is: precisely what do we mean by enhancing
usability? The Concise Oxford Dictionary defines ‘usability’ as “the ability to be
used” [12]. This hardly clarifies matters. In the context of this thesis, usability refers
to the users’ ability to effectively operate control systems and, through them, the
processes of underlying applications. Human factors engineering has been concerned
to improve usability through the application of physiological and social ergonomics,
perceptual and cognitive psychology [261]. Systems engineering has been concerned
to improve usability through automation and sensing techniques, decision support
tools, dialogue design and system modelling [49]. This thesis intends to show how
designers, who can be human factors or system engineers, might avoid the limitations
and exploit the benefits of both disciplines. In order to do this we must first identify
the strengths and weaknesses of human factors and systems engineering.

1.2 An Assessment Of Systems Engineering

This thesis defines ‘systems engineering’ to be the application of the physical sciences
and of computer science to support systems development.

1.2.1 Automation And Sensing

Advances in computer science and software engineering have provided designers
with means of monitoring and sensing effects that were previously only predicted
by physical sciences, such as chemistry and physics. For example, the development
of high-speed processors and real-time programming languages has supported the
implementation of distributed control systems that can simultaneously sense and
respond to changes in many different parts of a production process [288]. These
advances have also enabled designers to exploit automation, the application of ma-
chines to reduce manual and mental labour, as a means of supporting the operation
of interactive control systems. For instance, Covey, Mascetti, Roessler and Bowles
describe automated avionics which can ensure that aircraft follow fuel-efficient as-
cents and descents [78]. Sensors within the airframe and engines enable these sys-
tems to achieve a twelve percent fuel saving for commercial aircraft. Pilots need not
assume the mental burden of calculating these flight patterns.

The application of automation and sensing techniques has not enjoyed universal
success. For example, the Habsheim crash occurred when the pilot of a fly-by-wire
Airbus Industries’ A320 judged that they had sufficient power to pull their aircraft
out of a descent. Fly-by-wire systems are controlled by computer programs that
receive sensor readings as input. They output the signals that are necessary in
order to control the hydraulics which move the aircraft’s control surfaces. The crew
of the A320 later complained that the engines had been slow to respond once the

1.2. AN ASSESSMENT OF SYSTEMS ENGINEERING 5

pilot had opened the throttle. This can be explained by the fact that avionics have
been designed to reduce engine wear by gradually applying power irrespective of
immediate commands from the crew. This incident illustrates the point that the
introduction of advanced systems engineering can create human factors problems.
Similar causes have been cited for the Air India A320 crash [244]. The consequences
of calculating an inefficient ascent are insignificant in comparison to the consequences
of a pilot misunderstanding the performance parameters of their aircraft. Following
the Habsheim and Air India crashes, Airbus Industries’ A320s now provide audible
alarms to warn pilots if they have insufficient flying energy to pull out of slow,
nose high, approaches [219]. In order to reduce the likelihood of such accidents
occuring again it is vital that human factors engineering should play some part in
the development of automated control systems.

1.2.2 Decision Support

Decision support tools, or expert systems, provide operators with advice about
optimal courses of interaction [198]. They exploit advances in computer science
to infer as much information as possible about application processes. For instance,
Chan has used neural networks to diagnose the causes of supply failures in electricity
distribution networks [62]. Expert systems are capable of monitoring and assessing
amounts of information that would stretch the cognitive and perceptual resources
of human operators. No user can monitor the power loading on every one of the
thousands of nodes in power distribution networks. These loadings can, however,
be fed as input into Chan’s system. It can be taught to recognise loading patterns
that will lead to supply problems. It can direct operator intervention towards nodes
that are likely to have caused system failures.

A number of problems limit the utility of decision support tools. Their advice
is frequently incorrect. Van Daele found that over sixty-seven percent of automated
diagnosis and planning systems in casting control applications made “suboptimal
decisions” [82]. Bainbridge describes how one group of users switched off their
advisory system rather than be distracted by its incorrect predictions [22]. A more
fundamental problem for systems designers is that decision support tools provide
low bandwidth communication [13]. By this we mean that advice is based upon
a mass of information which is accessible to the system but not to its operator.
For example, avionics sample a range of sensors many times a second in order to
determine aircraft attitude [293]. Pilots cannot sample at this rate; they must
trust the information which is displayed to them. This increases the potential for
operator error because pilots must act upon system recommendations without fully
understanding the context in which advice is offered. Taylor and Selcon argue that
designers can reduce the frequency of such errors by displaying justifications for the
decisions recommended by expert systems [300]. In other words, designers must
not only consider systems engineering but also the human factors of control when
developing decision support tools.

1.2.3 Dialogue Design

Systems engineering has developed a number of interactive dialogues that enable
users to rapidly issue commands and view process information [97]. These dia-

6 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

logues often apply computer science techniques, such as problem decomposition, to
support the presentation of application processes. For instance, hierarchical pre-
sentation systems provide facilities for focusing process displays so that operators
can access information about individual components. They can select the level of
detail that is appropriate for particular control tasks. These dialogue designs have
been exploited in a number of commercial products, including the current range of
Agiecraft machine tools [4] and Transmitton’s Flexible Energy Management System
[208]. Agiecraft claim that these “dialogue capabilities substantially cut idle times”
[4].

Improving dialogue design has been a primary concern of the European Strategic
Programme for Research and development in Information Technology (ESPRIT)
GRAphical DIalogue environmENT (GRADIENT) project [151]. In spite of such
initiatives, the design of display structures and dialogue patterns remains a non-
trivial problem. For instance, “cognitive lockup” has been observed when operators
can decompose control system displays [144]. This occurs when users become pre-
occupied with one level of detail and fail to observe errors which manifest themselves
at another level. Dialogue designs, such as those proposed by Transmitton and
Agiecraft, again illustrate the need to consider human factors requirements when
applying advanced systems engineering techniques.

1.2.4 System Modelling

The physical sciences, such as chemistry and astronomy, have developed a range of
modelling techniques that can be used to describe the behaviour of complex natural
objects [154]. Designers have exploited these techniques to support the engineering
of interactive control systems. For instance, a series of accidents involving commer-
cial radiation therapy systems inspired a Washington hospital to analyse the design
of their clinical cyclotron [167]. The operator of this system controlled a nine hun-
dred ampere electromagnet and a thirty ton rotating gantry. The cyclotron control
system handled over one thousand input signals. Jacky describes how mathemati-
cal modelling techniques considerably simplified the task of re-designing this system
which included the analysis of over sixty thousand lines of Fortran source code [160].

There are a number of problems which limit the utility of system modelling
techniques for the development of interactive control applications. In particular,
they fail to capture what De Montmollin and De Keyser call the “knowledge of
utilisation” [211]. In other words, system modelling techniques frequently fail to
capture the demands that an interface places upon its operators. Instead, they
capture a designer’s “knowledge of functioning” that is chiefly concerned with system
development rather than operation. Human factors engineering provides techniques
that can be used to avoid this bias of systems engineering.

1.3 An Assessment Of Human Factors Engineering

This thesis defines ‘human factors engineering’ to be the application of physiology,
the social sciences and psychology to support the development of interactive systems.

1.3. AN ASSESSMENT OF HUMAN FACTORS ENGINEERING 7

1.3.1 Physiological Ergonomics

Physiology is “the science of the functions of living organisms” [12]. Ergonomics is
“the study of the efficiency of persons in their working environment” [12]. Physio-
logical ergonomics applies the experimental techniques of physiology to assess the
impact that an operator’s physique can have upon their performance at work. For
instance, Junge and Giacomo have analysed an operator’s posture in order to im-
prove work-station layout in the American Space Shuttle [169]. Galer and Yap
conducted a range of experiments to resolve the physiological problems of keyboard
data-entry in the cramped environment of intensive care units [113]. Plath and
Kolesnik exploited a similar approach when developing thumb-wheel switches to
enter navigational information in aircraft cockpits [237].

Functional requirements help to determine the layout of many working environ-
ments [113]. The optimal position for a patient monitoring unit in an intensive care
ward need not be appropriate for departments that offer a lower level of clinical
automation. An optimal position for a thumb-wheel switch in one cockpit is often
inappropriate for aircraft with different avionics. The introduction of new computer
systems can change workstation layout and this, in turn, can affect an operator’s
posture [169]. The findings of physiological ergonomics can, therefore, only be ap-
plied if human factors engineers are aware of the constraints imposed by systems
engineering.

1.3.2 Social Ergonomics

Social ergonomics is concerned to assess the impact that interaction between sys-
tem operators can have upon their working performance. Designers can exploit
techniques from social sciences, such as linguistics [107], sociology [114] and man-
agement studies [289)], to support this task. For instance, the United States’ Nuclear
Regulatory Commission are currently evaluating the Management Analysis Concept
developed by Haber, Metlay and Crouch [127]. This methodology is intended to de-
tect instances in which safety-critical decisions are not passed through a chain of
command but are usurped by committees.

Brouwers and Pots observe that “policies regarding social organisation and social
policies (have) played an insignificant role in the design process” [45]. Competitive
advantage is seen purely in terms of the improvements in quality and productivity
that can be derived from systems engineering. Organisational issues are typically
only considered after new technology has been introduced. Clegg and Wall argue
that this lack of integration jeopardises the success of innovative systems engineer-
ing [73]. Operators will obstruct the use of new technology if they are unsure of
their role after automation is introduced. New technology frequently requires in-
creased cooperation and communication between fewer users and this, in turn, can
increase the social pressures on those workers. In order to asses the impact of such
factors upon a potential implementation there must be some means of integrating
the findings of human factors and systems engineering.

1.3.3 Perceptual Psychology

Perceptual psychology is concerned to identify the ways in which humans exploit in-
formation from their senses. Designers have exploited findings about human percep-

8 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

tion in order to guide the development of interactive control systems. For instance,
Boeing applied perceptual psychology to reduce the number of accidents involving
their 727 aircraft. One of their engineers observed that many of these accidents
occurred during night-time landings over ‘dark hole’ approaches; above water or
unilluminated terrain. They used a range of experiments to establish a link between
the sensory information available to pilots under such circumstances and incorrect
estimates of aircraft altitude. The training of all commercial pilots now involves
warnings about false altitude estimates during such ‘dark hole’ approaches [194].

A number of problems restrict the utility of the findings of perceptual psychol-
ogy for the development of interactive control systems. Experimental results cannot
always be used to directly guide systems engineering. For instance, Braune and
Wickens distinguish between functional aging, the deterioration of perceptual per-
formance above that expected for an operator’s age group, and chronological aging,
the expected deterioration of performance with age [41]. Designers could use these
findings to help them select a potential workforce; candidates with a high level of
functional aging might be rejected. These findings could also be used to inform
dialogue and display design; operators suffering from a high level of chronological
or functional aging can be supported by the presentation of additional sources of
information. Braune and Wickens stress the difficulty of measuring the deteriora-
tion of perceptual performance for particular operators. It is, therefore, difficult
for designers to develop displays that account for aging processes. This illustrates
the problems that can frustrate the application of perceptual psychology to inform
system engineering.

1.3.4 Cognitive Psychology

Cognitive psychology is concerned to identify the ways in which humans store and
manipulate information. Singleton [287], Reason [251] and Woods [329] have ap-
plied research in this area to explain the causes of operator error. Rasmussen has
built upon the findings of cognitive psychology in order to develop a skill, rule and
knowledge based classification of operator performance [246]. Skill based behaviour
involves the unconscious control of a process rather than the conscious operation of
an application through a control system. Rule based behaviour is characterised by
rules for action which are fired by the observation of system attributes. Knowledge
based behaviour involves the inference that must be used in order to determine the
state of a process from individual monitor readings. Designers can apply cognitive
psychology to determine whether operators are likely to learn, retrieve and process
the information that is necessary in order to control application processes. For in-
stance, Pew, Miller and Feehrer have used Rasmussen’s skill, rule and knowledge
framework to analyse problems in the presentation of the Westinghouse Electric
Corporation’s nuclear power production control systems [236]. Poorly designed dis-
plays inhibited skill based behaviour and were characterised by knowledge based
interaction.

A number of questions must be answered before cognitive psychology provides
designers with adequate tools for control system development. What are the dif-
ferences between the cognitive processes required during routine work and during
rare events? What are the differences between experts and novices? Rasmussen
concludes that “very little has, so far, been done in order to identify the overall

1.4. INTEGRATION THROUGH THE TASK-ARTIFACT CYCLE 9

cognitive competence required for the entire job of a person” [247]. The perceived
weaknesses of physiological and social ergonomics, perceptual and cognitive psy-
chology have led to an interest in what Norman calls cognitive engineering [227].
The integration of research within these different domains is currently being ad-
dressed by the United Kingdom’s Science and Engineering Research Council’s Task
Oriented Modelling (TOMS) project and the ESPRIT MOdels of Human Actions
in Work Contexts (MOHAWC) project. Cognitive engineering seeks to integrate
the different strands of human factors engineering [152]. Rasmussen terms this the
“new profession” of design [247]. The following chapters take such integration one
step further by introducing systems engineering into the design techniques proposed
by human factors research.

1.4 Integration Through The Task-Artifact Cycle

The iterative refinement advocated by Carroll and Kellog’s task-artifact cycle pro-
vides designers with a framework for the integration of human factors and systems
engineering [57]. This cycle can be decomposed into the three phases shown as boxes
in Figure 1.1. Systems engineers implement or modify a control system. The intro-

Figure 1.1: The task-artifact cycle

duction and use of this system creates new tasks which can be identified by human
factors engineering. Observations of use can be interpreted to assess the strengths
and weaknesses of the new system [56]. This process of interpretation is termed
hermeneutics; designers must identify and justify the human factors claims that are
embodied within an interactive system. For instance, the Cathode Ray Tube (CRT)
monitors of aircraft, such as Boeing’s 757 or Airbus Industries’ A310, embody the
claim that colour displays support the perception of avionics information. Design
progresses as the veracity of these claims is confirmed or denied. United States’
Air Force and Navy planes, commissioned since 1970, reject the claims embodied
in these commercial aircraft by restricting the use of colour displays [321]. Lewis’
agenda for research in human computer interaction cites hermeneutics as one of
the five most powerful techniques currently available to human factors practition-
ers [195]. The following sections argue that there are practical limitations to the

10 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

application of this approach as a means of integrating human factors and systems
engineering.

1.4.1 Hermeneutics And Openness

Many previous studies of human computer interaction have focused upon single users
operating single applications [210]. These systems can be described as closed be-
cause they exclude input from other operators and application processes. Designers
and users can assume that their systems will be immune from external interference.
In contrast, control systems are usually open to simultaneous input from more than
one source. This openness impairs the successful application of hermeneutics be-
cause designers frequently make inappropriate claims about the interaction between
multiple users and processes. For instance, the Flixborough Nypro disaster occurred
because nitrate discharges contaminated coolant supplied to a process by another
production-line [179]. The designers of the Nypro system claimed that the operators
of the supply source monitored their discharges. Unfortunately, this interpretation
was unjustified and the final artifact was a flawed control system.

Hermeneutics provides inadequate support for the integration of human factors
and systems engineering because it can be extremely difficult to interpret the usabil-
ity of systems that are simultaneously operated by a number of users. For example,
if an aircraft engine is damaged then the crew must rotate its propeller blades in
line with the direction of flight [320]. Accident analysis has revealed that confusion
amongst the crew will often result in the wrong set of blades being rotated. As a
result auto-feathering systems have been developed to automatically perform this
rotation. Operating procedures have been devised to ensure that the crew agree be-
fore securing the engine after its blades have been rotated. Auto-feathering systems,
therefore, embody the claim that pilots will follow operating procedures. Such as-
sumptions have proven to be unjustified. The claims which guided the development
of many auto-feathering systems did not adequately account for the group dynamics
of multiple users operating open control systems. In 1979 a Swift Aire Lines Nord
262 crashed because the automated equipment correctly auto-feathered the right
propeller while the crew agreed to shut down the left [320].

1.4.2 Hermeneutics And Complexity

Designers must selectively present relevant and timely information from the large
amounts of data that are available to a control system. Hermeneutics provides
inadequate support for control system development because it can be extremely
difficult to interpret the success or failure of complex artifacts during each iteration
of the design cycle, illustrated in Figure 1.1. The crash of a Lauda Air Boeing
767-300 provides an example of this. According to the Austrian Transport Ministry
this accident occurred when one of two computer-controlled PW-4060 engines went
into reverse in mid-flight. The pilots tried to solve this “totally unforeseen problem
with the aid of the flight manual but were unable to do so” [309]. The complexity of
modern avionics prevented designers from identifying the three independent system
failures required in order to reverse the thrust. They failed to accurately assess
the usability of their interface because they did not identify the claims that were
embodied in their artifact. In other words, they failed to recognise the implicit

1.5. INTEGRATION THROUGH PRINCIPLED DESIGN 11

assumption that operators must resolve such unexpected problems with minimal
support from their avionics.

1.4.3 Hermeneutics And Dynamism

Carroll and Kellog argue that the task-artifact cycle encourages designers to treat
“situations, users and artifacts as unique instances” [57]. This complicates the de-
sign of systems that must operate in situations which change over time. For instance,
a Liquid Crystal Display (LCD) engine monitoring system was initially introduced
into the Boeing 737-400 series. The interface to this application is very different
to those previously available on Boeing 747-200s (electromechanical dials or trend
monitors) and 747-400s (CRT displays) [191]. The introduction of LCD engine
monitors altered the situation of use for avionics in the B-737-400 series. In such
circumstances, Carroll and Kellog argue that the cockpit must be reinterpreted in
order to assess the claims which it now makes about the human factors of control.
This approach can be justified for many safety-critical applications. The expense of
re-evaluation after such alterations is a considerable disincentive to the commercial
exploitation of the task-artifact cycle. There are also ethical and regulatory prob-
lems with this approach. For instance, is it acceptable to test new components in
situations that can lead to loss of life? If artifacts must be evaluated in their work-
ing environment then hermeneutics consigns designers to post-hoc analysis. It traps
them within what can be termed the task-artifact-accident cycle. The United King-
dom’s Department of Transport’s Air Accidents Investigation Branch cited LCD
engine monitoring systems as a possible cause of the pilot error that contributed to
the Kegworth disaster [191]. Many airlines reverted to the use of electromechanical
dials and CRT displays following the Kegworth accident. This was clearly a costly
lesson in interface design. The disaster demonstrates that the task-artifact cycle is
unacceptable when design iterations sacrifice the safety of a system and its oper-
ators. There is a pressing need for development techniques that can guide human
factors and systems engineering prior to full implementation.

1.5 Integration Through Principled Design

A ‘principle’ is defined to be “a fundamental truth or law as the basis of reasoning
or action” [12]. Thimbleby argues that principles can be exploited to support the
development of interactive systems [301]. They are to be distinguished from guide-
lines that inform particular decisions during the design of particular interfaces [216].
For instance, experimental evidence suggests that unanticipated cursor positioning
is faster using a mouse. Thimbleby argues that this can only be a guideline because
other evidence suggests that key selection is faster than mouse selection on a known
menu [302]. Before investigating whether principles can support the integration of
human factors and systems engineering it is important to ask: where do principles
come from? There is no simple answer to this question and it is a research issue in its
own right [304]. Principles can be derived from widely accepted design objectives.
These principles are the “fundamental” truths. For instance, the ‘What You See
Is What You Get’ principle is a common, if rarely achieved, objective for interface
development [304]. Principles can also be derived from objectives that have proven
useful in one domain and which could have a wider application. These principles

12 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

are laws that provide “the basis of ... action”. For instance, the ‘What You See
Is What I See’ principle has been applied to multi-author text editors but it might
also be used to guide the development of multi-user control systems [290]. Princi-
ples can be derived from risky objectives that have paid-off in previous systems. For
instance, there is little agreement about the value of consistency in the presentation
of interactive systems [125]. Consistency does, however, provide a useful principle
if designers can reason about the costs and benefits that are to be gained from it.
These principles are laws that provide “the basis of reasoning”.

Principles can be used as criteria against which to assess the strengths and weak-
nesses of existing designs. For instance, the principle of accountability is embodied
within the Notification Of Installations Handling Hazardous Substances Regulations
[140] and the Control of Major Industrial Accident Hazard Regulations [141]. Plant
management is accountable to the Health and Safety Executive (HSE), the HSE is
accountable to Parliament. A design can be criticised if this chain of accountabil-
ity is broken. Principles can also guide development prior to implementation. For
example, the HSE advocates the principle of localised risk. Potential accidents in
a production process should not threaten the safety of large population centres. It
follows that certain forms of chemical reactors must not be constructed up-wind of
large towns or cities. Companies need not go to the costs of designing and building
such artifacts to know that they will be judged as unsafe!

1.5.1 Principles And Openness

Principles can support the development of control systems that are open to input
from multiple users and application processes. For instance, the United States’
Electric Power Research Institute’s human factors review of nuclear power plant
control rooms found meters that could not be read from their control panels which
were located thirty feet away [280]. Critical displays were presented on the reverse
of panels whose primary displays were devoted to non-critical information. They
discovered two monitor scales which were identical except that the left hand device
was read at ten times the value of the right. These design problems arose because
control panels, displays and meters were frequently sub-contracted to a number of
different companies. Each of these manufacturers adopted different standards for
the presentation of application processes. Principles provide human factors and sys-
tems engineers with a means of tackling this lack of standardisation. For instance,
designers might adopt the principle of allocating display resources in proportion to
the importance of the data to be presented. This principle could be imposed as a re-
quirement that must be accepted by any company tendering for the instrumentation
of a production process.

1.5.2 Principles And Complexity

Designers must determine how best to allocate finite development resources to sup-
port the design of interactive control systems. Principles can be used to guide
this task. For instance, the MANpower and PeRsonnel INTegration (MANPRINT)
project has developed a set of objectives which must be used to evaluate any inter-
face procured by the United States’ Army [202]. These objectives can be viewed as
design principles; they have been derived from analyses of previous successes and

1.6. A PRINCIPLE, A NOTATION AND A TOOL 13

failures in military procurements. They can help to focus the application of devel-
opment resources. For instance, MANPRINT recommends that all manufacturers
conduct “front-end analyses” to ensure that display resources are allocated in pro-
portion to the importance of the data which they present [137]. These objectives
have been selected to encourage the integration of human factors and systems en-
gineering. Contractors are not only required to test the performance of automated
systems, they are also required to evaluate the cognitive and perceptual workloads
that systems impose on their operators. American defence suppliers, such as Hori-
zons Technology, claim that principles direct the development of complex control
systems and avoid the “problems of piecemeal and uncoordinated action” [137].

1.5.3 Principles And Dynamism

As a consequence of the Presidential investigation into the Three Mile Island acci-
dent, the United States’ Nuclear Regulatory Commission (NRC) adopted the prin-
ciple of minimal intervention [236]. Whenever possible operators should not be
required to intervene in order to preserve the safety of their system. This princi-
ple was embodied in the terms and conditions of operation that were imposed upon
plant management. For instance, it was stipulated that automatic systems must run
high-head charging pumps, part of the emergency cooling equipment, for at least
twenty minutes after reactor scrams. A scram occurs when neutron absorbers are
inserted into a reactor in order to slow the reaction process. It was assumed that
such legislation would ensure minimal operator intervention. The 1979 North Anna
incident illustrates some of the problems which can occur when principles are em-
bodied in the regulations that govern the operation of dynamic systems. Changes
in the generation process employed by the North Anna reactor led to dangerous
temperature profiles following a scram. The operators were faced with a difficult
choice. If they obeyed NRC regulations then the safety of the plant would be threat-
ened; they would no longer be able to predict its behaviour. If they disobeyed the
regulations then the plant could be saved but they would break the NRC conditions
of operation. Fortunately, plant management chose to disregard the principle of
minimal intervention. A pump was taken off the coolant circuit and the emergency
was resolved. Duncan observes that this incident underlines the dangers of trying
“to prescribe regulations, procedures or algorithms, especially when these prescrip-
tions are backed by legal sanctions” [91]. This emphasises the point that designers
should not impose principles as inflexibly as the rules proposed by the NRC. Prin-
ciples should not be viewed as axioms that must hold throughout interaction; they
provide constraints that should only be violated if the consequences are understood
and accepted by designers and operators.

1.6 A Principle, A Notation And A Tool

The North Anna incident, described in the previous section, illustrates two impor-
tant requirements that must be satisfied by techniques which support principled
design. Firstly, they should help designers to identify potential conflicts between
principles. Minimal intervention might threaten other objectives, such as safety or
efficiency. In order to resolve such conflicts, designers must be able to identify the
costs and benefits of particular principles. Secondly, development techniques must

14 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

help designers to ensure that principles have some relevance for system operators.
The NRC regulation was ignored because reactor control staff viewed the ability
to predict the consequences of their actions as more important to the operation of
their system. In other words they chose to adopt their own principle of predictability
rather than the regulatory authorities’ principle of minimal intervention. This the-
sis argues that formal notations and prototyping tools provide means of satisfying
these requirements for principled design techniques.

1.6.1 The Principle: Predictability

Predictability provides an exemplar with which to assess the utility of formal nota-
tions and prototyping tools. This principle requires that the effect of any operation
which can be invoked from an interface can be deduced unambiguously from a knowl-
edge of its function combined with the data displayed at the time of invocation [87].
Predictability has been chosen because human factors research has identified it as
an important property of many interactive control systems. De Keyser argues that
anticipation is vital for decision making in complex environments [173]. Umbers
suggests that a users’ control strategy is determined by the predicted effects of their
actions [310]. Bainbridge argues that operators rely upon predictions about the im-
pact of their commands when responding to unexpected or novel situations [21]. A
further justification for adopting this principle is that human factors engineers must
recruit systems engineering in order to support predictable interaction. For exam-
ple, pigment production plants frequently rely upon varying air pressures to regulate
magnetic flow meters [47]. If the air supply fails then production is stopped. In con-
sequence, operators cannot predict that their commands will be successful unless
they can guarantee a correct level of air pressure. Predictability has been preserved
in these applications by using the automation of systems engineering to detect and
resolve air supply failures [36].

1.6.2 The Notation: Interval Temporal Logic

Human factors and systems engineering might use everyday language to represent
design principles. A number of problems limit the utility of this approach. Brooks
notes that natural language is “not a precision instrument” [44]. Its semantics are
so rich and its linguistic structures are so varied that it is difficult for designers
to define principles unambiguously. For instance, it is unclear what is meant by
“data displayed” in the previous definition of predictability. Does this refer only to
control system displays or does it also include manuals and paper documentation?
Does this refer to all the information displayed or just to that portion which can
be sampled by the finite perceptual resources of system operators at a particular
point during interaction? These problems can be resolved by elaborating the defini-
tion. Predictability requires that the effect of any operation which can be invoked
from an interface can be deduced unambiguously from a knowledge of its function
combined with the data that a user can perceive from the display, excluding paper
documentation, which is presented to them at the time of invocation. This does
not avoid ambiguity. What is meant by “the effect”? What is meant by “any op-
eration”? These ambiguities could, of course, be resolved by further elaboration.
Designers must then determine whether these definitions require additional clarifi-

1.6. A PRINCIPLE, A NOTATION AND A TOOL 15

cation. Further problems are created because principles can be expressed in a large
number of syntactic forms. For instance, one design team could draft their princi-
ples using brief rules of thumb that are similar to our definitions of predictability.
Others might require that principles are described using detailed and numerous case
studies. These differences can make it difficult to ensure that development teams
abide by the same design principles [150]. Human factors and systems engineers
could overcome these problems by exploiting languages that offer a more restricted
syntax and semantics [77].

Production Systems

Production systems constrain the syntax that designers can use to represent the
requirements of principled design. Chapter 2 will describe their application in more
detail. For now it is sufficient to realise that these systems consist of rules which
specify that IF an antecedent is true THEN a consequent holds:

CONDITION(< rule_name >,IF < antecedent >, THEN < consequent >)

The angled brackets (< and >) denote terms that must be instantiated by designers
in order to specify a particular production. The following rule illustrates how they
can be used to represent systems engineering requirements; the SYSTEM must
handle input to start production. It also represents a human factors requirement
because the operator must issue INPUT to turn the system on:

CONDITION (effect_rule, IF FACT(INPUT, user,on)THEN
ADD FACT(SYSTEM, on, on_display))

Production systems are not ideally suited to the design of interactive control sys-
tems. Many principles cannot be guaranteed throughout interaction; it is frequently
impossible to achieve the predicted effect of operator input if components fail.
Such changes can be represented by adding and removing production rules from
a database of design constraints. This imposes considerable burdens upon develop-
ment resources. Designers must not only select and represent relevant principles but
they must also consider the way in which those representations will be maintained
within a database of rules.

Z

Human factors and systems engineers might use the Z specification language to
represent an interactive system at a high level of abstraction [296]. For instance, they
could use Z to represent the PiE model [88]. This describes an interactive system
in terms of a closed world; the behaviour of the system is completely determined
by previous operator input. Section 4.1.2 will argue that such assumptions are
inappropriate for control systems that are open to interaction with multiple users
and application processes. A set, Programs, can contain all the possible command
sequences that an operator could enter into a system. The elements of another set
can describe the Effects of Programs on a system:

[Programs, Effects|

16 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

Schemas are syntactic units which are used to declare, type and relate variables.
They can be used to specify predictability requirements in terms of properties that
hold between elements of sets. In the following schema, ps p denotes the input se-
quence po followed by sequence p. It describes a predictability requirement because
the effects of command sequences, p, are dependent only upon the effects achieved
by previous sequences, p; and p2. In other words, if operators can determine the ef-
fects of previous interaction then they might predict the effects of future commands.
This can be viewed as a requirement to be satisfied by systems engineering; an im-
plementation of the interpretation function i must satisfy the constraints described
by the schema. It can also be viewed as a human factors requirement; operators
must be able to determine the effects of previous interaction:

__PredictableSystem
i: Programs — Effects

vV p1, p2 : Programs
e i(p1) =i(p2) =
Vp : Programs
i(p1 p) =i(p2 P)

7 cannot easily be applied to describe interaction with the multiple processes of
open control systems. Designers must explicitly construct a process algebra on top
of the schema notation and its associated calculus [297]. In other words, it does not
possess a language that is specifically intended to represent and reason about the
problems of concurrent interaction. In order to avoid this limitation Abowd [3] has
integrated Hoare’s Communicating Sequential Processes (CSP) notation [148] into
the Z language.

CSP

Designers might use CSP to describe interaction between a user and their system.
For instance, an Operator provides input, then reads the display then continues to
behave like an Operator or ceases to use the system:

Operator =

(clinput — (d?’read — (Operator M Skip)))

A System receives input, provides output and continues to behave like a System
or non-deterministically terminates:

System =
(c?input — (d!output — (System 1 Skip)))

The Operator and System interact concurrently and this is denoted as follows:
Operator || System

It is possible to develop this approach to describe interaction between multiple op-
erators by increasing the number of channels, ¢ and d, over which communication

1.6. A PRINCIPLE, A NOTATION AND A TOOL 17

can occur. Designers might use this CSP description to identify predictability re-
quirements. For instance, a System violates the previous requirement and behaves
unpredictably if it does not present any output in response to Operator input.

Not only can CSP be used to analyse design principles but it can also be used
to build prototypes that embody those principles. The experimental evaluation of
partial implementations can ensure that the principles which guide human factors
and systems engineering also have some utility for system operators. Alexander has
developed a range of prototyping tools to implement CSP specifications of inter-
active systems [7]. Designers must perform non-trivial translations from CSP to
eventCSP and from eventCSP to eventISL (Interaction Specification Language) be-
fore prototypes can be implemented using the me too programming language [143].
Alexander describes me too as “an executable subset of VDM (Vienna Development
Methodology)” [6]. It seems appropriate, therefore, to examine whether the nota-
tion of VDM is better suited to support a principled approach to the integration of
human factors and systems engineering.

VDM

Designers might use VDM operations to describe the effect of user input upon the
state of a control system:

0P(x1:Ty,...,xn:Th) r1:Thyi,---5rm:Thom
ext rd readvars wr writevars

pre pre

post post

The operation OP has inputs x; of type T to xy, of type Ty. OP yields the results
ry of type Thy1 up to ry of type Tyhim. After the keyword rd a number of state
variables are given for reading and writing during this operation. The pre state
defines conditions between the readvars and writevars that must hold before the
operation can be applied. The post state describes the conditions that hold for
those variables after the invocation of OP. This notation can be used to represent
predictability requirements. Designers could require that operators can predict the
effect, post, of all operations which can be invoked from an interface given some
pre conditions.

Human factors and systems engineers cannot easily exploit VDM to represent
concurrent interaction with complex and dynamic control systems. Describing an
interactive system in terms of pre and post conditions implies a very sequential
view of interaction. Users call an operation, wait for the effect and then call another.
The state of a process is visible through the sequential evaluation of individual OPs.
This is a significant limitation. Human factors and systems engineers are frequently
concerned that certain conditions do or do not hold during an OP. For instance, a
system should not enter an error state before it reaches a post condition. Kooij
resolves this deficiency by introducing intermediate conditions, inter, which hold
between pre and post conditions [180]. These are specified using interval temporal
logic.

18 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

Interval Temporal Logic

Human factors and systems engineering have recognised that temporal properties
frequently determine the success or failure of interactive control systems. Hysteresis
effects can reduce the accuracy and reliability of sensing technology [36]. Delays
in system responses lead to operator frustration and error [186]. The notation
selected to demonstrate the feasibility of principled design should, therefore, be
able to capture such properties. Interval temporal logic fulfills this requirement
by providing operators such as (O (read as ‘next’), O (read as ‘always’), < (read
as ‘eventually’) and U (read as ‘until’) [205]. Appendix A presents the syntax and
semantics of this language. It is important to note that “... all effective proof systems
for temporal logic are incomplete for the standard semantics, in the sense that some
formulas hold in every intended model but cannot be proved” [1]. Appendix B
describes research that is intended to resolve such limitations. In contrast, this
thesis intends to show how temporal operators might be used to specify requirements
that must be satisfied by the human factors and systems engineering of interactive
control systems. For instance, it is important that operators can view the effects,
s’, of their commands, ¢, through a display, d, if they are to learn to predict the
consequences of their interaction:

VeceC,VseS,3ddeD:
visible_effect(c,s,d) < 3s’ € S(effect(c,s,s’) A Oview(s',d)) (1.1)

This might be interpreted as a human factors requirement; operators must eventually
deploy their perceptual resources in order to view the effect of their commands.
Systems engineers could interpret this as a requirement to eventually display the
state transitions, from s to s, that are caused by commands.

1.6.3 The Tool: PRELOG

Thimbleby argues that Generative User Engineering Principles (GUEPs) might be
expressed in two different forms [304]. One could be used by designers, the other
might be exploited by system operators. He argues that formal notations, such as
those described in the previous section, provide the precision and clarity required
by designers. Vernacular, everyday language is proposed as a means of expressing
GUEPs in a form that is accessible to system operators. Neither vernacular nor
formal expressions help designers to determine whether operators will actually be
able to predict the effects of their commands. Providing users with an informal def-
inition of predictability does not guarantee that this principle will help them during
the operation of a particular control system. Formal requirements and their natural
language counterparts provide users with little impression of the ‘look and feel’ of
potential implementations. In contrast, this thesis argues that prototypes can em-
body GUEPs in a form that is accessible to designers and operators. PRELOG, a
system for Presenting and REndering LOGic specifications of interactive systems,
has been developed to support this argument. The term ‘rendering’ is used here to
describe the introduction of device and presentation details into abstract require-
ments. This additional information is necessary in order to implement prototypes
that can be used to validate the products of a formal analysis of design principles.

1.7. STRUCTURE OF THIS THESIS 19

Unlike Alexander’s tools, mentioned in Section 1.6.2, PRELOG minimises the trans-
formation necessary to move from principles to executable prototypes of interactive
control systems.

1.7 Structure Of This Thesis

The central argument of this thesis is that designers can exploit principles to in-
tegrate the human factors and systems engineering of interactive control systems.
Figure 1.2 illustrates how each chapter of the thesis supports this argument. The

Figure 1.2: The structure of this thesis

following paragraphs itemize the contributions of these chapters.

Chapter 1 has argued that designers must be able to integrate human factors and
systems engineering in order to enhance the usability of many interactive control
systems. The task-artifact cycle does not support this integration because an inter-
face is assessed after it has been implemented. Principled design has been advocated
as an alternative. Designers can use important properties of interactive control sys-
tems as heuristics to guide subsequent development. Principles also provide criteria
against which to assess the usability of existing interfaces. Predictability has been
chosen as an exemplar principle because it has been an important factor in the
successful design and operation of many control systems. In order to exploit this
approach designers must be able to represent the requirements imposed by design
principles in a form that avoids the limitations which restrict the utility of vernacu-
lar specifications. It has been argued that formal, mathematically based, notations
can be used to achieve this.

Chapter 2 focuses the search for a notation which designers might use to rep-
resent requirements imposed by principles, such as predictability. It is argued that
production systems are intractable as a means of representing information which
changes over time. The lack of explicit sequencing in first order predicate logic
limits its utility for the principled design of dynamic systems. Interval temporal
logic is advocated as an alternative that avoids these limitations. Human factors
and systems engineers might use this notation to represent techniques that support
principles, such as predictability.

20 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

Chapter 3 argues that complexity threatens the utility of principles as a means of
integrating human factors and systems engineering. It is extremely difficult to rep-
resent and reason about design principles in terms of thousands of sensor readings
and command options. Formal, mathematically based notations ease these burdens
by providing abstractions which represent common components of many different
control systems. Systems engineers might use these formalisms to identify high level
objectives for automation without committing themselves to particular implementa-
tions. Human factors engineers could use them to identify techniques that ease the
burdens which complexity places upon the finite cognitive and perceptual resources
of system operators.

Chapter 4 argues that design principles might guide the development of open
control systems. They can be used to identify the concurrency requirements that
frequently determine the success or failure of such applications. Formal notations
can be used to clarify the costs and benefits of systems engineering techniques, such
as automated state locking, as means of supporting predictable interaction with open
systems. They might also support analyses of human factors alternatives, such as
the organisational changes recommended by social ergonomics.

Chapter 5 argues that principles provide designers with a means of informing
their choice of particular development architectures. It is argued that this decision
can have important consequences for both the human factors and systems engineer-
ing of a control system. In particular, recent claims that object orientation supports
the development of consistent and predictable interfaces are assessed.

Chapter 6 argues that designers might use principles to highlight the poten-
tial weaknesses of development architectures. These weaknesses can frequently only
be resolved by integrating techniques drawn from human factors and systems en-
gineering. In particular, it is argued that object oriented control systems must
provide their operators with additional sources of information when display objects
fail to provide accurate representations of process components. Human factors de-
sign techniques, drawn from cognitive and perceptual psychology, must be used to
ensure that operators can exploit the additional sources of information provided by
systems engineering.

Chapter 7 argues that design bias limits the successful application of principled
design. Design bias occurs when either experimental or formal techniques dominate
development. Prototyping is proposed as a means of avoiding this bias. Partial
implementations are amenable to the experimental analyses of human factors en-
gineering. They can be used to assess the physiological ergonomics of potential
implementations. Prototypes can also be used to identify some of the cognitive and
perceptual demands that a control system places upon its operators. They can be
shown to systems engineers to determine whether principles, such as predictability,
could be achieved within the constraints of control technology. Finally and most im-
portantly, prototypes can be shown to potential users in order to determine whether
principles, such as predictability, have any relevance for system operators.

Chapter 8 argues that the approach, proposed in this thesis, is methodologically
inadequate. It does not support the integration of human factors and systems engi-
neering during all stages of design. Better development techniques must be devised
to support the elicitation, verification, refinement and validation of principles. No-
tational improvements must be made so that designers might represent real-time
requirements, risks and operator expertise. Better tool support must be provided

1.8. INSIGHTS PROVIDED BY THIS THESIS 21

for the generation of detailed designs from abstract principles, for the generation of
prototype displays and for the transition between partial and full implementations.
Chapter 9 summarises the conclusions that can be drawn from this thesis.

1.8 Insights Provided By This Thesis

In addition to the central argument, advocating a principled approach to design, it
is hoped that this thesis will also provide a number of insights into techniques which
can be used to support the development of interactive control systems.

1.8.1 Dialogue Cycles And Optimised Display Design

Chapter 2 builds upon work by Harrison, Roast and Wright [134] and argues that
dialogue cycles provide designers with a powerful means of optimising the presen-
tation of interactive control systems. These cycles use elements of a display, called
gates, to indicate the beginning and end of command dialogues. A gate is presented
when a user first issues a command and it is not presented again until that command
has taken effect. It is argued that formal notations provide a means of representing
the requirements that must be satisfied in order to exploit dialogue cycles, without
considering low-level presentation details. This helps designers to develop display
optimisation techniques early in development when it is often impossible to deter-
mine the presentation of a final implementation.

1.8.2 Transparency, Focusing And Restriction

Chapter 3 identifies state, display and command-view correspondence as problems
that complicate the human factors and systems engineering of interactive control
systems. State correspondence occurs when different states of an application pro-
cess are represented by the same state of a control system. Display correspondence
occurs when different states of a control system are presented by the same dis-
play. Command-view correspondence occurs when different sources, such as CRT
displays and paper-based documentation, present information about the same com-
mand. Transparency, focusing and restriction are advocated as techniques which
designers could exploit in order to reduce the problems that correspondence cre-
ates. Transparency requires that operators can differentiate between process states,
control system states or command options. Focusing ensures that users can de-
tect differences between states which they can affect. Restriction ensures that if
a number of different sources of information are available for particular states or
commands then those sources are not all presented at the same time.

1.8.3 Input And Output Protocols

Chapter 4 identifies input and output contention as problems facing the human fac-
tors and systems engineering of open control systems. Input contention can arise
when a number of operators simultaneously attempt to access a shared resource.
Output contention occurs when operators must simultaneously allocate finite cogni-
tive and perceptual resources to monitor different application processes. It is argued
that these problems can lead to unpredictability. Interval temporal logic is used to

22 CHAPTER 1. THE JUSTIFICATION FOR INTEGRATION

specify input and output protocols which designers might use to reduce the impact
of input and output contention.

1.8.4 Object Orientation And Consistency

Chapter 5 assesses recent claims that human factors and systems engineers can
exploit object orientation to achieve consistency [190]. Previous authors have argued
that it is extremely difficult to define the term ‘interface consistency’ [125]. It
is, therefore, a non-trivial task to justify the claimed benefits for object oriented
design. Interval temporal logic is used to demonstrate the basis for these assertions
and to represent techniques that designers might exploit to support consistency
and predictability. If objects are consistent then operators might predict that the
consequences of issuing a command to one instance will be the same as issuing
that command to any other instance of the same class. It is argued that this form
consistency can be achieved through type instantiation.

1.8.5 Break-Down And Indirect Presentation

Chapter 6 agues that since the early 1960s designers have attempted to make the
graphical representation of control objects conform as much as possible to the real-
world appearance of process components [53]. Some human factors researchers have
recently abandoned this pictorial realism [59]. Using interval temporal logic it is
possible to explain this as an attempt to avoid the problem of break-down. Break-
down occurs when operators must interact with physical components that appear
to be complex and unpredictable in contrast to the control system objects which
represent them. Many of the displays proposed by human factors research provide
insufficient information for complex control tasks. Indirect presentation techniques
are proposed as alternatives that avoid this limitation.

1.8.6 Input Events And Structured Graphics

Chapter 7 argues that, although partial implementations provide a means of val-
idating the products of formal analyses, specification and prototyping are usually
treated as alternatives. Integrating these techniques involves the introduction of
device and presentation details, such as mouse handling and screen updates, into
high-level designs. These details do not normally form any part of mathematical
specifications and can threaten the tractability of a design. It is demonstrated that
device abstractions and structured graphics systems provide means of avoiding this
problem. In order to support these assertions we have implemented PRELOG, a
tool for Presenting and REndering LOGic specifications of interactive systems.

The contribution of this thesis can be summarised by re-iterating the quotation
that introduced this chapter. The purpose is to “show what has gone wrong in the
past and to show how similar incidents might be prevented in the future”. The
integration of human factors and systems engineering through principled design is
intended to ensure that “the lessons are (not) forgotten”.

Part 11

Principles And The
Fundamental Problems Of
Control

23

24

Introduction To Part 11

This part of the thesis argues that designers might recruit principles to help them
resolve the fundamental problems of control: dynamism; complexity and openness.

Chapter 2 identifies a notation which designers can use to represent the require-
ments that principles impose upon dynamic systems. It is argued that production
systems are intractable as a means of representing information that changes over
time. The lack of explicit sequencing in first order predicate logic poses problems
for the representation of interactive dialogues. Interval temporal logic is advocated
as an alternative that avoids these limitations. This notation supports integration
because it can be used to represent the trade-offs that human factors and systems
engineers must frequently make in order to achieve design principles.

Chapter 3 argues that complexity hinders both the design and operation of inter-
active control systems. Users must monitor and detect deviations in large amounts
of interconnected application data. Users must select the most appropriate form
of intervention from all the command options provided by an interactive control
system. Designers must develop systems that help operators to perform these tasks.
Principles can be recruited to support the design of complex systems because they
establish high-level objectives for development. These objectives encourage inte-
gration because human factors and systems engineering must frequently be used in
conjunction in order to achieve principles, such as predictability.

Chapter 4 argues that designers can exploit principles to guide the development
of control systems that are open to interaction with multiple operators and processes.
Principles provide criteria against which to assess human factors and systems engi-
neering techniques that are intended to avoid input contention between concurrent
users. They can also be used to assess techniques that are intended to support the
concurrent presentation of application processes. It is argued that principles sup-
port the integration of human factors and systems engineering because they provide
common standards against which to assess the products of these complementary
approaches to design.

Chapter 2

Dynamism

“When a world is dynamic ... there can be time pressures, tasks can
overlap, sustained performance is required, the nature of the problem to
be solved can change and monitoring requirements can be continuous or
semi-continuous and change over time” (Woods, [329]).

2.1 Introduction

This chapter argues that designers might use principles to guide the development
of dynamic control systems. The dictionary defines the adjective ‘dynamic’ to be
“energetic, active, potent” [12]. In terms of this thesis, a dynamic system is one that
requires its operators to monitor and control process variables that change at a rate
which is likely to stretch their cognitive and perceptual resources. The problems of
developing interfaces to energetic, active and potent applications are illustrated by
the quotation that opens this chapter. The following pages argue that:

e formal notations provide means of representing techniques that can be used
to achieve principles in dynamic control systems;

e first order predicate logic and production systems are inadequate for this task;

e interval temporal logic avoids the limitations of first order predicate logic and
production systems.

It is concluded that interval temporal logic provides a notation which designers can
exploit to support the integration of human factors and systems engineering.

2.1.1 Consequences: Stress And Unpredictability

The demands of controlling dynamic applications can cause considerable stress for
system operators. For instance, Kuhmann, Boucsein, Schaefer and Alexander found
that the incidence of high blood pressure, headaches and eye pain increased with
the rate at which the values of process variables were updated [187]. In contrast,
Schleifer and Amick found that operators quickly become frustrated if their system
responds too slowly to their commands [274].

The temporal properties of an application can also determine the success or
failure of design principles. Schleifer and Okogbaa argue that the psychological

25

26 CHAPTER 2. DYNAMISM

characteristics which “make slow system response time a particularly stressful event
include unpredictability and lack of control” [275].

2.1.2 Causes: Process And Dialogue Dynamics

The problems of operating dynamic systems are partly caused by the temporal
properties of underlying production processes. For instance, faults in oil-production
platforms can develop in seconds. There are, therefore, certain operations that
require constant monitoring from system operators. Lord Cullen’s report found
that the accommodation module of the Piper Alpha platform was engulfed in flames
within fifteen seconds of the initial explosion [81].

Production processes do not always determine the temporal properties of inter-
action. The problems of operating dynamic control systems are also caused by the
temporal properties of interactive dialogues. The crew’s response to the Piper Al-
pha explosion was delayed by the problems of issuing commands to start fire-fighting
systems. Deluge equipment could have been activated but dialogue interlocks, or
safety checks, prevented them from being started during diving operations.

2.1.3 Solution: Formal Notations

Designers might exploit a number of techniques to reduce the problems of operating
dynamic control systems. Human factors and systems engineering could optimise
dialogue design; the tempo of interaction can be changed by altering the rate at
which information is displayed. For example, improvements in the presentation of
safety systems, such as the fire-fighting equipment installed on the new Piper Bravo
platform, are intended to buy time for system operators [147]. Graphical displays
can present process summaries rather than the details of every sensor reading. Al-
ternatively, designers could increase the tempo of interaction by providing predictive
displays about the anticipated state of application processes. A predictive display is
defined to be any display that presents information about the possible future states
of a system. Flexible, or mixed initiative, task allocations can change the tempo
of interaction by altering the allocation of control tasks between a system and its
users at run-time. For instance, deluge equipment could be activated automatically
if operators fail to detect a rig-fire [119]. This flexible task allocation shares the
burdens of predictability. Systems must anticipate the effects of its actions in order
to select an appropriate course for intervention, just as users must predict the effects
of their interaction.

Designers must make a number of trade-offs if they are to exploit techniques,
such as display optimisation and flexible task allocation. There are consequences
for human factors engineering if systems engineering allocates operator tasks to au-
tomated equipment at run-time. The cognitive and perceptual demands upon users
can be increased if system intervention changes the effects of their commands from
those that would otherwise have been predicted. There are similar problems with
optimised dialogue design. For instance, Yeh and Wickens argue that predictive
displays add to clutter and increase visual workload [332]. It is important, there-
fore, that human factors and systems engineers can represent and reason about the
costs and benefits which such techniques have for the principled design of dynamic
systems.

2.2. PRODUCTION SYSTEMS 27

2.2 Production Systems

Production systems provide a suitable medium for integration through principled
design because they have been used by human factors and systems engineering.
Systems engineering has exploited production systems to support the development
of automated control systems. For instance, the mission planner of the Mithra au-

Figure 2.1: The Mithra autonomous robot

tonomous robot, illustrated in Figure 2.1, was developed using a production system
[61]. Post argued that mathematics can be viewed as a process of symbol manip-
ulation and that any computable manipulation can be modelled using production
systems [240]. Human factors researchers, such as Rasmussen and Pederson [250],
Reisner [255] and Shneiderman [285], have used production systems to analyse the
cognitive and perceptual demands that interfaces impose upon their operators.

2.2.1 Facts and Rules

There are two elements of most production systems: facts and rules [83]. Designers
could use facts to represent properties of predictable control systems. For instance,
operators might make accurate predictions about the effects of their commands upon
the state of a control system if they can observe that state from the information
displayed. It must, therefore, be a fact that displays provide accurate information
about the state of a control system. Human factors engineering must develop presen-
tation formats that enable operators to recognise that the on_display represents a
fire-fighting system which is on. Systems engineering must deploy sufficient sensing
equipment so that it is possible to detect that the system is in the on state.

FACT(SYSTEM, on, on_display)

28 CHAPTER 2. DYNAMISM

This illustrates an important advantage of production systems. Facts can be used
to specify objectives for principled design without specifying the images and sensor
readings that must be used by a particular implementation. Designers can postpone
such decisions until later stages in development when more information is available
about the costs and benefits of hardware platforms and presentation devices [304].
Facts can also be used to represent input. This is important if production systems
are to represent techniques that are intended to support predictions about the effects
of operator intervention. For instance, designers could require that a user provides
INPUT to start a system:

FACT(INPUT, user, start)

Unfortunately, human factors and systems engineers cannot easily use the facts of
production systems to represent the effects of operator INPUT. Rules, or produc-
tions, can be used to avoid this limitation. They consist of a pre-condition and a
post-condition. The pre-condition describes constraints that must hold before a rule
can be fired. The post-condition describes constraints that should hold after a rule
has been fired. Computation can be modelled in terms of the changes caused to
the facts known about a system by the successive selection and firing of rules. For
instance, operator predictions could be supported by ensuring that if they start a
fire-fighting system then it is on, not off, and the on_display is presented, not the
off _display:

CONDITION (effect_rule, IF FACT(INPUT, user, start) THEN
REMOVE FACT(SYSTEM, off, off_display)AND
ADD FACT(SYSTEM, on, on_display))

Designers might use facts and rules to assess the impact that techniques, such as
display optimisation and flexible task allocation, have upon principles for the human
factors and systems engineering of dynamic control systems.

2.2.2 Rule Competition And Task Allocation

Automated systems are, typically, allocated tasks that require rapid intervention.
In contrast, operators are frequently required to provide a flexible response to un-
expected conditions. There are circumstances when such a static allocation of tasks
fails to guarantee the safety of dynamic control systems. Equipment failure can pre-
vent a system from providing a timely response. Heavy workloads can prevent users
from intervening to resolve unexpected errors. Lee and Moray [192] and Bainbridge
[22] argue that systems must assume operator tasks when the dynamism of appli-
cation processes stretches their perceptual and cognitive resources. Rouse suggests
that designers can prepare for changes in the allocation of tasks by encouraging
operators to routinely perform system activities and vice versa [261]. For instance,
automated equipment on oil-rigs can intervene to perform some operator tasks,
such as tightening threaded drill connections with hydraulic tongs [159]. If systems
fail then operators can resume manual control. Designers can use rule-competition
between two productions to represent the requirements that must be satisfied in
order to exploit this flexible task allocation. Rule-competition occurs when two pro-
ductions share the same antecedent but have different consequents. For instance,

2.2. PRODUCTION SYSTEMS 29

designers might specify that if a sensor detects a pipe with a thread_loose then a
user issues INPUT to secure it. It could also be specified that if a sensor detects
a pipe with a thread_loose then the system intervenes:

CONDITION (effect_rule, IF FACT(INPUT, sensor, thread _loose) THEN
ADD FACT(INPUT, user, secure_thread))

CONDITION (effect_rule, IF FACT(INPUT, sensor, thread_loose) THEN
ADD FACT(INPUT, system, secure_thread))

These production rules provide designers with a basis upon which to assess the
advantages and disadvantages of techniques, such as flexible task allocation, for
predictable interaction. They capture the benefits of flexible task allocation be-
cause either the system or its user responds to sensor INPUT. This provides
redundancy. If human factors engineering fails to ensure that users can deploy
their perceptual and cognitive resources to respond to an error then the automation
of system engineering can intervene. Alternatively, if automation fails then users
might respond. These production rules also capture the costs which limit the utility
of flexible task allocation; either rule can fire given the antecedent INPUT. The
rules do not determine whether the operator or the control system will respond to
a thread_loose warning. This provides an example of what Kowalski describes as
“don’t care non-determinism” [182]. It does not matter which of the rules is fired
because both describe legal traces of interaction. This non-determinism has a pro-
found consequence for usability. Operators cannot predict that the effects of their
commands will be free from the interference that can occur if automated equipment
responds to the sensor INPUT. The use of production rules helps to clarify the
point that flexible task allocation provides redundancy at the cost of jeopardising
predictability. In order to avoid such non-determinism designers must specify the
order in which these rules are to be selected. Section 2.2.4 will explain how this can
be done.

2.2.3 Rule Collision And Display Design

Designers might optimise display design in order to reduce the cognitive and percep-
tual demands that are placed upon the operators of dynamic control systems [249].
For instance, Schraagen describes how the Royal Netherlands Navy has developed
systems that filter the presentation of damage control information [277]. Instead of
presenting every change in process parameters, designers could display information
about major trends in production. Rule-collision provides a means of representing
the requirements that must be satisfied in order to exploit this form of optimised dis-
play design. Rule-collision occurs when two productions share the same consequent
but have different antecedents. For instance, it might be specified that if sensor
INPUT indicates a drill_error then the system is in the error state and the
error_display is presented. Designers could also require that if sensor INPUT
indicates a tank_error then the system is in the error state and the error_display
is presented. These requirements describe an instance of optimised display design
because the two sensor readings are hidden behind a single error_display:

CONDITION (effect_rule, IF FACT(INPUT, sensor, drill_error) THEN

30 CHAPTER 2. DYNAMISM

ADD FACT(SYSTEM, error, error_display))

CONDITION (effect_rule, IF FACT(INPUT, sensor, tank_error) THEN
ADD FACT(SYSTEM, error, error_display))

The strength of this technique is that operators can focus their monitoring to detect
the effect of their intervention at a relatively high level of detail. Optimised display
design can, however, jeopardise principles, such as predictability. If operators focus
their attention at a high level of abstraction then they are likely to miss detailed
information about the state of their control system. For instance, users could not
distinguish between a tank_error and a drill_error from the error_display alone.
This need not be a significant limitation if systems engineering guarantees that all
errors will be resolved. If this is not the case then human factors engineering must
ensure that operators are provided with sufficient information for them to diagnose
the causes of an error. This could seem a trivial requirement but a recent survey
of the Canadian oil industry found interfaces in which drillers could not distinguish
between many different power system failures from the information displayed [315].

2.2.4 The Problems Of Production Systems

Production systems provide inadequate support for the integration of human factors
and systems engineering. In particular, they cannot easily be applied to represent
and reason about the consequences of design principles for dynamic applications.
Designers must maintain a number of different representations of an interactive
control system. Changes in state or display are represented by rules that alter facts.
Changes in the effect of input upon the state and display are represented by meta-
rules that alter rules in the database [46]. For instance, equipment failure changes
the effect of operator commands. This can prevent users from making accurate pre-
dictions about the effects of their intervention. Designers might, therefore, specify
that if there is a system error then a meta-rule is fired modifying the rule describing
the effect of user input so that a warning is displayed:

CONDITION (meta_rule, IF FACT(INPUT, sensor, error) THEN
MODIFY CONDITION (effect_rule, IF FACT(INPUT, user, start) THEN
REMOVE FACT(SYSTEM, off, off_display) AND
ADD FACT(SYSTEM, off, error_display)))

In order for designers to reason about interface behaviour they must know how
meta-rules alter rules and how rules alter facts. The maintenance of these different
representations imposes non-trivial burdens upon the development resources avail-
able to human factors and systems engineering. Designers are also constrained by
the algorithm that is used to select which rules and meta-rules are to be fired. For
instance, if a production system always selected a rule requiring operator input be-
fore one requiring system input then it would be difficult to represent techniques
such as flexible task allocation. Designers could avoid this problem by explicitly
specifying the selection algorithm [46]. Human factors and systems engineers would
then have to represent and reason about the consequences of these meta-meta-rules
upon a potential control system.

2.3. FIRST ORDER PREDICATE LOGIC 31

2.3 First Order Predicate Logic

First order logic provides a notation capable of supporting both human factors
and systems engineering. Hammond and Sergot argue that first order logic is an
ideal medium in which to represent system data and operator expertise [129]. Fox
recruits this formalism for similar ends in the Oxford System of Medicine [105].
These observations motivate the use of this formalism for the principled design of
interactive control systems.

2.3.1 Sets And Predicates

Section 1.5 argued that principles should provide a high degree of domain indepen-
dence. Sections 2.2.2 and 2.2.3 showed how abstractions, such as tank_error and
drill_error, might be used to represent a control system design. This level of detail
is inappropriate if designers are to represent techniques that support the principled
development of systems, such as avionics applications, that do not contain any drills.
First order logic can be used to avoid such domain dependence. For instance, de-
signers might introduce a set, S, to include all the states that a control system could
possibly be in. The set P contains all input sequences that could be entered into
a control system. The set C can be introduced to describe all operator commands.
The set D contains all display images that could be presented to system operators.
Figure 2.2 illustrates the relationships between the sets P, C, S and D. Operator
input is interpreted as a command that affects the state of the system which is
presented by a display. The resulting structure is similar to the PiE model, briefly
described in Section 1.6.2. Both provide high-level models of interaction. The ele-
ments of sets P, C, S and D are terms. Terms in first order logic can be compared
to the subjects of sentences in English. For example, ‘Christopher is taller than
Victoria’ contains two terms, ‘Christopher’ and ‘Victoria’, and a predicate, ‘is taller
than’. Predicates, when combined with one or more terms, form sentences in first
order logic. Quantification can also be introduced in order to specify whether a
predicate holds for all the terms in a set, denoted by the V symbol, or for some
terms in a set, denoted by 3, or for only one term in a set, denoted by 3!. For
instance, a predicate might be used to specify that a control system is in a state s:

dls € S : state(s) (2.1)

A predicate could also be introduced between similar control system states. This
illustrates an important benefit of a high-level of abstraction. In practice, some
control system states are regarded as identical even though there can be subtle
differences in the application information which they represent [36]. Designers might
use first order predicate logic to represent similar states without defining the ranges
of variable values that must be considered in order to determine whether two states
of an implementation are the same. These details can be gradually introduced as
development progresses and the state of an application, in terms of sensor reading
and application information, becomes better defined:

Js,s’ € S : same_state(s,s’) (2.2)

It is important to emphasise that the elements of S, control system states, are not
the states of the application processes which a system interacts with. Sections 3.2

32 CHAPTER 2. DYNAMISM

Figure 2.2: A high-level model of interaction

and 4.3 will argue that this distinction must be considered during the human factors
and systems engineering of predictable control systems. For now it is sufficient to
realise that in order to assess the impact of flexible task allocation upon principles,
such as predictability, it must be possible to represent operator input. Designers
might, therefore, introduce a predicate that is true for input sequences, p, that are
entered into the system:

Jp € P : input(p) (2.3)

First order logic can also be used to specify more complex relationships between the
elements of P and S. For instance, designers could require that input sequences are
interpreted as commands whatever the state of the system:

VpeP,VseS,dc € C: interpret(p,s,c) (2.4)

In order to reason about the impact of presentation techniques, such as optimised
display design, upon principles, such as predictability, it must be possible to repre-
sent the appearance of an interface at this level of abstraction. This can be achieved
by introducing a predicate that is true for displays which are presented to system

2.3. FIRST ORDER PREDICATE LOGIC 33

operators:
3d € D : display(d) (2.5)

It is important to emphasise that the elements of D are the graphical images which
are presented to system operators and not the devices or monitors that are used to
present those images. Section 7.4 will present techniques for gradually introducing
the details of display presentation formats and screen layouts into an abstract design.
For now it is sufficient to observe that human factors and systems engineers might
also introduce an identity relation between displays:

Vd € D : same_display(d,d) (2.6)

Predicates can also be interpreted as high-level predictability requirement that must
not be jeopardised by techniques, such as optimised display design. For instance, in
order for operators to determine the effect of their commands it must be possible
for them to view all states, s, through displays, d:

Vs e S,3d € D : view(s,d) (2.7)

Designers can use first order predicate logic to describe the effect of commands, c,
in terms of their pre-conditions, s, the states in which the commands are received
by the system, and post-conditions, s’, the states of the system after the commands
are acted upon. Commands can affect many future states of a system. The post-
condition can be viewed as the first in a sequence of state transitions that are
determined not only by that command but also by subsequent interaction. For
convenience this thesis will simply refer to s’ as the effect of ¢ on s. It should be
noted that the following predicate describes the potential effect of ¢ on s, it makes
no commitment to the command actually being issued nor does it assume that s’
will be achieved:

Vee C,Vs € S,3s € S:effect(c,s,s’) (2.8)

Designers might use first order predicate logic to clarify vernacular descriptions
of human factors and systems engineering principles. For instance, the informal
description of predictability, given in Section 1.6.1, can be restated in terms of
the elements of C and S. Operators must be able to predict the effect, s’, of
their command, c, issued in a state, s. This makes explicit the idea that operator
predictions are likely to be based upon the state of their control system. The point
is not that logic can be used to derive a single formalisation of predictability. Rather
it is argued that logic provides a means of teasing out some of the assumptions and
ideas that are implicit within vernacular descriptions.

In addition to the predicates, introduced above, human factors and systems
engineers might exploit a number of logic connectives and operators to represent
techniques that are intended to support design principles. In the following p and q
are assumed to be predicates:

e a negation is represented as — p. This denotes that p is not true;

e a conjunction is represented as p A q. This denotes that p and q are both
true;

34 CHAPTER 2. DYNAMISM

e a disjunction is represented as p V q. This denotes that either p is true or q
is true or both p and q are true;

e an implication is represented as p < q. This denotes that p is true if q is
true;

e a bi-condition is represented as p < q. This denotes that p is true if and only
if q is true.

Kowalski describes the syntax and semantics of first order logic in greater detail
[182]. In contrast, the following sections concentrate on the application of this for-
malism as a means of integrating human factors and systems engineering to support
the principled design of dynamic control systems.

2.3.2 Context Dependent Effects And Task Allocation

The conjunction and bi-condition operators, introduced in the previous section, can
be used to represent further relationships between the elements of the high-level
model of interaction, illustrated in Figure 2.2. For example, the effect of input p on
s is interpreted to be s’ if and only if p is interpreted as a command, ¢, which has
the effect of changing the state of the system from s to s':

Vp e P,Vs € S,3s’ € S: interpret_effect(p,s,s’) <
Jc € C (interpret(p, s, c) A effect(c, s, s')) (2.9)

Human factors and systems engineers might use predicates, such as interpret_effect,
to help them assess the impact of techniques, such as flexible task allocation, upon
principles, such as predictability. For instance, systems engineering has developed
automatic deluge systems because oil-rig operators frequently fail to detect and
respond to fires. There are states of the system which are unprotected by these
additional safety features, for instance, during periodic maintenance. Operator in-
put, p, can have the effect of activating automated equipment, s”, and can have
the effect of raise an error condition, s/, depending on whether that equipment is
functioning correctly, s, or is faulty, s’. In other words, the consequences of operator
intervention depend upon the context of interaction:

dp € P,3s,s' € S: context_effect(p,s,s’) & Is”,s” €S
(interpret_effect(p, s,s”) A interpret_effect(p,s’,s”’) A

- same_state(s,s’) A - same_state(s’,s"”’)) (2.10)

This predicate illustrates how first order predicate logic can be used to clarify the
ways in which flexible task allocation jeopardises predictability. Systems engineers
must anticipate that systems might fail to provide back-up protection. If this oc-
curs then operators cannot predict that the safety of an application will be preserved
should they, in turn, fail to provide appropriate input. The importance of this point
is illustrated by the Piper Alpha disaster. The deluge systems were designed to pro-
vide automatic support should operators fail to respond to a fire. Diving operations
meant that these systems had to be disabled. Operators assumed manual control of
the fire-fighting equipment. They failed to predict that their commands could not
activate deluge heads in the accommodation module without system support [81].

2.3. FIRST ORDER PREDICATE LOGIC 35

Designers might use logic abstractions to represent techniques which support
the operation of dynamic systems but which do not sacrifice principles, such as
predictability. Different displays, d and d’, could have warned the Piper Alpha
operators about the different effects of input, p, to activate deluge equipment during
normal operation, s, and during diving operations, s’. In other words, predictability
is preserved if users can accurately view the context in which they issue their input:

Vp e P,VseS,3d,d’ € D : visible_context_effect(p,s,d,d') & 3s' € S
(context_effect(p,s,s’) A view(s,d) A
view(s’,d’) A - same_display(d,d’)) (2.11)

This predicate illustrates the point that human factors engineering must be recruited
in order to preserve predictability if the automation of systems engineering fails to
support flexible task allocations. Human factors considerations must inform the
design of displays, d and d’, so that the cognitive and perceptual resources of system
operators can detect different contexts of interaction.

2.3.3 Visible Input Effects And Display Design

Displays can be optimised by hiding some of the state transitions that occur during
interaction with a dynamic control system. For example, if operators are responding
to an alarm then the maritime damage control system, mentioned in Section 2.2.3,
hides information about any subsequent warnings that have a lower ‘calamity’ rating
[277]. This additional state information can be accessed once the original error has
been resolved. There are, however, a number of problems that limit the utility of
this form of optimised display design. In particular, operators might not be able to
determine whether their predictions have been confirmed if pre-conditions, s, and
post-conditions, s’, are viewed through the same display, d:

dp € P,3s € S,3d € D : invisible_input_effect(p,s,d) < 3s’ € S
(interpret_effect(p,s,s’) A view(s,d) A view(s', d)) (2.12)

Designers could exploit first order predicate logic in order to represent techniques
that are intended to support predictability. The pre-condition, s, and the post-
condition, s’, of input p are viewed through different displays, d and d’:

Vp e P,Vs € S,3d,d € D: visible_input_effect(p,s,d,d') < 3s' € S
(interpret_effect(p,s,s’) A view(s,d) A
view(s',d’) A - same_display(d,d’)) (2.13)

This predicate can be interpreted as a requirement that must be satisfied by pre-
dictive displays. The interpret_effect specifies the potential effect, s’, of p on s.
The d’ display, therefore, presents a prediction about the consequences of operator
input. This prediction is confirmed if state(s’) is true. Human factors and systems
engineering must be integrated in order to successfully exploit this technique. Sys-
tems engineering must ensure that sensors can detect the present state of a control
system. It must also develop systems that can predict the consequences of operator
intervention. Designers might recruit human factors engineering to inform the choice
of displays, d and d’, which are most likely to enable users to perceive and recognise

36 CHAPTER 2. DYNAMISM

the future effects of their input. This is a non-trivial task. Predictive displays of
control systems must not only present application data but they must also present
information about the passage of future time. Stokes and Wickens review the many
problems that must be overcome in order to estimate the future state of a control
system based upon its present state [293]. These problems justify the decision not
to concentrate the remainder of this thesis solely upon predictive presentation tech-
niques. Instead, the intention is to demonstrate that principles can be applied to
support the human factors and systems engineering of many different interfaces for
many different control systems. The techniques that will be described are also in-
tended to support the development of predictive displays. For instance, Section 4.2
will propose a number of protocols that can be used to support system predictions
about the impact of input from operators and application processes. Section 7.4
will describe prototyping tools that human factors engineers can exploit to assess
the utility of novel display formats for predictive displays.

2.3.4 The Problems Of First Order Predicate Logic

First order logic is monotonic; the number of requirements specified by predicates
always increases. Designers must take care to ensure that the addition of a predicate
does not lead to a contradiction. For instance, it could be specified that operator
input, p, to activate fire fighting equipment causes it to change from the off state,
s, to the on state, s’. Intuitively, it makes little sense to require that a system is
and is not in the off state, s:

dp € P,3s,s' € S: effect_contradiction(p,s,s’) <
state(s) A interpret_effect(p,s,s’) A — state(s) (2.14)

Designers might avoid this problem by using a database to record the facts that
are known about a system during interaction. For instance, in order to specify
a change in the state of a control system, designers must use the meta-predicate
retract to remove information about the existing state from a database. A similar
meta-predicate can be used to assert information about the new state:

dp € P,3s,s' € S : database_change(p, s,s’) <
state(s) A interpret_effect(p,s,s’) A
retract(state(s)) A assert(state(s’)) (2.15)

Such techniques introduce an important distinction between the logic of a specifica-
tion and the mechanisms which designers must use to describe dynamic interaction
[217]. Designers must not only assess the impact of principles upon an interactive
control system but they must also consider how best to maintain their database of
assertions. The lack of explicit sequencing in first order predicate logic poses further
problems for the representation of interactive dialogues. For instance, consider the
following implication:

dp € P,3s,s' € S: no_sequence(p,s,s’) «
input(p) A interpret_effect(p, s, s’) (2.16)

The logic does not determine the order in which predicates are to be satisfied.
This implication would be true if input, p, were received after it had taken effect.

2.4. LOGIC AND TIME 37

This would have disastrous consequences for predictability if a deluge system was
activated in response to operator commands that had yet to be issued! In order to
implement a specification, designers must determine an order of evaluation. This
can be achieved by introducing a distinction between declarative and procedural
interpretations of first order predicate logic. Declarative statements of the form
‘A if and only if B and C and D’ can be read as procedure calls ‘to do A, you
must do B and C and D’. Kowalski observes that the declarative reading of rules
makes the meaning of a specification clear but “it is the procedural interpretation of
rules that makes them useful” [183]. It is important to notice that implementations
would only exhibit the desired behaviour because control considerations influence
the ordering of logic specifications. Changing the order of interpret_effect and
input would have no effect on the specification of a dialogue but would radically
affect the behaviour of an implementation. This introduces considerable complexity
into the refinement necessary to realise high-level principles within an interactive
control system. The ordering of clauses might have to be substantially revised in
order to describe the control strategy of an implementation. Alternatives must be
sought if logic is to provide a convenient bridge between human factors and systems
engineering.

2.4 Logic And Time

The following pages argue that the application of temporal formalisms can be ex-
tended from artificial intelligence research [10] and concurrency theory [1] to support
the principled design of interactive control systems. Sakuragawa has exploited tem-
poral extensions to first order logic in order to support the systems engineering
of production processes [270]. Goldsack and Finkelstein [122] and Hale [128] have
exploited similar formalisms to reason about the scheduling properties of systems.
Anderson and Thimbleby have used a temporal logic to model interaction with
multi-user applications [15]. This work motivates an investigation into the utility of
temporal logics for the integration of human factors and systems engineering.

2.4.1 Time Stamps

The lack of sequencing in first order predicate logic can be overcome by the intro-
duction of temporal information into logic specifications of interactive systems. An
order of evaluation can be described with respect to points in time. Choi, Yang and
Chang have applied this approach to introduce temporal information into an expert
system for fault diagnosis in nuclear power plants [67]. For instance, time points
can be used to specify the conditions which must hold in order to diagnose that a
fire spreads between points A and B at twenty seconds after midday:

accident(fire_from_A_to_B, 120020) <
input(fire_sensor_A, 120010) A input(fire_sensor_A, 120015) A
input(fire_sensor_B, 120020) A — input(fire_sensor_A, 120020) (2.17)

Choi, Yang and Chang’s approach avoids some of the limitations of first order pred-
icate calculus. Without time-stamps the previous implication would have included

38 CHAPTER 2. DYNAMISM

a contradiction; fire is and is not detected by sensor A. Time stamps can also cap-
ture the sequencing information that was absent from no_sequence (2.16). The
following implication illustrates how designers might exploit time-stamps to specify
the predictability requirement that input is issued before it takes effect. The effect
of input, p, occurs five seconds after it has been issued. The following assumes that
predicates, such as input(p, 120000), have the same semantics as those introduced
in Sections 2.3.1 and 2.3.2 except that a time-point is included as an additional
parameter to specify the particular moment when they hold:

Vp eP,Vs € S,3s € S: time_stamp_change(p, s, s’, 120000) <
input(p, 120000) A interpret_effect(p, s, s’, 120000) A
state(s’, 120005) A — state(s, 120005) (2.18)

An important advantage of introducing time-stamps into first order predicate logic is
that designers can make explicit the real-time requirements which must be satisfied
by systems engineering. In order to fulfill time_stamp_change (2.18) a user must
input p at midday exactly. If this input is not provided then systems engineers
could allocate some of the user’s tasks to automated systems. The 120000 time-
stamp provides a deadline for operator intervention. Designers might also exploit
time-stamps to represent the temporal requirements that human factors engineering
must satisfy. In order to predict the effect of their interaction, operators must be
trained to anticipate that their input, p, will have an effect s’ on s five seconds after
it is issued. Users should not issue commands that take ten seconds to complete if
their system will shut-down in five.

2.4.2 Time-Variables

Introducing time-stamps into first order predicate logic does not provide designers
with a panacea for the development of dynamic control systems. The previous im-
plication, time_stamp_change (2.18), holds at midday. In order to specify the
effect of input at other times, such as 120010 or 120015, designers would have to
produce additional predicates. This imposes significant burdens upon the devel-
opment of control systems that operate over long periods of time. This limitation
can be avoided by introducing a set of time-variables, T. The following predicates
have the same semantics as those introduced in Sections 2.3.1 and 2.3.2 except that
time-variables, t and t’, are included as additional parameters in order to specify
the moments when they hold. These time-variables could be instantiated at 120000,
120005, 120010 or 120015:

VpeP,VseS,3s’ € S,3t,t' € T : time_variable order(p,s,s’, t,t') <
input(p, t) A interpret_effect(p,s,s’,t) A state(s’,t') At <t/ (2.19)

The use of time-variables can still introduce considerable complexity into a design
[111]. In particular, designers must maintain a clear semantics for relations, such as
<, which describe an ordering over time-variables. It is possible to create circular
models of time in which a temporal variable occurs both before and after itself.
This is likely to have disastrous consequences for the human factors and systems
engineering of any implementation that was derived from such a specification.

2.4. LOGIC AND TIME 39

2.4.3 Modal Logic

Modal logics do not explicitly represent time. They extend first order logic by intro-
ducing the necessity operator, denoted by £, and the possibility operator, denoted
M. These are defined in terms of a set of states of world knowledge, St. The
elements of this set capture all the information that might be known about a poten-
tial implementation and its environment. In the following, | w |s¢ denotes the truth
value of the formula w in state of world knowledge st. A predicate is necessarily true
in st if and only if it holds in all states of world knowledge, st’, that are accessible
from st:

Vst € St | L(w) |st< Vst' € Stlaccessible(st, st)A | w |s¢/] (2.20)

The M operator can be specified in a similar fashion. A predicate is possibly true
in states of world knowledge st if and only if it is true in at least one state of world
knowledge, st’, that is accessible from st:

Vst € St | M(w) |st< Ist’ € St[accessible(st,st')A | w |s¢] (2.21)

It is important to note that a number of problems limit the utility of analyses con-
ducted in terms of the elements of St. For instance, designers cannot hope to refine
these abstractions to capture complete knowledge about worlds that include many
different users and application processes. Alternatively, human factors and systems
engineers might use terms and predicates to focus an analysis upon particular aspects
of world knowledge that are important for particular design principles. Techniques
that are intended to support predictability could be represented in terms of control
system states, rather than entire states of world knowledge. This does not abandon
the modal model, elements of S can be extracted from elements of St. Informally,
it should be possible to determine the state, s, of a control system given complete
world knowledge, st. Designers might use the M operator to specify that input p
has the possible effect of changing the state of the system. The following assumes
that predicates, such as state(s), have the same semantics as those introduced in
Sections 2.3.1 and 2.3.2 except that they can be qualified by a modal operator that
specifies the states of world knowledge in which they hold:

Vp e P,Vs € S,3s’ € S: modal state_change(p,s,s’) <
state(s) A interpret_effect(p,s,s’) A M~ state(s) (2.22)

This predicate illustrates how modal logic avoids the constraints of monotonicity;
the system is in state s and it is possible for it not to be in state s. Human factors
and systems engineers could exploit modal operators to represent techniques that
are intended to support predictability. For instance, Section 2.3.2 argued users
operators cannot easily predict the consequences of their input if its effects change.
The L operator provides designers with a means of explicitly stating that such
unpredictability must be avoided. The effect of p on s is s’ whatever changes occur
to the model of world knowledge:

Vp € P,Vs € S,3s’ € S: modal _persistent_effect(p,s,s’) <
L interpret_effect(p,s,s’) (2.23)

40 CHAPTER 2. DYNAMISM

Not all the members of multi-disciplinary design teams can be expected to under-
stand the theoretical foundations of modal logic [44]. Section 7.2.2 will argue that
formal design requirements can be more easily communicated by developing proto-
type implementations that embody principles, such as predictability. For now it is
sufficient to observe that this might be achieved by deriving natural language inter-
pretations of the requirements that are intended to support principled design. For
instance, the previous predicate can be interpreted as a requirement that the effect
of input p on state s is s’ in all worlds accessible from the present one. This example
shows that it is not easy to derive a vernacular translation of modal requirements.
The term ‘accessible from the present one’ is vague because it is difficult to translate
from the formal underpinning of modal logic into natural language.

2.4.4 Interval Temporal Logic

Interval temporal logic ‘interprets’ the accessibility relation between the states of
world knowledge in modal logic to be an ordering over time [205]. With this re-
finement the £ operator can be re-interpreted as ‘always’, denoted O, and the M
operator as ‘eventually’, denoted <. It is important to emphasise that the properties
described using temporal and modal operators, such as £ and O, could be specified
in first order predicate logic by explicitly representing states of world knowledge, st
and st’. Ow is true in st if and only if it is true in all states of world knowledge,
st’, that hold after st:

Vst € St | O(w) |s¢= Vst’ € St[after(st,st’)A | w |s/] (2.24)

The < operator can be specified in a similar way. A formula, w, is eventually true
in state of world knowledge st if and only if it is true in a state of world knowledge,
st’, which occurs after st:

Vst € St | O(w) |s¢= Ist’ € Stlafter(st,st’)A | w |st/] (2.25)

These operators can be used to represent temporal requirements without explicitly
constructing a temporal model like that built using < in time_variable_order
(2.19). The model is hidden within the definition of O and <. For instance, it might
be specified that input p has the effect, s/, of changing the state, s, of a system so
that it is eventually not s. The following assumes that predicates, such as state(s),
have the same semantics as those introduced in Sections 2.3.1 and 2.3.2 except that
they can be ‘qualified’ by temporal operators that specify the interval in which they
are true:

Vp e P,Vs €8S,3s’ € S: temporal logic_state_change(p,s,s’) <
state(s) A interpret_effect(p,s,s’) A O— state(s) (2.26)

Additional temporal operators, such as O (read as ‘next’) and U (read as ‘until’),
can be specified by introducing an immediate_after relation between states of
world knowledge. The following predicate states that (Ow is true in states of world
knowledge, st, if and only if w is true in the unique state of world knowledge which
holds immediately after st. The universal quantifier of st provides a non-ending
model of time; every state of world knowledge is immediately followed by another.

2.4. LOGIC AND TIME 41

The unique existential quantifier of st’ provides a linear model of time; there is only
one immediate successor for each state of world knowledge. The immediate_after
relation provides a discrete model of time; it specifies a base granularity that cannot
be decomposed into shorter intervals:

Vst € St | O(w) |st< J'st’ € St[immediate_after(st,st’)A | w [5/(2.27)

Designers could use the () operator to make explicit the sequencing between predi-
cates that hold in successive states of world knowledge. For instance, the sequencing
that was implicit in visible_input_effect (2.13) might be made explicit. The O
operator specifies that the effect, s, of the input, p, is visible through display, d’,
in the next state of world knowledge:

Vp e P,Vs e S,3d,d € D : temporal_visible_effect(p,s,d,d") «3s' €S
(input(p) A interpret_effect(p,s,s’) A view(s,d) A
O (view(s’,d’) A — same_display(d,d’))) (2.28)

The immediate_after relation can also be used to specify other temporal operators.
A formula w is true until a formula, wq, is true in state of world knowledge st if
and only if wy is true in state of world knowledge st or there exists a state of world
knowledge st’ which is immediately after st and w is true in st and in st’ it is the
case that w is true until w1:

Vst € St | whUw |st< [(| Wi |st) V
(Ist’ € St(immediate_after(st, st')A | w [s¢ A | (WUW1) |s¢))] (2.29)

Before continuing with the central argument of this thesis, it is important to note
that there is an apparent redundancy in using both temporal operators and state
parameters. This point can be illustrated by the following two bi-conditions:

Vp e P,Vs € S,3s' € S: temporal logic_persistent_effect(p,s,s’) <
Ointerpret_effect(p, s, s’) (2.30)

Vp € P,Vs € S,3s’ € S: logic_persistent_effect(p,s,s’) <
interpret_effect(p, s, s’) (2.31)

The first predicate, temporal _logic_persistent_effect, specifies that the effect of
p on s is s’ at all times. The second predicate, logic_persistent_effect, specifies
that the effect of p is s’ for all states, s, of a control system. These bi-conditions
could, therefore, be interpreted as specifying the same requirement. This is not
the case. As mentioned in the previous section, there is an important distinction
between the states of world knowledge, elements of St, and control system states,
elements of S. The first predicate should be interpreted as specifying that the effect
of p on s is ' at all times, irrespective of the state of world knowledge. It is true
only if 8’ is always the effect of p on s. The second predicate should be interpreted
as specifying that the effect of p on s is s’ in the present interval, irrespective of the
control system state. It can be true if eventually s’ is not the effect of p on s.

It is important to emphasise that this thesis does not attempt to develop a new
interval temporal logic. Our notation is the same as that presented by Manna and

42 CHAPTER 2. DYNAMISM

Pnueli [205]. Appendix A introduces the syntax and semantics of this language.
Appendix B provides a brief overview of the axioms and theorems of the formalism.
The interested reader is directed to Manna and Pnueli for a more complete intro-
duction. The remainder of this thesis applies interval temporal logic in order to
demonstrate that it can support a principled approach to the integration of human
factors and systems engineering.

2.4.5 Bounded Effects And Task Allocation

One of the main findings of the inquiry conducted after the Piper Alpha disaster
was that North Sea Oil production should come under the supervision of the Health
and Safety Executive (HSE), rather than the Department of Energy [81]. A prime
motivation for this change in responsibility was that the HSE has well established
procedures for certifying the safety of production processes [27]. These procedures
force companies to produce a Safety Case which states the objectives that they must
fulfill in order to guarantee the safe operation of their production processes. Interval
temporal logic provides a notation which designers might exploit for the formal
safety assessment required when producing this document. For instance, the Piper
Alpha inquiry recommended that systems engineering should safeguard against any
operator intervention that could impair intervention by automated safety systems
[81]. Designers might exploit such safeguards to ensure that if an operator issues
input, p, to disable a deluge system during a fire, s, then the input does not affect
its state, s, until the fire is dealt with and a safe state, s/, is regained:

Vp eP,Vse€S,3s' € S: bounded _effect(p,s,s’) <
(input(p) A (interpret_effect(p, s, s)Ustate(s'))) (2.32)

This requirement imposes constraints upon a designer’s ability to exploit flexible
task allocation. Operators cannot assume control tasks until the system is in state
s’ even if their intervention is necessary in order for the system to enter that state.
The previous bi-condition also threatens predictability. Operator input, p, could be
handled in the next interval, the next next interval or the next next next interval
and so on. Users cannot predict when it will take effect because the consequences of
their intervention are postponed until a state transition occurs in the control system.
Human factors and systems engineers might use predicates, such as bounded_effect
(2.32), as a basis upon which to assess the costs and benefits of design techniques.
Postponing the effects of operator input protects automated systems from human
intervention but is likely to jeopardise predictability.

2.4.6 Dialogue Cycles And Display Design

Bainbridge argues that users optimise scarce perceptual and cognitive resources by
recognising and responding to patterns of interaction [23]. Dialogue cycles provide
a practical application of this observation [134]. They are characterised by:

e the presentation of an entry gate to mark the start of a dialogue;
e the redisplay of the entry gate to mark the termination of the dialogue;

e the effect of a command taking place once the dialogue terminates.

2.4. LOGIC AND TIME 43

Dialogue cycles provide a means exploiting optimised display design to support flex-
ible task allocation because operators can observe intervention by a system without
monitoring every change in state. They might also be used to reduce the unpre-
dictability caused by a bounded_effect (2.32); users could exploit cycles to mon-
itor the delayed effects of their intervention. Figure 2.3 provides an illustration of
a dialogue cycle. The operator wants to supply some water to deluge equipment.

Figure 2.3: A dialogue cycle

Diagram a) shows the image of the system prior to the user’s input. Diagram b)
shows the image of the system after the command has been issued. The appearance
of the water inlet, represented by a circle inside a square, has been shaded to inform
the user that their input is being handled by the system. Diagram c) shows that
the command has successfully terminated. In this example the gate of the cycle
is the image of the inlet in diagrams a) and c). The user can be confident that
their command has not been completely effective until the inlet regains its original
appearance. This technique could be applied to support flexible task allocation by
using the same gate to present the effects of both operator and system interven-
tion. Users might then be confident that the automated systems had not finished
interacting with an application until the inlet regained its original appearance.

44 CHAPTER 2. DYNAMISM

Logic abstractions provide a means of representing and reasoning about dialogue
cycles without considering the level of detail necessary for full implementation. In
order to do this a further predicate is introduced:

ds € S,3d,g € D : gate(s,d, g) (2.33)

This relation can be thought of as a template which designers might place over a
display, d, in order to extract those elements, g, which form the gate of a dialogue
cycle in state s. Sections 3.4.2 and 4.3.2 will exploit similar templates to represent a
number of additional techniques that human factors and systems engineers might use
to support predictability. Delays in the effect of operator input are visible through
delays in the return of the gate that marks the successful termination of the cycle.
In other words, an operator can predict that any command will be ineffective until
the dialogue has been completed. Designers could, therefore, specify that a dialogue
cycle presents the effect, s’, of input, p, on state s if and only if the gate is presented
when the input is issued and it is not presented again until that effect has been
achieved:

VpeP,VseS,3s' €S,3g € D: cycle(p,s,s’,g) & 3d,d € D
(interpret_effect(p,s,s’) A gate(s,d, g) A display(g) A
O (— display(g)U(state(s') A gate(s’,d’, g)))) (2.34)

The success or failure of a cycle is determined by an operator’s ability to notice the
gate that marks the beginning and end of the dialogue. Inattention or distraction
can prevent users from observing such elements of a display. Design principles do not
prevent designers from making unwarranted assumptions about the human factors
of operator performance. Wardell argues that fatigue is a frequent cause of many
of the accidents on oil production platforms [315]. Empirical validation is necessary
in order to determine whether operators can exploit a particular dialogue cycle.
Chapter 7 will argue that designers could use prototypes to perform this validation.

2.5 Conclusions

Optimised display design can be used to ease the burdens of monitoring dynamic
control systems. Flexible task allocation provides both the system and its operator
with the means of intervening to re-distribute control tasks as interaction progresses.
In order to successfully exploit these techniques, designers must be able to assess
their impact upon the human factors and systems engineering of a potential in-
terface. In particular they must be able to assess the consequences of techniques,
such as flexible task allocation and optimised display design, for principles, such as
predictability.

Production rules provide an intractable medium for representing techniques that
are intended to support design principles. The maintenance of facts, rules, meta-
rules and meta-meta-rules imposes non-trivial burdens upon the finite resources of
human factors and systems engineering. First order logic is unsuitable for this task.
It cannot easily be used to represent state changes nor can it easily be used to
represent dialogue sequences.

2.5. CONCLUSIONS 45

Interval temporal logic avoids the limitations of production rules and first order
predicate logic. It provides designers with a convenient means of specifying the ob-
jectives of principled design. This notation has been used to represent the objectives
that must be satisfied in order to support predictability through bounded effects and
dialogue cycles. It is, therefore, concluded that interval temporal logic provides a
suitable notation for the integration of human factors and systems engineering.

The following chapters argue that human factors and systems engineers might
exploit interval temporal logic and principled design to resolve the two remaining
fundamental problems of control system development: openness and complexity.

Chapter 3
Complexity

“We have seen a tendency for proposed soft displays to become a
jungle of clutter, of ill-considered symbols and text, or a dazzling pre-
sentation of colours. Little wonder that pilots are now referring to the
modern instrument panel as ‘Pacman’ and ‘Ataris’. The attitude of too
many computer experts is we can do it, so let’s throw it up on the display
- it can’t hurt anything” (Wiener, [319]).

3.1 Introduction

The dictionary defines ‘complexity’ in terms of the verb ‘to complicate’; “to make
or become difficult, confused” [12]. In terms of this thesis, complexity refers to the
difficulty and confusion that arise when operators must supervise an application
through the many states, displays and commands of an interactive control system.
The quotation which opens this chapter argues that complexity also increases the
problems of design. This chapter agrees with the assertion and argues that:

e complexity arises because users must monitor large amounts of interconnected
application data through the states and displays of interactive control systems;

e complexity arises because operators must select and issue appropriate com-
mands from many options for intervention;

e principles provide designers with high-level objectives for the techniques that
they must employ in order to support these control tasks.

It is concluded that human factors and systems engineering must be integrated in
order to achieve principles, such as predictability, in the design of complex control
systems.

3.1.1 Consequences: Poor Performance And Unpredictability

Human factors research has argued that the increasing complexity of control appli-
cations leads to degraded operator performance. For instance, Henneman and Rouse
show that the simultaneous presentation of large amounts of information reduces the
ability of users to respond to changes in the state of a process [145].

46

3.1. INTRODUCTION 47

Moray, Lootstein and Pajak argue that an operator’s ability to predict and
diagnose process errors is impaired if the number of subsystems which they must
control is increased [214]. Rasmussen and Lind argue that complexity hinders the
development of expectations or predictions about the effect of interaction [249].

3.1.2 Causes: Command-View, Display And
State Correspondence

Designers frequently require operators to consult different sources of information
before interacting with a control system. This can lead to command-view corre-
spondence if many of these sources provide data about the same command. Kirk-
patrick and Mallory argue that substitution errors are more likely to occur if reactor
operators have to reference a number of displays in order to identify their options
for intervention [176]. Such errors are violations of predictability; a user issues one
command believing that they have issued another whose effects can be quite differ-
ent. Command-view correspondence jeopardises safety. For instance, the operators
of the Unit Two reactor at Three Mile Island were forced to consult many volumes
of special operating procedures. This delayed their response and the reactor entered
an unstable state for which they had not been trained. As a consequence they made
inaccurate predictions about the effects of the commands which they eventually
issued [292].

The task of operating an application process is complicated by display correspon-
dence. This occurs if a display presents identical information about two different
states of a control system. This cause of complexity jeopardises safety because users
cannot distinguish between some control system states from the information pre-
sented to them. For instance, the operators of the Unit Four reactor at Chernobyl
could not distinguish between states in which their coolant pumps were operating
efficiently and those in which they had insufficient water for heat transfer from the
reactor core. During the accident they could not accurately view the state of their
control system and failed to predict that their commands would damage the coolant
pumps [242].

Complexity is caused by state correspondence. This occurs when a single control
system state corresponds to two or more different states of an application. For
instance, the state of the Unit Two reactor control system at Three Mile Island
provided insufficient information for operators to determine whether or not the
integrity of their containment was threatened [292]. The problems of avoiding state
correspondence are illustrated by statistics that described the Unit Four reactor at
Chernobyl [331]. The primary coolant circuit consisted of two parallel loops. Each
loop connected two carbon steel steam-drums. Each drum had four hundred and
ninety-four heat exchangers, known as risers and down-comers. Both drums were
connected to a common pump inlet. The inlet in each loop had four electrically
driven pumps, one of which was held in reserve. The Unit Four reactor also had
an intermediate cooling system of forty-four distribution headers. Such applications
pose a considerable challenge for systems engineering. Sensors must be deployed so
that different states of an application process do not correspond to the same state of
the control system. This is a prerequisite if a control system is, in turn, to present
sufficient information for its operators to determine the state of their application.

48 CHAPTER 3. COMPLEXITY

3.1.3 Solution: Abstract Design Principles

Figure 3.1 illustrates the way in which different layers of correspondence separate
an operator from their application. At the top level a user issues commands, c.

Figure 3.1: The layers of correspondence

Command-view correspondence occurs if an operator must consult displays, 4, 4’
and d’’, presented by different sources in order to inform their selection of com-
mands. The lines showing the observation of display d’ is omitted to simplify the
diagram. Display correspondence occurs if a user must also detect different control
system states, s, s’ and s’’, through a display, d’. State correspondence occurs if
many different states of an application, ps, ps’, ps’’ are represented by a control
system state, s’.

Complexity arises because operators must determine the most appropriate com-
mand to issue from many different sources of information. They must accurately
determine the state of a control system through displays which represent many dif-
ferent states. They must determine the state of their application process from the
many process states which are represented by each state of their control system.
There is no panacea for these causes of complexity. It is, therefore, important that
human factors and systems engineers can represent and reason about the strengths
and the weakness of potential solutions. Part III will argue that designers can ex-
ploit interval temporal logic to capture the detailed trade-offs which must be assessed
prior to the implementation of a particular control system. In contrast, the following

3.2. STATE CORRESPONDENCE 49

sections argue that interval temporal logic might be used to assess techniques for
countering complexity without representing the thousands of sensor readings and
command options that will be available in an implementation. Principles provide
human factors and systems engineers with high-level objectives that must not be
sacrificed by these solutions to state, display and command-view correspondence.

3.2 State Correspondence

Systems engineering must ensure that a control system can detect the state of a
production process. It is seldom feasible to deploy sensors to monitor every as-
pect of an application. Economic constraints limit the use of expensive sensing
devices, technological limitations prevent engineers from directly monitoring very
high temperatures, pressures and radiation levels [36]. This complicates the task of
controlling an application because operators cannot differentiate between all states
of a process from the information available to their control system. In order for a de-
signer to reason about solutions to this state correspondence it is important that its
causes should not be obscured by the thousands of low-level sensor readings which
can be received by a control system. The predicates, introduced in Sections 2.3.1
and 2.4.4, can be used to support an abstract analysis that does not explicitly rep-
resent these details. Chapter 4 will argue that designers could use interval temporal
logic to represent and reason about concurrent interaction between multiple oper-
ators and processes. In contrast, the argument that is presented in this chapter is
simplified by analysing complexity in terms of a single operator controlling a single
application process. In order to do this we introduce a set, Ps, of application states.
A relation is introduced between control system states and the application states
that they represent in the present interval:

Vs € S,dps € Ps : state_represents(s, ps) (3.1)

Designers can also introduce a predicate that is true for elements of Ps which are
considered to be identical in the present interval. It is important to realise that two
process states, ps and ps’, could be regarded as the same even though they differ
in particular details, such as a one degree difference in temperature. The following
pages will demonstrate that designers must take extreme care when determining
which elements of Ps can be regarded as the same:

Jps, ps’ € Ps: same_process_state(ps, ps’) (3.2)

Using the previous relation it is possible to formalise the conditions that lead to
state correspondence. This eventually arises when different control system states,
ps and ps’, are represented by the same control system state, s:

Js € S,3ps,ps’ € Ps : state_correspondence(s, ps, ps’) <
state_represents(s, ps) A state_represents(s, ps’) A

- same_process_state(ps, ps’) (3.3)

For instance, the operators of the Unit Two reactor at Three Mile Island could not
establish from the state, s, of their control system whether the containment was
damaged by an increase in gas pressure, ps, or whether it was intact, ps’. This

50 CHAPTER 3. COMPLEXITY

lack of information forced operators to use robots to inspect contaminated areas of
the plant [292]. At Chernobyl, when similar robots failed they were forced to use
volunteers from the Red Army [331].

3.2.1 State Correspondence And Predictability

Thimbleby observes that if a user does not have sufficient reason to doubt that
things are different, when solving a problem, then they will treat them as if they
were the same [304]. This application of Pélya’s concept of non-sufficient reason
accurately characterises the way in which users operate interactive control systems
[238]. If they cannot detect differences between process states then they will treat
them as if they were the same. For example, the Watt Committee’s investigation
into the Chernobyl accident reports that shortly after one o’clock in the morning
the operators believed that they had stabilised the reactor. It was “in fact, in an
extremely unstable condition” [9]. Not realising this the operators continued with
the test that was eventually to release one hundred times the normal power output
of the plant. There were insufficient reasons for them to distinguish between reactor
states based upon evidence provided by the state of their control system. Users
eventually issued input, p, to take their control system from normal operation, s,
into a state, s/, in which they could conduct their tests. The operators could not
determine whether the reactor was stable, ps, or unstable, ps’, from the new state
of the system, s’. In consequence, they failed to predict the consequences of their
actions during the test:

dp € P,3s € S,3ps, ps’ € Ps: unpredictable(p, s, ps,ps’) « 3s' € S
O(interpret_effect(p, s, s’) A state_correspondence(s’, ps, ps’)) (3.4)

It is important to note that the previous implication has a temporal quantification.
The < operator specifies that predictability can eventually be violated at any point
during interaction. During the Three Mile Island accident it became increasingly
difficult for operators to predict the impact of their commands because sensor failure
prevented the control system from detecting the true state of the reactor [292].

3.2.2 Resolving State Correspondence

Interval temporal logic has been applied to represent the way in which state cor-
respondence jeopardises predictability. Designers might also use this formalism to
represent potential solutions for this cause of complexity.

State Transparency

State correspondence is avoided if equipment failure does not eventually prevent a
control system from distinguishing between the states of an application process. In
other words, the state of a control system should provide a transparent view of the
state of an application. Different process states, ps and ps’, are never represented
by the same state, s, of a control system. For instance, designers might avoid
the problems of state correspondence by ensuring that stable, ps, and unstable,
ps’, states of a reactor are never represented by a single control system state, s.

3.2. STATE CORRESPONDENCE ol

Human factors and systems engineers can use interval temporal logic to represent
this requirement:

Vs € S,Vps,ps € Ps: no_state_correspondence(s, ps, ps’) <
O- (state_represents(s, ps) A state_represents(s, ps’) A

— same_process_state(ps, ps’)) (3.5)

Appendix B introduces a number of theorems and axioms that hold for the interval
temporal logic used in this thesis. Designers can apply these to re-write predicates.
This might clarify the requirements which must be satisfied by potential implemen-
tations. For example, the theorems and axioms of interval temporal logic can be
applied to no_state_correspondence (3.5), see Appendix C.1, to derive a require-
ment that it is always the case that if process states, ps and ps’, are represented by
a control system state, s, then those process states are identical:

Vs € S,Vps,ps’ € Ps: no_state_correspondence(s, ps, ps’) <
O(state_represents(s, ps) A state_represents(s, ps’) =

same_process_state(ps, ps’)) (3.6)

A number of practical limitations restrict the utility of this approach. In particular,
it is not always possible to determine which application states will be represented
by particular control system states. The United Kingdom’s Health and Safety Ex-
ecutive recognise that it is impossible for designers to identify all the possible errors
that can arise in nuclear installations [138]. Human factors and systems engineers
cannot, therefore, enumerate all of the possible application states that might be
represented by a control system state. This prevents them from ensuring that the
previous bi-condition will always hold for a particular implementation. The limi-
tations of this approach are illustrated by Poteralski and Vogel’s observation that
an atmospheric emission of iodine 131 from a light water nuclear reactor is likely to
occur once every ten million years [241]. Over 30,000,000 curies were released from
this form of reactor during the Chernobyl accident.

State Restriction

State restriction prevents an application process from entering a state that cannot
be identified given the evidence provided by the state of its control system. For
instance, human factors and system engineers could require that it is always the
case that if the state, s, of a control system does not distinguish between a loss
of coolant accident, ps’, and normal operating conditions, ps, then designers must
ensure that a loss of coolant does not occur. It is important to note that the
success of this approach relies upon designers making an appropriate selection of
process states, ps’, that are to be restricted. In practice, this is unlikely to be as
straightforward as the decision to avoid a loss of coolant. Chapter 7 will present
techniques that human factors and systems engineers might use to inform such
choices for particular control systems. For now it is sufficient to realise that interval
temporal logic provides a means of representing the high level requirements that are
imposed by such techniques:

Js € S,3ps,ps’ € Ps : state_restriction(s, ps, ps’) <

52 CHAPTER 3. COMPLEXITY

O(state_correspondence(s, ps, ps’) =

process_state(ps) A — process_state(ps’)) (3.7)

In the above, process_state(ps) is true for an element of the set of process states
that is the actual state of an application in the present interval:

dps € Ps : process_state(ps) (3.8)

Predicates, such as state_restriction (3.7), can be imposed as requirements that
must be satisfied in order to achieve principles, such as predictability. For instance,
the systems engineering of the Chernobyl Unit Four reactor might have helped op-
erators to determine the effects of their intervention if it had been prevented from
entering an unstable state; = process_state(ps’). There were few inter-locks to
prevent the control rods, which damp a nuclear reaction, from being withdrawn
[331]. Such mechanisms were not provided because of the limited availability of
specialist electrical equipment in the former Soviet Union. Instead, the designers of
the Unit Four reactor relied upon the human factors techniques of social ergonomics
to ensure the safety of their system. Management hierarchies were established and
operating procedures were drafted to ensure that the application did not enter an
unstable state; — process_state(ps’). Such techniques were favoured as low cost
alternatives to the application of more advanced systems engineering. Unfortu-
nately, the Power Ministry’s strictures were insufficient to prevent operators from
withdrawing the control rods too far. Human factors techniques must, therefore,
be supported by systems engineering if state restriction is to guarantee the success
and safety of production. This analysis is confirmed by the observation that two of
the four Finnish nuclear reactors were constructed by Russian engineers, to a Soviet
design. They are, however, fitted with Finnish safety features. These reactors have
exemplary safety records. Improved systems engineering has helped to place them
amongst the most efficient reactors in the world [178].

State Focusing

Principles, such as predictability, provide a justification for concentrating upon par-
ticular aspects of complexity, such as state correspondence. Interval temporal logic
provides abstractions that can be used to specify design objectives without iden-
tifying the mechanisms which are to achieve them. This is intended to encourage
designers to assess more fully the trade-offs which must be made when exploiting
human factors and systems engineering. For instance, the low initial cost of using
human factors techniques to enforce state restriction must be balanced against the
high cost of potential disasters. Conversely, the high initial cost of systems engineer-
ing techniques must be balanced against the reduced likelihood of errors through
state correspondence. A further benefit of this level of analysis is that designers
might be encouraged to seek a number of alternative techniques that can be used
to avoid the causes of complexity. For instance, state focusing requires that state
correspondence does not impair operator intervention. This approach has been em-
bodied within decision support tools, such as the nuclear Disturbance Analysis and
Surveillance System [5]. These are intended to provide as much information as pos-
sible about those states of an application which require operator intervention. The
intention is to reduce any ambiguity about the state of an application prior to a

3.3. DISPLAY CORRESPONDENCE 93

command being issued; — state_correspondence(s, ps, ps’). State focusing might
also be used to support predictability after a command has been issued. Operators
must be able to establish that their intervention has been successful if they are to
predict the continued success and safety of their application. Decision support tools
should, therefore, provide as much information as possible about the state of an
application after operator intervention. This would reduce any ambiguity about the
effects of input; — state_correspondence(s’, ps, ps’). Interval temporal logic can
be used to represent the requirements that must be satisfied in order to exploit state
focusing:

Vp € P,Vs,s’ € S,Vps,ps’ € Ps: state_focusing(p, s,s’, ps, ps’) &
O(interpret_effect(p,s,s’) =
- state_correspondence(s, ps, ps’) A

- state_correspondence(s’, ps, ps’)) (3.9)

This predicate illustrates how interval temporal logic could be used to represent
objectives that can only be achieved through the integration of human factors and
systems engineering. Systems engineers must deploy sufficient sensing devices so
that a control system can detect and represent an operator’s impact upon an appli-
cation. Human factors engineers must ensure that users can deploy their cognitive
and perceptual resources in order to deduce the state of an application from the
state of their control system.

3.3 Display Correspondence

Display correspondence complicates the task of operating application processes if
users cannot observe every state of their control system from the information pre-
sented to them. If operators cannot determine the state of their control system then
they are unlikely to be able to identify the state of an underlying application, even
if designers can resolve the problems of state correspondence. Human factors and
systems engineers might exploit interval temporal logic to represent this cause of
complexity. Display correspondence occurs if and only if different states of a control
system, s and s/, are represented by the same display, d in the present interval:

Jd € D,3s,s' € S : display_correspondence(d, s,s’) <

view(s,d) A view(s’,d) A - same_state(s,s’) (3.10)

For example, the International Atomic Energy Agency (IAEA) concluded that the
alarm systems of the Chernobyl Unit Four reactor were inadequate [331]. Operators
were not presented with warnings once the control system had detected a rapid
increase in the number of coolant voids. These occur when water within the reactor
coolant cycle turns to steam. They greatly increase the power of a reaction. In
other words, the same information, d, was displayed for a control system in a state,
s, which detected a normal coolant system and a state, s’, in which a dangerous
number of voids were forming. As a result of accidents, such as those at Chernobyl
and Sosnovy Bor, the production of all new Reactor Bolshoi Moschnosti Kipyashiy
reactors has been halted. Those still in operation are to be fitted with additional
warning systems. The TAEA argue that displays must be designed so that operators

54 CHAPTER 3. COMPLEXITY

can accurately diagnose the state of their control system and, through it, the states
of an underlying application [157].

3.3.1 Display Correspondence And Predictability

Bainbridge argues that operators must be able to determine their current situation
in order to predict the course of future interaction [20]. In other words, predictabil-
ity is sacrificed if users cannot view the consequences of their interaction. Norman
confirms this analysis when he criticises the “inappropriate feedback” provided by
many interactive control systems [228]. This prevents operators from determin-
ing whether their intervention has moved the control system towards an intended
state. Human factors and systems engineers might use interval temporal logic to
establish the relationship between such observations and the problem of display cor-
respondence. Inappropriate feedback is provided and predictability is threatened
if operators eventually cannot observe the effect, s’, of their input, p, through a
change in the display, d:

dp € P,3d € D,3s,s’ € S : unpredictable(p,d,s,s’) <
<(interpret_effect(p, s,s’) A display_correspondence(d, s, s’)) (3.11)

For instance, during the Three Mile Island accident some areas of the reactor reached
over two thousand degrees Fahrenheit. Control system states in which the maxi-
mum reading was eight hundred degrees and states in which the maximum was two
thousand degrees were presented by the same display image [292]. Users were forced
to take a large number of manual core readings to clarify the results presented by
computer-based monitoring systems. Operators could not use the control system
display, d, to determine whether commands, p, to reduce the core temperature, s,
were having the predicted effect, s’.

3.3.2 Resolving Display Correspondence

Section 2.3.3 contained an initial discussion of techniques that human factors and
systems engineers could exploit to present the effects of operator input. It was
argued that different displays must be used to present the context and consequences
of commands. The following sections extend this analysis.

Display Transparency

Display correspondence can be avoided by requiring that displays never provide
views of different control system states:

Vd € D,Vs,s € S:no_display_correspondence(d,s,s’) <
O- (view(s,d) A view(s’,d) A — same_state(s,s’)) (3.12)

Designers might use the theorems and axioms of interval temporal logic, see Ap-
pendix C.2, to clarify the requirements that this bi-condition imposes upon potential
implementations. It is always the case that if states of a control system, s and s/,
are represented by the same display then those states are identical. This is termed

3.3. DISPLAY CORRESPONDENCE 95

display transparency because different states of a control system are not hidden
behind a display:

vVd e D,Vs,s € S: no_display_correspondence(d,s,s’)
O(view(s,d) A view(s’,d) = same_state(s,s’)) (3.13)

For instance, if the clinical or therapeutic exposure to radioactive materials ex-
ceeds the prescribed dosage by more than ten percent then any United States’
Nuclear Regulatory Commission (NRC) licensee is guilty of “maladministration”
[281]. There were four hundred and twenty-three reported cases of therapeutic and
diagnostic maladministrations in the United States between 1981 and 1987. The
NRC is, therefore, concerned that control systems enable their operators to moni-
tor and observe as much information as possible about the dosage administered to
their patients. If a display, d, is presented for states, s and s/, of a clinical ther-
apy system then those states can be regarded as identical. The consequences of
violating this requirement are illustrated by a recent case in which over one thou-
sand North Staffordshire cancer patients were administered radiotherapy at thirty
percent below the intended level [17]. This occurred because the system program-
mer made incorrect calculations about the dosage level that was administered by
the radioactive source. In consequence, the same display, d, was presented for very
different states. Clinical staff could not detect the thirty percent difference between
the actual dosage level, s, and the intended level, s/, from the information that
was presented to them. The implementation details that are necessary in order
to achieve no_display_correspondence (3.13) in a particular interface vary from
application to application. The states of an external teletherapy control system are
not the same as those of a control system for internal brachytherapy. The use of
logic abstractions, such as p, s and d, provides designers with common design aims
for many different applications. This is a significant advantage. A criticism of NRC
guidelines for the design of nuclear control systems is that they are too specifically
aimed at power generation and cannot easily be applied to support the development
of medical applications [312].

Display Restriction

Display transparency is impracticable for many applications. Systems engineering
can deploy sensors to collect large amounts of information about application pro-
cesses. In order to present different displays for different states of a control system,
designers would have to present much of this detail to system operators. This is
impossible given the constraints of control room layout; there might not be enough
room to provide sufficient monitors. There are also human factors constraints. An
operator’s ability to detect changes in process information, typically, decreases if
designers increase the amount of data presented [318]. Alternatively, human factors
and systems engineers could exploit display restriction to combat the problem of
complexity. This requires that it is always the case that if different control system
states, s and s', are presented by a display, d, then an operator cannot cause a
transition between those states. In other words, users are restricted to commands
which have an effect that can be viewed through a change in the display:

Vd € D,Vs,s €8S :display_restriction(d,s,s’) <

56 CHAPTER 3. COMPLEXITY

O(display_correspondence(d,s,s’) = - interpret_effect(p, s, s’))3.14)

For example, the problems of presenting operators with information about radio-
therapy have led to the development of automated dosage control systems [281].
The patient’s treatment planning system encodes their requirements onto a mag-
netic card which is inserted into the therapy control system. The operator does
not directly control the exposure, — interpret_effect(p, s, s’), because they cannot
monitor all of the subtle changes in dosage levels, s and s’. This illustrates how
systems engineering can be recruited to reduce the unpredictability caused by dis-
play correspondence. The same requirement can also be satisfied by human factors
engineering. Operators can be trained not to interrupt clinical treatments if they
cannot detect a change in the state of their control system. In other words, if users
cannot determine the consequences of their interaction then they should do nothing.

Display Focusing

Serig argues that heavy workloads on hospital staff make it dangerous to rely upon
human factors techniques as a means of achieving display restriction [281]. Tired
operators make mistakes. Similarly, the automation of systems engineering does
not entirely avoid the problems of display correspondence. Equipment failure can
force operators to intervene given limited information about the state of their con-
trol system. Display focusing provides a further alternative to transparency and
restriction. This requires that users can eventually view sufficient information in
order to determine the state of their system. For instance, British Nuclear Fuels
recently undertook a survey of human factors requirements for their Thermal Ox-
ide Reprocessing Plant at Sellafield. This project identified techniques that could
enable operators to recover from human or system failures. British Nuclear Fu-
els concluded that “the results tended to be the identification of requirements for
additional information displays” [177]. These displays might provide access to a
database. Operators could use this to eventually gain detailed data about the state
of their control system. In other words, if operators cannot distinguish between
states, s and s, of a system from a display, d, then eventually additional displays,
d’, are available so that they can differentiate between them:

Vs,s' € S,Vd € D,3d’ € D : display_focusing(s,s’,d,d’) <
display_correspondence(d,s,s’) =
O(view(s,d) A view(s',d’) A — same_display(d, d’)) (3.15)

It is important to note that there is likely to be a delay before operators can view dif-
ferent states, s and s/, through different displays, d and d’. This is captured by the
<& operator in the previous bi-condition. If this interval is prolonged then the state
of a control system could change before an operator can determine whether it is s or
s’. Section 8.3.1 will argue that real-time operators can be introduced into interval
interval temporal logic in order to specify time limits upon such delays. For now it
is sufficient to observe that interval temporal logic predicates provide a basis upon
which to assess the strengths and weaknesses of techniques, such as display trans-
parency, restriction and focusing, for the human factors and systems engineering of
predictable control systems. The utility of display transparency is limited by the
human factors problems of observing many different items of information. It is also

3.4. COMMAND-VIEW CORRESPONDENCE o7

limited by the constraints of systems engineering; there might not be enough space
in a control room to provide sufficient monitors. The utility of display restriction is
limited by the human factors constraints of human error; operators might interact
with a system even though they cannot determine the consequences of their interven-
tion. It is also limited by the systems engineering constraints of equipment failure;
under certain circumstances operators must intervene with only limited information
about the state of their control system. Display focusing provides an alternative
that exploits both human factors and systems engineering. Systems engineering
must provide a database of additional information; operators can eventually access
this data in order to determine the state of their control system. Human factors
engineering must determine whether users are likely to perceive and understand this
information before state changes threaten safe and successful operation.

3.4 Command-View Correspondence

Control systems increasingly provide their users with many different commands.
This leads to complexity because designers cannot, typically, present information
about all possible options for intervention on a single display device. Presenting
multiple sources of information about a command has profound consequences for
the usability of interactive control systems [145]. Operators must not only remem-
ber which input sequences must be issued in order to invoke a command, they must
also recall which sources are used to present information about that command.
Users frequently have neither the time nor the opportunity to monitor primary and
back-up displays under the pressures imposed by many working environments. It is
important that human factors and systems engineers can reason about this cause of
complexity without being forced to represent all the commands offered by a poten-
tial implementation. If a nuclear power control system were to be analysed at this
level then its designers would have to consider the thousands of commands used to
control the reactor, outgoing power-grid connections, boilers, turbo-generators and
station electrical supplies. In contrast, human factors and systems engineers could
recruit interval temporal logic to represent the causes of command-view correspon-
dence without considering such details early in development. A predicate might be
introduced that is true for a display which contains information about a command
that can be issued to a control system in a particular state in the present interval.
For instance, a display, d, presenting data about boilers which are at full pressure,
s, could include information about a command, c, to reduce that pressure:

dce C,3s € 8S,3d € D : command_view(c,s,d) (3.16)

A relation is also introduced between displays that are presented by the same pre-
sentation device in the present interval. For instance, a cathode ray tube (CRT)
monitor might be a source of information, d, about generator boilers, as well as
data, d’, about turbo-generators:

3d,d’ € D : same_source(d, d’) (3.17)

It is possible to formalise the conditions that lead to command-view correspondence.
This occurs if different sources present information about the same command in the

58 CHAPTER 3. COMPLEXITY

present interval:

Jc € C,3s € S,3d,d’ € D : command_view_correspondence(c,s,d,d’) <

command_view(c,s,d) A command_view(c,s,d’) A — same_source(d, d(}.18)

For instance, the operators of the Chernobyl Unit Four reactor could access infor-
mation about a command, ¢, to manually introduce neutron-absorbing control rods
from their control panel, d. Written documentation, d’, was also provided to ex-
plain the intended use of this command. Operators were required to consult these
different sources in order to determine whether they should select this option for
intervention. The difficulty of accessing this dispersed information prevented them
from identifying the likelihood of a positive scram being caused by introducing the
control rods. They failed to realise that their command would increase, rather than
decrease, radioactivity once the rods had been withdrawn beyond a certain point.
Information about the precise contents of the Chernobyl Unit Four displays and
documentation has not been published [331]. It is known that the Soviet nuclear
industry was aware of the risk of positive scrams [242]. It is, therefore, possible
to speculate that such information could have been provided in paper-based docu-
mentation to system operators. What is certain is that the presentation of different
sources of information about options for intervention delayed an effective response
to the accident.

3.4.1 Command-View Correspondence And Predictability

Command-view correspondence jeopardises predictability. Data remembered from
one display can be forgotten in the process of accessing another. The likelihood of
this occuring increases as the amount of time available to system operators decreases
[318]. Users, therefore, eventually make inappropriate assumptions about the effects
of a command, c, if they must act on the basis of information, d and d’, gleaned
from different sources:

Jc € C,3s € S,3d,d’ € D : unpredictable(c,s,d,d') <

Ocommand_view_correspondence(c,s, d,d’) (3.19)

For instance, the main control panel of Unit Two at Three Mile Island was over forty
feet long. Despite the physical size of this presentation resource, it did not provide all
the information, d, that operators were expected to access before issuing a command,
c. Valuable time was wasted while users scanned volumes of paper documentation
to find the Emergency Procedures, d’, that described the effects their actions would
have upon the state of the reactor. Ainsworth notes that “one of the primary
problems which was identified in the Three Mile Island incident was the problem
of (users) identifying the appropriate procedure” [5]. The problems created by
command-view correspondence were exacerbated by the lack of integration between
systems and human factors engineering. Kirkpatrick and Mallory argue that this
lack of integration prevented operators from predicting the effects of their commands
upon the Unit Two reactor [176]. Systems engineers developed the format and
selected the content of the information provided to operators. Control room displays
were so cluttered that up to twenty-six percent of the meters could not be read by
users during routine tasks [203]. Written documentation and control room displays

3.4. COMMAND-VIEW CORRESPONDENCE 99

used different classification schemes to group command information. The difficulties
that this created were compounded by the lack of any consistent page numbering
scheme in the paper-based documentation [5]. These problems could have been
avoided through the integration of human factors and systems engineering.

3.4.2 Resolving Command-View Correspondence

Interval temporal logic provides a means of representing solutions for command-view
correspondence in a form that can be used to guide the design of interfaces to many
different control systems.

Command-View Transparency

Command-view correspondence is avoided if and only if it is never the case that
different sources display information, d and d’, about a command, c:

VceC,VseS,vd,d eD:
no_command_view_correspondence(c,s,d,d’) <
O- (command_view(c,s,d) A command_view(c,s,d’) A
- same_source(d,d’)) (3.20)

This is termed command-view transparency because human factors and systems
engineers must ensure that information about users’ options for intervention is not
eventually hidden by dispersing it amongst several different sources. The use of
abstractions, such as d and d’, enables designers to represent techniques that can
be used to guide the development of many different control systems. The previous
predicate might be used to guide the development of paper based documentation,
mimic boards and CRT monitors. The importance of this flexibility cannot be
over-emphasised. Whitfield reflects the attitude of the United Kingdom’s Nuclear
Installations Inspectorate (NII) when he argues that control systems will continue to
provide computer generated displays, paper documentation and hard-wired instru-
mentation [317]. Designers could re-write no_command_view_correspondence
(3.20), see Appendix C.3, to clarify the requirements imposed by this bi-condition.
It is always the case that if a command, ¢, is viewed through displays, d and d’,
then those displays are presented by the same source:

Vece C,VseS,vd,d eD:
no_command_view_correspondence(c,s,d,d’) <
O(command_view(c,s,d) A command_view(c,s,d’) =
same_source(d,d’)) (3.21)

A number of practical problems restrict the application of command-view trans-
parency. For instance, the NII is extremely reluctant to use a single source to
present all information about any aspect of a control system [322]. If this primary
source fails then operators will be deprived of all the data presented about some
command options. Under such circumstances back-up sources of information must
be provided. This re-iterates the point, first made in Section 1.5.3, that design prin-
ciples must not be viewed as axioms but as constraints that should only be violated

60 CHAPTER 3. COMPLEXITY

if designers understand and accept the consequences. A consequence of distribut-
ing command information between primary and back-up sources is that operators
might fail to access sufficient information for them to predict the effects of their
interaction.

Command-View Restriction

Designers can support predictability by ensuring that if command data is available
through primary and back-up displays then it is not presented by both sources at
the same time. This is termed command-view restriction because an operator’s
access to command information is limited; they are not simultaneously presented
with competing sources of data. For instance, a number of different bodies gov-
erned the operation of nuclear reactors in the former Soviet Union [279]. The State
Committee on the Supervision of Safe Operation in Industry and Mining issued
objectives in terms of output levels. The State Engineering Inspectorate and the
State Committee on Standards regulated reactor operating procedures. The State
Nuclear Safety Inspectorate issued safety objectives for the generation process. The
State Sanitary Inspectorate issued safety objectives for the handling of generation
by-products. If the regulations issued by all of these bodies had been distributed
through primary and back-up displays then operators would have been hard-pressed
to access the documentation that they were required to consult before issuing their
commands. Fortunately, designers always ensured that operators did not have to
monitor simultaneously many different sources of data about control regulations:

Vece C,Vs € S,3d,d € D : command_restriction(c,s,d,d’) &
O(command_view_correspondence(c,s,d,d’) =
display(d) A — display(d’)) (3.22)

In order to exploit command-view restriction human factors and systems engineers
must determine which displays are to be presented and which displays are not.
Predicates, such as command_restriction (3.22), provide a framework that can
be used to support this task. Abstractions, such as d and d’, might be instantiated
to capture the details of a particular control system display. For example, if the
system is transferring fission products, s, then users are presented with information
about regulations, d, governing commands, ¢, to move spent fuel [31]. The State
Committee on the Supervision of Safe Operation in Industry and Mining’s data
about the output levels of those commands might not be presented, — display(d’).
An important limitation of this approach is that control tasks frequently require
the simultaneous presentation of many different items of information. Under such
circumstances, designers might not be able to display all necessary command infor-
mation without using different sources.

Command-View Focusing

Command-view focusing concentrates the presentation of data in order to support
an operator’s control tasks. This approach is in accordance with the design objec-
tives recommended by regulatory and governmental authorities. The International
Atomic Energy Agency recommends that displays must be focussed to provide “opti-
mal support” for control tasks [157]. The Commission of the European Communities

3.4. COMMAND-VIEW CORRESPONDENCE 61

stipulates that sufficient information must be presented so that operators can select
appropriate commands for all necessary control tasks [76]. Pragmatically, this raises
the question of how to identify an operator’s current task. Designers could request
that users explicitly inform the system of their current objectives. This approach
is appropriate for well-defined tasks, such as those specified in the United States’
Nuclear Regulatory Commission’s Emergency Procedures [5]. It is inappropriate for
more opportunistic interaction. Advanced pattern recognition techniques, such as
those implemented using neural networks, offer the possibility that future control
systems could infer an operator’s current task from a trace of their previous interac-
tion [100]. Designers might exploit interval temporal logic to represent the require-
ments that must be satisfied in order to achieve command-view focusing through
these techniques. This formalisation could exploit Harrison, Roast and Wright’s
task templates [134]. These can be thought of as masks which might be placed
over a display in order to hide any information that is irrelevant for an operator’s
current activity. They are similar to the templates, introduced in Section 2.4.6, that
designers could use to extract the gates of a dialogue cycle. The template relation
is introduced between an operator task, ta, and a display, d, that provides infor-
mation about a command, c, which is relevant to that task in the present interval.
The elements of the set Ta include all operator tasks:

Jta € Ta,dc € C,3d € D : template(ta, c,d) (3.23)

Command-view focusing relaxes some of the constraints imposed by command-view
restriction; multiple sources of information can be presented if they are necessary
for an operator’s control task. It is always the case that if different sources can be
used to display information, d and d’, about a command, ¢, and d’ is irrelevant to
an operator’s current task, ta, then d’ is not presented and d is displayed:

Vece C,Vs € S,3d,d € D,3ta € Ta: command_focusing(c,s,d,d’, ta) &
O(command_view_correspondence(c,s,d,d’) A template(ta,c,d) A
- template(ta, c,d’) = display(d) A - display(d’)) (3.24)

A number of limitations restrict the utility of command-view focusing. For in-
stance, designers frequently make inappropriate assumptions about the information
that users require in order to perform particular tasks. Operators have glued beer-
keg handles and cardboard labels to control panels in order to remind themselves of
possible input options [280]. A further problem is that designers frequently cannot
prevent the presentation of buttons and switches that are irrelevant to an operator’s
task. Paper documentation cannot easily be removed from a control room every
time an operator’s task changes. These caveats lead to two important observations
about the application of command-view focusing. Firstly, human factors engineers
must recruit the support of systems engineering if they are to exploit this technique
as a means of achieving predictability. Flexible sources, such as CRT monitors,
must be provided in order to alter the presentation of command information as an
operator’s tasks change over time. This is already occuring as a result of the in-
creasing automation employed by systems engineering. Sizewell B will be the United
Kingdom’s first nuclear power station in which computers will provide the majority
of its safety systems [322]. Secondly, systems designers must recruit human factors
engineering in order to identify the command information required during operator

62 CHAPTER 3. COMPLEXITY

tasks. This is also taking place. The Chernobyl and Three Mile Island accidents
have led the United Kingdom’s Nuclear Industry Inspectorate to recommend care-
ful consideration of control tasks during the development of CRT displays [5]. It is
hypothesised that principles, such as predictability, could support such analyses by
establishing common objectives for the human factors and systems engineering of
complex, interactive control systems.

3.5 Conclusions

Complexity is caused by state correspondence which occurs when a control system
state represents different states of an application process. Complexity is caused by
display correspondence which occurs when operators cannot accurately determine
the state of a control system from the information displayed. Complexity is caused
by command-view correspondence which occurs when users must monitor many
different sources in order to access information about a command.

Complexity jeopardises predictability. If operators cannot determine the state
of an application or a control system then they cannot predict the effect of their
commands upon that state. If command information is dispersed amongst different
sources then operators might not access enough data to determine the consequences
of their intervention.

Principles support the design of complex systems because they establish high-
level objectives for potential implementations. This encourages integration; tech-
niques that support the operation of complex systems must frequently exploit both
human factors and systems engineering in order to achieve objectives such as pre-
dictability. Interval temporal logic can be used to represent these techniques without
specifying whether they are to be implemented using CRT or paper-based presenta-
tion systems. Examples from a range of different nuclear control systems have been
used to illustrate these points. The intention has been to avoid Moray’s criticism
that unless they can be applied to real-life applications then “no amount of excellent
logic or empirical research will have an impact” [212].

Section 3.2 made the simplifying assumption that control systems operate a sin-
gle application. This is unrealistic because many systems are open to interaction
with multiple users and processes. For instance, there are never less than three
operators in United Kingdom nuclear control rooms whenever two reactors are run-
ning. The next chapter argues that human factors and systems engineers might also
use interval temporal logic to support the principled design of such open control
Systems.

Chapter 4

Openness

“Current automation...integrates parts of the system which were pre-
viously isolated... The operator rarely has access to all of the information
coming from the processes and loses direct control of the system... The
specialised working teams that stand as satellites around the process
grow in number with the increase in automation... All these people in-
teract with each other and the control room operator... He no longer con-
trols the process but the global complex system” (Decortis, de Keyser,
Cacciabue and Volta, [85]).

4.1 Introduction

An open system is defined to be one that supports simultaneous interaction between
multiple users and processes. The quotation that starts this chapter describes the
consequences that openness can have for the operation of a control system. This
chapter argues that:

e openness can frustrate control tasks because the success of commands can be
jeopardised by input from other users and because operators must simultane-
ously interact with more than one process;

e interval temporal logic provides a means of representing techniques that human
factors and systems engineers might employ to resolve the problems created
by openness;

e designers must be able to assess the impact that these techniques have upon
principles, such as predictability.

It is concluded that principles which are intended to encourage the integration of
human factors and systems engineering can seldom be achieved by techniques that
ignore one of these complementary approaches to design.

4.1.1 Consequences: Operator Error And Unpredictability

Open control systems provide multiple operators with access to multiple processes.
Schmidt reviews the benefits that openness provides: flexibility; integration; ar-
ticulation and cooperation [276]. Rather than explore these benefits, this chapter

63

64 CHAPTER 4. OPENNESS

analyses the costs of openness. Human factors research has demonstrated that the
demands of operating open applications frequently lead to operator error [273]. Dun-
can and Praetorius argue that if users must simultaneously control several processes
then they are liable to make substitution errors, these were previously described in
Section 3.1.2 [92]. Reason argues that interference errors occur when users maintain
multiple plans for interacting with more than one process [252]. In other words,
the cognitive demands of pursuing one plan can interfere with the successful pur-
suit of another. Tatar, Foster and Bobrow demonstrate that the presentation of
inadequate information about the activities of other users leads to frustration and
confusion [299].

Wagenaar and Groeneweg argue that “unpredictability is caused by ... the spread
of information over the participants” in control [314]. Muir argues that “the more
constrained (i.e., closed) a machine’s behaviours are, the greater will be its pre-
dictability” [220].

4.1.2 Causes: Input Contention And Output Contention

Many of the problems that impair the usability of open applications are caused
by input contention. This occurs when an operator’s control task is frustrated by
concurrent input from another user. For instance, each London Underground line is
supervised from a Line Control Room by a Line Controller and some Line Assistants
[142]. They can intervene in the running of the line by issuing commands to train
drivers or station staff. Input contention would occur if a Line Controller requested
that a train stop at the same time as a Line Assistant gave it clearance to continue
its journey. Input contention has a powerful impact upon the predictability of open
control systems. Operators are unlikely to make accurate predictions about the
success or failure of their commands if they cannot determine whether other users
have issued concurrent input. In the previous example, the Line Controller cannot
predict that their command will not be frustrated by input from a Line Assistant.

The problems of openness are also caused by output contention. This occurs
when operators must monitor state changes in concurrent processes. For instance,
if a Line Controller diverts a train then they must monitor the knock-on effects
that their actions have upon other trains and lines. In order to do this, operators
must simultaneously interact with different aspects of control system functionality.
They must monitor their own section of track as well as those controlled by other
operators. If users fail to allocate sufficient attention to these tasks then they are
likely to miss important changes in the state of application processes. If operators
miss important changes in the state of application processes then they are likely
to make incorrect predictions about the effects of their intervention. For instance,
the Severn Tunnel crash occurred because Bristol signal-men were simultaneously
required to interact with track-side watchmen, signal-men at the Welsh end of the
tunnel and trains approaching their section of track [34]. As a result, they failed to
observe that a Paddington to Cardiff InterCity 125 had stopped inside the tunnel.
They also failed to predict the consequences of allowing a local Sprinter train to
enter the tunnel.

4.2. INPUT CONTENTION 65

4.1.3 Solution: Generic Design Principles

Figure 4.1 illustrates the structure of interaction between the many users and pro-
cesses of open control systems. The arrows on the left hand side of the diagram

Figure 4.1: A model of interaction with an open control system

represent the input that users provide to a control system. They also represent the
presentation of information by the control system to those operators. The arrows on
the right hand side of the diagram represent sensor input from application processes
to the control system. They also represent the transmission of control instructions
from the system to those processes. Input contention occurs if users, u, u’ and u’?,
issue input to a control system at the same time as one of their colleagues. Output
contention occurs when operators must simultaneously observe information about a
number of different application processes; a, a’ and a’’.

Just as these is no panacea for the problems created by complexity, there is also
no panacea for those created by openness. The following sections argue that design
principles provide criteria against which to assess techniques that can be used to
resolve the problems of input and output contention. This supports integration;
principles provide a common focus for the assessment of human factors and systems
engineering solutions. It is argued that interval temporal logic is an appropriate
medium for such assessments because it provides generic abstractions that can be
used to support the development of interfaces to many different applications.

4.2 Input Contention

In order to identify solutions for input contention, designers must first have a clear
idea of the causes of this problem. Interval temporal logic can support this task.
The set U includes all the users of an interactive control system. A relation can
be introduced between an input sequence, p, and the user, u, who issues it in the
present interval:

Ju € U,3Jp € P : user_input(u, p) (4.1)

66 CHAPTER 4. OPENNESS

The following pages adopt the convention of describing input contention between two
operators. This analysis can easily be extended to describe concurrent interaction
between many more users by introducing requirements for user_input from other
operators. An identity relation is also introduced between elements of U:

Vu € U: same_user(u,u) (4.2)

Input contention occurs when different operators simultaneously issue commands to
a control system. Temporal formalisms provide a means of representing vernacular
descriptions that include terms such as ‘simultaneously’. For instance, the following
predicate specifies that input contention occurs if and only if different users, u and
u’, issue input, p and p’, in the present interval:

Ju,u’ € U,3p,p’ € P: input_contention(u,v’,p,p’) &

user_input(u, p) A user_input(u’, p’) A — same_user(u,u’) (4.3)

For example, the 1988 Paris-Luxembourg rail accident was caused because contra-
dictory input was issued to a control system [33]. One signal-man, u, issued input,
p, which indicated that the line was clear, whilst another, u’, entered input, p’, to
indicate that it was unsafe to proceed.

4.2.1 Input Contention And Predictability

Input contention jeopardises predictability. For example, a London Underground
Line Assistant, u, might issue input, p, that orders a train onto a new section
of track, s. At the same time the Line Controller, u’, issues input, p’, that is
intended to stop the train on a section of track, s’. It is not possible to satisfy
both commands. One operator will, therefore, make an inaccurate prediction if
both anticipate the success of their interaction. Interval temporal logic provides
human factors and systems engineers with a means of representing the relationship
between input contention and violations of predictability. It is difficult for operators
to predict the effect of their input if eventually a colleague simultaneously issues
input with a potentially different effect:

Ju,u’ € U,3p,p’ € P,3s,s' € S : unpredictable(u,u’,p,p’,s,s’) « 3Is”" €S
¢ (input_contention(u, ', p, p’) A interpret_effect(p,s”,s) A
interpret_effect(p’,s”,s')) (4.4)

This bi-condition illustrates the benefits of genericity which are to be derived from
the use of logic abstractions. Designers could exploit interval temporal logic to char-
acterise usability problems that are common to many different multi-user control
systems. For instance, input contention is a problem for the operation of railway
networks and passenger aircraft. Foushee and Helmrich describe how a captain, u,
issued input, p, to dump fuel so that their aircraft would reach its desired landing
weight, s [104]. The flight engineer, u’, issued input, p’, to terminate the pumping
procedure, s’. The captain was amazed to find that the gross landing weight of the
aircraft was over six hundred and forty thousand pounds rather than the intended
five hundred and seventy thousand pounds. Subsequent analysis revealed that nei-
ther operator had accurately predicted the consequences of their commands because

4.2. INPUT CONTENTION 67

neither had considered the possibility of input contention. Similar examples can also
be identified in oil production, discussed in Chapter 2, and nuclear reactor control,
discussed in Chapter 3. Doyle, Gaddy, Burgy and Topmiller review the communica-
tions problems that arise between nuclear power plant operators [90]. For instance,
input, p, from an operator, u, to increase the power loading of a supply network, s,
might be issued at the same time as another operator, u’, attempts to close down
the reactor, s’. Input contention also provides a possible explanation of the prob-
lems that delayed a response to the loss of Cormorant Alpha’s Sea Puma helicopter.
There is evidence of contradictory instructions, p and p’, being issued by the rig
management, u, and the operators, u’, of the field’s search and rescue helicopter
[221]. The former approved flights, s, under poor weather conditions, s”, whilst the
later did not, s’. It is alleged that the rig management failed to predict the prob-
lems that would arise if their helicopter crashed; they were unaware that the search
and rescue team had ceased flying. The search and rescue team did not predict the
consequences that their commands would have because they were unaware that the
Sea Puma was still flying.

4.2.2 Resolving Input Contention

The following section argues that human factors and systems engineers might use
interval temporal logic to represent potential solutions to the problems caused by
input contention.

Voluntary Input Protocols

Voluntary input protocols exploit the flexibility of system operators to avoid con-
tention. For instance, input contention is avoided if and only if different operators
ensure that they never enter concurrent input into a system:

Vu,u’ € U,Vp,p’ € P : no_input_contention(u,v’,p,p’)

O- (user_input(u, p) A user_input(u’, p’) A — same_user(u,u’)) (4.5)

For example, De Keyser observes that operating instructions are frequently drafted
to ensure that only one user has control of an application at any point during
interaction [172]. This is termed a primary user protocol because the input of one
operator takes precedence over that of their colleagues. In order to exploit this
approach designers must have a clear understanding of the social ergonomics of
control, discussed in Section 1.3.2. For instance, they must ensure that disputes
within the workforce do not lead to violations of primary user protocols. Designers
could apply the axioms and theorems of interval temporal logic, see Appendix D.1,
to clarify the constraints imposed by no_input_contention (4.5). It is always the
case that if a London Underground Line Controller, u, issues input, p, then it is not
the case that different operators, u’, issue input, p’, at the same time:

Vu,u’ € U,Vp,p’ € P : no_input_contention(u,v’,p,p’) &

O(user_input(u, p) = — (user_input(u, p’) A - same_user(u,u’)))(4.6)

A limitation of this approach is that it is not always possible to identify a primary
user, especially in processes that are controlled by different operators working in

68 CHAPTER 4. OPENNESS

different locations [36]. A number of alternative voluntary input protocols avoid this
limitation. For instance, Popitz, Bahrdt, Jiires and Kesting argue that operators
can avoid contention through state synchronisation [239]. They demonstrate that
users coordinate their activities through the medium of the process itself. Operators
do not issue input until they observe particular changes in the state of a process.
These changes trigger their intervention. Their actions cause further state changes
which, in turn, trigger input from their colleagues. Contention is avoided because
different users do not respond to the same state change. Interval temporal logic can
be used to represent the requirements that must be satisfied in order to implement
this solution for input contention. For instance, if one operator, u, issues input, p,
then their colleagues, u’, wait until that input takes effect before interacting with
the control system:

Vu,u’' € U,Vp,p’ € P,Vs € S : synchronisation(u,u’,p,p’,s) & 3s' € S
(user_effect(u, p,s,s’) =

(= (user_input(u’, p’) A — same_user(u,u’)) U state(s'))) (4.7)

Section 4.3.1 will introduce a predicate to describe the effects of operator input
upon particular application processes. In contrast, the user_effect predicate in the
previous bi-condition is true for the effect, s’, of an input sequence, p, from a user,
u, upon the state, s, of a control system in the present interval:

YueU,VpeP,Vse S, 3s €8S : user_effect(u,p,s,s’) &
user_input(u, p) A interpret_effect(p, s, s’) (4.8)

A number of limitations restrict the application of voluntary protocols to avoid in-
put contention. Designers have no guarantee that users will abide by the operating
procedures intended to avoid interference. There are many examples where vol-
untary protocols have broken-down with catastrophic consequences. In November
1990, confusion between line controllers led to two InterCity trains colliding out-
side Newcastle Upon Tyne central station. In August 1990, similar problems led
to a packed commuter train being switched onto the wrong track outside Reading
station; it collided with another passenger train [200].

System Imposed Input Protocols

System imposed input protocols exploit automation to avoid input contention. It is
possible to automatically lock out input so that some users cannot affect the state
of the system. For example, if a London Underground Line Controller, u, issues
input, p, to close down the line, s, and a Line Assistant, u/, attempts to keep the
track in an operating state, s’, then in the next interval the Line Assistant’s input
does not have the predicted effect but the Line Controller’s does:

Vu,u' € U, Vp,p’' € P,Vs, s’ € S:state_lock(u,u’,p,p’,s,s') &
unpredictable(u,u’, p,p’,s,s’) = O(state(s) A - state(s’)) (4.9)
Technical limitations restrict the exploitation of such automated approaches to input

contention. The Hidden Report into the Clapham crash accepted that the high
costs of installing new signaling equipment prevented British Rail from adopting

4.2. INPUT CONTENTION 69

this solution [200]. Human factors problems also limit the utility of this approach.
Locking restricts access to shared resources. A Line Assistant’s attempts to get
a train into a station can be frustrated by their Line Controller closing the line.
Fairness is not guaranteed [94]. In other words, some operators can be unfairly
excluded from interaction if their commands are frequently prevented from affecting
the state of the system. Input queues provide a means of avoiding the human
factors and system engineering limitations of state locking. If users, u and u’, issue
concurrent input, p and p’, then in the next interval the system handles p and p’ is
eventually serviced. Amendola, Bersini, Cacciabue and Mancini exploit this input
queueing technique in their system response analyser [14]. Goals are assigned to
operators on the basis of previous traces of interaction. If interference is detected
between the goals of two users then the system attempts to satisfy the goal with the
highest priority. This approach is fair because the goals of other users are eventually
satisfied once the first goal has been achieved:

Vu,u' € U, Vp,p € P,Vs,s' € S: fair_input(u,v’, p,p/,s,s') &
unpredictable(u,u’, p,p’,s,s') = O(state(s) A Ostate(s’)) (4.10)

Applying systems engineering to maintain queues of low-priority input can create
a number of human factors problems. Delays in system response times lead to
frustration and error [186]. Unpredictability is likely to occur when periods of qui-
escence allow the system to process a backlog of input [94]. Delayed commands can
eventually take effect at inappropriate moments during interaction.

Mixed Approaches

System imposed input protocols exploit automation whilst voluntary input protocols
exploit the flexibility of system operators to avoid contention. Mixed approaches
exploit elements of both these techniques. Designers might combat input contention
by isolating users from the activities of their colleagues [95]. Operator predictions
can be confirmed if they are given the impression of sole access to shared resources.
For instance, a London Underground Line Controller, u, could issue input, p, to
close down the track, s, at the same time as a Line Assistant, u’, issues input, p’, to
keep the line open, s’. A control system which provided independent views might
confirm that both of these contradictory commands had been successful. Main-
taining independent views abandons the ‘What You See Is What I See’ principle,
introduced in Section 1.5. Each user has a different view of the state of their system.
This requirement is represented in the following bi-condition by the absence of any
explicit relation between the displays, d and d’, that are used to confirm the effect
of operator intervention:

YVu,u' € UVp,p €¢P,vd,d €D:
independent_views(u,u’,p,p’,d,d') & Js,s' € S
(unpredictable(u,u’, p,p’,s,s’) =
user_view(s,d, u) A user_view(s’,d’,u’)) (4.11)

The user_view predicate is true for a display, d, that presents information about
the state, s, of a control system to a user, u, in the present interval:

ds € 8S,3d € D,Ju € U : user_view(s,d, u) (4.12)

70 CHAPTER 4. OPENNESS

This independent view technique is mixed in the sense that it relies upon the integra-
tion of human factors and systems engineering. Systems engineering must provide
conflict resolution mechanisms [299]. In the previous example, conflict between the
Line Controller and the Line Assistant might be resolved by delaying the effects of a
command to close the line even though the Line Controller’s view could have shown
that their input took immediate effect. Human factors engineering must ensure that
users can resolve instances in which these mechanisms fail. For instance, conflict
resolution techniques might not be able to cope with two operators simultaneously
ordering a train to travel in opposite directions. In such circumstances, users must
cooperate in order to resolve potential conflicts between their commands. A num-
ber of mixed techniques have been developed to encourage this cooperation. For
instance, voting mechanisms require mutual agreement between operators before
their commands can take effect. Voting relies upon synchronisation points. The
provision of input serves to synchronise the activities of multiple users. This demo-
cratic approach is the antithesis of no_input_contention (4.6); no primary user
can dictate the course of interaction. Designers must integrate human factors and
systems engineering if they are to exploit voting as a means of avoiding input con-
tention. Systems engineers must provide the necessary communications support to
enable voting to take place. Human factors engineers must assess the perceptual
and cognitive burdens imposed upon operators who must suspend their activities in
order to vote for and against the commands of their colleagues. For instance, input
from the Bristol signal-man, u, to the system described in Section 4.1.2 was not
intended to enable a train to enter the Severn tunnel, s/, until clearance, p’, had
also been given by a signal-man, u’, at the Welsh end:

Vu,u' € U Vp,p' € P,Vs €S : vote_input(u,v’,p,p’,s) & 3s',s" €S
(user_effect(u, p,s,s’) = (- state(s')U

(- same_user(u,u’) A user_effect(u, p’,s”,s)))) (4.13)

Section 1.5 argued that designers could exploit principles as the basis for reason-
ing about interactive control systems. The previous discussion provides an example
of this; the analysis of predictability and openness has revealed trade-offs between
contention, cooperation and control. Voluntary input protocols avoid contention
through mutual cooperation between system operators. If this cooperation fails
then it might no longer be possible to guarantee safety. Input contention can frus-
trate operator predictions about the effects of their commands. System imposed
protocols avoid contention by placing locks upon operator input. This reduces the
potential for cooperation and can jeopardise safety if users are prevented from ac-
cessing shared resources. Operators cannot predict that their commands will have
the desired effect because they could be locked out by the system. Mixed approaches
have been recommended as alternatives that integrate human factors and systems
engineering. Independent views rely upon conflict resolution mechanisms to guar-
antee the safety of an application. Cooperation is required if these mechanisms fail.
Voting mechanisms provide locks for security and rely upon mutual agreement be-
fore commands take effect. This ensures cooperation. The utility of this approach is
limited if adequate communications equipment cannot be provided by systems engi-
neering. The human factors techniques of social ergonomics must ensure that users
will reach a consensus before application processes require operator intervention.

4.3. OUTPUT CONTENTION 71

4.3 Output Contention

Control system operators are increasingly required to supervise many different appli-
cation processes. For example, a London Underground Line Controller must ensure
the safe and timely passage of trains over their sections of track. They must also
coordinate the activities of cleaning and maintenance teams. Designers can repre-
sent application processes as elements of a set, A. An identity relation is introduced
between the elements of this set:

Va € A : same_process(a,a) (4.14)

The elements of the set Ps, introduced in Section 3.2, represent the state of an appli-
cation process. Displays, d, present information about the states, ps, of processes,
a, in the present interval:

Vae A,Vps € Ps,3d € D : process_view(a, ps,d) (4.15)

It is important to note that this predicate makes no assumptions about the sources
or devices used to present displays, d. The following pages describe the problems of
operating two different processes. This analysis can easily be extended by requiring a
process_view of other processes. Output contention occurs if and only if a display,
d, simultaneously presents information about the states, ps and ps’, of different
application processes, a and a’:

Ja,a’ € A, 3ps,ps’ € Ps,3d € D : output_contention(a,a’, ps,ps’,d) &

process_view(a, ps,d) A process_view(a’, ps’,d) A - same_process(a, a’[4.16)

Output contention frustrates the task of controlling many application processes.
Human factors research has identified the costs incurred by users when they move
the focus of their attention from one process to another [318]. For example, operators
in the Waterloo control room for British Rail’s Southern Division are frequently
required to switch services between lines in their region. To help them do this
they are presented with displays, d, that simultaneously provide information about
many different trains, a and a’. If operators fail to notice that a train, a, has been
delayed, ps, then the knock-on effects can be considerable. It is a non-trivial task
to re-route the hundreds of services that are required to carry over one hundred and
forty thousand commuters between Kent, Essex and London every weekday morning
[161].

4.3.1 Output Contention And Predictability

De Keyser suggests that operators often fail to comprehend the consequences of their
actions in multi-process applications [172]. Predictability is violated if the effects of
input, p, on different application processes, a and a’, are presented in the present
interval. It is important to note that operators must not simply anticipate the effects
of input upon the state of a control system; they must predict the consequences of
their intervention for individual processes:

dp € P,3a,a’ € A,3d € D : unpredictable(p,a,a’,d) «
Ips, ps’, ps’, ps” € Ps(output_contention(a,a’, ps’, ps”’,d) A
process_effect(p, a, ps, ps’) A process_effect(p, a’, ps”, ps”’)) (4.17)

72 CHAPTER 4. OPENNESS

The process_effect relation in the previous implication describes the effect, ps’, of
input, p, on the state, ps, of an application process, a, in the present interval:

VpeP,Vac A Vps € Ps,Ips’ € Ps: process_effect(p, a, ps, ps(4.18)

Railway signaling systems provide examples of this form of unpredictability. Line
controllers issue input, p, to divert trains, a, onto different tracks, ps’. When they
do this it is important to ensure that following trains, a’, are slowed, ps”’, to allow
the first train to clear the junction. In order to make accurate predictions about
the effects of their input, operators must able to monitor many different trains. In
1990 there were approximately one thousand incidents in which British Rail signal-
men provided incorrect information about blocked junctions or diverted rolling-stock
onto the wrong side of two-way tracks [34]. The consequences of such errors can be
catastrophic. In December 1988, thirty-five people died when an InterCity express
ploughed into the back of a rush-hour commuter train at Clapham Junction. The
problems of simultaneously controlling many different trains were cited as a major
cause of this accident [200].

4.3.2 Resolving Output Contention

The following section argues that designers might exploit interval temporal logic to
represent potential solutions for the problem of output contention.

System Imposed Output Protocols

System imposed output protocols exploit automation and display design in order
to reduce the cognitive and perceptual burdens that output contention places upon
system operators. Zachary argues that designers must consider the limitations im-
posed by the “weak concurrency” of human information processing [333]. Users
simultaneously maintain goals for many different processes; “only one of which may
be actively pursued by the human operator at any one time”. Human factors and
systems engineers can exploit this observation by multiplexing the presentation of
interactive control systems [24]. In other words, they might ensure that different
processes are never presented by the same display. For instance, the presentation
of information by cathode ray tube (CRT) monitors in London Underground Line
Control Rooms could be filtered to ensure that data about different trains, a and
a’, is never simultaneously presented. It is hypothesised that this might reduce the
substitution errors that occur when operators issue input to the wrong process on
multi-process displays:

Va,a' € A, Vps,ps’ € Ps,¥ydeD:
no_output_contention(a,a’, ps, ps’,d) < O- (process_view(a, ps,d) A

process_view(a’, ps’,d) A — same_process(a,a’)) (4.19)

A number of problems limit the utility of this technique. Hiding information about
the state of application processes leads to display correspondence; discussed in Sec-
tion 3.3. If operators are unaware of the state of an application then they are unlikely
to make accurate predictions about the effects of their interaction upon that state.
This is illustrated by the operator ‘errors’ that compounded the King’s Cross fire.

4.3. OUTPUT CONTENTION 73

Five of the eight CRT monitors in the Line Control Room were either broken or were
not switched on. In consequence, the Line Controller could not display the passage
of trains, a and a’, through their station. The Fennell investigation concluded that
this information would have helped them to predict the consequences of ignoring
police instructions to prevent Picadilly and Victoria line trains from stopping at
King’s Cross [98]. A further limitation is that no_output_contention (4.19) can
be unfair. In other words, information about the state of a process might be hidden
indefinitely. There is no guarantee that it will be presented to system operators.
Designers could avoid this problem by recording information about the states of
application processes. This information could eventually be displayed as soon as
resources are released by the presentation of information about other processes [40)].
This output protocol is fair because information about the state, ps, of process, a,
is presented by a display, d, in the present interval and in the next interval it is
eventually the case that information about a different process, a’, is presented:

Ja,a’ € A,3ps,ps’ € Ps,3d € D : fair_output(a,a’, ps,ps’,d) &

process_view(a, ps,d) A O<(process_view(a', ps’,d) A — same_process(a, a’[}#.20)

The abstractions of interval temporal logic provide designers with a means of spec-
ifying generic requirements that can be applied to guide the development of many
different control systems. For instance, this approach has been embodied within
the systems engineering of Boeing 757 and 767 aircraft [282]. Information about a
malfunctioning avionics process, a, is immediately displayed by the Engine Indica-
tion and Crew-Alerting System (EICAS). Automated systems control other avionics
applications during these critical events. Eventually the EICAS presents informa-
tion about the other processes, a’, so that the flight can continue. Sanquist and
Fujita have used fair output protocols in a nuclear reactor control system [272]. The
presentation of information about low-priority processes, a’, is postponed during
system errors. Similar alarm suppression systems could also be incorporated into
the new generation of fire-fighting systems being developed for oil-rigs such as Piper
Bravo [147]. The fact that it has been possible to represent generic requirements
for fair_output (4.20) does not imply that this technique is appropriate for all ap-
plications. Operators must frequently have immediate access to data about many
different processes. For instance, the Relief Station Inspector, the Line Controller
and the Station Manager required constant information about trains, platforms and
passengers during the King’s Cross fire [98]. Such genericity does, however, encour-
age designers to explore techniques that have proven useful in one domain and which
could have a wider application.

Voluntary Output Protocols

Voluntary output protocols exploit the flexibility of operator monitoring techniques
to support display design. Liu and Wickens argue that designers might exploit these
protocols by developing displays which do not present different application processes
through the same channel [197]. A channel consists of a number of display elements
which operators can observe in parallel. For example, production graphs and error
messages need not be monitored in sequence if they are displayed close together.
Rapid eye movements between many different areas of a CRT monitor indicate an
inefficient grouping of process information. This can be assessed experimentally

74 CHAPTER 4. OPENNESS

using an Eye-mark recorder; infra-red light is projected onto an operator’s retina to
determine the object of their visual fixations [130]. In order to represent voluntary
output protocols a relationship is introduced between a display, d, and an element,
ch, of a set of channels, Ch, through which an operator observes a process, a, in
the present interval. This relation is similar to gate (2.33) and template (3.23); it
can be thought of as a template which designers could place over a display in order
to extract those elements that can be monitored in parallel:

Jdae A,3d € D,3ch € Ch : observe(a,d, ch) (4.21)

Human factors and systems engineers might use this predicate to represent the re-
quirements that must be satisfied if operators are to exploit output channels when
monitoring concurrent processes. For example, a London Underground Line Con-
troller could focus their attention if and only if it is never the case that maintenance,
a, and cleaning, a’, processes are observed through the same channel, ch, of a dis-
play, d:

Vd e D,Vch € Ch,Va,a’ € A : channel focus(d, ch,a,a’) &
O- (observe(a, d, ch) A observe(a’,d, ch) A - same_process(a, a’[}1.22)

A number of limitations restrict the utility of devoting an output channel to the
presentation of a single process. Line controllers must sequentially scan different
output channels in order to schedule maintenance, a, and cleaning, a’, processes.
They must, therefore, remember the data presented by one channel whilst observ-
ing another. Broadbent argues that the sustained attention necessary to fixate an
output channel and remember process information extracts a toll in fatigue [43]. In
consequence, the longer an operator must monitor a channel the more likely they
are to forget data about other processes. Fischer, Haines and Price argue that by
fixating upon one process, users will forget to scan sequentially other process in-
formation which is displayed through different channels [101]. Critical changes in
power loading will be overlooked if an operator becomes pre-occupied with monitor-
ing the progress of maintenance activities. In order to represent a solution to these
problems a relation is introduced between an operator’s task, ta, and a process, a,
which is involved in that task in the present interval:

Jta € Ta,Ja € A : task process(ta,a) (4.23)

Designers might exploit task analysis techniques to determine which application
processes, a, are involved in particular tasks, ta. Section 8.2.1 describes how task
analysis techniques can be directly used to inform principled design. For now it
is sufficient to realise that human factors and systems engineers might focus the
presentation of process information to support particular tasks. Processes, a and
a’, that are relevant to a control task, ta, are displayed through the same channel,
ch, in the present interval:

dta € Ta,3ch € Ch,Ja,a’ € A :
task focus(ta,ch,a,a’) < 3d € D
(task_process(ta,a) A task_process(ta,a’) A
observe(a, d, ch) A observe(a’,d, ch)) (4.24)

4.3. OUTPUT CONTENTION 75

Human factors and systems engineering limitations restrict the utility of voluntary
output protocols. Differences in the perceptual and cognitive resources available to
individual operators can determine their ability to exploit techniques such as chan-
nel and task focusing [41]. It is frequently impossible for human factors engineers to
predict which channels operators will use to monitor process information. Wickens
observes that most systems engineers “... do not know precisely what configuration
of warning indicators will signal the onset of an abnormal condition” [318]. Eighty
trains pass through Northern Line Underground stations every hour. The many
different control tasks that must be performed in order to synchronise the running
of such processes makes it difficult to identify an optimal allocation of process in-
formation to output channels [121].

Mixed Approaches

Mixed approaches integrate the automation and display design of system imposed
protocols with the operator monitoring techniques exploited by voluntary output
protocols. For instance, a London Underground control system might ensure that
information about maintenance, a, and cleaning, a’, processes is presented until it
is observed by a Line Controller. Human factors engineering could ensure that this
information can be viewed through the same channel, ch. This observational focus
reduces output contention. Information about the state of the maintenance and
cleaning processes can be hidden once it has been observed:

Ju e U,3ch € Ch,3a,a’ € A,Ips,ps’ € Ps:
observe_focus(u,ch,a,a’,ps,ps’) & 3d € D
(output_contention(a, a’, ps, ps’, d)U
(observe(a, d, ch) A observe(a’,d, ch) A fixates(u, ch))) (4.25)

In the above fixates(u, ch) is true when a user, u, fixates upon an output channel,
ch. A system might use an Eye-mark recorder in order to detect the visual fixations
of their operators:

Ju € U,3ch € Ch : fixates(u, ch) (4.26)

A number of practical limitations restrict the utility of this technique. In particular,
the real-time duration of the U operator is not specified. How long must a display
be presented if it has not been observed? Section 8.3.1 will argue that real-time op-
erators might be introduced into interval temporal logic in order to represent such
deadlines. Such notational enhancements do not resolve the practical limitations
that restrict the utility of observational focusing. In order to monitor fixations,
designers must ensure that operators wear an Eye-mark recorder during their ob-
servation of control system displays. These recorders restrict head movements and
must be calibrated at regular intervals [130]. Designers must seek alternative tech-
niques if they are to avoid these limitations. For instance, handshaking protocols
provide a means of encouraging operators to acknowledge the presentation of appli-
cation data [304]. The control system displays some data then waits for the user to
acknowledge it before presenting more information. Handshaking involves a synchro-
nisation point, input(p), to coordinate the presentation and observation of process
information. Human factors engineering must ensure that operators confirm their

76 CHAPTER 4. OPENNESS

observation of process information by issuing input, p. Human factors engineers
must also ensure that users perceive and understand the information presented to
them. This is a non-trivial requirement. Operators can confirm that they have ob-
served and understood a message even though their attention is not focussed upon
the display [318]. Systems engineering must ensure that information is presented
until the user acknowledges the display by issuing input, p. Handshaking, therefore,
requires the integration of human factors and systems engineering. Designers might
exploit this technique to support predictability. Users are presented with sufficient
information for them to predict the effects of their intervention upon a process, a,
until they confirm that it has been observed. The requirements for handshaking can
be formalised as follows:

dp e P,Ja € A,dps € Ps,3ch € Ch : hand_shake(p,a,ps,ch) < 3d €D
(process_view(a, ps, d)U (observe(a, d, ch) A input(p))) (4.27)

It is important to re-iterate the point that interval temporal logic abstractions pro-
vide generic representations of design techniques which are intended to support
principles, such as predictability. Human factors and systems engineers could apply
the previous bi-condition to guide the development of many different control sys-
tems. Hess describes the use of handshaking in the Rotorcraft Digital Advanced
Avionics System of Bell UH-1H helicopters [146]. When avionics detects that an
application process, a, is in a critical state, ps, then a caution is presented until
the pilot confirms it. Handshaking has also been proposed as a means of improv-
ing safety on roll-on roll-off ferries. The negative reporting procedures used on the
Herald of Free Enterprise were heavily criticised by Mr Justice Sheen’s inquiry into
the Zeebruge disaster [283]. The master was instructed to assume that all was well
unless he was explicitly told otherwise. The Sheen report argued that positive con-
firmation should have been used. In other words, the Captain should have issued
input, p, to confirm their observation that the bow doors, a, were closed, ps. This
genericity provides great benefits for the development of interactive control systems.
Techniques which support principles in one application can be represented in a form
that can be applied to guide the human factors and systems engineering of many
different control systems.

4.4 Conclusions

Input contention frustrates the design and operation of open control systems be-
cause different users can simultaneously issue input with different effects. Output
contention frustrates the design and operation of open control systems because users
must observe concurrent changes in the state of different application processes.

Input and output contention jeopardise predictability. Input contention threat-
ens predictability if operators cannot determine which of their commands will be
effective. Output contention threatens predictability if users fail to observe the state
of a process that is affected by their input.

Interval temporal logic provides abstractions that can be used to specify generic
solutions for the problems of openness, such as handshaking and voting. It has been
argued that the support which these techniques offer for principles, such as pre-
dictability, depends upon the integration of human factors and systems engineering.

4.4. CONCLUSIONS 7

Principles which are intended to encourage integration can seldom be achieved by
techniques that exploit only one of these engineering disciplines.

This part of the thesis has argued that principles provide human factors and sys-
tems engineering with criteria against which to assess solutions for the fundamental
problems of control: dynamism; openness and complexity. Interval temporal logic
has been proposed as an abstract and generic notation that can be used to support
such assessments. This analysis has, however, been pitched at a level of detail that is
inappropriate for the principled design of particular interfaces to particular control
systems. In contrast, Part III argues that principles provide a means of integrating
human factors and systems engineering to support the detailed design of interactive
control systems.

Part 111

Principles And The Problems
Of Detailed Design

78

79

Introduction To Part III

This part of the thesis argues that principles provide a means of integrating human
factors and systems engineers to support the detailed design of interactive control
systems.

Chapter 5 argues that principles provide designers with a means of informing
their choice of particular development architectures. Interval temporal logic is used
to assess claims that object orientation not only supports the systems engineering
of modular software but also supports the human factors engineering of consistent
and predictable interfaces. It is argued that if these claims can be justified then
object orientation could provide considerable support for the integration of human
factors and systems engineering.

Chapter 6 argues that principles provide criteria against which to assess the
weaknesses of development architectures. In particular, it is argued that object ori-
entation threatens the development of predictable control systems because models
of application components frequently break down. It is argued that designers might
exploit interval temporal logic to clarify the strengths and weaknesses of potential
solutions to this problem. The intention is to demonstrate that human factors and
systems engineers could exploit development architectures, such as object orienta-
tion, without sacrificing principles, such as predictability.

Chapter 7 argues that principles, expressed in interval temporal logic, provide
the non-formalist with little idea of what it would be like to operate a potential im-
plementation. Prototypes provide users with a much better impression of the ‘look
and feel’” of an interactive control system. In practice, formal analyses and prototyp-
ing are usually treated as alternatives. It is argued that the integration of human
factors and systems engineers is encouraged if designers can exploit both of these
techniques. PRELOG, a system for Presenting and REndering LOGic specifications
of interactive systems, has been implemented to demonstrate that prototypes can
be derived from a formal analysis of design principles. Partial implementations, de-
veloped using this tool, are intended to serve as blue-prints for the detailed design
of interactive control systems.

Chapter 5

Inconsistency

“There are clear relationships between the quality of an interactive
system and not only the software components of that system, but also
the embracing structure for those components” (Cockton, [74]).

5.1 Introduction

Development architectures are defined to be frameworks that provide a structure
for the design of software components. This chapter argues that principles provide
a focus for an analysis of the strengths of development architectures. Integration is
encouraged if these strengths extend to both human factors and systems engineering.
The quotation which opens this chapter observes that the choice of such frameworks
not only affects the way in which software and hardware are designed, but that it
also affects usability. In particular, the following pages argue that:

e object orientation supports the development of consistent interfaces;
e consistency supports predictability;
e some object oriented techniques jeopardise these benefits.

It is concluded that if human factors and systems engineers avoid techniques, such
as method overriding, then some forms of consistency and predictability can be
achieved through object instantiation.

5.1.1 Consequences: Skill Dependency And Unpredictability

The adjective ‘inconsistent’ is defined as being “at variance with one’s own principles
or former conduct” [12]. In the context of this thesis, the noun inconsistency is
interpreted as variations in the presentation of similar output or differences in the
handling of similar input. Payne and Green argue that the degree of inconsistency
in an interface is a major determinant of learnability [233]. Carroll argues that
operators learn an interface more rapidly and find it subjectively “easier to use” if
it is perceived to be designed in a rational and consistent manner [55]. Yeh and
Wickens argue that if users are familiar with a particular presentation format then
minimal re-training is required in order for them to use other systems which also
exploit that format [332]. Barnard, Hammond, Morton and Long argue that if

80

5.1. INTRODUCTION 81

similar dialogues are handled differently then operators cannot transfer skills gained
in one task to support another [25]. These observations support the argument, first
made in Section 1.5, that consistency is a principle which might guide interface
development.

Consistency supports predictability. Smith and Ellis find that users exploit
knowledge gained from one control system to predict the behaviour of other control
systems [?]. They point out the dangers that arise when designers fail to support
such strategies; inconsistency implies that even if commands appear to be similar
they can have very different effects.

5.1.2 Causes: Different Designers And Different Requirements

Grudin argues that systems are inconsistent because few designers can dictate all
aspects of interface development [125]. Managerial and proprietary reasons prevent
the imposition of consistency criteria over different design teams. For instance,
Gopher, Olin, Donchin and Bieski observe that input sequences to increase the
speed of medical pumps vary from manufacturer to manufacturer [124]. They also
vary within product lines sold by the same manufacturer.

Changes to system requirements can lead to interface inconsistency. These are
frequently made in response to consumer complaints or accident reports. For in-
stance, oil-rig deluge pumping equipment has been substantially modified following
the Cullen report into the Piper Alpha accident [81]. Inconsistency occurs if such
modifications do not meet the criteria adopted by previous designers.

5.1.3 Solution: Object Oriented Design

Inconsistency might be avoided if designers were provided with documents that de-
tail the consistency criteria to be satisfied throughout the life-cycle of a control
system. A number of limitations restrict the utility of this approach. Kellogg [170],
Nielsen [226] and Reisner [255] all note the difficulty of explicitly representing con-
sistency criteria. Formal notations, such as interval temporal logic, can be exploited
to resolve this problem [256]. Unfortunately, the use of such notations does not
directly provide human factors and systems engineers with a means of achieving
consistency. In contrast, Cockton suggests that designers could exploit development
architectures to achieve interface consistency [74]. These architectures might, in
turn, support predictability. Not only could operators assume that input and out-
put are handled in similar fashions, they might also assume that similar commands
have similar effects. Hewlett Packard’s New Wave architecture, Sun Microsystem’s
Openwindows and the Digital Equipment Company’s Compound Document Archi-
tecture have all exploited object orientation to support consistency [223]. Designers
might, therefore, attempt to achieve principles, such as consistency and predictabil-
ity, by using an object oriented architecture rather than the Seeheim model [74] or
Edmonds’ data-flow architecture [93].

This chapter specifically intends to assess the support which object oriented de-
velopment provides for consistency and predictability. It is not intended to provide
solutions for all of the many different forms of inconsistency, identified by the au-
thors cited in Section 5.1.1. Such caveats stem from the problems of attempting
to formalise a nebulous concept or principle, such as consistency. Interval temporal

82 CHAPTER 5. INCONSISTENCY

logic can make these concepts more precise but, in doing so, may lose some of the
findings of informal analyses [87]. Chapter 8 will address this issue in more depth.
Enhanced notations, tools and development techniques will be proposed as means of
improving the range of requirements that can be captured using formal notations.

5.2 Inconsistency And Object Oriented Design

Other authors [209, 263] have identified four necessary features of the object ori-
ented architecture: objects; message passing; classes and type instantiation. Objects
provide designers with a means of hiding information. They possess states, some
aspects of which can be hidden from other objects in the system. They also possess
methods that operate on those states. For instance, the state of a coolant tank
might be changed from full to empty by invoking a method to evacuate it. Message
passing provides the computational model that is associated with object oriented
design. An object sends a message to invoke a method which acts upon the state of
another object. It is important to note that operator input can also be described in
terms of messages passing. For instance, a user might send a message that invokes
a method to start a coolant pump. Classes provide designers with templates for
objects that can be used in many different interfaces. Classes can inherit attributes
from other classes. For example, instances of the class of pumps might be re-used
in industrial and domestic heating control systems. Type instantiation provides a
means of ensuring that similar objects share certain attributes. All instances of the
same class can provide common methods and states. For example, tank objects
could offer the full, half-full and empty states.

In order to determine the influence of object orientation upon consistency there
must be some means of reasoning about a design without representing the thou-
sands of lines of code necessary to implement a particular control system. This is
illustrated by part of a program initialising a gauge object within the Smalltalk
implementation of Lazarev’s [190] furnace control system:

setWeightColor
"Set the colour of the weight gauge."
"Return if weightPane is nil."
weightPane isNil
ifTrue: [T self].

(temp<tmp1)

ifTrue: [(weightPane sliderGaugePane) colour: 2].
(temp >= tmpl and: [temp < tmp2])

ifTrue: [(weightPane sliderGaugePane) colour: 10].
(temp >= tmp2 and: [temp < tmp3])

ifTrue: [(weightPane sliderGaugePane) colour: 11].
(temp >= tmp3 and: [temp < tmp4])

ifTrue: [(weightPane sliderGaugePane) colour: 12].

(temp >= tmp4)
ifTrue: [(weightPane sliderGaugePane) colour: 13].

5.2. INCONSISTENCY AND OBJECT ORIENTED DESIGN 83

In order to establish consistency between control objects, a designer would be
forced to compare many of these segments of code. For instance, they must ensure
that every object used colour:12 to represent states in which its temperature lay
between tmp3 and tmp4. A further limitation is that consistency criteria can only
be expressed at this level of detail late in the development of a control system.
Brooks argues that the costs of correcting flaws, such as inconsistency, are often
prohibitive during the later stages of design [44]. Mathematically based notations
provide a means of avoiding this limitation; designers might use them to express
consistency criteria before a system is implemented. For instance, Backus Naur Form
(BNF) grammars have been applied to analyse inconsistency [234]. This approach
has its limitations. Reisner argues that “consistency is not a property of a system
language” [256]. Interval temporal logic provides an alternative to BNF as a notation
for reasoning about consistency. A set of control system objects, O, might be
introduced. The elements of this set should be thought of as abstract representations
of the software components that would be developed during implementation in an
object oriented programming language. Section 6.2 will introduce a distinction
between such control system objects and the physical components of application
processes. An identity relation is introduced between elements of O:

Vo € O : same_object(o,0) (5.1)

The set Os includes all the states of these control system objects. A relationship
is introduced between objects and their state in the present interval. For instance,
tank objects, o, can be in the full state, os:

Vo € O,30s € Os : object_state(o, os) (5.2)

Om is the power-set, the set of sets, of methods that can be applied to the state
of an object. A relationship is introduced between objects and the methods which
can affect their state in the present interval. For instance, methods, om, might be
available to fill and evacuate tanks, o:

Vo € O,3om € Om : object_methods(o,om) (5.3)

Object orientation is here being applied to support the design of interactive control
systems and so we introduce a set, Od, that contains the images which are used
to present objects. A relation is introduced between an object and its image in
the current interval. For instance, an error display, od, can be used to present
information about tanks, o:

Vo € 0,30d € Od : object_view(o, 0od) (5.4)

These predicates can be used to describe the attributes of control system objects, o.
They are accessible via methods, om, have an internal state, os, and are displayed
by an image, od:

Vo € O,3om € Om,Jos € Os,Jod € Od : object(o,om, 0s,0d) <
object_methods(o,om) A object_state(o, 0s) A object_view(o, 0d(5.5)

Designers might use predicates, such as object (5.5), to represent the causes of
inconsistency in object oriented control systems. Two objects, o and o/, are incon-
sistent if and only if they do not always have the same display, od, the same state,

84 CHAPTER 5. INCONSISTENCY

os, and the same methods, om. It should be noted that if the — same_object (o, 0’)
requirement is dropped from the following predicate it would be possible for o and
o’ to unify. In other words, an object is inconsistent with itself if and only if it does
not always possess the same attributes:

Jo,0' € O,Yom € Om,Vos € Os,Vod € Od :
inconsistent(o,0’,om, 0s,0d) <

- O(object(o,om, 0s,0d) A object(o’,om, 0s,0d) A — same_object(o,0))(5.6)

This bi-condition captures both external and internal inconsistency. Internal in-
consistency occurs if input and output are treated differently by the same system.
Malone, Kirkpatrick, Mallory, Eike, Johnson and Walker provide examples of this
in their review of nuclear reactor control rooms [202]. For instance, two pumps
were represented by monitor scales that were identical except that one was read at
ten times the value of the other. The pumps, o and o, were inconsistent because
they were not represented by the same display, od. External inconsistency occurs
if different systems handle input and output differently. For example, considerable
instruction was required before control room staff could operate Kershner, Gebhard
and Silverman’s iconic displays for nuclear reactors [171]. Inconsistency compli-
cated the task of operating this interface because coolant pumps, o and o', were not
represented by the textual displays, od, that were presented by existing systems.

5.2.1 Image Inconsistency

The inconsistent (5.6) predicate can be re-written, see Appendix E.1, to clarify
particular forms of inconsistency:

Jo,0' € O,Yom € Om,Vos € Os,Vod € Od :
inconsistent(o,0’,om, 0s,0d) <
<O (object_methods(o,om) A object_methods(o’,om) A
object_state(o, 0s) A object_state(o’,0s) A — same_object(o,0’) =
- (object_view(o,0d) A object_view(o’, 0od)) (5.7)
This bi-condition can be expressed in a more tractable form by introducing a pred-

icate that is true if and only if control system objects, o and o', are in the same
state, os, in the present interval:

Jo,0’ € O,30s € Os : same_object_state(o,0’, 0s) &
object_state(o, 0s) A object_state(o’, 0s) (5.8)

The bi-conditions same_object_view (5.9) and same_object_methods (5.10)
are introduced in a similar manner for elements of Od and Om. These predicates
are incorporated into inconsistent (5.7) as follows:

Jo,0' € O,YVom € Om,Vos € Os,Vod € Od :
inconsistent(o,0’, om, 0s, 0od) <
¢ (same_object_methods(o, 0’,om) A same_object_state(o,0’,0s) A

- same_object(o,0’) = — same_object_view(o, o', 0d)) (5.11)

5.2. INCONSISTENCY AND OBJECT ORIENTED DESIGN 85

The < operator provides human factors and systems engineers with a means of rep-
resenting the observation, made in Section 5.1.2, that consistency can eventually
be violated by modification and re-design. For instance, Kletz describes a chemical
processing plant that presented pumps using serial numbers starting at J1000 [179].
After a period of time the unit reference number allocation was changed and equip-
ment was numbered from JA1000. Considerable confusion resulted when operators
were forced to distinguish between equipment assigned JA or J reference numbers.
Inconsistency eventually occurred when the new numbering scheme was introduced.
Pumps in the same state, same_object_state(0,0’,0s) accessed by the same methods,
same_object_methods(o,0',om) were represented using different numbering schemes,
- same_object_view(0,0,0d).

5.2.2 Resolving Image Inconsistency

The previous bi-condition, inconsistent (5.11), illustrates how designers could use
interval temporal logic to represent particular forms of inconsistency. This formal-
ism might also be used to represent solutions to such problems. Designers must
ensure that if objects share the same state and methods then they also share the
same image. If this constraint had been adopted as a design requirement then the
problems observed by Kletz could have been avoided. J serial numbers, od, could
always have been used to present pumps, o and o':

V0,0 € O,30d € Od : image_consistent(o,0’,0d) < Jom € Om,Jos € Os
O(same_object_methods(o,0’,om) A same_object_state(o,0’, 0s) =

same_object_view(o,0’,0d)) (5.12)

It is important to note that there is a trade-off between consistency and discrimi-
nation in many control systems. For instance, designers might exploit the previous
bi-condition to require that the same numbering scheme, od, is used to represent
all pumps, o and o', irrespective of their source of manufacture or age. This would
hide information that is frequently vital if operators are to identify particular objects
[36]. Alternatively, different numbering schemes could be used to reflect differences
in o and o’. If this were done then the formal analysis suggests that designers might
anticipate the consequences of inconsistency: skill dependency and unpredictability.
Operators trained to use other systems might fail to predict the consequences of
their interaction if they did not understand that JA numbers referred to new, more
reliable, plant whilst J prefixes referred to older equipment.

5.2.3 State Inconsistency

State inconsistency occurs if objects share the same image and methods but are not
in the same state. For instance, two pumps, o and o', might eventually be presented
using an icon showing normal operation, od. They could be operated through the
same start and stop methods, om, but they might not both be operating normally,
os. It would be extremely difficult for operators to predict the effects of their
commands upon objects that eventually looked identical but which were not in the
same state. Designers could represent this problem by applying the axioms and
theorems of interval temporal logic, see Appendix E.2, to inconsistent (5.6):

Jo,0' € O,Yom € Om,Vos € Os,Vod € Od :

86 CHAPTER 5. INCONSISTENCY

inconsistent(o,0’, om, os,od) <
¢(same_object_methods(o,0’,0m) A same_object_view(o,0’,0d) A

- same_object(o,0’) = — same_object_state(o, 0’, 0s)) (5.13)

The dangers of this form of inconsistency are illustrated by Pdélya’s [238] concept of
non-sufficient reason, introduced in Section 3.2.1. If a user does not have sufficient
reason to doubt that things are different when solving a problem then they will
treat them as if they were the same. Reason argues that operators assume objects
to be in the same state if they look identical and can be operated in a similar
fashion [252]. Such assumptions threaten the safety of many interactive control
systems. For example, the Bhopal accident can be interpreted as a consequence
of incorrect assumptions about the state of control system objects. As with many
of the accidents cited in this thesis, it is difficult to find an impartial account of
the causes of the Bhopal disaster. Reports issued by the operators, Union Carbide
[311], and by the Council on International and Public Affairs [215] embody a clear
bias. There is, however, some agreement that an untrained plant superintendant was
required to pump methyl-isocyanate into a number of tanks. The state of one tank
eventually became inconsistent with those of similar components. It sprang a leak
which prevented it from repressurising, — same_object_state(0,0',0s). The problem
went undetected and warnings were not presented; the leaking tank appeared to be in
the same state as all the others, same_object_view(o,0’,0d). Automatic cut-outs were
not available and so the operator continued to apply the same pumping methods
to all tanks, same_object_methods(o,0’,om), causing more methyl-isocyanate to leak
into the environment.

5.2.4 Resolving State Inconsistency

The formal analysis of the causes of inconsistency helps to clarify techniques that
designers could exploit to support the development of consistent control systems.
For instance, state inconsistency might be avoided if and only if it is always the case
that if tanks, o and o/, have the same image, od, and can be operated by the same
methods, om, then they are in the same state, os:

Vo,0 € O,30s € Os : state_consistent (o, 0’,0s) & Jom € Om,Jod € Od
O(same_object_methods(o,0’,om) A same_object_view(o, o', 0od) =

same_object_state(o,0’, 0s)) (5.14)

Designers must integrate human factors and systems engineering in order to satisfy
the requirements imposed by this bi-condition. For instance, systems engineering
might have been used to provide the additional sensors necessary to detect leak-
ing tanks in the Bhopal plant. The costs of doing this led process management
to rely upon human factors solutions. Social ergonomics was applied in a very ad
hoc way to draft operating instructions. These were intended to ensure the safety
of the production process; it was assumed that periodic maintenance would check
the integrity of the methyl-isocyanate tanks. Such assumptions are reminiscent of
those made by the management of the Chernobyl Unit Four reactor, discussed in
Section 3.2.2. At Bhopal, systems engineering might have provided maintenance
logging systems as low-cost alternatives to automated sensing devices. These could

5.2. INCONSISTENCY AND OBJECT ORIENTED DESIGN 87

have recorded the results of previous inspections and might have scheduled mainte-
nance activities. Such systems would have reduced the administrative burdens upon
plant management and might have avoided the ad hoc application of human factors
engineering.

5.2.5 Method Inconsistency

Method inconsistency occurs if eventually two objects have the same display and
state but are not accessed through the same methods. Designers might apply the
axioms and theorems of interval temporal logic to inconsistent (5.6), see Ap-
pendix E.3, in order to represent this form of inconsistency:

Jo,0' € O,Yom € Om,Vos € Os,Vod € Od :
inconsistent(o,0’,om, 0s,0d) <
O (same_object_view(o,0’,0d) A same_object_state(o,0’,0s) A

- same_object(o,0’) = — same_object_methods(o,0’,om)) (5.15)

For instance, many pumps are protected by blow-back sensors which automatically
halt operation if the pressure in their outlet increases over a predetermined level.
Kletz describes how these safety features introduced new methods into the opera-
tion of a pump [179]. Users relied upon the new protection systems to stop pumping
automatically while they performed other duties. The control system used the same
image to present information about pumps whether or not they were protected by
additional safety features; same_object_view(o,0',0d). Failure in the sensing equip-
ment meant that the protected pump entered the same state as all the other pumping
equipment; same_object_state(0,0',0s). Users did not operate this pump in the same
manner as the other pumps, = same_object_methods(o,0',om). They relied upon the
safety features to stop it. Kletz describes how a tank was filled beyond its capacity
because the protection systems failed to halt the pump.

5.2.6 Resolving Method Inconsistency

The provision of additional safety features led to the introduction of inconsistent
operating methods in Kletz’s system. Paradoxically these features threatened safety
because users relied too much on blow-back protection. This provides an example
of the flexible task allocation, described in Section 2.1.3. Operators optimised their
finite cognitive and perceptual resources by allocating control tasks to automated
systems. Problems arose because this allocation had not been intended by the
engineers who had developed the automated equipment. In other words, systems
engineering had provided additional features without considering the human factors
of control. Such problems could be avoided if additional safety features are not
introduced. Designers might always ensure that if pumps, o and o', are in the
same state, os, and have the same image, od, then they are operated by the same
methods:

V0,0 € O,3om € Om : method_consistent(o,0’,om) < Jos € Os,Jod € Od
O(same_object_view(o,0’,0d) A same_object_state(o,0’,0s) =

same_object_methods(o, o', om)) (5.16)

88 CHAPTER 5. INCONSISTENCY

This discussion of consistency has demonstrated that human factors and systems
engineers might exploit interval temporal logic to represent techniques which are
intended to support principles other than predictability. In particular, this notation
has been used to represent the way in which inconsistency can eventually occur
at any point during interaction. This is apparent from the use of the <& operator
in inconsistent (5.11, 5.13, 5.15). Interval temporal logic has also been used to
represent the persistent nature of solutions for this problem. This is apparent from
the use of the O operator in image_consistent (5.12), state_consistent (5.14)
and method_consistent(5.16). The logic has not, however, been used to assess
the impact of inconsistency upon predictability. The following section makes good
this omission.

5.3 Predictability And Message Passing

Message passing provides the computational model associated with the object ori-
ented architecture. A message can be dispatched by one object and received by
another which responds by invoking one of its methods. This, in turn, causes an
internal state transition in the recipient. Designers could represent this computa-
tional model by using the elements of a set, M, to describe all the messages that
can be sent to the objects in a control system. It is important to re-emphasise the
point made in Section 5.2 that operator input can also be viewed as messages sent
to control system objects. For instance, the effect of a message, m, to evacuate a
tank object, o, would transform it from the full state, os, to the empty state, os’:

Vo€ 0,Ym € M,Vos € Os,Jos’ € Os : message_effect(o, m,0s,0s’) (5.17)

This predicate can be used to represent the causes of unpredictability in object
oriented control systems. It is difficult for operators to determine the consequences
of their interaction, os or os’, if at some time during interaction a message, m,
potentially affects different objects, o, and o':

Jo,0' € O,3m € M, Jos,0s € Os:
unpredictable(o,0’,m, 0s,0s’) < Jos”, 08" € Os
O (message_effect(o, m, 0s”, 0s) A message_effect(o’, m,0s”, 0s’) A
- same_object (o, 0)) (5.18)

For instance, Kirkpatrick and Mallory describe how input, m, to increase the flow of
coolant to the Three Mile Island Unit Two reactor could be applied to two different
pumps, o and o’ [176]. During the emergency one of these pumps had to be closed
down. Substitution errors, described in Sections 3.1.2 and 4.1.1, occurred when
operators attempted to increase the action of the disabled pump, o, instead of the
functioning pump, o. Users failed to predict the consequences of their input being
sent to the wrong object and, in consequence, the coolant system was damaged.

5.3.1 Image Inconsistency And Image Unpredictability

Image inconsistency exacerbates the problems of unpredictability if a message can
affect objects that have the same state and methods but are presented by differ-
ent images. Temporal logic provides a means of representing this problem for the

5.3. PREDICTABILITY AND MESSAGE PASSING 89

human factors and systems engineering of interactive control systems. The tractabil-
ity of the following bi-condition can be increased if same_object_state(o, o', 0s),
same_object_methods(o,0’,om) and same_object_view (o, 0’, 0d) are replaced
by the predicate inconsistent (5.6). This is not done in order to represent the re-
lationship between image inconsistency and unpredictability:

Jo,0/ € 0,3m € M,Vod € Od :
unpredictable_image(0,0,m,od) < Vom € Om,Vos € Os,Jos’,0s” € Os
¢ (unpredictable(o,0’, m, 0s’, 0s”) A (same_object_state(o,0’,0s) A

same_object_methods(o, 0’,om) = - same_object_view(o,0’,0d)))(5.19)

Section 5.2.1 described a chemical plant in which pumps, o and o/, were not all
displayed using the same J serial numbers, od. Operators assumed that the J and
JA serial numbers denoted differences in the methods, om, and state, os, of o and o'.
Considerable training was required in order to overcome these initial assumptions.
Differences in the presentation of these control system objects provided sufficient
reason for users to predict different effects, os’ and os”, for input, m, issued to
either o or o’. In fact, messages had identical effects on o and o’. Their different
images did not indicate any differences in state or behaviour. Operators might have
made more accurate predictions about the effects of their input, m, upon objects,
o and o, if they had been displayed in the same way:

Vo,00 € 0O,Ymec M,Jod € Od :
predictable_image(o,0’,m,od) < Jos,0s’ € Os

O(unpredictable(o, o', m, 0s,0s’) A image_consistent(o,0’,0d)) (5.20)

This predicate illustrates the divide between abstract requirements and specifica-
tions that provide a basis for implementation. Abstractions, such as od, do not
provide detailed information about the graphical and textual images that might be
presented to system operators. Section 7.4 will describe techniques that designers
can use to introduce gradually the graphical details necessary to clarify the semantics
of relations such as same_object_view(o,0’,0d).

5.3.2 State Inconsistency And State Unpredictability

State unpredictability occurs if eventually a message can be bound to objects in
different states. For instance, Section 5.2.4 described how the Bhopal accident was
caused by an operator issuing commands to methyl-isocyanate tanks, o and o/, that
were not in the same state, os. The effect of input to repressurise these tanks was
safeq, os’, for those which were intact but was unsafe, os”, for those that were
leaking:

Jo,0' € O,3m € M,Vos € Os:
unpredictable_state(o,0’,m,0s) < Vod € Od,Vom € Om,Jos’,0s” € Os
¢ (unpredictable(o, o', m,o0s’,0s”) A (same_object_methods(o, 0, om) A
same_object_view(o,0’,0d) = — same_object_state(o, 0, 0s))) (5.21)

Designers could reduce the consequences of this problem by ensuring that objects
enter an error state if a message is bound to a method which jeopardises safety. For

90 CHAPTER 5. INCONSISTENCY

instance, a command to repressurise a punctured tank might have raised an error.
Alternatively, designers might specify that messages are always bound to objects in
the same state:

Vo,0/ € O,Ym € M,Jos € Os :
predictable_state(o,0’,m,0s) < Jos’,0s8” € Os

O(unpredictable(o,0’,m, 0s’, 0s”) A state_consistent (o, 0’,0s)) (5.22)

The previous bi-condition again illustrates the gulf of detail between predictability
requirements expressed in terms of high-level abstractions, such as o and o', and
particular objects, such as methyl-isocyanate tanks. It is important to emphasise
that principles are not intended to replace the domain knowledge required when
developing a detailed design for a particular interface.

5.3.3 Method Inconsistency And Method Unpredictability

The effects of a message, m, are unpredictable (5.18) if it can eventually be bound
to different objects, o and o’. Inconsistency exacerbates this problem because o and
o’ need not possess the same methods:

Jo,0/ € 0O,93m € M,Yom € Om :
unpredictable_method(o,0’,m,om) < Vos € Os,Vod € Od,Jos’, 08" € Os
<O (unpredictable(o,0’, m,0s’,0s”) A (same_object_view(o,0’,0d) A

same_object_state(o,0’,0s) = — same_object_methods(o,0’,om))) (5.23)

Section 5.2.5 described non-return valves that have been developed by systems engi-
neering to prevent pump blow-back from a delivery source. Input, m, to a protected
pump, o, could be bound to a method that activates this safety feature, os’. This
message might also be bound to a method that generates an error condition, os”,
for an unprotected pump. Operators could more accurately predict the effects of
their intervention if and only if it is always the case that input, m, which can be
issued to objects, o and o/, invokes one of a similar set of methods, om:

Vo,00 € O,Ym¢c M,Jom € Om :
predictable_method(o,0’,m,om) < Jos,0s’ € Os

O(unpredictable(o, o', m, 0s, 0s’) A method_consistent (o, o', om))(5.24)

A number of different techniques might be exploited in order to satisfy the re-
quirements that are imposed by this predicate. For instance, systems engineer-
ing might provide blow-back protection for all the pumping equipment in a plant,
method_consistent(o,0’,om). Operators could predict that all pumps provided
this safety feature. A human factors alternative might be to draft regulations which
ensure that all pumps are operated as if they were unprotected.

5.4 Consistency Through Type Instantiation

A number of authors have advocated object orientation as a means of developing
consistent control systems. Lazarev’s design for a steel furnace control system ex-
ploits this architecture because its chief power is “uniformity” [190]. Similar reasons

5.4. CONSISTENCY THROUGH TYPE INSTANTIATION 91

inspired the use of the Smalltalk object oriented programming language for the im-
plementation of operator assistants in the United States’ National Aeronautics and
Space Administration’s satellite ground-control system [262]. Chin and Chanson
describe a range of applications that exploit this architecture to support “uniform
access” to the objects which compose distributed control systems [65]. Finkelstein
has argued that consistency or “likeness in objects” is the result of family resem-
blances which can be derived from class hierarchies [99]. Designers might exploit
interval temporal logic to clarify the support that the object oriented architecture
provides for consistency. Section 5.3 established the relationship between this prin-
ciple and predictability. Human factors and systems engineers could, therefore,
exploit this analysis in order to justify object orientation as a means of supporting
operator predictions about the effects of their commands. In order to demonstrate
the validity of these assertions, a set, Cl, is introduced; its elements are the classes
of control objects. Classes provide templates for similar objects. For instance, ele-
ments of the class of pumps might offer methods to start and stop operation. The
following predicate is true for an object state, os, which is legal for an instance of a
class, cl, in the present interval:

Vel € Cl,Jos € Os : legal_state(cl, os) (5.25)

The relations legal view (5.26) and legal methods (5.27) are introduced in a
similar fashion between elements of Cl and elements of Od and Om. A class can
be described in terms of the states, displays and methods that its instances possess:

Vel € Cl,90om € Om,Jos € Os,Jod € Od : class_defined(cl,om, 0s,0d) <
legal state(cl, os) A legal_view(cl,od) A legal_methods(cl,om) (5.28)
Objects, o, possess the type of class cl if and only if they have the state, methods
and image of that class:
Yo € 0O,dcl € Cl,30om € Om,Jos € Os,dod € Od :
class_type(o, cl,om, 0s,o0d) <
object(o,om, 0s, 0od) A class_defined(cl, om, os, od) (5.29)
A relation is also introduced between objects and their class:

Vo€ 0O,3cl € Cl:is_a(o,cl) (5.30)

Reisner argues that consistency depends upon family resemblances between sets of
similar objects [256]. Interval temporal logic provides a notation in which to explain
why object oriented design supports this form of consistency. Designers could exploit
type instantiation to ensure that objects always share the same attributes as other
instances of their class:

Vo€ O,dcl € Cl,3om € Om,Jos € Os,dod € Od :
consistent(o, cl,om, 0s,0d) <
O(is_a(o, cl) A class_type(o, cl,0,0m, 0s,0d)) (5.31)
The formal analysis provides a means of representing the constraints that designers
must satisfy if they are to achieve consistency through object orientation. For in-

stance, the design of object oriented control systems frequently involves the special-
isation and extension of classes. These derived classes inherit some of the attributes

92 CHAPTER 5. INCONSISTENCY

of their parent but need not implement them all [209]. Instances of a derived class
are not consistent (5.31) with instances of their parent. This is captured by the
previous bi-condition because is_a (5.30) is not transitive. The consistency provided
by type instantiation is also jeopardised by re-classification [231]. Designers can use
this technique to ensure that eventually an object is not an instance of its original
class. For instance, a tank might be re-classified as a pump. It is hypothesised
that such techniques are likely to have profound consequences for the predictability
of an interactive control system. This re-classification would violate the O quan-
tification of consistent (5.31). Some programming languages provide constructs,
such as renames in Ada, which enable designers to override instantiated methods
[26]. Again this violates consistent (5.31); objects would not offer the same meth-
ods, om, as other instances of their class, cl. Designers cannot avoid using such
mechanisms when developing non-trivial control systems. The use of interval tem-
poral logic helps to identify the trade-offs that exist between dynamic classification,
method overriding and consistency.

5.4.1 Image Consistency And Instantiation

Type instantiation provides designers with a means of developing consistent inter-
faces. An object o is image consistent with a class cl if it is always the case that o
is an instance of cl and has a legal image for an instance of that class. For example,
Hess describes a system which required that operators press a number of buttons in
order to confirm their observation of process information [146]. This is an example
of the handshaking protocol, described in Section 4.3.2. All of the buttons included
the word ‘clear’, except for one that was labelled ‘message acknowledged’. Human
factors research found that, under the pressures of flight, pilots failed to recognise
that this button belonged to the same class as all the others that were labelled
‘clear’. Operators failed to predict common functionality because of the lack of vi-
sual similarity. The image, od, of this object, o, would have been consistent if it had
been labelled ‘message clear’. Designers might apply the axioms and theorems of
interval temporal logic to consistent (5.31), see Appendix E.4, in order to represent
the way in which type instantiation supports image consistency:

Vo€ O,3cle Cl,30d € Od :
instantiate_image_consistency(o, cl,od) <
O(is_a(o, cl) A object_view(o,0d) A legal view(cl,od)) (5.32)

The formal analysis encourages human factors and systems engineers to ensure that
operators can recognise the images of similar objects as representing instances of
the same class. This observation is far from novel; graphical consistency lies at the
heart of equipment labelling specifications produced by the International Standards
Organisation [327]. At first sight this analysis might appear to do nothing more than
restate the argument for image consistency. This is not the case. In particular, it
is important to note that image consistency is directly supported by the object ori-
ented architecture. All instances of a class offer the same legal images. The designer,
therefore, achieves consistency at a minimal cost, providing they can construct ap-
propriate class structures. The selection of the objects that are to be grouped within
a class, therefore, determines the consistency exhibited by an interface.

5.4. CONSISTENCY THROUGH TYPE INSTANTIATION 93

Figure 5.1: A diagram of a flow valve

5.4.2 State Consistency And Instantiation

Designers might exploit the theorems of interval temporal logic, see Appendix E.4,
in order to represent the way in which type instantiation supports state consistency.
An object, o, is state consistent with a class, cl, if and only if it is always the case
that o is an instance of cl and its state, os, is valid for that class:

Vo€ O,dcl€ Cl,Jos € Os :
instantiate_state_consistency(o, cl, os) <
O(is_a(o, cl) A object_state(o, os) A legal_state(cl, 0s)) (5.33)

For instance, Kletz describes how an ethylene plant control system used readings
from solenoids to detect oxygen passing through a flow valve [179]. Figure 5.1
illustrates the composition of these flow valve objects. Section 7.4.3 will describe
techniques that designers can employ to represent the structure of these composite
objects. For now it is sufficient to observe that consistent states for an instance of
the class of flow valves were: solenoid de-energised and trip valve closed, or solenoid
energised and trip valve open. The flow of oxygen through one of the solenoids
was halted by a wasps’ nest in a vent. As a result the state, os, of a flow valve,
o, eventually became inconsistent with those of its class, cl. The solenoid was de-
energised and its trip valve was open. Oxygen continued to flow into the process even
though the solenoid readings indicated that the trip valve was closed. Operators
failed to discover that a potentially disastrous mixture of gasses was being supplied
to the process. Human factors and systems engineers might guard against such

94 CHAPTER 5. INCONSISTENCY

errors by enumerating potential states, os, for instances of the class of flow valves,
cl. Systems engineers must ensure that the readings supplied by application sensors
provide an accurate reflection of the state of the physical objects which operators
must control, we shall return to this theme in Section 6.1.3. Human factors engineers
must ensure that sufficient information is presented about the state of an object for
users to detect error states, such as that caused by the wasps’ nest.

5.4.3 Method Consistency And Instantiation

Simpson describes how an engineering company fitted blow-back valves and pressure
sensors to upgrade the safety equipment around a number of propylene pumps [286].
Shortly afterwards an operator responded to a major leak by ordering two foremen
to manually halt the pumps. Fortunately, the leak did not fire. Later investigations
revealed that staff had forgotten about the automated support. In other words the
provision of safety equipment had eventually made the operating methods of control
objects inconsistent with the class of pumps in the plant. It is possible to apply the
axioms and theorems of interval temporal logic, see Appendix E.4, to represent the
support that type instantiation provides for method consistency. Operator error
might be avoided by ensuring that instances, o, of the class of pumps, cl, are
operated by the same methods, om. Safety equipment could be fitted to all pumps
so that operators can assume that there is an alternative to manual intervention:

Vo € O,3cl € Cl,3om € Om : instantiate_method_consistency(o, cl,om) <
O(is_a(o, cl) A object_methods(o,om) A legal_methods(cl, om)) (5.34)

Human factors and systems engineers might exploit type instantiation to ensure
that objects share the attributes of their class. It is important to note, however,
that this does not guarantee that all operators will view the resulting interface as
consistent. For instance, users cannot exploit class consistency unless they know
which class an object belongs to and what methods are defined for instances of
that class. Consistency and predictability are “user-referenced” principles [304].
What one operator (or designer) views as consistent can appear to be inconsistent
to another operator (or designer). Chapter 7 will argue that human factors and
systems engineers can use prototypes to glean the empirical evidence necessary to
support assertions about the consistency and predictability of an interactive control
system.

5.5 Conclusions

Control objects are inconsistent if they do not always share the same methods, states
and displays. Image inconsistency exacerbates unpredictability if input can even-
tually be issued to different objects that are not presented in the same way. State
inconsistency exacerbates unpredictability if input can eventually be bound to dif-
ferent objects in different states. Method inconsistency exacerbates unpredictability
if input can eventually be bound to different methods of different objects.

It has been argued that both human factors and systems engineering must be
recruited in order to develop consistent and predictable control systems. Object
orientation supports the integration of both engineering disciplines because type

5.5. CONCLUSIONS 95

instantiation provides a means of achieving these common objectives. Rather than
specifying common consistency criteria, designers might advocate object orienta-
tion as a common structure for the detailed design of consistent control systems.
It has not, however, been argued that type instantiation guarantees consistency.
Trade-offs have been identified been object oriented techniques, such as dynamic
classification and method overriding, and principles, such as consistency and pre-
dictability. Human factors and systems engineers must have a clear understanding
of these trade-offs if they are to exploit the benefits and avoid the costs of object
oriented development.

This chapter has argued that designers might use interval temporal logic to assess
the strengths of development architectures for principles, such as predictability and
consistency. Chapter 6 argues that human factors and systems engineers might
also exploit this notation to represent techniques that are intended to avoid the
weaknesses of these architectures.

Chapter 6

Break-Down

“Objects and properties are not inherent in the world, but arise only
in an event of breaking down in which they become present-at-hand”
(Winograd and Flores, [326]).

6.1 Introduction

This chapter argues that principles provide human factors and systems engineers
with criteria against which to assess the weaknesses of development architectures.
In particular, it is argued that:

e object oriented systems are susceptible to break-down, this occurs when con-
trol system objects do not accurately represent process components;

e break-down leads to unpredictability because operators are unlikely to make
correct predictions about the effects of their intervention on unfamiliar physical
components;

e human factors and systems engineering must be integrated in order to avoid
the problems caused by break-down.

e users must view the information presented to them with a degree of scepticism
if they are to accurately predict the consequences of their interaction.

It is concluded that human factors and systems engineering must be integrated in
order to avoid the problems caused by break-down.

6.1.1 Consequences: Alienation And Unpredictability

Break-down leads to alienation. In other words, operators will cease to trust dis-
plays that provide misleading information about application components [22]. For
instance, proximity warning systems have been developed to alert pilots if they are
about to enter another aircraft’s air-space. These systems suffer from the problems
of predictive presentation techniques, described in Section 2.1.3. They frequently
fail to detect approaching aircraft. In such circumstances, the objects presented
on the display do not correspond to the planes that are visible from the cockpit.
Pilots do not trust the information presented by many of these systems and, in
consequence, most have been abandoned [295].

96

6.1. INTRODUCTION 97

Break-down prevents operators from successfully predicting the effects of their
commands. For instance, in 1989 an explosion in the tail engine of a McDonnell-
Douglas DC-10 robbed the crew of all cockpit instrumentation [84]. The objects
presented by the displays ceased to provide accurate information about the aircraft.
The pilot retained limited throttle control but had great difficulty in predicting the
consequences of using it. Fortunately, he did manage to land the aircraft.

6.1.2 Causes: Different States; Images And Methods

Break-down can occur if the objects presented by a control system do not accurately
represent the state of process components. This is illustrated by an incident in which
the systems engineering of an automated avionics application failed to preserve the
safety of an aircraft. Norman describes how the automatic pilot of a Boeing 747
compensated for a slow loss of power from its outer-right engine [228]. Avionics
displays indicated that the engines were in a normal state. They were, in fact,
suffering a serious malfunction. Eventually, the automatic pilot reached a point
where it could not correct the yaw and the plane rolled into a thirty-one thousand
feet dive. Break-down occurred when the crew discovered that their avionics display
did not accurately represent the state of the engine.

Break-down can also occur if the objects presented by a control system do not
look like application components. This is illustrated by human factors research
conducted by the United States’ National Aeronautics and Space Administration’s
Faultfinder project [8]. Tests were conducted to evaluate the cognitive and percep-
tual demands imposed upon pilots by a number of different avionics display formats.
It was found that pilots make less accurate observations and take more time to re-
spond to error messages if the objects presented by avionics displays do not resemble
the physical components of their aircraft. These results can be explained in terms
of break-down; each time an error occurred pilots were forced to consider the re-
lationship between the information presented by their displays and the underlying
components of their aircraft.

Break-down occurs if control systems are not operated in the same way as the
physical components of an application process. This is illustrated by the United
States’ Federal Aviation Authority’s concern that pilots are being distanced from
the underlying mechanics of their aircraft [295]. Fuel management systems have
automated many of the tasks that were previously performed by flight engineers.
Much of the information used by these systems is hidden from the crew in order
to reduce display clutter. Break-down occurs when operators are forced to perform
low-level fuel management tasks. They are made aware of the differences that exist
between the operating methods of automated applications and of manual avionics
systems.

6.1.3 Solution: Object Conformance

A number of techniques could be used to avoid the consequences of break-down.
For instance, human factors engineers might attempt to ensure that the objects
presented by a control system always look like application components. Systems
engineering could be recruited to ensure that the states of control system objects al-
ways accurately represent the states of physical components. The following sections

98 CHAPTER 6. BREAK-DOWN

use interval temporal logic to represent the requirements that must be satisfied in
order to exploit such conformal presentation techniques. This formalisation provides
a basis upon which to assess the support that these techniques offer for principles,
such as predictability.

6.2 Break-Down And Image Failure

It is important to have a clear understanding of the causes of break-down before
attempting to identify solutions to this problem. These causes can be represented by
introducing a set, Pc, whose elements are the physical components of an application.
This set must not be confused with O. The elements of O should be thought of as
abstract representations of the software components that would be developed during
implementation in an object oriented programming language. In order to maintain
this distinction the elements of the set O will be referred to as control system objects.
Elements of the set Pc will be referred to as physical components. A predicate is
introduced between control system objects and the physical components that they
represent in the present interval. For example, an instance, o, of a class of pumps
could be used by an avionics application to represent a fuel pump, pc:

Jo € O,3pc € Pc : represents(o, pc) (6.1)

A relation is also introduced between the state, os, of a control system object and
those process components that it conforms to in the present interval. For instance,
a pump, pc, that is transferring fuel from one tank to another is represented by a
control system object which is pumping, os:

Vpc € Pc,3os € Os : state_conforms(pc, os) (6.2)

The relations method_conforms (6.3) and image_conforms (6.4) are introduced
in a similar fashion between physical components and elements of Om and Od
respectively. Break-down occurs if and only if eventually a control system object,
o, represents a physical component, pc, and its attributes, om, os and od, do not
conform to the appearance, state and behaviour of that physical component. If the
reader compares the following bi-condition with class_defined (5.28) in Section 5.4
it will readily be apparent that conformance between the attributes of a control
system object and a physical component imposes similar constraints to consistency
between the attributes of a control system object and its class:

Vpc € Pc,d7om € Om,Jos € Os,dod € Od :
conforms(pc,om, os,0d) < method_conforms(pc,om) A

state_conforms(pc, os) A image_conforms(pc,od) (6.5)

The Lockheed Corporation have recently developed a range of avionics displays
that illustrate the potential for break-down in object oriented control systems [291].
Figure 6.1 sketches one of these interfaces. The measuring scales, o, represent an
aircraft fuel pump, pc. Break-down would occur if a pilot realised that the state, os,
of the scales did not always accurately represent the state of the fuel pump. Similarly,
break-down would occur if eventually a pilot realised that the methods, om, used
to operate the control system object were not the same as the commands issued to

6.2. BREAK-DOWN AND IMAGE FAILURE 99

Figure 6.1: An object display for aircraft fuel distribution

the physical component. Finally, break-down would occur if a pilot recognised that
the image, od, of the scales did not always look like the process component. For
instance, the scales might not show that smoke was pouring from an over-heated
pump. The causes of break-down are represented by the following predicate:

Jdo € O,dpc € Pc,Yom € Om,Vos € Os,Vod € Od :
break down(o, pc,om,o0s,0d) <

— O(represents(o, pc) A object(o,om, os,0d) A conforms(pc,om, os,o0d)) (6.6)

Human factors and systems engineers could manipulate this predicate in order to
represent particular forms of break-down. For instance, break-down occurs if control
system objects do not look like the physical components that they are intended to
represent. Designers might apply the axioms and theorems of interval temporal
logic, see Appendix F.1, to derive a formalisation of this image failure from the
predicate break_down (6.6):

Jo € O,3dpc € Pc,Yom € Om,Vos € Os,Vod € Od :
break_down(o, pc,om, os,0d) < <(represents(o, pc) A
(object_methods(o,om) A method_conforms(pc,om)) A
(object_state(o, os) A state_conforms(pc, os)) =

- (object_view(o,0d) A image_conforms(pc,od))) (6.7)

This bi-condition can be made more tractable by introducing a predicate that is
true if and only if the methods, om, of a control system object, o, conform to the
operating methods of a physical component, pc, in the present interval:

Jo € O,3pc € Pc,Jom € Om : accurate_methods(o, pc,om) <

object_methods(o,om) A method_conforms(pc,om) (6.8)

The relations accurate_state (6.9) and accurate_image (6.10) are also intro-
duced for elements of Os and Od. These predicates can be incorporated into the
previous formalisation of break down (6.7) as follows:

do € O,3dpc € Pc,Yom € Om,Vos € Os,Vod € Od :

100 CHAPTER 6. BREAK-DOWN

Figure 6.2: The horizontal situation indicator for Boeing 757 and 767 aircraft

break _down(o, pc,om, os,0d) < <(represents(o, pc) A
accurate_state(o, pc, 0s) A accurate_methods(o, pc,om) =

— accurate_image(o, pc,od)) (6.11)

In case the reader is not convinced that image failure is a problem for commercial
systems, Figure 6.2 sketches the horizontal situation indicator currently fitted in
Boeing 757s and 767s. The pilot’s aircraft is presented using the pointed oblong.
The stars represent way-points, or navigational markers. The crew input the co-
ordinates of these way-points in order to indicate the intended flight-path. The
hexagons and squares, labelled ELN, DLS, AST and HOM, represent navigational trans-
mitters. The state and behaviour of all of these control system objects faithfully
represents the state and behaviour of physical components; accurate_state(o, pc,
0s) N accurate_methods(o, pc, om). For instance, pilots cannot move navigational
transmitters by manipulating the objects represented by their control system. None
of these control system objects look like the real-world components that they are
intended to represent; — accurate_image(o, pc, od). Palmer argues that there are a
number of human factors problems with these systems [232]. They encourage sub-
stitution errors; pilots believe that they are observing one navigational marker when
they are actually monitoring another. For instance, if the crew were tracking their
path towards ANGOO then they could mistake it for way-points that are presented
by similar control system objects, such as WHYTE or SWANY. Such problems led the
crew of a McDonnell-Douglas DC-10 to enter incorrect navigational data prior to
take-off. The automated navigation system dutifully flew the programmed course
into Mount Erebus in Antarctica [225]. Such errors might be avoided if the images of
control system objects provide more accurate views of the physical components that
they are intended to represent. This would reduce substitution errors by helping
operators to differentiate between application objects. For example, designers could
have displayed additional information about the terrain surrounding navigational
beacons. This approach is already exploited by the Jeppensen approach charts that

6.2. BREAK-DOWN AND IMAGE FAILURE 101

Figure 6.3: A plan-view display for aircraft collision detection

pilots consult in order to familiarise themselves with airport layouts [295].

6.2.1 Image Failure And Predictability

The conditions for image failure were derived from a formalisation of break _down
(6.6). This suggests that an implementation which presents control system ob-
jects that do not resemble physical components would suffer from the problems
of break-down: unpredictability and alienation. Interval temporal logic provides
a means of representing the causes of this form of unpredictability. It should be
noted that designers could introduce break down (6.6) into the following pred-
icate in order to explicitly represent the way in which this problem jeopardises
predictability. The decision not to do this is justified by the observation that image
failure can cause unpredictability in systems for which accurate_state(o, pc, 0s)
and accurate_methods(o, pc,om) are not true:

dpc € Pc,do0€ O,3m € M,3Jos € Os,Vod € Od :
unpredictable_object_image(pc,0, m,0s,0d) < Jos’ € Os
< (represents(o, pc) A message_effect(o, m, 0s,0s’) A

- accurate_image(o, pc,od)) (6.12)

Figure 6.3 provides an example of an interface that is prone to this form of un-
predictability. It illustrates a plan-view display for a collision avoidance system,
developed by Hart and Wempe [135]. The arrow-head and three parallel dotted
lines represent the position and flight-path of the operator’s plane. The previous
flight-paths of aircraft BA 453, GH 765 and AL 345 are represented by the dotted
lines leading to the squares. The predicted flight-paths of these aircraft are repre-
sented by the solid lines leading from the squares. These control system objects,
o, did look like the physical components because they did not represent aircraft
altitude, — accurate_image(o, pc, od). In consequence, it was difficult for pilots to

102 CHAPTER 6. BREAK-DOWN

Figure 6.4: A perspective display for aircraft collision detection

determine the effects, os’, of input, m, to avoid approaching aircraft, pc, from the
data displayed by such objects, o.

6.2.2 Image Conformance

During the 1960s pictorial realism emerged as a major design aim for the presenta-
tion of complex control systems [259]. This approach attempted to make the objects
that were presented to operators look as similar as possible to process components.
Pictorial realism provides a potential solution to the unpredictability caused by im-
age failure. For instance, Ellis and McGreevy have developed displays that present
information about the direction and altitude of aircraft [96]. Instead of simple
squares, planes are represented by icons that look like individual aircraft. Their
perspective presentation format is illustrated by Figure 6.4. It is hypothesised that
the additional information provided by such displays could reduce the frequency
of substitution errors. This would, in turn, decrease the incidence of break-down.
Users are less likely to be surprised by aircraft outside their cockpit if they avoid
errors when monitoring the control system objects presented by collision avoidance
systems. The requirements for image conformance can be represented by the fol-
lowing predicate. It is always the case that the image, od, used to present a control
system object, o, provides an accurate picture of a physical component, pc:

Jo € O,3pc € Pc,Jod € Od : image_conformal(o, pc,od) <
O accurate_image(o, pc, od) (6.13)

6.3. BREAK-DOWN AND METHOD FAILURE 103

It seems obvious that collision avoidance systems should present information about
aircraft altitudes. It is extremely important that such requirements should emerge
from an analysis of predictability. Section 1.5 argued that principles can be used
to capture fundamental truths, such as the utility of pictorial realism. As Hart and
Wempe’s plan-view displays illustrate, these truths have been ignored in the past. It
is also important that human factors and systems engineers should question the ap-
plicability of such fundamental truths. For instance, pictorial realism is unnecessary
for many control tasks. Smith and Ellis demonstrate that pilots routinely implement
collision avoidance manoeuvres in two dimensions [?]. They prefer to make turns
rather than ascents or descents. In such circumstances, plan-view displays support
pilot predictions about the effects of their interaction even though control system
objects do not look like physical components. Further limitations restrict the utility
of image conformance. Many control tasks require the presentation of information
that cannot easily be represented by control system objects which look like physical
components. It is for this reason that head-up displays project alphanumeric data
about the velocity and distance of approaching aircraft onto cockpit canopies [293].
A further factor which limits the application of image_conformal (6.13) is that it
can be extremely expensive for systems engineers to develop the additional sensing
devices that are required in order to provide accurate representations of physical
components. This discussion re-emphasises the point, made in Section 5.3.2, that
principles are not intended to replace the domain knowledge required when devel-
oping a detailed design for a particular interface.

6.3 Break-Down And Method Failure

Carroll and Thomas argue that structuring a system around objects aids both the
development and the operation of interactive systems [58]. The real-world coun-
terparts of control system objects are part of the everyday experience of users and
designers. The utility of this framework is reduced if eventually control system
objects are not operated in the same way as the physical components that they
represent. Human factors and systems engineers might formalise the causes of this
method failure, see Appendix F.2, by re-writing break _down (6.6):

Jo € O,3dpc € Pc,Yom € Om,Vos € Os,Vod € Od :
break down(o, pc,om,o0s,0d) <
&(represents(o, pc) A accurate_state(o, pc, 0s) A

accurate_image(o, pc,od) = — accurate_methods(o, pc,om)) (6.14)

Stollings proposes an avionics display, illustrated in Figure 6.5, that provides an
example of method failure [294]. The control system objects presented to operators
resemble application components, accurate_image(o, pc,od). Systems engineer-

ing was assumed to guarantee that the states of these control system objects corre-
sponded to those of the physical components within the aircraft, accurate_state(o, pc, os).
It was not intended that the pilot should operate the control system objects in ex-

actly the same manner as their physical counterparts, - accurate_methods(o, pc,om).
For instance, the crew could select a number of buttons in order to indicate the
source and destination of fuel transfers, a numeric keypad could be used to specify

104 CHAPTER 6. BREAK-DOWN

Figure 6.5: A pictorial status display for avionics

the amount of fuel to be transferred. The crew need not issue the many detailed
instructions that avionics used to control the pumps and valves during fuel transfers.

6.3.1 Method Failure And Predictability

Stollings’ interface, described in the previous paragraph, illustrates how method
failure can be used to simplify the task of operating process components. Pilots
need not concern themselves with the detailed commands that are issued by on-
board avionics. Human factors and systems engineers must, however, be aware of
the consequences of such techniques. Method failure can jeopardise predictability.
Eventually, an input message, m, issued by an operator to a control system object,
0, is not bound to a method that is available for an application component, pc.
Interval temporal logic provides a means of representing the causes of this form of
unpredictability:

dpc € Pc,do0 € O,dm € M,dos € Os,Vom € Om :
unpredictable_object_methods(pc,0, m, 0s,om) < Jos' € Os
O(represents(o, pc) A message_effect(o, m, 0s, 0s’) A

— accurate_methods(o, pc,om)) (6.15)

For instance, the United States’ Air Force is currently testing a number of aircraft
whose ailerons are operated by computer controlled actuators [305]. These fly-
by-wire systems intervene to optimise pilot settings. The methods that are invoked
upon control system objects by operator commands are not the same as those which

6.4. BREAK-DOWN AND STATE FAILURE 105

are available for physical components, — accurate_methods(o, pc,om). Break-
down occurs when pilots realise that their commands are mediated and that they
are not directly interacting with the physical components of their aircraft. The
consequences of this failure for both the design and operation of control systems
must not be under-estimated. Section 1.2.1 argued that differences between the
commands issued to avionics and the instructions received by aircraft components
contributed to both the Habsheim and Air India crashes [244].

6.3.2 Method Conformance

A number of techniques could be used to avoid the unpredictability caused by
method failure. For instance, operators might retain direct control over process
components. This approach has been exploited in a number of commercial systems.
Airbus Industries” A320 has been heralded as the first civilian aircraft to be entirely
controlled through fly-by-wire technology. The crew can, however, exclude avion-
ics intervention in their commands to horizontal stabilisers. The methods available
through the control system are the same as those which are available for the physical
components, accurate_methods(o, pc,om). The mediation of on-board comput-
ers is reduced, operator input is not optimised. Interval temporal logic provides a
notation in which to represent the requirements that must be satisfied in order to
exploit such techniques. It is always the case that the methods, om, which operators
invoke on a control object, o, are those that are available for a process component,

pc:

Jo € O,3pc € Pc,Jom € Om : method_conformal(o, pc,om) <

O accurate_methods(o, pc,om) (6.16)

It is important to note that task and application details determine the extent to
which formal requirements, such as those specified by method_conformal (6.16),
can be achieved within a particular implementation. There exist control system
objects that are not always operated by methods which conform to those of phys-
ical components. It is a non-trivial task to provide operators with control system
objects that accurately represent the many different operating methods provided by
increasingly sophisticated avionics. Section 7.2.2 will argue that predicates, such as
method_conformal (6.16), provide human factors and systems engineers with a
framework for more detailed analyses of these problems.

6.4 Break-Down And State Failure

Madsen and Mgller-Pedersen argue that domain modelling is a crucial stage in object
oriented design [199]. The benefits of this development architecture are jeopardised
if designers fail to accurately model the physical components of the application
domain. This could occur if the state of a control system object does not resemble
the state of the real-world component that it is intended to represent. Human factors
and systems engineers might apply the axioms and theorems of interval temporal
logic to break_down (6.6), see Appendix F.3, in order to represent this state failure:

do € O,dpc € Pc,Yom € Om,Vos € Os,Vod € Od :

106 CHAPTER 6. BREAK-DOWN

break _down(o, pc,om, 0s,0d) <
& (represents(o, pc) A accurate_image(o, pc,od) A

accurate_methods(o, pc,om) = — accurate_state(o, pc,o0s)) (6.17)

Seamster, Baker and Andrews have developed a naval deployment system that
is intended to provide its operators with information about the location of ships
and aircraft, pc [278]. This system presents icons that look like these vehicles;
accurate_image(o, pc,od). The methods of control system objects correspond to
the commands that can be sent to ships and aircraft, accurate_methods(o, pc,om).
The position and bearing of control system objects must only be changed within
the constraints imposed by the speed and location of the physical components. The
states of the icons do not, however, always conform to the states of ships and aircraft,
— accurate_state(o, pc,0s). In particular, it is not always possible to determine
whether a target is friendly or hostile. During the Gulf War a total of twenty-seven
French and nine British soldiers were killed as a result of allied fire that was di-
rected by similar deployment systems [63]. Many of these casualties were sustained
because control systems represented allied troops as part of Iraqi units; their state
was assumed to be hostile rather than friendly. In consequence, operators failed to
predict the effect of their commands to engage those physical objects.

6.4.1 State Failure And Predictability

The operators of deployment systems use the state, os, of control system objects,
0, to make assumptions about the effects of their input messages, m, upon physical
components, pc. If the state of a control system object eventually does not accu-
rately represent the state of a physical component then it will be difficult for users
to predict the consequences of their interaction. Directing fire towards a friendly
target was clearly not the intended effect in the examples cited in the previous sec-
tion. Human factors and systems engineers might exploit interval temporal logic to
represent the relationship between state failure and unpredictability:

dpc € Pc,do0€ O,dm € M,Vos € Os:
unpredictable_object_state(pc,0,m,0s) < Jos’ € Os
O(represents(o, pc) A message_effect(o, m, os,0s') A

- accurate_state(o, pc, 0s)) (6.18)

On the 3rd July 1988, the United States’ Ship Vincennes used its Aegis missile
system to shoot down Iranian Airline Flight 655. This civil aircraft was mistaken
for an attacking fighter. In the aftermath of the accident it was extremely difficult
to identify the causes of this control failure [230]. A United States’ Navy spokesmen
claimed that the “the (entire) system performed flawlessly” [201]. Malone remarks
that “the crew had come to believe that the (Vincennes’) Aegis combat system was
infallible, if it indicated that they were under attack, that had to be the case”. Faced
with such a response, interface designers could use formal representations of design
problems to focus their analysis of the failures that could have led to this type of
accident. For example, the Vincennes incident can be interpreted as a consequence
of an unpredictable_object_state (6.18). Operators were too ready to believe
that control system objects, o, accurately represented the hostile state, os, of the

6.5. BREAK-DOWN AND DIRECT PERCEPTION 107

aircraft, pc. In consequence, they made inaccurate predictions about the effects of
their intervention.

6.4.2 State Conformance

The Vincennes’ Aegis operators might have been better able to predict the conse-
quences of their actions if the system had always been infallible. Designers could
exploit systems engineering, if not to guarantee infallibility then, to improve the
reliability of the information presented by their system. For instance, the Vincennes
did not receive any radio messages from the crew of the aircraft. It did, however,
receive an identification message from an on-board radio system. This was incor-
rectly interpreted as a ‘Mode II’ alert from an Iranian fighter, rather than a ‘Mode
IIT" alert from a civilian aircraft. The Board of Enquiry into the Vincennes’ inci-
dent recommended that the United States’ Navy should pay urgent attention to the
improvement of on-board identification systems [201]. Tactical control systems had
to be re-designed for a range of naval vessels. Work-station upgrades are underway
for all of the United States’ Arleigh Burke Destroyers and Aegis Cruisers as well
as North Atlantic Treaty Organisation Frigates [229]. These enhancements are in-
tended to guarantee that the state, os, of a control system object, o, always provides
an accurate representation of the state of the physical component, pc, which it is
intended to represent:

Jo € O,3pc € Pc,Jos € Os : state_conformal(o, pc, 0s) <

O accurate_state(o, pc, 0s) (6.19)

Techniques, such as the state conformance represented by the previous bi-condition,
require the integration of human factors and systems engineering. Systems engi-
neers must ensure that sensing devices are available in order to detect the states of
physical components. Human factors engineering must determine the best means
of presenting this information so that system operators can recognise these states.
Abstractions, such as os, o and pc, provide a means of representing techniques for
avoiding problems, such as break-down, without specifying the details that must
be considered in order to implement a potential control system. This level of ab-
straction is not appropriate for all stages of design. At some stage, human factors
engineers must select the images that are to represent process components. At some
stage, systems engineers must determine the states of control system objects that
are to represent physical components. Section 7.1.3 will argue that prototypes can
be used to inform such design decisions. In contrast, the remainder of this chapter
continues the formal analysis of break-down in order to explain recent attempts to
abandon the pictorial realism of conformal control systems.

6.5 Break-Down And Direct Perception

A puzzling phenomenon in human factors research has been the decline of pictorial
realism. A spate of recent articles have abandoned the conformal representation
of process components [59, 103, 120]. Instead, they advocate what have become
known as direct perception presentation techniques. Much of this work builds upon
Gibson’s claim that operators can directly derive information from the structure

108 CHAPTER 6. BREAK-DOWN

Figure 6.6: A time-tunnel display for aircraft engine status

of light as it arrives at the eye [118]. He asserted that users can exploit this in-
formation without the need for any indirect cognitive processing of visual images.
Many attempts to derive pragmatic applications of Gibson’s observations exploit his
notion of transformational invariants. People use these invariants when attempting
to identify the behaviour of a physical entity from its image. For instance, there
is a transformational invariant which states that if an object moves away from a
viewer at a constant speed then the decrease in its visual area is proportional to the
square of its distance from the viewer. This invariant supports the direct perception
of changes in speed through changes in the rate at which the visual area increases
or decreases. Transformational invariants have been used to support the presenta-
tion of production processes. For example, the American Electrical Power Research
Institute has developed a display that uses a circle to present information about
electricity generation [330]. This exploits a transformational invariant which states
that the area of the circle always changes in proportion to the rate of production.
Hansen and Skou extend this approach to present information about previous states
of process components [131]. Figure 6.6 illustrates the use of perspective informa-
tion as the transformational invariant in a tunnel of quadrilaterals. Operators are
intended to directly perceive the age of the data set from the area of the quadrilat-
erals. The tunnel on the right represents an engine operating normally. The tunnel
on the left represents an engine error as distortions in two of the quadrilaterals.
These appear in the second and sixth most recent states, assuming that the oldest
is presented as the smallest quadrilateral.

Previous sections have argued that break-down is likely to occur if the states,
methods and displays of control system objects do not conform to those of process
components. It can be argued that the circles and quadrilaterals of direct percep-
tion displays would suffer from this problem because they do not resemble physical
parts of an application. The link between break-down and direct perception can be
demonstrated by re-writing break_down (6.6), see Appendix F.4, in order to repre-

6.5. BREAK-DOWN AND DIRECT PERCEPTION 109

sent properties that are common to the displays described in the previous paragraph:

Jo € O,3dpc € Pc,Yom € Om,Vos € Os,Vod € Od :
break_down(o, pc,om, 0s,o0d) <
&(represents(o, pc) A object(o,om, 0s,0d) =

— conforms(pc,om, os,0d)) (6.20)

For example, a quadrilateral, o, in one of Hansen and Skou’s time-tunnels represents
an application component, pc, at a particular instant in time. This object does not
conform to the attributes of that process component, = conforms(pc, om, os, od).
Direct perception displays encourage image failure; the image, od, of a control sys-
tem object, 0, need not always resemble that of a physical component. State failure
could occur if eventually a direct perception object, o, gives misleading information
about the state of an element of Pc. Method failure is possible because the methods,
om, that are available for circles and quadrilaterals are unlikely to be the same as
those available for physical components.

6.5.1 Direct Perception And Predictability

The Vincennes’ Aegis operators assumed that if control system objects were repre-
sented as hostile then their physical counterparts must also be hostile. Users might
have made more accurate predictions about the consequences of their actions if
their systems had presented direct perception displays. The impact of break-down
is reduced and predictability is supported because operators are not encouraged to
believe that their commands directly affect application components. Users could
expect control system intervention because the commands issued to quadrilaterals
and circles must be translated into the detailed instructions required by application
components. Designers might exploit interval temporal logic to represent the re-
quirements that must be satisfied in order to exploit direct perception as a means of
supporting principles, such as predictability. If users can issue input messages, m,
to a control system object, o, that represents a physical component, pc, then the
attributes of the control system object do not correspond to those of the physical
component:

Jo € O,Vpc e Pc,ym e M,YVom € Om,Vos € Os,Vod € Od :
predictable_direct_perception_object(o, pc, m,om,0s,0d) < Jos’ € Os
O(message_effect(o, m, 0s, 0s') A (represents(o, pc) A object(o,om, os,od) =

- conforms(pc,om, os,0d))) (6.21)

A number of limitations restrict the utility of direct perception presentation tech-
niques. Operators must probe beyond circles and quadrilaterals in order to explain
any unpredicted behaviour by process components. Aircrew are required to explain
unexpected fuel readings in terms of low-level components even if initial symptoms
are presented using direct perception displays. A further limitation is that direct
perception displays are unlikely to provide adequate support for novice operators.
Gillie and Berry argue that direct perception displays deprive users of the structural
information that is necessary when learning to control application processes [120].
Direct perception displays have, typically, been developed to support monitoring

110 CHAPTER 6. BREAK-DOWN

activities. The cognitive and perceptual advantages of this technique have yet to
be demonstrated for tasks that require the active intervention of system operators.
Human factors research must provide additional evidence to support the cognitive
and perceptual benefits that are claimed for direct perception if systems engineering
is to exploit it as a means of avoiding alienation and unpredictability.

6.5.2 Indirect Presentation Techniques

Previous attempts to exploit Gibson’s work on perception have concentrated upon
the notion of transformational invariance. His work on the perception of pictures has
been neglected. Although Gibson argued that we perceive the world directly through
information in the structure of light, he accepted that indirect awareness was possible
when looking at a picture [117]. In other words, cognitive processing intervenes in
the perception of images that represent physical objects. Reed built upon Gibson’s
analysis [253]. He argued that the artist chooses the stimulus sources which are
represented in a painting. This selection alters the original image. In consequence,
viewers are usually aware that they are not looking at the physical objects which
are depicted on the canvas. Human factors and systems engineers might exploit this
analysis when designing an interactive control system. Operators must be made
aware that the stimulus sources provided by control system objects are not directly
produced by physical components. This leads to a surprising conclusion; it is not
only essential that users trust the information presented by their system, they must
also view it with a degree of scepticism. The Vincennes incident shows what can
happen when users assume that control system objects provide accurate views of
real-world objects. Recall the remarks of the Navy spokesman; “the (entire) system
performed flawlessly” [201]. Recall also Malone’s comment; “the crew had come to
believe that the (Vincennes’) Aegis combat system was infallible, if it indicated that
they were under attack, that had to be the case” [201]. Operators seemed unaware
that the stimulus sources provided by control system objects were not produced by
physical components.

Physical components could be represented by a number of different control sys-
tem objects in order to encourage the critical assessment of process information.
In contrast to direct perception, this indirect presentation technique is intended
to encourage the cognitive processing of display information. Users must analyse
and collate the information presented by different control system objects in order
to monitor all the data presented about application components. This technique
is illustrated in Figure 6.7. The left engine of the aircraft, pc, is represented by
a direct perception time-tunnel, o, and by one of Stollings’ icons, o/, described in
Section 6.3. In order to exploit this technique, designers must integrate human fac-
tors and system engineering. Indirect presentation techniques draw upon Gibson’s
human factors research but can only be exploited if systems engineers provide suf-
ficient sensing devices to support alternative representations, o and o/, of physical
components, pc. Temporal logic provides a means of representing the requirements
that must be satisfied in order to exploit this technique:

Jo,0' € O,3pc € Pc: indirect_presentation(o,0’, pc) <
O(represents(o, pc) A represents(o’, pc) A — same_object(o, 0’))6.22)

Indirect presentation techniques could support operators’ predictions about the ef-

6.5. BREAK-DOWN AND DIRECT PERCEPTION 111

Figure 6.7: An indirect display

fects of their commands. For instance, the Aegis system might have used different
objects to present radar data, o, and scheduled flight information, o’. If these sched-
ules had been presented then the crew might have been more sceptical about the
threatening state of the control system object presented by their radar systems. This
could have encouraged more accurate predictions about the effects of their input,
m, to destroy the physical object, pc:

doe O,3dpc € Pc,Yym € M,Vos € Os :
predictable_indirect_presentation(o, pc, m,o0s) < 30’ € O,30s’ € Os

O(message_effect(o, m, 0s, 0s’) = indirect_presentation(o,0’, pc))(6.23)

Principles provide a focus for an analysis of the human factors and systems engineers
benefits of indirect presentation techniques. Predictability is supported because
these techniques reduce the likelihood of break-down. Principles also provide a
focus for an analysis of the costs of indirect presentation techniques. Complexity
can be increased by the presentation of multiple sources of control information. A
number of different sources of information, such as cathode ray-tube monitors and
mimic boards, must be used if designers are to provide alternative representations of
process components. Section 3.4 argued that this threatens predictability. Operators
frequently have neither the time nor the opportunity to monitor alternative sources
of control information. The crew of the Vincennes had less than five minutes in which
to monitor all necessary information, make their decision and receive permission
to engage. Malone argues that there “were serious problems with the Captain’s
large screen display, with vital information not presented and too much extraneous
information presented in a confusing manner” [201]. Chapter 7 will argue that
prototyping can be used to determine whether such problems threaten the benefits
of techniques, such as indirect presentation, which are intended to support principles,
such as predictability.

112 CHAPTER 6. BREAK-DOWN

6.6 Conclusions

Break-down occurs if the methods, states and displays of control system objects do
not resemble those of the process components which they represent. Break-down
jeopardises predictability. Operators are unlikely to make accurate predictions about
the effects of their commands upon unfamiliar physical components.

Interval temporal logic provides a medium in which to represent techniques that
are intended to avoid the unpredictability caused by break-down. Object confor-
mance requires that the states, image and methods of control system objects always
resemble those of process components. Unfortunately, it is not always technically
or financially possible to achieve object conformance. Direct perception techniques
ensure that the state, image and methods of control system objects never resemble
those of process components. The utility of this approach is limited by the human
factors problems of providing novice operators with sufficient information about the
structure of process components.

Indirect presentation techniques provide alternatives to conformance and direct
perception. This approach relies upon the integration of human factors and systems
engineering. Human factors engineers must ensure that operators can monitor and
assimilate data from a number of different control system objects. Systems engineers
must provide adequate sources of information in order to support these multiple
representations of process components. It is argued that principles provide criteria
against which to assess the benefits of techniques for avoiding break-down in object
oriented control systems. Indirect presentation supports predictability because users
are not encouraged to believe that control system objects provide complete and
infallible representations of process components. It is also argued that principles
provide a focus for an assessment of the costs of such techniques. Complexity can
be increased by indirect presentation if designers display multiple sources of control
information.

Further evidence is required in order to substantiate the claimed costs and bene-
fits of the techniques described in this chapter. Chapter 7 argues that human factors
and systems engineers might use executable temporal logics to build prototype im-
plementations. These can be shown to operators in order to determine whether
design techniques, such as indirect_presentation (6.22), support principles, such
as predictability.

Chapter 7

Design Bias

“There is a practical problem with many of the representations used
by human factors engineers... there are not necessarily any simple map-
pings between them. This raises the question about what we expect
from a model and about communication between disciplines which use
different techniques.” (Bainbridge, [23]).

7.1 Introduction

Design bias occurs if formal or experimental design techniques dominate the devel-
opment of an interface. Experimental design exploits the analytical tools of physi-
ological and social ergonomics, perceptual and cognitive psychology, introduced in
Section 1.3. Formal design exploits mathematical notations, such as interval tem-
poral logic, to support systems development. Design bias hinders the integration
that is advocated in this thesis. Formal analyses are typically conducted by systems
engineers whilst experimental analyses are usually conducted by human factors en-
gineers. This chapter presents techniques that designers might exploit in order to
avoid design bias. In particular, it is argued that:

e abstract requirements, derived from a formal analysis of principles, provide a
framework for the specification of detailed designs;

e detailed designs provide blue-prints for the development of prototype imple-
mentations;

e prototype implementations provide a means of assessing the utility of princi-
ples for particular interfaces to particular control systems.

PRELOG, a system for Presenting and REndering LOGic specifications of interac-
tive systems, has been developed to support these arguments. It is concluded that
this tool could be used to avoid the design bias which threatens the integration of
human factors and systems engineering.

7.1.1 Consequences: Distrust And Unpredictability

Design bias focuses the application of finite development resources upon a dominant
analytical technique. Principles can be violated if this focus changes. For instance,

113

114 CHAPTER 7. DESIGN BIAS

designers might adopt predictability as a goal for an initial formal analysis. Subse-
quent investigations could reject this principle in favour of properties that are more
easily assessed using experimental techniques.

The lack of integration between formal and experimental analyses can exacer-
bate the distrust that has been observed between human factors and systems en-
gineers [32]. Abstract analyses, conducted in mathematical formalisms, can ignore
the cognitive and perceptual demands placed upon system operators. Human fac-
tors engineering distrusts formal modelling which lacks the under-pinning provided
by experimental results. Systems engineering distrusts the findings of laboratory
investigations which fail to consider functional or safety requirements [113]. Un-
fortunately, the results of formal and experimental analyses are often pitched at
different levels and are rarely used to inform each other.

7.1.2 Causes: Different Disciplines And Design Techniques

The quotation that opens this chapter identifies the causes of design bias; different
disciplines use different design techniques. The approaches employed by systems
engineers, typically, abstract away from device and presentation details that have
a profound impact upon operator performance [175]. In contrast, human factors
engineering has exploited experimental techniques to assess the influence of these
details upon usability.

Winner, Pennel, Bertrand and Slusarczuk argue that common goals must be es-
tablished if different analytical techniques are to be applied during the development
of an interactive system [325]. Hofer and Ruggiero argue that common goals can be
established by incorporating the products of human factors and systems engineering
into prototype implementations [150].

7.1.3 Solution: Prototyping

Design requirements, expressed in interval temporal logic, provide the non-formalist
with little idea of what it would be like to interact with a control system. Prototypes
provide a far better impression of the look and feel of a final implementation [133].
They can be shown to system operators. They are amenable to experimental analysis
[106]. They can be used to determine the cognitive, perceptual, physiological and
sociological demands that a control system might place upon its users. They could,
therefore, be used to assess the relevance of design principles for system operators.

7.2 From Abstract Requirements To Specifications

Continuous steel casting provides an example for the remainder of this chapter. The
casting process exhibits many of the problems that frustrate the design of interactive
control systems. It is complex, dynamic and open. Systems engineering must mon-
itor and respond to hundreds of potential input values from this application. The
presentation of casting control systems also poses significant challenges for human
factors engineers [149]. Operators must detect and respond to a range of potential
errors. The casting process is illustrated by Figure 7.1. Steel from a melting shop is
passed through a water cooling mechanism and, in so doing, solidifies into a billet.
This is cut to length at the end of the run. The most feared accident in this process

7.2. FROM ABSTRACT REQUIREMENTS TO SPECIFICATIONS 115

Figure 7.1: The continuous casting process

is a break-out which occurs when the billet tears and steel flows inside the casting
plant. There is also a danger that the flow will clog leading to a splash-off either at
the ladle or onto the floor. Casting must halt if either a break-out or a splash-off is
detected.

7.2.1 Instantiating Architectural Models

Formal models of development architectures provide a framework for the detailed
design of interactive control systems. For instance, the model of object orientation
introduced in Section 5.2 described objects as having a state, os, a graphical image,
od and some operating methods, om:

Vo € O,3om € Om,Jos € Os,Jod € Od : object(o,om, 0s,0d) <
object_methods(o,om) A object_state(o, 0s) A object_view(o,od) (5.5)

Systems engineers might instantiate these abstract predicates in order to represent
the operating methods that must be provided by application functionality. Human
factors engineers could use them to represent the displays that must be provided
for the operators of a particular control system. For example, a coolant_system
is presented by the coolant_error_display in the error state and is operated by
methods which halt it:

object(coolant_system, halt, error, coolant_error_display) (7.1)

Other components of the model of object orientation can be used in a similar fashion.
For instance, a predicate was introduced to describe the effect, os’, of messages, m,

116 CHAPTER 7. DESIGN BIAS

upon the states, os, of objects, o:
Vo € 0,Vm € M,Vos € Os,Jos’ € Os : message_effect(o,m,0s,0s’) (5.17)

Designers might instantiate this abstract predicate in order to specify that an ‘error’
message transforms a coolant_system from the on state into the error state:

message_effect(coolant_system, ‘error’, on, error) (7.2)

Ineffective input, in other words input that does not alter the state of an ob-
ject, can be described in similar fashion. An ‘error’ message does not affect a
coolant_system that is already in the error state:

message_effect(coolant_system, ‘error’, error, error) (7.3)

This level of analysis offers a number of advantages for the development of inter-
active control systems. Human factors and systems engineers might exploit these
bare-bones requirements in order to construct a design without necessarily specify-
ing the elements of particular states and displays. For instance, designers need not
represent the exact wording of the error messages that a system would use in order
to warn its users that their input had been ineffective. Such details can be gradually
introduced as development progresses, techniques for achieving this will be discussed
in Section 7.4. A further advantage of this level of abstraction is that designers are
not immediately forced to specify which input devices will be incorporated into a
final implementation. Such decisions can be postponed until procurements contracts
are drafted for hardware suppliers [48]. In order to represent the trade-offs that exist
between devices, such as mice and joysticks, it is vital that there be some means of
introducing interaction details into the products of a formal analysis. Sections 7.5
will demonstrate how this can be achieved. In contrast, the next section demon-
strates that techniques which are intended to support principles can be incorporated
into the detailed design of particular interfaces to particular control systems.

7.2.2 Instantiating Generic Principles

Section 2.4.4 argued that it is difficult for operators to predict the effects of their
commands if they cannot view the consequences of their intervention. Designers
could, therefore, support predictability by ensuring that the pre-condition, s, and
the post-condition, s/, of input, p, are viewed through different displays, d and d’:

Vp eP,Vse€S,3d,d € D : temporal_visible_effect(p,s,d,d') « 3s' € S
(input(p) A interpret_effect(p,s,s’) A view(s,d) A
O (view(s',d’) A — same_display(d,d’))) (2.28)

Such predicates can be brought closer to the level of detail that is required in order
to support implementation by translating them into the elements of particular de-
velopment architectures. For instance, the previous bi-condition could be expressed
in terms of the object oriented model, introduced in Section 5.2. States, s and s/,
might be represented by the states, os and os’, of a control system object, o. The

7.3. FROM SPECIFICATIONS TO EXECUTABLE SYSTEMS 117

displays, d and d’, could be replaced by the image, od and od’, of that object:

Vm € M,Vo € O,Vos € Os,3od,od € Od :
object_visible_effect(m, 0, 0s,0d,0d’) < Jos’' € Os
(message_effect(o, m, 0s,0s’) A object_view(o,od) A
O(object_view(o,0d’) A - same_display(od, od’))) (7.4)

Section 1.5 argued that principles provide a basis for action. In the context of
this thesis, they provide a basis for detailed design. Human factors and systems
engineers might instantiate the products of an abstract analysis of predictability
in order to construct specifications. For instance, object_visible_effect (7.4) can
be instantiated to represent specific requirements that must be satisfied if operator
predictions are to be supported by a particular interface. The effect of a ‘coolant ok’
message is presented by a change in the image of a coolant_system in the interval
after that input is issued. The state, os, and display, od, parameters are dropped
from effect_visible (7.5) for the sake of brevity:

effect_visible(‘coolant ok’, coolant_system) <
object_view(coolant_system, coolant_error_display) A
message_effect(coolant_system, ‘coolant ok’, error, on) A
O(object_view(coolant_system, coolant_on_display) A

— same_display(coolant_error_display, coolant_on_display)) (7.5)

The transition between generic principles and detailed specifications relies upon the
skill and judgement of the designer. The effect_visible (7.5), object_visible_effect
(7.4) and temporal _visible_effect (2.28) predicates are not equivalent. The previ-
ous predicate abandons the V and 3 quantifiers. There could, therefore, exist input
messages with ‘invisible’ effects. Designers might introduce additional constraints,
such as ()— object_view(coolant_system, coolant_error_display), into instan-
tiated predicates as development progresses. It is important that such changes
should not unwittingly sacrifice the design objectives represented in abstract re-
quirements. Lin and Hunt present a number of techniques that are intended to
support this task [196]. Section 8.2.2 will describe future work that might build
upon such research. In contrast, the following sections demonstrate that detailed
specifications, such as effect_visible (7.5), provide a framework for the prototyping
of interactive dialogues.

7.3 From Specifications To Executable Systems

The process of instantiation necessary to derive detailed specifications from abstract
predicates does not bridge the divide between principles and prototypes. In order
for designers to close this gap they must be provided with some means of developing
executable systems that implement these specifications.

7.3.1 Object Oriented Programming Languages

Object oriented programming languages could be used to develop systems that im-
plement specifications such as effect_visible (7.5). For instance, the C++ pro-
gramming language might be used to implement a class of coolant_systems:

118

CHAPTER 7. DESIGN BIAS

class COOLANT_SYSTEMS: public plant_components

{

// Class definition for coolant_systems in casting control,
// type definitions omitted to simplify the exposition.

}

STATE_ID state;
DISPLAY_ID display;

public:

coolant_stms (STATE_ID, DISPLAY_ID); // create instance
~coolant_stms(); // destroy instance

void start();// start system

void stop();// stop system

void error();// error alert

void coolant_ok();// resolve error

mbool state(STATE_ID); // TRUE if state is STATE_ID

mbool display(DISPLAY_ID); // TRUE if display is DISPLAY_ID

The implementation of interactive dialogues is less straightforward. For example,
the following code implements effect_visible (7.5):

main()
//Example of C++ implementation of predictability specification,
// type definitions omitted to simplify the exposition.

{

string USER_INPUT;
COOLANT_SYSTEMS COOLANT_SYSTEM = coolant_stms(ASTAT, ADISP);
//create instance, ASTAT and ADISP defined elsewhere

cin>>USER_INPUT; //read operator input

if (USER_INPUT=="coolant-ok" &&
COOLANT_SYSTEM. state (ERROR) &&
COOLANT_DISPLAY.display (COOLANT_ERROR _DISPLAY))
//operator input to resolve coolant error.
{
COOLANT_SYSTEM.error_ok();
if (COOLANT_SYSTEM.display (COOLANT_ERROR_DISPLAY))
{cout << "UNPREDICTABLE\n";}
//warn of potential unpredictability

It is difficult for human factors and systems engineers to implement properties that
are represented using the (), <, O, U operators in languages such as Smalltalk or
C++. This limitation can be resolved. For instance, some of the National Aero-
nautics and Space Administration’s ground-control systems include a scheduler, or

7.3. FROM SPECIFICATIONS TO EXECUTABLE SYSTEMS 119

clock, implemented in Smalltalk-80 [262]. Designers could translate predicates, such
as effect_visible (7.5), into a real-time notation. A scheduler could then be used to
ensure that the resulting specification was satisfied by a particular implementation.
In order to exploit this approach, designers must be able to translate interval tem-
poral logic predicates into a real-time notation [89]. Section 8.3.1 will argue that
further work is needed in order to develop techniques that might support this task.
For now it is sufficient to realise that there is no straightforward translation between
interval operators, such as () and <, and hours, minutes and seconds.

7.3.2 PROLOG

Detailed specifications, derived from formal analyses, might be implemented using
executable subsets of first order logic. For instance, designers could exploit one of
the environments that have been derived from Colmerauer and others’ PROgram-
ming in LOGic system (PROLOG) [75]. There is a close correspondence between
specifications written in first order predicate logic and programs that satisfy those
specifications implemented in PROLOG [70]. There is a well understood translation
between first order logic predicates and the Horn clauses that can be executed by this
environment. PROLOG can be used to prototype detailed designs that are struc-
tured using any one of a number of development architectures. Human factors and
systems engineers might instantiate and execute temporal visible_effect (2.28)
without exploiting the object oriented architecture. Alternatively, designers could
implement effect_visible (7.5) using any one of a number of PROLOG systems
that provide access to object oriented facilities [110, 126]. These extensions provide
a means of executing the following PROLOG clause. The ‘: —’ symbol represents
implication (<), ‘, represents conjunction (A), pairs of single right-hand ’quotes’
surrounding text represents a string literal, ‘.’ represents the syntactic termination
of a clause:

effect_visible('coolant ok’, coolant_system) : —
object_view(coolant_system, coolant_error_display),
message_effect(coolant_system, 'coolant ok’, error, on),
object_view(coolant_system, coolant_on_display),

not(same_display(coolant_error_display, coolant_on_display)).(7.6)

PROLOG suffers from a number of disadvantages that restrict its utility as a means
of avoiding design bias. Changing the order of the predicates in effect_visible
(7.6) would not affect a detailed specification. It would, however, radically affect
the behaviour of a prototype. For instance, the coolant_on_display might be pre-
sented before an operator had provided input to resolve the error. This distinction
between the specification and the behaviour of a prototype arises because program-
ming languages must enforce an order of evaluation that is not explicitly part of first
order predicate logic. Section 2.3.4 introduced the differences between the declar-
ative and procedural interpretations of first order logic. The distinction between
the declarative reading of first order logic and the procedural order of evaluation
enforced by PROLOG can frustrate prototype development [181]. The ordering of
clauses within a detailed design might have to be substantially revised in order to
support the control strategy necessary for implementation.

120 CHAPTER 7. DESIGN BIAS

7.3.3 Tempura

Several research groups have provided executable semantics for interval temporal
logics [28, 112, 136, 224]. Moszkowski [218] and Hale [128] have developed inter-
preters for the Tempura programming language using C and Lisp. Tempura im-
plements the next operator which is equivalent to (). The sometimes operator
is equivalent to <, always is equivalent to 0. Tempura avoids the problems that
limited the utility of PROLOG. Procedural requirements can be made explicit in
predicates, using the () operator, and can be satisfied by Tempura prototypes, using
the next operator:

define predict(0, M, S1, D1) =
/* Implements predictable dialogue */

{

object_view(0, D1) and

message_effect(0, M, S1, S2) and

next (object_view(0, D2)) and

next (not (same_display(D1, D2))) and

next (next(empty)). /* end of interval */
run(predict(coolant_system, ‘‘ok’’, error, coolant_error_display)).
/* Implement dialogue cancelling coolant error */

}.

Unfortunately, previous Tempura interpreters have only provided access to a small
range of input-output primitives. It has not been possible to develop prototypes
that exploit graphical presentation techniques. Hale has recently overcome this
problem by providing access to external system calls from within Tempura. There
are, however, further limitations. Tempura interpreters require left-right determin-
ism before they can evaluate any clause. As a consequence, unification is not well
supported and valid interval temporal logic clauses cannot be implemented. For
instance, a designer might specify that D is a view of the coolant_system in the
present interval:

object_view(coolant_system, D) and D is coolant_error_display.

Tempura scans from the left to the right. The evaluation of this statement would fail
because the value of D is not known during the interpretation of object_view. Until
unification facilities are improved, human factors and systems engineers must trans-
form abstract requirements into detailed specifications. They must then guarantee
that these designs support the left-right determinism required by Tempura.

7.3.4 Tokio

A number of temporal logic programming languages avoid the limitations of Tem-
pura because they have been implemented using PROLOG [269]. For instance, the
Tokio interpreter exploits PROLOG’s unification facilities in order to avoid the re-
quirement for left-right determinism [16]. Clauses that do not contain any temporal
operators are passed directly to PROLOG for evaluation. Clauses that do contain

7.3. FROM SPECIFICATIONS TO EXECUTABLE SYSTEMS 121

temporal operators are re-written in first order logic and are asserted over an ap-
propriate interval. In other words, the Tokio interpreter maintains time-variables
that are similar to those introduced in Section 2.4.2. Execution progresses when all
the clauses for a particular interval are satisfied [109]. This approach has much in
common with Abadi’s temporal logic proof system, described in Appendix B [1]. De-
signers might use these facilities to develop prototypes that implement specifications
such as effect_visible (7.5):

effect_visible('coolant ok’, coolant_system) : —
object_view(coolant_system, coolant_error_display),
message_effect(coolant_system, 'coolant ok’, error, on),
O(object_view(coolant_system, coolant_on_display),

not(same_display(coolant_error_display, coolant_on_display)))(7.7)

Tokio first attempts to satisfy clauses that are specified for the present interval.
These are passed to PROLOG. PROLOG evaluates them in left-right order; the error
is displayed before the input is evaluated. Tokio then attempts to satisfy clauses
that are specified for the next interval; the coolant_on_display is a view of the
coolant_system and this is not the same as the coolant_error_display. Designers
could use the (O operator to avoid any reliance upon the evaluation strategy of

PROLOG:

effect_visible('coolant ok’, coolant_system) : —
object_view(coolant_system, coolant_error_display),
O(message_effect(coolant_system, 'coolant ok’ error,on),
O(object_view(coolant_system, coolant_on_display),

not(same_display(coolant_error_display, coolant_on_display))))7.8)

Altering the order of clauses in this implication would not affect its declarative
interpretation nor would it affect the behaviour of a prototype. This closes the
divide between the products of formal analysis and prototypes that are amenable
to experimental investigation.

7.3.5 PRELOG And Tokio

In order to demonstrate that executable interval temporal logics can support pro-
totyping we have incorporated Tokio into PRELOG. It is important to note that
PRELOG does not force human factors and systems engineers to exploit the ob-
ject oriented architecture. The intention is to provide a tool that leaves designers
free to choose whether or not this framework is suitable for the development of
their control system. If object orientation is appropriate then Bowen and Kowal-
ski’s Meta-Theory language [39] or Page’s Object Oriented PROLOG [231] could
be used in conjunction with PRELOG. If object orientation is inappropriate then
designers might confine themselves to the facilities implemented by Tokio. Exe-
cutable interval temporal logics only provide part of the support required if human
factors and systems engineers are to avoid the problems of design bias. The Tokio
interpreter has previously been applied to the problems of hardware verification
[108]. It was not intended to support interface design and does not provide access
to graphical presentation facilities.

122 CHAPTER 7. DESIGN BIAS

7.4 From Executable Systems To Graphical Interfaces

Prototypes provide a means of avoiding design bias; the findings of a formal analysis
can be embodied in partial implementations that are amenable to experimental
analysis. Prototypes must resemble final implementations if users are to gain an
accurate impression of what it would be like to operate a potential control system.
Designers must instantiate graphical abstractions, such as coolant_on_display and
coolant_error_display, into the instructions that are required in order to generate
images on particular presentation devices.

7.4.1 TUnstructured Graphics

Unstructured graphical representations do not distinguish between the images of
display components, such as menus and icons. For instance, bitmaps represent the
image of pixels as bits in a data structure. Designers might use the following bitmap
to describe the coolant_error_display:

DeclareBitmap(coolant_error_display.bit, 42, 49, e_disp.bits);
short error_display.bits[] =

/* Some information omitted for the sake of brevity */

{

0x0000, 0x0000, 0x0000, 0x000f, 0xff00, 0x0000, 0x007f, OxffcO,
0x0000, 0x00ff, Oxfff0, 0x0000, 0x00ff, Oxfff0, 0x0000, 0x00ff,
Oxff£8, 0x0000, OxO01ff, Oxfff8, 0x0000, OxO1ff, Ox8ffc, 0x0000,
O0x0Olea, 0x50be, 0x0000, 0x03d0, 0x02be, 0x0000, 0x03a2, 0x003e,
0x0000, 0x0340, Ox24af, 0x0000, 0x03a8, 0x412f, 0x0000, 0x0350,
0x001f, 0x0000, 0x0340, 0x006f, 0x0000, 0x03b0, 0x0a97, 0x0000,
0x037d, 0x3fef, 0x0000, 0x03ee, 0x0Oalb, 0x0000, 0x03d7, 0x3ff7,
0x0000, 0x03fd, 0x87ca, 0x0000, 0x03f7, 0x5616, 0x0000, 0x014b,
0x0000, 0x0000, 0x0000,

}s

Unstructured graphical representations have a limited utility for the development
of prototype control systems. In particular, designers must make a one step refine-
ment between graphical abstractions, such as coolant_error_display, and data
structures, such as the previous bitmap. The coolant_system display cannot be
decomposed into a number of simpler images. This hinders the gradual introduction
of graphical details as development progresses.

7.4.2 Procedural Graphics

Procedural graphics systems construct pictures from sequences of instructions [2].
Human factors and systems engineers might use these systems to generate the im-
ages of interface components without describing the entire appearance of a display.
Abstractions, such as coolant_error_display, can gradually be replaced by the
instructions necessary to produce the images that are presented to system opera-
tors. For instance, the inlet icon illustrated in Figure 7.2 could form part of the
coolant_error_display. The dotted lines are intended to indicate the part of the
image that is described by the following clause. Figure 7.2 is not drawn to scale.

7.4. FROM EXECUTABLE SYSTEMS TO GRAPHICAL INTERFACES 123

The rotate(90) predicate specifies a ninety degree clockwise rotation in the direc-
tion of the pen around its current location, forward(10) specifies a ten Centimeter
forward movement of the pen:

draw_inlet : —pen(down), forward(10), rotate(90), forward(10),
rotate(90), forward(10), rotate(90), forward(10), pen(up). (7.9)

Procedural approaches offer only limited support for the prototyping of interactive

Figure 7.2: An inlet image

control systems. Designers would be forced to write many thousands of instructions
in order to create complex images. If one instruction were omitted or placed out of
sequence then the final image might be corrupted. For instance, Figure 7.3 illustrates
the way in which an image can be changed by altering the position of a single
instruction. Swapping the first rotate and forward instructions in draw_inlet
(7.9) would produce a very different image to that of Figure 7.2. As before, Figure 7.3
is not drawn to scale. The dotted lines indicate the part of the image which is
described by the following clause:

draw_incorrect_inlet : —pen(down), rotate(90), forward(10), forward(10),
rotate(90), forward(10), rotate(90), forward(10), pen(up). (7.10)
Designers could avoid this order dependence by recruiting interval temporal logic to
explicitly represent the instruction sequences of procedural graphics systems. This
requires a cumbersome iteration of the () operator for any but the most trivial of
images:
temporal draw_inlet : —pen(down), O(forward(10), O(rotate(90),
O(forward(10), O(rotate(90), O(forward(10), O(rotate(90),

O(forward(10), O(pen(up)))))))))- (7.11)

Szekely and Myers identify a further limitation of procedural graphics systems [298].
If an operator selects part of a display, using a mouse or some cursor keys, then there

124 CHAPTER 7. DESIGN BIAS

Figure 7.3: An incorrect inlet image

is no means of identifying the target of their selection using the instructions that
generated the image. Designers must, therefore, maintain additional data structures
in order to determine which objects are selected by operator input.

7.4.3 Structured Graphics

Structured graphics systems represent complex images in terms of their component
parts. For instance, the image of a coolant_system might include water jets,
coolant tanks and an inlet. Human factors research has identified the benefits that
can be gained if users are aware of the display structures exploited by designers. For
instance, Rasmussen and Lind argue that structured presentation formats help oper-
ators to learn the layout of their plant [249]. Bainbridge suggests that they help users
to remember “chunks” of information about process components [23]. Structured
graphics systems have also been exploited by software engineering. Blake and Cook
[35] and Took [308] introduce graphical hierarchies into object oriented presentation
systems. Pereira uses structural decomposition to represent and generate graphical
images in a PROLOG based system [235]. Human factors and system engineers
might, therefore, exploit this approach to support the design and implementation
of prototype displays. For instance, the following clauses describe the image of the
coolant_on_display for the coolant_system illustrated in Figure 7.4:

object_view(coolant_system, coolant_on_display). (7.12)
part(coolant_on_display, water_jet_A). (7.13)
part(coolant_on_display,tank_A). (7.14)

7.4. FROM EXECUTABLE SYSTEMS TO GRAPHICAL INTERFACES 125

Figure 7.4: The graphical decomposition of the coolant_on_display

part(coolant_on_display, water_jet_B). (7.15)
part(coolant_on_display, tank B). (7.16)
part(coolant_on_display, inlet). (7.17)

These clauses can be incorporated into specifications that have been derived from
formal analyses of principles, such as predictability. For example, effect_visible
(7.5) required that an operator’s view of a system changes in response to the ef-
fects of their intervention. The effect of a command to resolve an error can be
presented by a change in the image of a coolant system from that shown in Fig-
ure 7.5 to that shown in Figure 7.4. The coolant_error_display might differ
from the coolant_on_display because tank B is not part of it. The explicit in-
troduction of graphical details helps designers to clarify the semantics of abstract
presentation requirements. For instance, designers could use part clauses to replace

126 CHAPTER 7. DESIGN BIAS

Figure 7.5: The graphical decomposition of the coolant_error_display

not(same_display(coolant_error_display, coolant_on_display)):

effect_visible(’coolant ok’, coolant_system) : —
object_view(coolant_system, coolant_error_display),
not(part(coolant_error_display, tank _B)),
message_effect(coolant_system, 'coolant ok’, error,on),
O(object_view(coolant_system, coolant_on_display),
part(coolant_on_display, tank B)). (7.18)

Structured graphics systems must be capable of representing a range of different
presentation techniques if they are to support the prototyping of interactive con-
trol systems. For instance, the circles and squares of direct perception displays,
introduced in the Section 6.5, might be presented instead of the tanks and inlets of

7.4. FROM EXECUTABLE SYSTEMS TO GRAPHICAL INTERFACES 127

Figures 7.4 and 7.5. The conformal representation of components, such as tank B,
could be replaced by an irregular_quadrilateral:

effect_visible(’coolant ok’, coolant_system) : —
object_view(coolant_system, coolant_error_display),
part(coolant_error_display, irregular_quadrilateral),
message_effect(irregular_quadrilateral, 'coolant ok’ error, on),
O(object_view(coolant_system, coolant_on_display),
part(coolant_on_display, regular_quadrilateral),

not(part(coolant_on_display, irregular_quadrilateral))). (7.19)

This implication illustrates how designers might easily incorporate changes into the
component parts of a graphical structure. It would not have been possible to specify
changes to an unstructured bitmap in this manner. It would have been difficult to
make such changes using procedural graphics systems because designers must ensure
that the new instruction sequences represent the desired image.

7.4.4 Regions

Graphical structures are composed from primitive images. For instance, an inlet
could be implemented as a primitive image if it had no parts. The graphical ap-
pearance of this object might include lines from Cartesian coordinates (0.1,0.2) to
(0.6,0.2) and from (0.6,0.2) to (0.6,0.8):

primitive(inlet). (7.20)
line(inlet, 0.1,0.2,0.6,0.2). (7.21)
line(inlet, 0.6, 0.2, 0.6, 0.8). (7.22)

It is a non-trivial task for designers to represent control system displays using in-
dividual lines. For example, it would not be easy to define new fonts. A further
limitation is that operator input is not usually directed towards lines but towards
areas of the screen. A user selecting an inlet icon does not, necessarily, expect to
select a particular line of its image. In order to support such interaction, designers
must exploit more sophisticated graphical ‘building-blocks’. Figure 7.6 illustrates
how the image of the coolant_on_display for the coolant_system can be described
in terms of a number of regions: a background region; a text region and an inlet
region. The inlet region might be further decomposed into sub-regions containing
lines, squares or circles. Each region has properties, such as size and position, at-
tributes, such as font and pattern, and a behaviour, such as whether or not it is
selectable. For instance, an inlet could be represented as a region with a blank
background and dimensions that occupy one twentieth of the screen, positioned at
coordinates (0.3, 0.3):

primitive_region(inlet).
dimension(inlet, 0.05,0.05).
position(inlet, 0.3,0.3).
pattern(inlet, blank).

128 CHAPTER 7. DESIGN BIAS

Figure 7.6: The region decomposition for part of the coolant_on_display

Designers might describe changes to the attributes of a region using interval temporal
logic:

select_image(inlet) : —pattern(inlet, blank),
O(pattern(inlet, dark), not(pattern(inlet, blank))). (7.27)

The inlet changes its appearance under selection if in the present interval its back-
ground is blank and in the next interval its background is not blank but dark (i.e.,
shaded).

7.4.5 PRELOG And Presenter

In order to demonstrate that structured graphics systems can be incorporated into
prototyping tools, we have enhanced PRELOG by linking Tokio with Presenter
[307]. The Presenter screen presentation system is an appropriate choice for this task
because it constructs images in terms of graphical regions. PRELOG uses Presenter
to provide facilities for manipulating region structures and for setting, clearing and
interrogating properties of regions. Implementation details, such as raster graphics
operations, are isolated within the presentation system. This approach also offers

7.4. FROM EXECUTABLE SYSTEMS TO GRAPHICAL INTERFACES 129

a high degree of device independence; Presenter has been designed so that it can
be ported to any machine offering bitmapped display facilities [307]. PRELOG has
been implemented on a network of Sun 3/50s and 3/60s using a client-server model.
Shared resources are accessed by a number of clients through a central server. Clients
are assumed to be Presenter applications and the resource is the interval temporal
logic specification running under Tokio. Communication is via a UNIX socket [193].
Figure 7.7 illustrates the resulting architecture of the PRELOG prototyping system.

Figure 7.7: The PRELOG architecture

Appendix G describes the design and implementation of PRELOG in greater detail.

Figure 7.8 shows a display that was generated using PRELOG. In order to
produce such an image, PRELOG constructs a part hierarchy using clauses such as
(7.16). The region properties, attributes and behaviours of each part, represented by
clauses such as (7.25), are then recorded in a tree. This data structure is traversed.
Information about each region is passed, via the UNIX socket, to Presenter which
runs as an independent process. This is achieved through an interface between
PROLOG and the C programming language. A send(String) predicate is evaluated

130 CHAPTER 7. DESIGN BIAS

Figure 7.8: A PRELOG prototype of the casting control system

as true if the String is successfully written by PRELOG to the Presenter socket.
For a designer, the net effect of linking PRELOG and Presenter is to provide the
impression of a graphical output channel. Despite the provision of these presentation
facilities, PRELOG provides inadequate support for the prototyping of interactive
control systems. In particular, designers must be able to handle device input if they
are to assess the utility of alternative implementations.

7.5 From Graphical Interfaces To Working Prototypes

The choice of input media profoundly affects the usability of many interactive con-
trol systems. For instance, Galer and Yap have used prototypes to investigate the
costs and benefits of different input devices for intensive care systems [113]. They
found that thumb wheels suffer from high error rates, mice were difficult to use in
a cluttered clinical environment. In order to avoid design bias it is important that
designers can exploit experimental techniques to assess the impact of such devices
upon the products of a formal analysis. In order to evaluate the trade-offs that
exist between tracker-balls, mice, joysticks and keyboards, human factors and sys-
tems engineers must be able to handle a variety of input devices from within the
prototypes that embody design principles.

7.5.1 Device Handlers

In safety-critical applications, systems engineers must frequently analyse device be-
haviour at a low level of detail [49]. It is appropriate, therefore, to consider calling
device drivers directly from within a prototype implementation. Device drivers are
programs that provide an operating system with a low-level interface to a peripheral
unit, such as a mouse or a keyboard. Figure 7.9 represents a data structure that is
used by device drivers in Apple Macintosh operating systems [260]. This structure

7.5. FROM GRAPHICAL INTERFACES TO WORKING PROTOTYPES 131

Figure 7.9: A data structure for a device driver

stores pointers to the driver routines that are called when input is received from
a particular device. For instance, the following assembler code is part of a routine
that ‘blinks’ the caret when a mouse is moved over a text region:

CLR.L -SP ;event code for null event is O
PEA 2(SP) ;pass null event

CLR.L -SP ;pass NIL dialogue pointer
CLR.L -SP ;pass NIL pointer
DialogueSelect ;invoke DialogueSelect

ADDQ.L #4 ,SP ;pop off result and null event

Burton, Cook, Gikas, Rowson and Sommerville show how designers might formalise
such structures in order to specify human-computer interfaces built using the Apple
Macintosh Toolbox [51]. Such descriptions provide an appropriate level of detail
for many stages in the development of safety-critical control systems. They are,
however, extremely device dependent. The data structure illustrated in Figure 7.9
differs from device to device. The complexity of accessing input at this level of detail
might dissuade designers from assessing the costs and benefits of a range of different
devices.

7.5.2 Device Specific Models

Julien uses first order logic to model the input mechanisms of the Tektronix 4014
display [168]. He has extended MicroPROLOG to support the implementation of
prototypes using input from this device. Operators can select graphical objects
by using thumb wheels to move two cross-hairs across the screen. Designers can
determine the Cartesian coordinates of the point where these lines cross using a
PROLOG query. These can be thought of as questions about the validity of a
relation. The following can be read as ‘does there exist an X and a Y such that X

132 CHAPTER 7. DESIGN BIAS

is the x-coordinate and Y is the y-coordinate of the cross-hairs?’:
: —cross_hair(X,Y). (7.28)

Input requirements can be represented as constraints upon the position of a graphical
object and the cross-hair device. In other words, in order to select an inlet users
must move the cross_hair to the position of that graphical object:

effect_visible(cross_hair(X,Y), coolant_system) : —
object_view(coolant_system, coolant_error_display),
part(coolant_error_display, inlet),
position(inlet, X, Y), not(part(coolant_error_display, tank_B)),
message_effect(coolant_system, cross_hair(X,Y), error,on),
O(object_view(coolant_system, coolant_on_display),

part(coolant_on_display, tank B)). (7.29)

The problems that limit the utility of device drivers for the prototyping of interactive
control systems also limit the utility of device specific models. Relations, such
as cross_hair(X,Y), cannot easily be used to represent input from cursor keys.
Designers would be forced to change their device model each time they investigated
a different input medium. This might dissuade them from assessing what Card,
Mackinlay and Robertson call “the design space of input devices” [52].

7.5.3 Input Events

Devices can be represented by the events that they generate. For instance, a key-
board could be represented by a text_enter event. This would be generated every
time an operator pressed a key. A mouse might be represented by a select event.
This would be generated every time an operator pressed one of its buttons. Events
can be introduced into prototypes by associating them with regions. For example,
an operator could be required to respond to an error by selecting the inlet using a
mouse:

effect_visible(select(inlet), coolant_system) : —
object_view(coolant_system, coolant_error_display),
part(coolant_error_display, inlet),
not(part(coolant_error_display, tank _B)),
message_effect(coolant_system, select(inlet), error, on),
O(object_view(coolant_system, coolant_on_display),
part(coolant_on_display, tank B)). (7.30)

An implementation of this clause would not have to be changed if a prototype
exploited a tracker-ball or cursor keys instead of a mouse. All of these devices
could generate the same select event. Such device independence helps to avoid
premature commitment to particular hardware platforms [303]. Implementation
decisions might be postponed until late in the development cycle when the costs
and benefits of a range of different input media have been assessed by the empirical
analysis of prototypes.

7.6. CONCLUSIONS 133

7.5.4 PRELOG And Input Events

Prototypes provide systems engineers with a tangible representation of the products
of formal analyses. They support the experimental analysis which human factors
engineers could use to assess the physiological, cognitive, perceptual and sociological
demands that are imposed upon operators by potential implementations [293]. In
order to reap all of these rewards, PRELOG must translate device primitives into
input events. This is done by isolating device details within Presenter. Linking
Presenter and PROLOG is complicated because each is intended to run as an inde-
pendent process. Presenter must notify PRELOG of device input. It is not clear if
Presenter should interrupt PROLOG when an input event has been received and, if
PROLOG is interrupted, how PRELOG should accommodate this new information
within an ongoing proof. For example, if PRELOG was forced to suspend a proof
to handle a move event for an icon, it would have to ensure that prior proof steps
did not depend on positional information about that graphical object. This would
radically affect the nature of the programming environment provided by PROLOG
and Tokio. A large number of input events might stretch the resources of any im-
plementation to an unacceptable level. An obvious alternative is to make PRELOG
responsible for sampling input from Presenter. In the current implementation, in-
put is accepted by a receive(Event) predicate which is evaluated as true if Event
unifies with an input event sent from Presenter via the socket and the C program-
ming language interface to PROLOG. The designer is free to specify when PRELOG
should take input events. One drawback to this approach is that it allows important
input to be delayed while less important input is processed. Another drawback is
that graphical clauses may be inconsistent with respect to the screen image if an
operator alters the position of a graphical object during a proof step. This could be
partially resolved by ‘locking’ the screen until PRELOG was free to receive more
input but this might prove an unacceptable constraint on any prototype.

Linking Presenter and PROLOG does not resolve all of the problems that might
frustrate the prototyping of interactive control systems. In particular, previous
prototyping tools have not enabled designers to evaluate the utility of multi-user
interfaces. Cleary’s graphics system for PROLOG exploits distributed processing to
provide co-processor support for geometric transformations [72]. The image of the
system is not distributed and interaction is focussed through a single monitor. In
contrast, PRELOG is capable of synchronising the presentation of process informa-
tion over a network of workstations. Input events can be handled from a number
of concurrent operators. Figure 7.10 illustrates the revised architecture. This archi-
tecture has advantages for user testing; the designer can monitor the execution of a
prototype on a remote machine. Appendix H describes the application of PRELOG
to support the design of concurrent multi-user systems in greater detail.

7.6 Conclusions

Abstract requirements, derived from formal analyses of principles, provide a frame-
work for the specification of detailed designs. Detailed designs provide blue-prints
for the development of prototypes.

Prototypes might be implemented using object oriented programming languages
or executable subsets of first order logic. This would impose heavy burdens upon de-

134 CHAPTER 7. DESIGN BIAS

Figure 7.10: The distributed PRELOG architecture

signers who must translate interval temporal logic specifications into the statements
of languages, such as C++4 or PROLOG. Executable interval temporal logics min-
imise these burdens. There is a relatively straightforward translation from detailed
designs into clauses that can be executed by interpreters such as Tokio.

Bitmaps and procedural graphics notations can represent the images that might
be presented by prototypes. It is not easy to alter the displays described by such
representations, they cannot be used to identify the target of operator input. Struc-
tured graphics systems avoid the limitations of procedural notations and bitmaps.
Complex images can be described in terms of their component parts, these might
be further decomposed into sub-parts.

Device drivers and device specific models can be used to handle operator input
within interactive prototypes. These representations are implementation specific
and cannot easily be altered if experimental evidence recommends a different input
medium. Device abstractions avoid the limitations of device drivers and device
specific models. Devices can be represent by the events that they generate.

7.6. CONCLUSIONS 135

In order to demonstrate that designers might exploit interval temporal logics,
structured graphics and input events to prototype an interactive control system
we have incorporated all of these representations into PRELOG. An important ad-
vantage of this tool is that it can run over a local area network. Designers might,
therefore, exploit it to assess interaction between the multiple users that are involved
in the operation of many interactive control systems.

It has yet to be demonstrated that principles, such as predictability, support
the integration of human factors and systems engineering during all stages of the
development cycle. Chapter 8 argues that much remains to be done if formal nota-
tions, such as interval temporal logic, and prototyping tools, such as PRELOG, are
to provide adequate support for the principled design of interactive control systems.

Part 1V

Conclusions And Further Work

136

137

Introduction To Part IV

This part of the thesis argues that the principled approach, advocated in previous
chapters, provides inadequate support for the integration of human factors and
systems engineering during some stages in the design of interactive control systems.

Chapter 8 argues that better development techniques must be provided to sup-
port the elicitation, verification, refinement and validation of principles. Further
work is required in order to capture real-time requirements, risk, and operator ex-
pertise in interval temporal logic notations. Existing tools must be improved to
support: the generation of detailed specifications; the development of prototype
displays and the full implementation of interactive control systems.

Chapter 9 summarises the contribution of this thesis.

Chapter 8

Methodological Inadequacy

“Extrapolating from today’s research programmes it would seem that
most advances are likely to come from non-standard logics, e.g. those
that have a more sophisticated range of basic notions than first-order
predicate calculus... It is useful to be able to represent causality at the
requirements level. A number of formalisms, e.g., Petri nets are used
to represent data flow oriented causal relations in systems. Similarly,
interval temporal logics can be used to represent causal models. Devel-
opment of sophisticated logic frameworks will be of little value unless we
have adequate ways of eliciting and validating such specifications. Con-
sequently, it is to be expected that these logics will be related to more
traditional techniques such as fault-tree analysis and failure modes and
effects analysis as ways of both deriving the specification and evaluating
their fault coverage.” (McDermid, [207]).

8.1 Introduction

The following pages argue that the approach advocated in previous chapters of this
thesis is methodologically inadequate. An approach to design is methodologically in-
adequate if it provides insufficient support for some aspects of development. Further
research is needed in order to provide designers with:

e better development techniques;
e better notations;
e better tools.

If these are provided then human factors considerations might be introduced into
the advanced systems engineering techniques which are enumerated in the quotation
that opens this chapter.

8.1.1 Consequences: Ad Hoc Design And Unpredictability

Figure 8.1 presents a three stage model of the human factors and systems engineering
of an interactive system [323]. This model has much in common with the structure of
this thesis, illustrated in Figure 1.2. Initial design corresponds to the identification of

138

8.1. INTRODUCTION 139

principles, formative evaluation is similar to detailed design, summative evaluation
corresponds to the evaluation of implementations. Different approaches to design

Figure 8.1: A three stage model of interface development

provide different levels of support for each of these stages; principles can guide
initial development because they provide objectives prior to the detailed design of
a particular interface. It has not been demonstrated that principles can be used
during acceptance testing. This lack of support can force designers to rely upon
ad hoc expedients. For instance, Bainbridge describes how the tools, development
techniques and notations exploited during the design of a casting control system did
not support acceptance testing [22]. Plant management had to prevent operators
from switching off the automated control systems during night-shifts. If designers
had been provided with an adequate methodology then they might have avoided
such ‘solutions’, managers might have avoided many sleepless nights.

Methodological inadequacy threatens principles such as predictability. Human
factors and systems engineers could reject the integrated approach advocated by
this thesis because it does not support tasks that are considered to be essential
during the development of a control system. For instance, the United Kingdom’s
Atomic Energy Authority’s Systems Reliability Service encourages risk analysis as
a major activity in the benchmarking of safety-critical applications [154]. It has not
been demonstrated that principles can be used in conjunction with risk assessment
techniques to support the integration of human factors and systems engineering.

140 CHAPTER 8. METHODOLOGICAL INADEQUACY

8.1.2 Causes: Inadequate Techniques; Notations And Tools

The approach advocated in this thesis is methodologically inadequate because in-
terval temporal logic cannot represent all of the requirements that must be satisfied
by particular control systems. For instance, the development of operational inter-
faces frequently requires systems engineers to consider the real-time properties of
a design. Interval operators, such as & and (), do not capture this information.
Similarly, it has not been shown that human factors engineers might use interval
temporal logic to represent the demands which control tasks place upon operators
with different levels of expertise.

The approach advocated in this thesis is inadequate because the PRELOG tool,
introduced in Chapter 7, does not provide sufficient support for some stages of
development. The specification and implementation of complex displays requires
thousands of interval temporal logic clauses. This hinders rapid prototyping. Im-
plementations of PRELOG are slow; this hinders experimental analysis. At present,
PRELOG cannot be used to assess presentation techniques that exploit colour
graphics, audio output or video images.

The approach advocated in this thesis is methodologically inadequate because
it does not provide sufficient support for requirements elicitation. Designers cannot
produce more detailed designs or prototype implementations until they have selected
the principles that are to guide human factors and systems engineering. Previous
chapters have not addressed the problems of refinement and verification. How can
designers prove that partial implementations actually satisfy the requirements that
are intended to support principles, such as predictability?

8.1.3 Solution: Further Research

The pessimistic review of the previous section provides a necessary corrective to
the optimism of previous chapters. The following pages argue that the principled
integration of human factors and systems engineering can be salvaged through fur-
ther research. Designers must be provided with better development techniques,
alternative notations and improved tools.

8.2 Improved Development Techniques

The development techniques, advocated in the previous chapters of this thesis, must
be improved to support: requirements elicitation; verification; refinement and vali-
dation.

8.2.1 Requirements Elicitation

The elicitation, or “drawing forth” [12], of initial design requirements is one of the
most critical stages in the development of an interactive control system. If oper-
ator requirements are not correctly identified then designers are unlikely to select
principles that will be relevant for the users of their interface. Detailed designs and
prototype implementations cannot easily be developed until human factors and sys-
tems engineers have selected the principles to be embodied within a control system.
The problem of eliciting these initial requirements has not been addressed by the

8.2. IMPROVED DEVELOPMENT TECHNIQUES 141

previous chapters of this thesis. Bainbridge argues that these constraints can be
identified by interviewing operators about the tasks which they have to perform
with existing systems [20]. These interviews are intended to elicit the heuristics, or
rules of thumb, that users employ during the operation of their control system:

“In order to repair the boards of a coolant control system we first
have to run a program to test the system, this tells us where the fault
is, usually. And we fix it and check with the program again...”

This form of analysis can produce many hundreds of pages of transcripts [271].
Designers, might, therefore, translate them into a more concise representation. For
instance, the techniques of Task Analysis for Knowledge Description could be applied
to the products of these interviews in order to construct task description hierarchies,
such as that illustrated in Figure 8.2 [86]. Designers can trace routes through these

Figure 8.2: A part of a task description hierarchy

hierarchies in order to identify the cognitive and physiological demands of particular
tasks. For example, in order to test a coolant control system circuit operators
must perform the physical actions of issuing keyboard commands to log onto the
system. In order to locate faults users must perform the cognitive actions involved
in inspecting component wires. An advantage of this approach is that the hierarchy
begins to map out the requirements that must be satisfied by human factors and
system engineering. The ELECTRICAL branch in Figure 8.2 describes the application
functionality to be provided by systems engineering. The COGNITIVE branch in
Figure 8.2 describes operator requirements that must be supported by human factors
engineering. A disadvantage of this approach is that task description hierarchies

142 CHAPTER 8. METHODOLOGICAL INADEQUACY

do not represent temporal information. For instance, it is not apparent from the
hierarchy whether operators can run the test program whilst they are repairing a
coolant control system.

Interval temporal logic provides an alternative to task description hierarchies as
a means of representing the products of operator interviews. This approach has the
advantage that task sequencing can be made explicit. Designers might use predicates
to represent the observation that operators run test programs while they repair a
circuit:

existing_repair_task(board_A) <
run(auto_test_program) A repair(board_A) A

Orun(auto_test_program) (8.1)

Interval temporal logic also provides a means of avoiding further limitations that
restrict the use of task description hierarchies during requirements elicitation. Such
products of an initial requirements elicitation contain assumptions that are inappro-
priate for the early stages of development. Designers should not be bound to develop
test programs because they were part of a previous implementation. Similarly, the
division of ELECTRICAL and COGNITIVE requirements between human factors and
systems engineering might perpetuate an inappropriate task allocation into future
implementations. Such problems can be avoided by translating the products of oper-
ator interviews into the object orientated model, introduced in Section 5.2. The run
task could be interpreted as an operator viewing an application object, repairing a
board is analogous to sending a message which alters the state of that object:

general repair_task(repair, board _A) <
object_view(board _A,board_A_error_display) A
message_effect(board_A , repair, error,on) A
Oobject_view(board A, board_A_on_display) (8.2)

These products of operator interviews might be used to inform the initial selection
of design principles. For instance, designers could take this process of abstraction
one step further in order to derive the following predictability requirement:

Vm e M,Vo € O,Vos € Os,3od,od € Od :
object_visible_effect(m, 0, 0s,0d,0d’) < Jos’ € Os
(message_effect(o, m,0s,0s’) A object_view(o,od) A
O(object_view(o,0d’) A ~ same_display(od, od’))) (7.4)
Johnson is currently using temporal logic to support what he calls “task-based
design” [166]. A propositional notation is used to represent operator goals and sub-
goals in a similar fashion to that shown in the existing_repair_task (8.1) predicate.

Future work might build upon this research in order to further investigate the use
of interval temporal logics during requirements elicitation for principled design.

8.2.2 Verification and Refinement

‘Verification’ is defined to be “the process or an instance of establishing the truth
or validity of something” [12]. In terms of this thesis, verification is the process

8.2. IMPROVED DEVELOPMENT TECHNIQUES 143

of ensuring that the properties or principles recommended by formal and informal
analyses are accurately represented in a design. Refinement is defined to be the
process of moving from abstract requirements to detailed designs and implementa-
tions. Verification and refinement are, therefore, closely related. We are concerned
to verify that the products of an abstract design are faithfully carried through suc-
cessive refinements into an implementation. This is a non-trivial task. For instance,
human factors and systems engineers could impose object_visible_effect (7.4) as
a requirement that is intended to encourage predictability. They must ensure that
it is satisfied by control systems that present dozens of displays, handle hundreds
of input sequences and have thousands of potential states. Section 7.2.2 neglected
this problem in order to demonstrate that such predictates provide a framework
for the detailed design of interactive dialogues. This omission can be made good
by constructing formal proofs to verify that prototypes satisfy these requirements.
In other words, the behaviour of implementations might be shown to conform to
the requirements of principled design by reasoning in formalisms, such as interval
temporal logic. Tools can help in this task. The Gypsy [123] and m-EVES [80]
environments were developed in order to support program verification. There are
limits to the scalability of this approach. Automated proofs quickly become difficult
to understand and comprehensibility seems to decline as analytical power increases
[207].

Specification transformation provides an alternative to program verification. Im-
plementations can be derived from abstract requirements by applying a set of rules
that are guaranteed to preserve the properties of an initial specification [306]. This
supports verification because rules need only be proven once and can be applied
without incurring additional proof obligations. This approach also supports refine-
ment; it can be applied to optimise specifications that are intended to be correct
rather than to provide fast or memory efficient execution [265]. Runciman describes
how a high-level model of interaction, similar to that presented in Section 2.3.1, can
be transformed towards implementation [264]. He exploits partial evaluation which
involves the refinement of a general function, or abstract requirement, into a more
specific form. Such an approach is particularly appropriate because vernacular re-
quirements, generic principles, detailed designs and prototypes all represent partial
evaluations or transformations towards a final implementation. Much of the previous
research in this area has concentrated upon transformation towards implementation
in functional programming languages. Future work might exploit this research by
building upon recent attempts to integrate the functional and logic programming
paradigms [60].

8.2.3 Validation

The noun ‘validation’ is derived from the verb to validate: “to make valid, ratify,
confirm” [12]. In terms of this thesis, designers must validate, ratify and confirm
the utility of design principles. It is vital not to underemphasise the importance
of this task. Verifying that a system satisfies a predictability requirement is of
little benefit if operators believe that the system is unpredictable. Validation is
complicated by the fact that users, typically, cannot be asked direct questions about
properties of a system that are expressed in terms of the &, (O and U operators of
interval temporal logic. The experimental analysis of prototype implementations,

144 CHAPTER 8. METHODOLOGICAL INADEQUACY

advocated in Chapter 7, provides one solution to this problem. There are limitations
to this approach. The results gained from the experimental analysis of a prototype
can be misleading. Differences in the performance and presentation of partial, as
opposed to full, implementations restrict the application of findings gained from such
analyses. Sections 8.4.2 and 8.4.3 will argue that these limitations affect current
versions of PRELOG. The impact of performance and presentation differences upon
the experimental evaluation of interactive prototypes remains a subject for human
factors research [166].

In anticipation of further research into the experimental analysis of prototype
implementations, human factors and systems engineers must have some alternative
means of ensuring that users can exploit the principles which have guided design.
Thimbleby argues that it is possible to bridge the conceptual gap which separates the
designer from the user by expressing principles in a colloquial form [301]. These ver-
nacular representations could be introduced into system documentation and training
material in order to highlight the critical decisions that guided development. For
example, object_visible_effect (7.4) might be incorporated into an on-line help
System:

--SYSTEM HELP--
The effects of any input will be presented
by a change in the display immediately after
it has been issued.

Vernacular expressions of abstract principles also support design. The annotation of
formal specifications with informal explanations has been recommended for interface
development in Z [296] and Larch [51]. A weakness of this approach is that it is
not easy to translate formal requirements into vernacular error messages, training
material or specification annotations. The () operator has a clear meaning in terms
of a designer’s formal analysis. Users are unlikely to interpret immediately after
in the same way. Does this refer to the next second, minute or hour? Future research
intends to avoid such problems by exploiting real-time logic notations in order to
support the integration of human factors and systems engineering.

8.3 Improved Notations

The interval temporal logic, introduced in Section 2.4.4, fails to provide adequate
means of representing real-time properties, risk assessments and operator expertise.

8.3.1 Real-Time

Real-time is “the actual time (minutes, seconds, hours) during which an event or pro-
cess occurs” [12]. Real-time deadlines are frequently imposed upon operator input.
If users do not respond before certain deadlines then systems engineering can inter-
vene to ensure the safe operation of application processes. Such constraints cannot
be expressed using interval temporal logic. This limitation can be avoided by trans-
lating temporal operators, such as <, into a real-time logic notation. For instance,
designers might require that an error is resolved if the operator stops a coolant sys-
tem within three seconds of an error being displayed. It should be noted that the
following implication could have specified object_state(coolant_system, off) as

8.3. IMPROVED NOTATIONS 145

a consequent that is true at time T1. Section 8.4.1 will briefly describe the prob-
lems of temporal perspective that this leads to. For now it is sufficient to realise
that designers might refine interval temporal logic requirements to specify real-time
constraints:

error_resolved(’off’, coolant_system) <
object_view(coolant_system, coolant_error_display, T) A
message_effect(coolant_system, off’, error, off, T1) A (T1 < T + 38.3)

This notation suffers from many of the problems associated with the time-variables
that were discussed in Section 2.4.2. Designers must construct their model of time
using relationships such as (T1 < T+ 3). Although this appears to be a trivial issue
for simple requirements, the task of maintaining temporal semantics imposes con-
siderable burdens upon the development of complex control systems. The problems
which this can create are illustrated by the following implication in which T occurs
before and after but not during time T1. In other words, there is a hole in time T1:

unusual temporal _model(’off’, coolant_system) <«
object_view(coolant_system, coolant_error_display, T) A
message_effect(coolant_system, 'off’, error, off, T1) A
(TI<T)A(T1>T) (8.4)

Interval temporal logics avoid this problem because their model of time is hidden
within the definition of operators. Future work might, therefore, develop a notation
that hides a real-time model in a similar fashion. For example, the () operator was
introduced as follows:

Vst € St | O(w) |st< J'st’ € St[immediate_after(st,st’)A | w |sy/] (2.27)

The predicate immediate_after(st, st’) is true at the lowest level of temporal gran-
ularity. The state of world knowledge st’ holds in the interval immediately after st.
The duration of this interval could be linked to a real-time clock. This would pro-
vide an alternative interpretation of (O)(w) which might now be read as w is true of
the state of world knowledge in the next second. This real-time interpretation of ()
is denoted by the # symbol. For example, designers could specify that an error is
resolved if a coolant_error_display is presented and three seconds afterwards the
operator closes the system down:

real time_error_resolved(’off’, coolant_system) <
object_view(coolant_system, coolant_error_display) A

###(message_effect(coolant_system, 'off’, error, off)) (8.5)

The duration of the # operator might be changed to a minute, an hour or a day
depending on the granularity specified by immediate_after(st,st’). Ladkin has
developed similar techniques for grounding Allen’s convex interval logic in real-time
[188]. Convex intervals specify periods of time without any gaps, this is analogous to
an interval constructed from an unbroken series of immediate_after states. This
work provides a useful starting point for further research.

146 CHAPTER 8. METHODOLOGICAL INADEQUACY

8.3.2 Risk

There are a number of variations in the definitions of risk proposed by bodies such
as the British Standard’s Institute [42], the Institute of Chemical Engineers [156]
and the United States’ Nuclear Regulatory Commission [313]. Brevity forbids a
full analysis of the differences which reflect the differing concerns of these agencies.
In contrast, this section exploits a more general definition. ‘Risk’ is defined to be
the “chance or possibility of danger, loss, injury or other adverse consequences”
[12]. Assessing the possibility of these adverse consequences is an important task
in the systems engineering of many interactive control systems [79]. A number of
graphical notations have been developed to support risk assessment. For instance,
fault-trees, such as that illustrated in Figure 8.3, represent risk in terms of the
conjunctions and disjunctions of events which lead to accidents, such as a Runaway
Reaction. Rasmussen argues that risk assessment notations are seldom used to rep-

Figure 8.3: A fault-tree

resent the role of human error in system failure [248]. This is a significant omission.
If it is rectified then human factors considerations could be integrated into tech-
niques that are in widespread use amongst systems engineers. The notation used in
Figure 8.3 conforms to guidelines that have been drawn up by the European Feder-
ation of Chemical Engineers [79], similar regulations have been issued by the United

8.3. IMPROVED NOTATIONS 147

States’ Nuclear Regulatory Commission [313]. Designers might use the products of
fault-tree analyses to identify high-risk errors that could be simulated during the
evaluation of prototype implementations. Human factors engineers could use these
simulations to determine whether users can accurately predict the consequences of
their intervention during equipment failures. Systems engineers could use them to
identify situations in which operators need automated support or advice. In order
to do this, it must be possible to represent the causes of high-risk events in a form
that can be simulated by prototype implementations. The following implication
demonstrates that designers might use first order logic to represent fault-trees, such
as that illustrated in Figure 8.3. Such predicates might be used in conjunction with
the Prelog prototyping tool, described in Chapter 7:

probable_error(plant, runaway_reaction) <
(object_state(pump, fail) V object_state(line, block) Vv
Vobject_state(tank, empty)) A ((object_state(tmp_trip, high) A
object_state(flow_trip,low)) VV object_state(valve, shut)) (8.6)

A number of limitations restrict the utility of fault-trees for the development of
interactive control systems. In particular, they provide an inadequate representation
of time. Conjunctions and disjunctions are assumed to hold simultaneously or at
some time after their branch conjunctions and disjunctions. The leaves of a tree are
assumed to hold simultaneously or at some time before their parents. Figure 8.4
provides an example of a cause-consequence diagram, these explicitly capture the
way in which faults develop over time. The notation used in this figure also conforms
to the guidelines of the European Federation of Chemical Engineers [79]. The boxes
labelled with a D represent delays in the sequence of events. As with fault-trees,
this notation could be used to guide experimental analyses of operator interaction
under error conditions. Designers might exploit interval temporal logic to represent
the potential failures identified using cause-consequence diagrams. For instance, the
<& operator provides a means of capturing the delay before the High Temperature
Signal in Figure 8.4:

probable_error(plant, dump_error) <
object_state(coolant_system, error) A

Omessage_effect(tmp_trip, 'increase’, low, high) (8.7)

A limitation of both fault-trees and cause-consequence diagrams is that they do
not directly provide a quantitative assessment of potential risks. Bayes’ theorem
provides a means of avoiding such limitations. This relates the probability of a hy-
pothesis being true to the probability of it being true given some observations of the
system [258]. Data about the observation of error can be obtained from sources such
as the European Economic Community’s Event Data Recording System [204], the
National Aeronautics and Space Administration’s Aviation Safety Reporting Sys-
tem [319] and the United Kingdom’s Atomic Energy Authority’s Systems Reliability
Service [154]. Bacchus exploits logic to represent the probabilistic risk assessments
that might be derived from the application of Bayes’ theorem to the data held by
these agencies [19]. He uses the following predicate to denote the set of moments,
x, when the risk of a runaway_reaction exceeds twenty percent:

[runaway_reaction(x)]x > 0.2 (8.8)

148 CHAPTER 8. METHODOLOGICAL INADEQUACY

Figure 8.4: A cause-consequence diagram

Bacchus’ notation could be used to support the development of interactive control
systems. For instance, human factors and systems engineers might identify those
moments when a low_flow_trip leads to a greater than twenty percent risk of a
runaway_reaction. Additional resources could then be deployed to alert operators
of the potential danger during such intervals of interaction:

KBI1 = [runaway_reaction(x) | low_flow_trip(x)|x > 0.2 (8.9)

Bacchus extends his notation to represent the facts that are known about a system at
particular moments. For instance, runaway_reaction(t) represents the fact that a
runaway_reaction occurs at time t. Designers might use this notation to represent
changes in the assessment of risks as additional evidence is obtained. For instance,
at time t it could initially be specified that, given a low flow trip, the likelihood
of a runaway_reaction is greater than twenty percent. At time t1 sensors might
indicate that there was a high temperature trip. Designers could, therefore, refine
their initial assessment to specify that the probability is greater than twenty percent
and less than fifty percent:

KB2 = [runaway_reaction(x) | low_flow_trip(x)]x > 0.2 A

8.3. IMPROVED NOTATIONS 149

[runaway_reaction(x) | high tmp_trip(x) A low_flow_trip(x)]x < 0.5 A
high tmp_trip(t) A high tmp_trip(t1) A low_flow_trip(t1) (8.10)

The time-variables t and t1 are similar to T and T1 in error_resolved (8.3). They
can be instantiated at many different points during interaction. Bacchus does not
resolve the problem of maintaining temporal semantics within his notation. He does
not explicitly specify the relationship between t and t1. Designers could use interval
temporal operators to avoid such problems. The () operator can be used to specify
the sequence in which evidence is gathered during interaction:

KB3 = ¢([runaway_reaction | low_flow_trip| > 0.2) A
O([runaway_reaction | high tmp_trip A low_flow_trip] < 0.5) A
high tmp_trip A O(high_tmp_trip A low_flow_trip) (8.11)

The introduction of interval temporal logic into Bacchus’ notation offers a number of
benefits over previous representations of risk assessments. For instance, Moray uses
discrete numerical probabilities to represent the risk of certain classes of human
error [213]. The precision of estimates, such as a fourteen and one half percent
probability of a keystroke error per key pressed, is questionable. Such probabilities
are better represented as a range of values. Interval temporal logic extensions to
Bacchus’ notation support this. Low-probability high-cost failures, typically, have
a greater impact upon the safe operation of a control system than high-probability
low-cost errors. Stochastic utility functions and Markov models have been used to
represent the potential costs of system failures [284]. Further research might build
upon this work so that a hybrid probabilistic, temporal logic notation could also
represent the costs of violating principles, such as predictability [50].

8.3.3 Expertise

‘Expertise’ is defined to be the “skill, knowledge or judgement” of an expert [12].
The previous chapters of this thesis have not attempted to represent the expertise
that is necessary in order to operate an interactive control system. In contrast,
user requirements have been expressed in terms of the input that is to be provided
in response to the presentation of particular displays. Such obligations can be
made explicit by the use of deontic logics. These introduce the P operator which
denotes permissible actions and the O operator which denotes obligatory actions
[174]. Designers might use deontic logic to support the experimental analysis of
prototype implementations. Potential interfaces could be assessed in terms of the
number of obligations which users fail to fulfill. For instance, designers might require
that if a coolant error is displayed then the operator is obliged to turn the system
off:

[object_view(coolant_system, coolant_error_display)]O

message_effect(coolant_system, 'off’, error, off) (8.12)

The P operator might be used to formalise the scope of user intervention. For

instance, the designers of another control system might assume that if a coolant

system error is displayed then operators are permitted to turn the system off:
[object_view(coolant_system, coolant_error_display)|P

message_effect(coolant_system, 'off’, error, off) (8.13)

150 CHAPTER 8. METHODOLOGICAL INADEQUACY

The Modal Action Logic (MAL) proposed by the Alvey FOrmal REquirements Spec-
ification Techniques (FOREST) project extends deontic logics to represent timed
obligations [122]. For example, the following relation specifies that an agent, ag,
is obliged to complete an action, ac, before the end of the interval in which the
formula, «, is true:

obl(ag, ac, a) (8.14)

Using this notation it is possible to specify real-time deadlines. For instance, a user
must respond to a coolant error before midday on the 4th of December:

[coolant_system, object_view(coolant_system, coolant_error_display)]

obl(user, message_effect(coolant_system, 'off’, error, off), 1200_4_128.15)

Goldsack and Finkelstein note that there is no special treatment of the calendar in
MAL [122]. Designers must construct the semantics of deadlines, such as 1200_4_12,
using Allen’s thirteen temporal relations [11]. This task is not eased by the theoret-
ical flaws in these representations; there are alternative definitions of intervals and
instants. For a full discussion of these limitations the interested reader is directed
to Galton’s critical assessment of Allen’s work [115]. Alternatively, designers could
integrate deontic operators into interval temporal logics. This would not support
the specification of deadlines, such as 1200_4_12. Further work into real-time ex-
tensions to the interval temporal logic, proposed in Section 8.3.1, could overcome
this limitation. Assuming that the base granularity of # is a second then designers
might specify that users are obliged to intervene within two seconds of an error
being displayed:

deontic_error_resolved <
object_view(coolant_system, coolant_error_display)O

(##message_effect(coolant_system, 'off’, error, off)) (8.16)

Operators are unlikely to share the same view of obligatory and permissible actions.
Such differences are characteristic of the distinction between novice and expert users.
Experienced operators, typically, know when intervention is required [245]. Inexpe-
rienced users frequently regard the same intervention as a possible course of action
which might, or might not, be pursued. These differences can also affect the utility
of design principles. Experts are more likely to make accurate predictions about the
effect of their intervention than novices. If human factors engineers could represent
these differences then they might formalise the requirements that must be satisfied
by operator training. Systems engineers might use these representations to support
the implementation of advice giving systems that inform operators of their obliga-
tions. Fox provides a notation which designers could exploit to represent different
levels of operator expertise [105]. For instance, the following relation specifies that
an argument, arg, supports an option for intervention, op, given some evidence,
ev. The ‘+’ symbol is used to indicate an argument in favour of an option for in-
tervention, ‘—’ indicates an argument against an option, ‘++’ confirms it and ‘——’
excludes it:

confirm _argument(ev,op, arg, +) (8.17)

8.4. IMPROVED TOOLS 151

Designers might instantiate this generic relation in order to specify the criteria that
operators must satisfy in order to pass the competence examinations that are used in
many industries [331]. For instance, users might be asked to describe the appropriate
response to an error display for the coolant system. Satisfactory answers could be
specified using Fox’s logic notation. In order to predict the effect of their intervention
experienced operators must know that they are obliged to turn the system off when
the coolant_error_display is presented because there is a coolant system error:

confirm _argument(object_view(coolant_system, coolant_error_display),
Omessage_effect(coolant_system, 'off’, error, off),

object_state(coolant_system, error), +) (8.18)

Interval temporal logic operators could be integrated into Fox’s notation. Experi-
enced users might know that they are obliged to respond to a coolant_error_display
as soon as it is presented. An inexperienced operator might believe that they are
permitted to eventually respond to a coolant_error_display at any future point
in time:

confirm _argument(object_view(coolant_system, coolant_error_display),
P(Cmessage_effect(coolant_system, 'off’, error, off)),

object_state(coolant_system, error), +) (8.19)

It remains to be seen whether such notations have any value for user modelling.
Human factors research indicates that relations such as confirm_argument (8.17)
are at too coarse a level to characterise the cognitive differences between experienced
and inexperienced users [257]. Section 1.3.4 introduced Rasmussen’s argument that
expertise is characterised by the ways in which users store and retrieve control infor-
mation [246]. Experienced operators exploit skills that are automatically triggered
by their observation of a process. Inexperienced users lack these skill and must store
options for intervention in the form of rules. If an appropriate rule is not available
then they must rely upon their general knowledge. Future work might investigate
whether human factors and systems engineers could exploit interval temporal logic
to support a fine grained analysis of predictability requirements for different opera-
tors.

8.4 Improved Tools

PRELOG provides insufficient support for the generation of detailed specifications,
the development of prototype displays and the full implementation of interactive
control systems.

8.4.1 Specification Generation

The detailed design of a control system requires many hundreds of interval temporal
logic predicates. The difficulty of tracing interactive dialogues through such spec-
ifications can prevent human factors and systems engineers from determining the
likely behaviour of partial or full implementations. It can also prevent them from
determining whether a specification embodies the requirements that are identified

152 CHAPTER 8. METHODOLOGICAL INADEQUACY

during abstract analyses of design principles. This task can be eased by using tools
that provide graphical representations of specifications [132]. For instance, Kramer
describes systems that enable designers to represent temporal properties in terms
of the passage of tokens through Petri nets [185]. These nets consist of a number

Figure 8.5: A Petri net specification of interaction

of places, represented by hollow circles. Places are connected to transitions, rep-
resented by bars. A transition can be ‘fired’ when all of the places leading to it
contain at least one token. A token is represented by a filled dot. Biljon exploits
this notation to support the specification of interactive systems [30]. Figure 8.5
illustrates this use of a Petri net. An error is resolved if the message_effect and
object_view places both receive the tokens required to fire their transitions. The
passage of time is represented by the flow of tokens from the object_state place
at the top of the diagram to the error_resolved place at the bottom. These rep-
resentations might support the approach advocated in this thesis if designers are
provided with tools that enable them to translate the places and transitions of Petri
nets into the predicates of interval temporal logic. The & and () operators could be
used to specify that the object_view and message_effect transitions in Figure 8.5
fire after the coolant system is in the error state:

error_resolved(’off’, coolant_system) <«
place_fire(object_state(coolant_system, error)) A
O(¢(place_fire(object_view(coolant_system, coolant_error_display))) A
(Oplace_fire(message_effect(coolant_system, 'off’, error, off)))) (8.20)

8.4. IMPROVED TOOLS 153

Designers might derive a number of benefits if PRELOG were enhanced to support
Petri net specifications of interactive control systems. Real-time properties might
be represented graphically using the timed Petri nets proposed by Chretienne [68].
In the early stages of development it might not be possible to identify all the places
and transitions that will be necessary in order to describe a final implementation.
The abstractions of interval temporal logic provide a means of representing parts of
an initial design without specifying the interconnections between the components
of a Petri net. Conversely, interval temporal logic requirements can become in-
tractable in the later stages of development. The graphical representation of Petri
nets helps to minimise the problems of tracing complex dialogues through large
specifications. Petri nets also provide a bridge between interval temporal logics and

Figure 8.6: The relationship between Petri nets and fault-trees

the products of risk assessment. Figure 8.6 illustrates how the gates of fault-trees
can be represented by the places and transitions of Petri nets [155]. Further research
might implement a tool that supports these different notations for the human factors
and systems engineering of interactive control systems. This would avoid the need
to manually translate between different representations of a design. The develop-
ment of such a tool raises a number of research issues. In particular, future work
must consider how tools are to translate between the different temporal perspec-
tives provided by these representations. In Figure 8.5 the error_resolved(’off’,
coolant_system) transition fires at the end of the dialogue whilst the truth value
of error_resolved (8.20) is determined in the first interval. This is the problem of
temporal perspective that was alluded to in Section 8.3.1.

8.4.2 Display Development

Section 7.4 has argued that PRELOG’s structured graphics system provides a pow-
erful means of implementing prototype displays. It remains a non-trivial task for
designers to develop complex graphical images using the predicates that are sup-
ported by this tool. Visual programming languages can be used to resolve this

154 CHAPTER 8. METHODOLOGICAL INADEQUACY

problem [38]. For instance, Figure 8.7 shows how a designer might define the mid-
point of a line. The X coordinates of the end-points, P1 and P2, are added and

Figure 8.7: The visual specification of graphical images

then the result is divided by two. This procedure is repeated for the Y axis in
order to derive the Cartesian coordinates of the midpoint M. Although this form of
visual specification is cumbersome, it describes a constraint that can be re-used to
specify the mid-point of a line in many different displays. Such tools might be ex-
tended to support the specification and generation of the graphical images presented
by PRELOG. Designers could rapidly ‘mock-up’ displays by directly manipulating
graphical objects [222]. Figure 8.8 illustrates a primitive tool that has been imple-
mented to demonstrate the feasibility of this approach. The buttons labelled Circle
and Line can be selected to generate simple images. The menu at the bottom left
of the figure can be used to manipulate components of the part structure described
in Section 7.4. The button labelled Parse can be selected to write the logic repre-
sentation of an image to a file for later consultation by PRELOG. The advantages
of this approach are illustrated by the contents of a file that describes the image of
the inlet icon shown in Figure 8.8. The following clauses are presented using the
PROLOG notation implemented by PRELOG:

part(coolant_on_display, inlet). (8.21)
line(inlet, 0.1,0.3,0.45,0.3). (8.22)
line(inlet, 0.1,0.35,0.45,0.35). (8.23)
line(inlet, 0.45, 0.25, 0.45, 0.4). (8.24)
line(inlet, 0.6,0.25,0.6,0.4). (8.25)
line(inlet, 0.45,0.25,0.6,0.25). (8.26)
line(inlet, 0.45,0.4,0.6,0.4). (8.27)
line(inlet, 0.45,0.25,0.6,0.4). (8.28)
line(inlet, 0.6, 0.25,0.45,0.4). (8.29)

8.4. IMPROVED TOOLS 155

Figure 8.8: A graphical generation tool for PRELOG

line(inlet, 0.6, 0.3,0.8,0.3). (8.30)
line(inlet, 0.6,0.35,0.75,0.35). (8.31)
line(inlet, 0.8,0.3,0.8,0.7). (8.32)
line(inlet, 0.75, 0.35, 0.75, 0.71). (8.33)

Future research might address the problems of image specification and generation
by providing a natural language front-end to PRELOG. Two M.Sc. students have
recently extended PRELOG to provide a restricted natural language interface for
visually handicapped users [254, 324]. This tool derives a logic representation that
can be used to generate graphical images from sentences such as:

Draw a square of size 4 units.
Move the square to position (2.0, 4.0).

Prototypes which do not closely resemble final implementations have been used
to support the human factors and systems engineering of many interactive con-
trol systems. For instance, the United States’ Air Force employs simple computer
generated images to evaluate avionics displays [54]. Further work is required in
order to determine whether partial implementations can be employed to assess the
physiological demands of different control room layouts and workstation designs.
The results gained from experimental analyses of low-fidelity prototypes are not
necessarily applicable to a final control system [69]. In order to avoid such prob-
lems during the later stages of development, designers might develop high-fidelity
prototypes that accurately resemble a full implementation. Future research might

156 CHAPTER 8. METHODOLOGICAL INADEQUACY

build upon McCrobie’s work on the integration of prototype control systems into
full-scale simulations of working environments [206]. Current versions of PRELOG
provide inadequate support for this because they are monochromatic and mute. Fu-
ture implementations might be enhanced to provide colour attributes for graphical
regions:

colour(inlet, blue). (8.34)

Many control systems use audio output to present information about application
processes [116]. Designers might use PRELOG to evaluate such presentation tech-
niques if it supported auditory displays. For instance, noise predicates could rep-
resent pre-recorded warnings. Interval temporal logic operators might be recruited
to specify the duration of these sounds. For example, audio output could be used
to inform operators of normal radiation levels. The sound might continue until
contamination is detected:

audio_display(coolant_system, error) : —

(noise(ok_bell)l{object_state(coolant_system, error)). (8.35)

Such high-level noises can be refined into sounds possessing attributes such as timbre
or character, pitch in Hertz and amplitude in decibels:

timbre(ok_bell, bell). (8.36)
amplitude(ok_bell, 60dBA). (8.37)
pitch(ok_bell, 260Hz). (8.38)

Video output is increasingly important in the presentation of many process con-
trol systems. Temporal logic has some potential as a means of supporting image
recognition. It is hypothesised that the introduction of temporal dependencies will
significantly increase the power of current modelling techniques for image analysis
[66]. Future work might investigate the utility of interval temporal logic as a means
of representing the video images that are presented to system operators.

8.4.3 Implementation

Prototyping tools provide designers with the means of rapidly developing partial
implementations of control systems. These tools frequently achieve this by sacrific-
ing the objectives of fast and efficient execution. These objectives must be satisfied
by full implementations. Such sacrifices are a potential source of methodological
inadequacy. Designers must ensure that the principles which guide the development
of a prototype are propagated into the final control system. This is difficult because
interval temporal operators, such as <& or (), are not provided by programming
languages such as Ada or C. There are a number of solutions to this problem. For
instance, the speed and efficiency of PRELOG could be enhanced so that it might be
used to develop final implementations. The developers of PRELOG’s temporal logic
interpreter anticipate the advent of hardware support for their environment [108].
PRELOG has recently been ported to run on Sun SPARCstations. Alternatively,
existing programming languages might be extended to support the implementation
of interval temporal logic specifications. For instance, Donner and Jahanian have de-
veloped a version of the ORE programming language that executes temporal logic

8.5. CONCLUSION 157

formulae [89]. The authors do not provide the full form of their acronym. ORE
avoids many of the efficiency problems that restrict the utility of PROLOG based
programming environments. Designers might embed predictability requirements,
such as object_visible_effect (7.4), directly within an implementation. For ex-
ample, an ORE procedure might be implemented to ensure that an error is always
raised if user input, M, changes the state of a control system, from Os at instant i-1
to Os1 at instant i, and its displays 0d and 0d1 are equivalent:

proc check display (M: message_type, 0: object_type)
-- Warns operator of silent state transition.
-- Type definitions omitted for sake of brevity.
{
var 0Os,0sl: object_state_type;
var 0d,0d1: display_type;
var i : int;

maintain forall i -- equivalent to always
if (@(message_effect(0, M, Os, Osl), i-1) &&
@(object_view(0, 0d), i-1) &&
@(object_view(0, 0d1), i) &&
@val(0s, i-1) != @val(0sl, i) &&
@val(0d, i-1) == @val(0di, i))
then warn(potential unpredictability);

Future research might determine whether real-time operators, such as #, can be
implemented using ORE time-variables, such as i and i-1.

8.5 Conclusion

This chapter has argued that the approach to design, advocated in this thesis, is
inadequate for the integration of human factors and systems engineering. Further
research has been proposed in order to provide designers with:

e improved development techniques that support requirements elicitation, veri-
fication, refinement and validation;

e improved notations that can represent real-time properties, risk assessments
and operator expertise;

e improved tools that support the generation of specifications, the design of
advanced displays and the full implementation of control systems.

It is hypothesised that if this research is successful then human factors consider-
ations might play an important part in the systems engineering of future control
systems. Chapter 9 summarises the contribution that this thesis makes towards the
integration of human factors and systems engineering.

Chapter 9

Conclusions

“The view has been expressed to us, and we find it convincing, that
it is impossible for an inspecting body adequately to ensure safety by
analysing the completed design of a large, complex plant. Safety is built
into the design as it progresses and the primary tasks of the inspecting
authority should be to ensure that the proper analysis techniques and
disciplines are used at every stage of the design process to achieve clearly
defined safety objectives” (The Royal Commission On Environmental
Pollution, 6th Report, [139]).

9.1 The Contribution Of This Thesis

Chapter 1 argued that design principles provide a means of integrating the human
factors and systems engineering of interactive control systems. It was argued that
the task-artifact cycle does not support this integration. Interfaces are assessed after
they have been implemented. The costs of making changes to a control system are
likely to be prohibitive at this stage of development. It was argued that principled
design avoids this limitation by providing heuristics that can be used to guide human
factors and systems engineering. Predictability was chosen as an exemplar principle.
It was argued that vernacular expressions of such requirements can often be vague
and imprecise. It was proposed that designers might avoid this limitation by using
formal, mathematically based notations to represent the constraints imposed by
principles.

Chapter 2 identified a notation that supports the integration of human factors
and systems engineering. Production systems were rejected because their facts,
rules, meta-rules and meta-meta-rules cannot easily represent requirements that
change over time. First order predicate logic was rejected because it cannot easily
represent dialogue sequences. Interval temporal logic was advocated as a notation
that avoids these limitations. It was argued that human factors and systems en-
gineers could exploit interval temporal logic in order to represent techniques, such
as flexible task allocation and display optimisation, that might be used in order to
achieve principles, such as predictability.

Chapter 3 argued that complexity hinders the design and operation of interactive
control systems. Users must detect deviations in large amounts of interconnected
application data and must select appropriate commands from the many options

158

9.1. THE CONTRIBUTION OF THIS THESIS 159

that are available to them. Principles provide designers with high-level objectives
for techniques that might support these control tasks. It was argued that human
factors and systems engineers could use interval temporal logic to represent these
techniques without representing thousands of sensor readings and command options.
It was concluded that the utility of techniques, such as state restriction, depends
upon the degree to which designers can achieve the integration of human factors
and systems engineering.

Chapter 4 argued that principles provide generic requirements that can be used
to guide the development of many different control systems. In particular, pre-
dictability was used as a criterion against which to assess the utility of techniques
that are intended to support interaction with a range of open control systems. The
input and output protocols of systems engineering were shown to threaten pre-
dictability by restricting operator access to shared resources. Techniques that rely
upon the human factors observations of social ergonomics threaten safety because
they cannot guarantee cooperation between system operators. It was argued that
designers must integrate human factors and systems engineering if they are to sup-
port predictable interaction with open systems. Interval temporal logic provided a
means of representing generic requirements for integrated techniques, such as hand-
shaking and independent views.

Chapter 5 argued that the choice of development architecture can affect the hu-
man factors and systems engineering of interactive control systems. It was further
argued that designers might use interval temporal logic to represent the support
which particular architectures provide for principles, such as predictability. This
formalism was used to assess claims that object oriented development supports in-
terface consistency. It was shown that type instantiation does support consistency
and that this, in turn, supports predictability. It was argued that some object ori-
ented techniques, such as dynamic classification and method overriding, can sacrifice
these benefits.

Chapter 6 argued that principles provide a criterion against which to assess tech-
niques that are intended to resolve the weaknesses of development architectures. In
particular, it was argued that the objective of predictability encourages designers
to seek solutions for the problem of break-down in object oriented control systems.
Conformal and direct perception displays provide only limited support for this prin-
ciple. Indirect presentation techniques were advocated as alternatives that support
predictability by displaying different representations of process components. This
approach requires the integration of human factors and systems engineering. Hu-
man factors engineers must ensure that operators can monitor and assimilate the
information presented by different control system objects. Systems engineers must
provide adequate sources of information in order to support multiple representations
of physical components.

Chapter 7 argued that design bias occurs when either formal or experimental
analyses dominate the development of a control system. This bias hinders integra-
tion because formal analyses are typically conducted by systems engineers whilst
experimental analyses are usually conducted by human factors engineers. It was
argued that design bias can be avoided by developing prototypes which satisfy the
requirements gleaned from a formal analysis of design principles. These prototypes
are amenable to experimental evaluation and provide a means of assessing whether
principles, such as predictability, have any relevance for system operators. Proto-

160 CHAPTER 9. CONCLUSIONS

types can be used to assess the physiological ergonomics of potential implementa-
tions. They can also be used to determine the cognitive and perceptual demands
that a control system might place upon its operators. Unfortunately, the introduc-
tion of implementation and presentation details can sacrifice the tractability of a
formal specification. It was shown that these problems might be avoided by the
use of executable interval temporal logics, structured graphics systems and generic
input events. The implementation of PRELOG, a tool for the Presentation and
REndering of LOGic specifications of interactive systems, was briefly described.

Chapter 8 argued that the approach advocated in this thesis provides inadequate
support for the integration of human factors and systems engineering. Development
techniques must be enhanced to support requirements elicitation, verification, refine-
ment and validation. Improved notations must be developed to represent real-time
properties, risk assessments and operator expertise. Improved tools must be pro-
vided to support the generation of specifications, the design of advanced displays
and the full implementation of interactive control systems.

Chapter 9 has summarised the contribution of this thesis.

Despite the caveats of methodological inadequacy that were raised in Chapter 8,
the contribution of this thesis can be summed up by re-iterating the words of the
Royal Commission On Environmental Pollution which opened this chapter [139].
The focus of this thesis has moved from the abstract to the concrete. The discus-
sion has ranged from the fundamental problems of control, to the problems of a
development architecture, to the problems of designing a particular interface. At
each level we have endeavoured to maintain a principled approach to design. This
has provided a framework which helps to ensure that “safety is built into design as
it progresses”. Interval temporal logic has supported “proper analysis techniques”
from the earliest stages of design to partial implementations. Principles, such as pre-
dictability, provide the discipline necessary to achieve formally defined objectives for
the human factors and systems engineering of interactive control systems.

Part V

Appendices

161

Appendix A

The Interval Temporal Logic
Language

This appendix cites research into the wider applications of interval temporal logic.
The syntax and semantics of the language used in this thesis are presented. The
choice of a predicate temporal logic is justified.

A.1 Background

Interval temporal logic has been widely applied to represent and reason about com-
puter programs. For instance, Clarke and Emerson have developed their Compu-
tation Tree Logic to synthesise the synchronisation skeletons of concurrent pro-
grams from proposition temporal logic specifications [71]. Lamport has developed
his TIMESET notation to reason about liveness and safety properties in an intuitive
manner [189]. Saake and Lipeck have developed a many-sorted first-order temporal
logic in order to analyse the update behaviour of databases [267]. The interested
reader is directed to [18, 37, 184] and the proceedings of the ACM conferences on
the Principles of Programming Languages for background material about the devel-
opment and application of temporal logic formalisms.

A.2 Syntax

It is important to re-iterate that this thesis does not attempt to develop a new form of
interval temporal logic, rather it attempts to apply the findings of previous research.
The interval temporal logic described in Section 2.4.4 is based upon that proposed
by Manna and Pnueli [205]. This section presents the syntax of the language used
in this thesis.

A.2.1 Symbols

The interval temporal logic language uses elements of a set of symbols to represent
variables, constants, propositions, functions and predicates. This set can be parti-
tioned into global and local symbols. Global symbols have a uniform interpretation;
they do not change their value or meaning from state to state. In contrast, local
symbols may assume different meanings and values from state to state. The set of

162

A.3. SEMANTICS 163

symbols can also be partitioned into different sorts. These correspond to different
domains. For instance, the following symbols are associated with the domain of
natural numbers:

0,1,2,3,4,5, ..., +, —, div, x, ..., >,

IN

For each sort there may be constants that are interpreted over the associated domain.
There can also be variables which assume values from that domain, function symbols
that represent functions over the domain and predicate symbols which represent
predicates over that domain.

A.2.2 Operators And Quantifiers

The logic contains the set of boolean connectives:
ANV, 7, &=, =

The logic also contains the first-order quantifiers 3 and V together with the temporal
operators:

OJ D?<>7u

The first three of these are unary operators, whilst I/ is a binary operator.

A.2.3 Terms

Terms are built from the application of functions and predicates to constants and
variables. Applications must satisfy the sort and arity restrictions associated with
each of the symbols. It should also be noted that if t is a term then so is Oft.

A.2.4 Formulas

Formulas are constructed from the application of boolean connectives, temporal
operators or quantifiers to terms. Atomic formulas are propositions and predicates
applied to terms which are of an appropriate sort.

A.3 Semantics

This section presents the model-based semantics of the interval temporal logic lan-
guage used in this thesis [205]. A model (I, «,d) for the predicate temporal logic
consists of a global interpretation, I, a global assignment, «, and a sequence of
states, 0. I specifies a domain corresponding to each sort and assigns concrete ele-
ments of that domain to symbols. « assigns a value over an appropriate domain to
global free variables and propositions. é = sg, s1, ... is an infinite sequence of states
where each s;j assigns values to local free variables and propositions. The following
provides an inductive definition of the truth value of temporal formula w in a model
(I, , 9). I is implicitly assumed, the value of a subformula or term, 7, is denoted
by 7 |§:

164

APPENDIX A. THE INTERVAL TEMPORAL LOGIC LANGUAGE

For a local variable or proposition, y:

y ’?: ¥Yso
The value assigned to y in state sg is that assigned in the first state of 6.

For a global variable or proposition u:

The value assigned to u is that assigned to u by a.

For a constant, c, the evaluation is determined by I:

¢ [§=Tlc]

For a function, f(xq, ..., Xk):
(b1, s i) [§= TIE)CE2 [5 o i [5)

The value of the application is that of the interpreted function, I[f], applied
to the values of ty, ..., tx in the model (I, a, 9).

For a term t:
Ot [§=t |5

The value of Ot in § = sg,s1,... is given by the value of t in the shifted
sequence 61 = s1,89, ...

For a predicate p(x1, ..., Xx):
p(t1, ... tx) [§=I[p](t1 [§, .., txc [§)

For a disjunction:

(W1 Vwy) |§= true iff wy [§= true or wy [f= true
For a negation:

(—w) |§= true iff w [§= false
For a () application:

Ow [§=w ’?1
For a O application:

Ow |§= true iff for every k > 0,w [§ = true

w is true for all suffix sequences of §.

A.4. PREDICATE OR PROPOSITIONAL LOGICS? 165

e For a <& application:
Ow [§= true iff there exists k > 0,w [§ = true

w is true in at least one suffix of 4.

e For an U/ application:

wildwy |§= true
iff for some k > 0,ws [fi= true

and for all i,0 <i<k,w [§i= true

e For a universal quantification:

(Vuw) |§= true

iff for everyd € D,w |§ = true

Where o = ao [u < d] is the assignment obtained from « by assigning d to u.
D is the domain over which u ranges. For notational convenience, universal
quantification is represented as Vu € U : w where the symbol U is the sort
associated with a domain D.

e For an existential quantification:

(Juw) [§= true

/
iff for somed € D,w |§ = true

Where o' = ao[u « d]. For notational convenience, existential quantification
is represented as Ju € U : w where the symbol U is the sort associated with
a domain, D, as mentioned in the previous item.

A.4 Predicate Or Propositional Logics?

The decision to choose a predicate temporal logic was based upon a literature survey
of the applications cited in Section A.1. Lamport argues that predicate formalisms
support “informal mathematical reasoning, and can help us to avoid mistakes in
proofs involving quantification” [189]. Saake and Lipeck build upon this argument
and suggest that many sorted, first order temporal logics are the “obvious choice”
for representing and reasoning about complex, dynamic systems [267].

The decision to adopt a predicate temporal logic helps to derive an intuitive
model for our language. For instance, it provides a means of differentiating between
a weak and strong semantics for necessitation [268]. This can be illustrated by
the statement that ‘it is always the case that the safety-system is on’. A strong
semantics requires that this is not true if there are intervals in which it is impossible
to identify the state of the safety system. This interpretation of O is captured by
the semantics introduced in the previous section:

Ow |§= true iff for every k> 0,w [fi= true

166 APPENDIX A. THE INTERVAL TEMPORAL LOGIC LANGUAGE

A weak semantics requires that the statement is true if there are intervals in which
it is not possible to identify the state of the safety system:

O3u|§= w.auly)

The extension of a propositional temporal logic to a first order temporal logic also
creates certain problems. The intended semantics of a temporal formula with free
variables is that the formula is valid for each possible substitution of the variables
with objects during interaction. This leads to reduct quantification; quantification
ranges over the lifetime of an object rather than ranging over the object sort carrier.
Saake shows how this approach can be used to provide semantics for substitution
independent validity which requires quantification over all objects throughout inter-
action [266]. It should be noted, however, that many of the properties described in
this thesis do not require such additional expressive power.

Appendix B

Theorems Of Interval Temporal
Logic

This thesis does not attempt to develop a new form of interval temporal logic,
rather it attempts to apply the findings of previous research. The interval temporal
logic described in Section 2.4.4 is based upon that proposed by Manna and Pnueli
[205]. They list a number of valid statements which are presented as axioms or are
deduced as theorems from other interval temporal logic statements. For the sake of
brevity we only present those statements that are used in this thesis. These hold in
addition to the theorems and axioms of first order predicate logic. It should be noted
that the interval temporal logic is intended to support particular objectives; namely
representing and reasoning about human factors and systems engineering. The
following theorems and axioms are, therefore, not intended to provide a minimal
framework nor are they intended to provide the most general language possible.
Manna and Pnueli’s reference scheme is used with an ‘M’ prefix:

O-w; = - Owy (Ml
O W1 =7 |:|W1 (M2
Ow; = Wy (M5
Ow; = <>W1 (M7

O(wi Aws) = (Owy A Owy)

<>(W1 V WQ) = (<>W1 V <>W2)
(le V DWQ) = D(Wl V Wg)
<>(W1 A WQ) = (<>W1 VAN <>W2)
D(Wl = Wz) = (DW1 = DWQ)

—
N |

o mm
Do
=~

A~ N N N~
S22

[\) =

w D
— — D N N

[\
3

Informally, statement M1 says that a formula w; is false in all intervals if and
only if there is no state in which wy is true. Statement M2 says that there is an
interval in which w is false if and only if it is not the case that wy is always true.
Statement M5 says that if wy is true in all intervals then it is true in the present
interval. Statement M7 says that if wy is true in all intervals then it is eventually
true. Manna and Pnueli’s statement M16 says that the O operator distributes over
conjunction. Statement M17 says that there is an interval in which either wy or
wy hold if there is an interval in which wq is true or an interval in which wy is
true. Statement M23 states that if either wy is true for all intervals or wy is true
for all intervals then in every interval either w; or wo holds. Statement M24 states

167

168 APPENDIX B. THEOREMS OF INTERVAL TEMPORAL LOGIC

that if there exists an interval in which both w; and wy are true then there exists
an interval in which wj is true and these exists an interval in which wy is true.
Statement M27 states that if it is always true that wy implies wo then it is true
that if wy is always true then wy is always true.

The following sections use natural deduction to prove the remaining formulae
exploited in the re-writing of Appendices C, D, E and F. It is assumed that the
reader is familiar with the notions of premise and assumption, as well as the various
introduction and elimination rules for first order logics [328]. Manna and Pnueli’s
notational conventions for temporal operators are retained. In order to enhance
readability, the names of first order theorems are also applied to their counterparts
in interval temporal logic. References to theorems such as De Morgan’s Laws should
be regarded as abbreviations, in this instance for De Morgan’s Laws of interval
temporal logic. The following proofs are confined to propositions; wi, wo and wi.
This is justified by Hughes and Cresswell’s observation that the “derived rules for
(modal and temporal) propositional systems hold in the corresponding predicate
calculi” [153]. This is only true if our predicate interval temporal logic includes
Barcan’s formula as a theorem, in the following p; is a predicate and x is a term:

= Vx0Op(x) = 0Vx.pi(x) (B.1)

Manna and Pnueli include the following stronger equivalences in their interval tem-
poral logic:

E Odxpi(x) = IxOpi(x) (M46)
E OVx.pi(x) =VxOp;(x) (M47)

Axioms and theorems that have been demonstrated to hold by preceding proofs or
which are cited in this section are introduced during the following deductions. This
is justified by the observation that theorem and axiom introduction does not incur
any additional proof obligations. Modus Ponens for Strict Bi-conditions (M.P.S.B.)
and Modus Ponens for Strict Implications (M.P.S.1.) [102] are used as transformation
rules:

wi, O(w; = wa)

(M.P.SI)

W2
w1, D(Wl = WQ)

(M.P.S.B))

W2

It should be noted that the development of proof techniques for interval temporal
logic is a research area in its own right. The following deductions should, therefore,
be regarded as outlines that require the support of further work. In particular, the
reader’s attention is drawn to weaknesses in the proof steps taken during the deriva-
tion of the Implication Laws (Theorems B.4 and B.4). The word ‘Theorems’ is used
here as a term of reference; these laws have yet to be proven. These limitations
should not be surprising; Abadi observes that “... all effective proof systems for
temporal logic are incomplete for the standard semantics, in the sense that some
formulas hold in every intended model but cannot be proved” [1]. Future research
might resolve this limitation by extending modal logic subordinate proof systems,
such as those proposed by Fitch [102] and used by Hughes and Cresswell [153], to

B.1. COMPLEMENT LAW 169

support natural deduction for interval temporal logics. In particular, this work might
explore ways of reasoning about the () and U operators using this technique. Alter-
natively, Abadi’s approach of relating temporal proofs to classical systems through
the introduction of time parameters into predicates might be adopted [1]. He notes
that further work is required in order to establish that this approach can, indeed,
prove all the formulas which are intended to hold in his interval temporal logic.
It is hypothesised that this research might provide proof techniques that could be
integrated into the verification tools discussed in Section 8.2.2.

B.1 Complement Law

Theorem B.1 O- - w; = 0Ow;

Proof:
1. O-=wy Premise
2. Owy Eliminate, =, 1

B.2 Idempotent Law

Theorem B.2 Ow; = 0O(w; A wq)

Proof:

1. Owy Premise

2. Owy A Owy Introduce, A, 1

3. O(w1 Awy) M.P.S.B., (M16), 2

B.3 Implication Laws
Theorem B.3 O(w; = wa) = 0(— wy V wy)

Note: more work is required to support steps 2 and 7.
Sketch of proof:

1. O(wyp = wa) Premise

2. Owy Assumption

3. Owy = Owsy M.P.S.I., (M27), 1
4. Owy Eliminate, =, 3, 2
5. O-wi V Owy Introduce, V, 4

6. O(— w1V wy) M.P.S.I., (M23), 5
7. 0= wy Assumption

8. O—wy V Owy Introduce, Vv, 7

9. D(—| wi V W2) M.P.S.I., (M23), 8

Theorem B.4 O(wy = wa) = O(— wyp V wa)

Note: more work is required to support steps 2, 3 and 6.
Sketch of proof:

170 APPENDIX B. THEOREMS OF INTERVAL TEMPORAL LOGIC

1. <>(W1 = Wg)
2. Owy

3. <>W2

4. O=wyp VOwWs
9. <>(—| wi V W2)
6. O—wy

7. O W1

8. O=wy VOowy
9. <>(—| wi V W2)

B.4 De Morgan’s Laws

Theorem B.5 O— (w1 Awy) = <O(—wy V- wa)

Premise
Assumption
Eliminate, =, 1, 2
Introduce, V, 3
M.P.S.B., (M17), 4
Assumption
M.P.S.I., (M7), 6
Introduce, Vv, 7
M.P.S.B., (M17), 8

In order to prove this we first prove the following lemma:

Lemma B.1 Ow; = - - wy
Proof:

1. Owy
2. 0= = W1
3. 7O W1

Proof by contradiction:

O (W1 /\WQ)

- <>(—| w1V = W2)

- (<>—\ wi VO WQ)

o W1

C=wy VO wy

<>(—| w1V - W2)
<>(—|W1\/—|W2)/\—\<>(—|W1\/—|W2)
= O W1

© 0N oA WD =

Owy

.<>—\W2

O w VO W

.<>(—\W1\/—\W2)

. <>(—|W1\/—|W2)/\—|<>(—|W1\/—|W2)
. —|<>—\W2

—_
— O

[
T = W DN

. Owo

. Ow; A Owy

. D(Wl /\WQ)

L O (Wl A WQ)

o Oa (W Awg) A O (W Awa)
. <>(—\ wi V- WQ)

DO = = e
O © 00O

Theorem B.6 O- (w; Awg) =0(—wy V- wa)

Proof by contradiction:

Premise
M.P.S.B., (Theorem B.1), 1
M.P.S.I., (M1), 2

Premise

Assumption

M.P.S.B., (M17), 2
Assumption

Introduce, Vv, 4

M.P.S.B., (M17), 5
Introduce, A, 2, 6
Introduce, =, 4, 7
M.P.S.B., (Lemma B.1), 8
Assumption

Introduce, Vv, 10

M.P.S.B., (M17), 11
Introduce, A, 2, 12
Introduce, —, 10, 13
M.P.S.B., (Lemma B.1), 14
Introduce, A, 9, 16
M.P.S.B, (M16), 16
M.P.S.B., (Lemma B.1), 17
Introduce, A, 1, 18
Eliminate, =, 2, 19

B.5. COMMUTATIVE LAWS 171

O(—wy V- wa) Premise

- 0= (wy A wa) Assumption

O= = (Wi Awg) M.P.S.B., (M2), 2

O (mwy Vo wa) M.P.S.B., (Theorem B.5), 3
- D(_! W1 V= WQ) MPSB, (MZ), 4

O(=wyp Vawg) A= DO(=wy V—wy) Introduce, A, 1, 5

O- (w1 A wa) Eliminate, -, 2, 6

NS Tt W

B.5 Commutative Laws

Theorem B.7 O(w; A wsy) = O(wy A wy)

Proof:

1. O(wy A wa) Premise

2. Owy A Owsy M.P.S.B., (M16), 1
3. Owy Eliminate, A, 2

4. Owy Eliminate, A, 2

5. Owg A Owy Introduce, A, 3, 4
6. O(wa Awy) M.P.S.B., (M16), 5

Theorem B.8 O(wy Vwg) =O(waVwy)

Proof:

1. O(wy V wa) Premise

2. Owy V Owy M.P.S.B., (M17), 1

3. Owy Assumption

4. Owy V Owy Introduce, V, 3

5. O(wa Vwy) M.P.S.B., M(17), 4

6. Owq Assumption

7. OSwa V Owy Introduce, V, 4

8. O(wy Vwy) M.P.S.B., (M17), 7

9. O(wa Vwy) Eliminate, Vv, 1, 3-5,6-8

Theorem B.9 O(w; Vwsy) = 0O(wa V w)

Proof by contradiction:

Theorem B.10 &(wy A wa) = O(wa Awyp)

O Ut W

D(Wg vV Wl)

Proof by contradiction:

Premise

Assumption

M.P.S.B., (M2), 2
M.P.S.B., (Theorem B.8), 3
M.P.S.B., (M2), 4
Introduce, A, 1, 5
Eliminate, =, 2, 6

172

B.6 Associative Laws

© 0N ot WD =

<>(W1 /\W2)

- <>(W2 A Wl)

O— (Wg AN Wl)
O(-wyV-wp)

IZI(—| w1V - W2)

O- (W1 A WQ)

- Q(Wl N Wz)

- <>(W1 A WQ) A <>(W1 A WQ)
<>(W2 /\Wl)

APPENDIX B. THEOREMS OF INTERVAL TEMPORAL LOGIC

Premise

Assumption

M.P.S.B., (M1), 2

M.P.S.B., (Theorem B.6), 3
M.P.S.B., (Theorem B.9), 4
M.P.S.B., (Theorem B.6), 5
M.P.S.B., (M1), 6

Introduce, AT, 1
Eliminate, -, 2, 8

Theorem B.11 O((w; A wa) Aws) = O(wy A (wWa Aws))

v
S
H

200 No otk W=

D((Wl VAN WQ) VAN Wg)
O(w1 A wg) A Owg
|:|(W1 A W2)

Owi A Owoy

Owy

Owo

Ows

Owo A Ows
D(Wg A Wg)

0 Owy A O(wa A ws)
11. D(Wl VAN (W2 VAN Wg))

Theorem B.12 &((wi Awa) Awsg) =

Proof by contradiction:

Theorem B.13 &((wg Vwsa)Vwg) =

NS Tt W

<>(<W1 VAN WQ) VAN Wg)
- <>(W1 VAN (Wg VAN Wg))
O— (W1 VAN (Wg AN Wg))
O- ((W1 A Wg) A W3)
()
()

& (W1 /\Wg) N\ W3

& (W1 A Wg) Awsg) A <>((W1 /\WQ) VAN Wg)

Q(Wl A (W2 A Wg))

Proof:

1.
2.
3.
4.

<>((W1 V W2) V W3)
<>(W1 V Wz) VvV Owsg
O(wy V wa)
Owq V Owy

Premise

M.P.S.B., (M16), 1
Eliminate, A, 2
M.P.S.B., (M16), 3
Eliminate, A, 16
Eliminate, A, 16
Eliminate, A, 2
Introduce, A, 6, 7
M.P.S.B., (M16), 8
Introduce, A, 5, 7
M.P.S.B., (M16), 10

Q(Wl A (W2 A Wg))

Premise

Assumption

M.P.S.B., (M1), 2

M.P.S.B., (Theorem B.11), 3
M.P.S.B., (M1), 4
Introduce, A, 1, 5

Eliminate, -, 2, 6

<>(W1 V (WQ V Wg))

Premise

M.P.S.B., (M17), 1
Assumption
M.P.S.B., (M17), 3

B.6. ASSOCIATIVE LAWS

5. <>W1

6. Owy VvV O(wa V ws)
7. <>(W1 vV (W2 V W3))
8. <>W2

9. Owy V Ows

10. O(wa V ws)

11. Owy Vv <>(W2 V Wg)
12. <>(W1 V (W2 V Wg))
13. <>(W1 V (W2 V Wg))
14. <>W3

15. Owo V Owg

16. <>(W2 V W3)

17. Owyp VvV O(we V wa)
18. <>(W1 V (W2 V Wg))
19. <>(W1 V (W2 vV Wg))

173

Assumption

Introduce, Vv, 5
M.P.S.B., (M17), 6
Assumption

Introduce, V, 8
M.P.S.B., (M17), 9
Introduce, Vv, 10
M.P.S.B., (M17), 11
Eliminate, V, 2, 3-7,8-13
Assumption

Introduce, Vv, 14
M.P.S.B., (M17), 15
Introduce, Vv, 16
M.P.S.B., (M17), 17
Eliminate, Vv, 1, 3-13, 14-18

Theorem B.14 O((w; V ws) Vws) =0O(w; V(wa VWws))

Proof by contradiction:

1. D((Wl V Wg) V Wg)

2.~ D(Wl vV (WQ V Wg))

3. &= (Wl V (WQ V Wg))

4. O(=wip A= (wa Vws))
5. <>(—| wi A (—\ wo A~ Wg))
6. C((mwi A= wa) A - wa)
7 <>(—| (W1 V W2) N — Wg)
8. O= ((wy Vwa)Vws)

9. = D(W1 \/Wg) \/Wg)

10. = D((Wl V WQ) V Wg) VAN D((W1 V WQ) V W3)
11. D(Wl V (W2 V Wg))

Premise

Assumption

M.P.S.B., (M2), 2

M.P.S.B., (Theorem B.5), 3

M.P.S.B., (Theorem B.5), 4

M.P.S.B., (Theorem B.12), 5

M.P.S.B., (Theorem B.5), 6

M.P.S.B., (Theorem B.5), 7
» (

M.P.S.B., (M2), 8
Introduce, A 1,9
Eliminate, =, 2, 10

Appendix C

Appendices To Chapter 3

C.1 Re-writing Of no_state_correspondence

Vs € S,Vps,ps’ € Ps: no_state_correspondence(s, ps, ps’)
< (3.5)

O- (state_represents(s, ps) A state_represents(s, ps’) A

- same_process_state(ps, ps’))
< (De Morgan’s laws)

0O(— state_represents(s, ps) V — state_represents(s, ps’) V

- — same_process_state(ps, ps’))
< (Complement law)

O(— state_represents(s, ps) V — state_represents(s, ps’) V

same_process_state(ps, ps’))
< (Implication laws)

O(— (— state_represents(s, ps) VV — state_represents(s, ps')) =

same_process_state(ps, ps’))
< (De Morgan’s laws)

O(state_represents(s, ps) A state_represents(s, ps’) =

same_process_state(ps, ps’))
C.2 Re-writing Of no_display_correspondence

Vd € D,Vs,s € S:no_display_correspondence(d,s,s’)
< (3.12)

O- (view(s,d) A view(s’,d) A — same_state(s,s'))

174

(C.3)

(C.4)

(C.5)

(C.6)

C.3. RE-WRITING OF NO_COMMAND_VIEW_CORRESPONDENCE175

< (De Morgan’s laws)
O(— view(s,d) V - view(s’,d) V = — same_state(s,s')) (C.7)
< (Complement law)
O(— view(s,d) V — view(s’,d) V same_state(s, s')) (C.8)
< (Implication laws)
O(= (- view(s,d) V - view(s',d)) = same_state(s,s’)) (C.9)
< (De Morgan’s laws)

O(view(s,d) A view(s',d) = same_state(s,s’)) (C.10)
C.3 Re-writing Of no_command_view_correspondence

Ve e C,Vs € S,Vd,d € D : no_command_view_correspondence(c,s,d,d’)
< (3.20)

O- (command_view(c,s,d) A command_view(c,s,d’) A
- same_source(d, d’)) (C.11)

< (De Morgan’s laws)

O(— command_view(c,s,d) V - command_view(c,s,d’) v
- - same_source(d, d")) (C.12)

& (Complement law)

O(— command_view(c,s,d) V - command_view(c,s,d’) v
same_source(d,d’)) (C.13)

< (Implication laws)

O(— (- command_view(c,s,d) V - command_view(c,s,d’)) =
same_source(d,d’)) (C.14)

< (De Morgan’s laws)

O(command_view(c,s,d) A command_view(c,s,d’) =
same_source(d,d’)) (C.15)

Appendix D

Appendices To Chapter 4

D.1 Re-writing Of no_input_contention

Vu,u’ € U,Vp,p’ € P : no_input_contention(u,v’, p,p’)
< (4.5)
O- (user_input(u, p) A user_input(u, p’) A -~ same_user(u,u’))
< (De Morgan’s laws)
O(— user_input(u, p) V — user_input(u, p’) V - - same_user(u, u’))
& (Complement law)
O(— user_input(u, p) V — user_input(u,p’) V same_user(u, u’))
< (Implication laws)
O(— — user_input(u, p) = — user_input(u, p’) V same_user(u, u’))
< (Complement law)
O(user_input(u, p) = — user_input(u, p’) V same_user(u, u’))
< (De Morgan’s laws)

O(user_input(u, p) = — (user_input(u, p’) A = same_user(u,u’)))

176

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

Appendix E

Appendices To Chapter 5

E.1 First Re-writing Of inconsistent

Jo,0' € O,Yom € Om,Vos € Os,Vod € Od : inconsistent(o,0’,om, 0s, od)

< (5.6)

- O(object(o,om, 0s,0d) A object(o’,om, 0s,0d) A — same_object(o,0'))(E.1)
< (M2)

O— (object(o,om, 0s,0d) A object(o’,om, 0s,0d) A — same_object(o,0"))(E.2)
< (object(5.5))

&= ((object_methods(o, om) A object_state(o, 0s) A object_view(o,o0d)) A
(object_methods(o’, om) A object_state(o’, 0s) A object_view(o’,0d)) A
- same_object(o,0)[E.3)

< (De Morgan’s laws)

O(— (object_methods(o, om) A object_state(o, 0s) A object_view(o,o0d)) V
- (object_methods(o’,om) A object_state(o’,0s) A object_view(o’,0d)) Vv
same_object(o,0')[E.4)

< (De Morgan’s laws)

& ((— object_methods(o,om) V — object_state(o, 0s) V — object_view(o,o0d)) V
(- object_methods(o’,om) V — object_state(o’, 0s) V = object_view(o’,0d)) V
same_object(o,0')) (E.5)

< (Associative laws)

O(— object_methods(o,om) V — object_state(o, 0os) V — object_view(o,od) V
- object_methods(o’,om) V - object_state(o’, 0s) V - object_view(o’,0d) V
same_object(o,0')) (E.6)

177

178 APPENDIX E. APPENDICES TO CHAPTER 5

< (Commutative laws)

(- object_methods(o,om) V — object_methods(o’,om) V
- object_state(o, 0s) V — object_state(o’, 0s) V

same_object(o,0’) V = object_view(o,0d) V - object_view(o’,0d)) (E.7)
< (Implication laws)

O(— (- object_methods(o,om) V — object_methods(o’,om) V
- object_state(o,0s) V — object_state(o’, 0s) V
same_object(o,0')) = (- object_view(o,0d) V — object_view (o', 0d))) (E.8)

< (De Morgan’s laws)

< (object_methods(o,om) A object_methods(o’, om) A
object_state(o, 0s) A object_state(o’, 0s) A — same_object(o,0’) =
- object_view(o,0d) V — object_view(o’,0d)) (E.9)

< (De Morgan’s laws)

<O (object_methods(o,om) A object_methods(o’, om) A
object_state(o,0s) A object_state(o’, 0s) A - same_object(o,0’) =
- (object_view(o,0d) A object_view(o’,0d))) (E.10)

E.2 Second Re-writing Of inconsistent

This re-writing proceeds in identical manner to the first re-writing of inconsistent
until step (E.6).
& (Commutative laws)

O (— object_methods(o,om) V - object_methods(o’,om) V
- object_view(o,0d) V - object_view (o', 0d) V same_object(o,0’) V
- object_state(o,0s) V — object_state(o’, 0s)) (E.11)

< (Implication laws)

O(= (- object_methods(o,om) V - object_methods(o’,om) V
- object_view(o,0d) V - object_view(o’,0d) V same_object(o,0)) =
(- object_state(o, 0s) V = object_state(o’, 0s)))(E.12)

< (De Morgan’s laws)

O(object_methods(o,om) A object_methods(o’, om) A
object_view(o,o0d) A object_view(o’,0d) A - same_object(o,0’) =
- object_state(o, 0s) V — object_state(o’, 0s)) (E.13)

E.3. THIRD RE-WRITING OF INCONSISTENT 179

< (De Morgan’s laws)

<O (object_methods(o,om) A object_methods(o’, om) A
object_view(o,0d) A object_view(o’,0d) A — same_object(o,0’) =
- (object_state(o,0s) A object_state(o’,0s))) (E.14)

< (same_object_state(5.8), same_object_view(5.9), same_object_methods(5.10))

O (same_object_methods(o,0’,om) A same_object_view(o,0’,0d) A

- same_object(o,0’) = — same_object_state(o, o', 0s)) (E.15)

E.3 Third Re-writing Of inconsistent

This re-writing proceeds in identical manner to the first re-writing of inconsistent
until step (E.6).
& (Commutative laws)

O(— object_view(o,0d) V — object_view(o,0d) V
- object_state(o, 0s) V — object_state(o’, 0s) V same_object (o, 0’) v
- object_methods(o,om) V — object_methods(o’,om)) (E.16)

< (Implication laws)

O(— (- object_view(o,0d) V — object_view (o', od) Vv
- object_state(o,0s) V — object_state(o’, 0s) V same_object(o,0’)) =
(- object_methods(o,om) V - object_methods(o’,om)))(E.17)

< (De Morgan’s laws)

O(object_view(o,0d) A object_view(o',0d) A
object_state(o, 0s) A object_state(o’, 0s) A — same_object(o,0’) =

- object_methods(o,om) V = object_methods(o’,om)) (E.18)

< (De Morgan’s laws)

¢O(object_view(o,0d) A object_view(o’,0d) A
object_state(o, 0s) A object_state(o’,0s) A — same_object(o,0’) =
- (object_methods(o,om) A object_methods(o’,om))) (E.19)

< (same_object_state(5.8), same_object_view(5.9), same_object_methods(5.10))

<O(same_object_view(o,0’,0d) A same_object_state(o, o', 0s) A

- same_object(o,0’) = — same_object_methods(o,0’,om)) (E.20)

180 APPENDIX E. APPENDICES TO CHAPTER 5

E.4 Re-writing Of consistent

Vo€ O,3cl € Cl,3om € Om,Jos € Os,Jod € Od :
consistent(o, cl, om, os, od)

& (5.31)

O(is_a(o, cl) A class_type(o, cl, om, os, 0d)) (E.21)
< (class_type (5.29))

O(is_a(o, cl) A object(o,om, 0s,0d) A class_defined(cl,om, 0s,0d)) (E.22)
& (class_defined (5.28))

O(is_a(o, cl) A object(o,om, os,od) A
legal state(cl, os) A legal_view(cl,od) A legal methods(cl,om)) (E.23)

< (object (5.5))

O(is_a(o,cl) A
object_methods(o,om) A object_state(o, 0s) A object_view(o,od) A

legal_state(cl, os) A legal _view(cl,od) A legal_ methods(cl,om)) (E.24)

< (Commutative laws)

O(is_a(o,cl) A

object_methods(o, om) A legal methods(cl,om) A

object_state(o, 0s) A legal state(cl, os) A
object_view(o,0d) A legal view(cl, od)) (E.25)

& (Associative laws)

O(is_a(o,cl) A

(object_methods(o,om) A legal methods(cl,om)) A

(object_state(o, 0s) A legal _state(cl, 0s)) A
(object_view(o,0d) A legal view(cl,od))) (E.26)

< (Idempotent law)

O((is_a(o, cl) A object_methods(o,om) A legal methods(cl,om)) A
(is_a(o, cl) A object_state(o, 0s) A legal state(cl, 0s)) A
(is_a(o,cl) A object_view(o,0d) A legal view(cl,od))) (E.27)
< (M16)

O(is_a(o, cl) A object_methods(o,om) A legal methods(cl,om)) A
O(is_a(o, cl) A object_state(o, 0s) A legal state(cl, 0s)) A
O(is_a(o, cl) A object_view(o,0d) A legal view(cl,od)) (E.28)

E.4. RE-WRITING OF CONSISTENT 181

From this we identify three conjunctions:

Voe 0,3cle Cl,Iod € Od :
instantiate_image_consistency (o, cl,od) <
O(is_a(o, cl) A object_view(o,0d) A legal view(cl,od)) (E.29)

Vo€ O,3dcle Cl,Jdos € Os :
instantiate_state_consistency (o, cl,0s) <
O(is_a(o, cl) A object_state(o, os) A legal_state(cl, 0s)) (E.30)

Vo€ 0O,dcle Cl,30om € Om :
instantiate_method_consistency(o, cl,om) <
O(is_a(o, cl) A object_methods(o,om) A legal methods(cl, om)(E.31)

Appendix F

Appendices To Chapter 6

F.1 First Re-writing Of break_down

Jo € O,dpc € Pc,Yom € Om,Vos € Os,Vod € Od :

break _down(o, pc,om, os, od)
< (6.6)
— O(represents(o, pc) A object(o,om, 0s,0d) A conforms(pc,om, os,od))F.1)
< (M2)
&= (represents(o, pc) A object(o, om, os,0d) A conforms(pc, om, os,od))F.2)
& (object (5.5))

&= (represents(o, pc) A
object_methods(o,om) A object_state(o, 0s) A

object_view(o,0d) A conforms(pc,om, os, 0od)) (F.3)
< (conforms (6.5))

&= (represents(o, pc) A
object_methods(o,om) A object_state(o, os) A
object_view(o,0d) A method_conforms(pc,om) A

state_conforms(pc, os) A view_conforms(pc, od)) (F.4)
& (Commutative laws)

&= (represents(o, pc) A
object_methods(o,om) A method_conforms(pc,om) A
object_state(o, 0s) A state_conforms(pc, os) A

object_view(o,0d) A view_conforms(pc, od)) (F.5)

182

F.2. SECOND RE-WRITING OF BREAK_DOWN

& (Associative laws)

&= (represents(o, pc) A
(object_methods(o,om) A method_conforms(pc,om)) A
(object_state(o, 0s) A state_conforms(pc,0s)) A

(object_view(o,0d) A view_conforms(pc, od)))
< (De Morgan’s laws)

& (= represents(o, pc) V
- (object_methods(o,om) A method_conforms(pc,om)) V
- (object_state(o, os) A state_conforms(pc, 0s)) V

- (object_view(o,0d) A view_conforms(pc, od)))
< (Implication laws)

& (= (= (represents(o, pc) V
- (object_methods(o,om) A method_conforms(pc,om)) V
— (object_state(o, os) A state_conforms(pc,0s)))) =

— (object_view(o,0d) A view_conforms(pc,od)))
< (De Morgan’s laws)

O(represents(o, pc) A
object_methods(o,om) A method_conforms(pc,om) A
object_state(o, 0s) A state_conforms(pc, os) =

- (object_view(o,0d) A view_conforms(pc, od)))

F.2 Second Re-writing Of break _down

This re-writing is identical to the previous until step (F.7).
& (Commutative laws)

<& (= represents(o, pc) V
- (object_state(o, 0s) A state_conforms(pc, 0s)) V
- (object_view(o,0d) A view_conforms(pc,od)) V

- (object_methods(o,om) A method_conforms(pc,om)))
< (Implication laws)

O(= (- represents(o, pc) V
- (object_state(o, os) A state_conforms(pc, o0s)) V
- (object_view(o,0d) A view_conforms(pc,od))) =

- (object_methods(o,om) A method_conforms(pc,om)))

183

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)

(F.11)

184 APPENDIX F. APPENDICES TO CHAPTER 6

< (De Morgan’s laws)
&(represents(o, pc) A
(object_state(o, 0s) A state_conforms(pc, os)) A
(object_view(o,0d) A view_conforms(pc,od)) =

- (object_methods(o,om) A method_conforms(pc,om))) (F.12)
< (Associative laws)

<& (represents(o, pc) A
object_state(o, 0s) A state_conforms(pc, os) A
object_view(o,0d) A view_conforms(pc,od) =

- (object_methods(o,om) A method_conforms(pc,om))) (F.13)

& (accurate_methods (6.8), accurate_state (6.9) and accurate_image (6.10))
<&(represents(o, pc) A
accurate_state(o, pc, 0s) A accurate_image(o, pc,od) =

— accurate_methods(o, pc,om)) (F.14)

F.3 Third Re-writing Of break _down

This re-writing is identical to the first re-writing of break_down until step (F.7).
& (Commutative laws)
& (- represents(o, pc) V
— (object_view(o,0d) A view_conforms(pc,od)) V
- (object_methods(o,om) A method_conforms(pc,om)) V
- (object_state(o, os) A state_conforms(pc, 0s))) (F.15)
< (Implication laws)
<& (= (- represents(o, pc) V
- (object_view(o, 0d) A view_conforms(pc,od)) V
- (object_methods(o,om) A method_conforms(pc,om))) =

- (object_state(o, os) A state_conforms(pc, 0s))) (F.16)
< (De Morgan’s laws)
<&(represents(o, pc) A
(object_view(o,0d) A view_conforms(pc,od)) A

(object_methods(o,om) A method_conforms(pc,om)) =

— (object_state(o, os) A state_conforms(pc, 0s))) (F.17)
& (Associative laws)
O(represents(o, pc) A
object_view(o,0d) A view_conforms(pc,od) A
object_methods(o,om) A method_conforms(pc,om) =

- (object_state(o, os) A state_conforms(pc, 0s))) (F.18)

F.4. FOURTH RE-WRITING OF BREAK_DOWN 185

< (accurate_methods (6.8), accurate_state (6.9) and accurate_image (6.10))
O(represents(o, pc) A accurate_image(o, pc,od) A
accurate_methods(o, pc,om) = — accurate_state(o, pc, 0s)) (F.19)

F.4 Fourth Re-writing Of break _down

Jo € O,dpc € Pc,Yom € Om,Vos € Os,Vod € Od :

break down(o, pc,om, os,o0d)
< (6.6)
— O(represents(o, pc) A object(o, om, os,od) A conforms(pc,om, os, od)F.20)
< (M2)
&- (represents(o, pc) A object(o,om, os, 0d) A conforms(pc, om, os,od|F.21)
< (De Morgan’s laws)
O(— represents(o, pc) V = object(o,om, os,0d) V = conforms(pc, om, os, od) F.22)
< (Implication laws)

& (= (- represents(o, pc) V - object(o, om, os,0d)) =
— conforms(pc,om, os,0d)) (F.23)

< (De Morgan’s laws)

O(represents(o, pc) A object(o,om, 0os,0d) = — conforms(pc, om, os, od(}y.24)

Appendix G

The Design And
Implementation Of PRELOG

In the submitted thesis, this appendix contained a re-formated version of C.W.
Johnson and M.D. Harrison, PRELOG - A System For Presenting And Rendering
Logic Specifications Of Interactive Systems. In C.E. Vandoni and D.A. Duce (eds.)
Eurographics’90, pp. 469-480, Elsevier Science, North Holland, 1990. This provided
more detail about the design and implementation of PRELOG than was provided
in Chapter 7. The paper is omitted here in order to avoid violating a copyright
agreement with the original publishers.

186

Appendix H

Temporal Logic And Multi-User
Systems

In the submitted thesis, this appendix contained a re-formated version of C.W.
Johnson, Applying Temporal Logic To Support The Design And Prototyping Of Con-
current Multi-User Interfaces. In D. Diaper and N. Hammond (eds.) People And
Computers VI: Usability Now, pp. 145-156, Cambridge University Press, Cam-
bridge, United Kingdom, 1991. This provided more detail about the application of
PRELOG to support the prototyping of open systems than was provided in Chap-
ters 4 and 7. It is omitted here in order to avoid violating a copyright agreement
with the original publishers.

187

Bibliography

[1]

[10]

[11]

M. Abadi. The power of temporal proofs. Theoretical Computer Science,
65(1):35-83, 1989.

H. Abelson. A beginner’s guide to LOGO. BYTE, 7(8):88-112, 1982.

G. Abowd. Agents : Communicating interactive processes. In D. Dia-
per, D. Gilmore, G. Cockton, and B. Shackel, editors, Human-Computer
Interaction—INTERACT’90, pages 142—-148. Elsevier Science Publications,
North Holland, Netherlands, 1990.

Agiecut 100D, 200D and 300D machine tools sales brochure. Losone, Switzer-
land, 1991.

L. Ainsworth. Comparison of U.S. and U.K. practices and philosophies for
nuclear plant control room design. In R.E. Edwards, editor, Proceedings Of
The 26th Annual Meeting Of The Human Factors Society, pages 659-663.
Human Factors Society, Santa Monica, United States of America, 1982.

H. Alexander. Specifying and prototyping human-computer interaction. In
D. Barnes and P. Brown, editors, Proceedings Of Software Engineering’86,
pages 336—351. Peter Peregrinus, London, United Kingdom, 1986.

H. Alexander. Structuring dialogues using CSP. In M.D. Harrison and H.W.
Thimbleby, editors, Formal Methods In Human-Computer Interaction, pages
273-295. Cambridge University Press, Cambridge, United Kingdom, 1990.

D.M. Allen. Investigation of display issues relevant to the presentation of
aircraft fault information. In D.L. Pettigrew, editor, Proceedings Of The 33rd
Annual Meeting Of The Human Factors Society, pages 61-65. Human Factors
Society, Santa, Monica, United States of America, 1989.

F. Allen. Description of the Chernobyl accident. In N. Worley and J. Lewins,
editors, The Chernobyl Accident And Its Implications For The United King-
dom - Report Number 19 Of The Waitt Committee On Energy, pages 19-24.
Elsevier Applied Science, London, United Kingdom, 1988.

J.F. Allen. Maintaining knowledge about temporal intervals. Communications
Of The ACM, 26(11):832-843, 1983.

J.F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2):123-153, 1984.

188

BIBLIOGRAPHY 189

[12]

[13]

[14]

[15]

[19]

[20]

[21]

22]

[23]

[24]

R.E. Allen. The Ozford Concise Dictionary. The Clarendon Press, Oxford,
United Kingdom, 1990.

J.L. Alty. Working within limitations: Computer aided instruction and expert
systems. Technical Report AMU8606/01S, Scottish HCI Centre, Strathclyde
University, Glasgow, United Kingdom, 1986.

A. Amendola, U. Bersini, P.C. Cacciabue, and G. Mancini. Modelling opera-
tors in accident conditions: Advances and perspectives on a cognitive model.
In E. Hollnagel, G. Mancini, and D.D. Woods, editors, Cognitive Engineer-
ing In Complex Dynamic Worlds, pages 145 — 158. Academic Press, London,
United Kingdom, 1988.

S. Anderson and H.W. Thimbleby. Outline of a temporal logic framework for
computer supported collaborative work. Technical report, Computer Science
Departments of Stirling and Edinburgh Universities, Stirling and Edinburgh,
United Kingdom, 1990.

T. Aoyagi, M. Fujita, and T. Moto-Oka. Temporal logic programming lan-
guage -Tokio- programming in Tokio. In E. Wada, editor, Proceedings of The
4th Annual Conference - Logic Programming ‘85, LNCS 221, pages 128-137.
Springer-Verlag, Berlin, FDR, 1986.

J. Arlidge. Hospital admits error in treating cancer patients. The Independent,
page 3, 7 February 1992.

Association For Computing Machinery. Proceedings Of The Annual Confer-
ence Of The Association For Computing Machinery, New York, United States
of America, 1981. ACM Press.

F. Bacchus. Representing And Reasoning With Probabilistic Knowledge. The
MIT Press, Cambridge, United States of America, 1990.

L. Bainbridge. Analysis of verbal protocols from a process control task. In
E. Edwards and F.P. Lees, editors, The Human Operator In Process Control,
pages 146-159. Taylor And Francis, London, United Kingdom, 1974.

L. Bainbridge. Mathematical equations or processing routines. In J. Ras-
mussen and W. Rouse, editors, Human Detection And Diagnosis Of System
Failures, pages 259-286. Plenum Press, New York, United States Of America,
1981.

L. Bainbridge. Ironies of automation. In J. Rasmussen, K. Duncan, and
J. Leplat, editors, New Technology And Human Error, pages 271 — 283. J.
Wiley and Sons, New York, United States of America, 1987.

L. Bainbridge. Types of representation. In L.P. Goodstein, H.B. Anderson,
and S.E. Olsen, editors, Task, Errors And Mental Models, pages 70 — 91.
Taylor and Francis, London, United Kingdom, 1988.

L. Bainbridge. Multiplexed VDT display systems. In G.R.S. Weir and J.L.
Alty, editors, Human Computer Interaction And Complex Systems, pages 189—
221. Academic Press, London, United Kingdom, 1991.

190

[25]

28]

BIBLIOGRAPHY

P.J. Barnard, N.V. Hammond, J. Morton, and J.B. Long. Consistency and
compatibility in human-computer dialogues. International Journal of Man-
Machine Studies, 15(1):87-134, 1981.

J.G.P. Barnes. Programming In Ada. Addison Wesley, Wokingham, United
Kingdom, 1989.

A.C. Barrell. Developments in the control of major hazards. In J. Burgoyne,
editor, The Assessment And Control Of Major Hazards, pages 1-12. Pergamon
Press and The Institution Of Chemical Engineers, Oxford, United Kingdom,
1985.

H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens. MetaM
: A framework for programming in temporal logic. Technical report, Depart-
ment of Computer Science, University of Manchester and Imperial College Of
Science and Technology, Manchester and London, United Kingdom, 1989.

V. Bignell and J. Fortune. Understanding System Failure. Manchester Uni-
versity Press, Manchester, United Kingdom, 1991.

W.R. Van Biljon. Extending Petri nets for specifying man-machine dialogues.
International Journal of Man-Machine Studies, 28(4):437-455, 1988.

J. Bindon. Reactor operation and operator training in the United Kingdom.
In N. Worley and J. Lewins, editors, The Chernobyl Accident And Its Implica-
tions For The United Kingdom - Report Number 19 Of The Watt Committee
On Energy, pages 61-70. Elsevier Applied Science, London, United Kingdom,
1988.

D. Black. The human element at the core of the disaster. The Independent,
page 15, 20 March 1989.

D. Black. British Rails’ safety record compares well with rest of World. The
Independent, page 3, 9th January 1991.

D. Black. Signaling failure blamed for Severn Tunnel crash. The Independent
on Sunday, page 2, 8th December 1991.

E.H. Blake and S. Cook. On including part-hierarchies in object-oriented
languages. In J. Bezivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors,
ECOOP ’87: European Conference On Object Oriented Programming, LNCS
276, pages 41-50. Springer-Verlag, Berlin, FDR, 1987.

J. Borer. Instrumentation And Control For The Process Industries. Elsevier
Applied Science, London, United Kingdom, 1985.

E. Borger and H. Kleine Biining and M.M. Richter, editors. Workshop On
Computer Science Logic - 1988 Proceedings. LNCS 385. Springer-Verlag,
Berlin, FDR, 1988.

A. Borning and R. Duisberg. Constraint-based tools for building user inter-
faces. ACM Transactions on Graphics, 5(4):345-374, 1986.

BIBLIOGRAPHY 191

[39]

[40]

[41]

[42]

[43]

[44]

K.A. Bowen and R.A. Kowalski. Amalgamating language and metalanguage
in logic programming. In K.L. Clark and S.A. Tarnlund, editors, Logic Pro-
gramming, pages 153-172. Academic Press, London, United Kingdom, 1982.

G.A. Boy. Operator assistant systems. In E. Hollnagel, G. Mancini, and D.D.
Woods, editors, Cognitive Engineering In Complex Dynamic Worlds, pages 85
— 98. Academic Press, London, United Kingdom, 1988.

R. Braune and C.D. Wickens. The functional age profile: An objective decision
criterion for the assessment of pilot performance capacities and capabilities.
Human Factors, 27(6):681-693, 1985.

British Standard’s Institute. Glossary Of Terms Used In Quality Assurance,
BS 4778, London, United Kingdom, 1979.

D.E. Broadbent. Decision and Stress. Academic Press, London, United King-
dom, 1971.

F.P. Brooks. The Muythical Man-Month: FEssays On Software Engineering.
Addison Wesley, Reading, United States of America, 1982.

A.AF. Brouwers and F.D. Pots. Design process and operator tasks during
automation of a sugar factory. In H.-J. Bullinger and B. Shackel, editors,
Human-Computer Interaction—INTERACT 87, pages 443-452. Elsevier Sci-
ence Publications, North Holland, Netherlands, 1987.

L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Fxpert Sys-
tems In OPS5. Addison Wesley, Reading, United States of America, 1985.

D.A. Buchanan and J. Bessant. Failure, uncertainty and control : The role of
the operator in a computer integrated production system. Journal Of Man-
agement Studies, 22(3):292 — 308, 1985.

J.P. Bulger, S.G. Hill, and R.E. Christ. Operator workload in the army ma-
terial acquisition process. In D.L. Pettigrew, editor, Proceedings Of The 33rd
Annual Meeting Of The Human Factors Society, pages 1054—-1058. Human
Factors Society, Santa Monica, United States of America, 1989.

J. Burgoyne, editor. The Assessment And Control Of Major Hazards. Perga-
mon Press, Oxford, United Kingdom, 1985.

A. Burns. The HCI component of dependable real-time systems. The Software
Engineering Journal, 6(4):168-174, July 1991.

C.T. Burton, S.J. Cook, S. Gikas, J.R. Rowson, and S.T. Sommerville. Speci-
fying the Apple Macintosh Toolbox Event Manager. Formal Aspects of Com-
puting, 1:147-171, 1989.

S.K. Card, J.D. Mackinlay, and G.G. Robertson. The design space of input
devices. In J.C. Chew and J. Whiteside, editors, Proceedings Of The CHI’90
Conference On Human Factors In Computing Systems, pages 117-124. ACM,
New York, United States Of America, 1990.

192

[53]

[54]

BIBLIOGRAPHY

W.L. Carel. Visual factors in the contact analogue. Technical Report
R61ELC60, The General Electric Advanced Electronics Center, Ithica, United
States of America, 1961.

P.W. Caro. Flight training and simulation. In E.L. Wiener and D.C. Nagel,
editors, Human Factors In Aviation, pages 229-261. Academic Press, London,
United Kingdom, 1988.

J.M. Carroll. Learning, using and designing file-names and command
paradigms. Behaviour And Information Technology, 1(4):327-346, 1982.

J.M. Carroll and R.L. Campbell. Artifacts as psychological theories: The
case of human computer interaction. Behaviour And Information Technology,
8(4):247-236, 1989.

J.M. Carroll and W.A. Kellogg. Artifact as theory nexus : Hermeneutics meets
theory based design. In K. Bice and C. Lewis, editors, Proceedings Of The
CHI’89 Conference On Human Factors In Computing Systems, pages 7-14.
ACM, New York, United States of America, 1989.

J.M. Carroll and J.C. Thomas. Metaphor and the cognitive representation of
computing systems. IEEE Transactions On Systems, Man And Cybernetics,
SMC-12(2):107-115, 1982.

C.M. Carswell and C.D. Wickens. Information integration and the object

display: An interaction of task demands and display superiority. Ergonomics,
30(3):511-527, 1987.

D.M. Cattrall. The Relational Paradigm. PhD thesis, Functional Program-
ming Group, Department Of Computer Science, University of York, York,
United Kingdom, 1992 (forthcoming).

O. Causse. Superviseur de robot mobile pour la planification et 1’exécution
réactive de mission. Technical report, DEA Informatique, Institut National
Polytechnique de Grenoble, Grenoble, France, 1989.

E.H.P. Chan. Using neural networks to interpret multiple alarms. IEFEE
Computer Applications In Power, 3(2):33-37, 1990.

V. Chaudhary. US warplane blunder kills 9 British troops. The Guardian,
pages 1-3, 28 February 1991.

P. Checkland. Systems Thinking, Systems Practice. J. Wiley And Sons, New
York, United States Of America, 1981.

R.S. Chin and S.T. Chanson. Distributed object-based programming systems.
ACM Computing Surveys, 23(1):91-124, 1991.

R.T. Chin and C.R. Dyer. Model-based recognition in robot vision. ACM
Computing Surveys, 18(1):67-108, 1986.

BIBLIOGRAPHY 193

[67]

K.Y. Choi, J.O. Yang, and S.H. Cheung. The manipulation of time-varying
dynamic variables using the rule modification method and performance index
in Nuclear Power Plant accident diagnostic expert systems. IEEE Transactions
On Nuclear Science, 35(5):1121-1125, 1988.

P. Chretienne. Timed Petri nets: A solution to the minimum-time-reachability
problem between two states of a timed-event graph. Journal of Systems and
Software, 6(1-2):95-101, 1986.

R.E. Christ and G.M. Corso. The effects of extended practice on the evaluation
of visual display codes. Human Factors, 25:71-84, 1983.

K.L. Clark. The synthesis and verification of logic programs. Technical Report
81/36, Department of Computing, Imperial College Of Science And Technol-
ogy, London, United Kingdom, 1981.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronisation skele-
tons using branching time temporal logic. In D. Kozen, editor, Logic of Pro-
grams 1981 - Proceedings, LNCS 131, pages 52-71. Springer-Verlag, Berlin,
FDR, 1982.

J.G. Cleary. A distributed graphics system implemented in PROLOG. Techni-
cal Report 84 173 31, Department of Computer Science, University Of Calgary,
Calgary, Canada, 1984.

C. Clegg and T.D. Wall. Managing factory automation. In F. Blackler and
D. Obourne, editors, Information Technology And People, pages 45 — 64.
British Psychological Society, Leicester, United Kingdom, 1987.

G. Cockton. Human factors and structured software development: The impor-
tance of software structure. In D. Diaper and N. Hammond, editors, People
And Computers VI: Proceedings Of HCI’91, pages 56-72. Cambridge Univer-
sity Press, Cambridge, United Kingdom, 1991.

A. Colmerauer. Etude et Realisation d’'un Systeme PROLOG. Technical
report, Groupe Intelligence Artificielle, Université Aix-Marseille 11, Marseille,
France, 1973.

Commission Of The European Communities. Safety Principles For Light Wa-
ter Reactor Nuclear Power Plants, Brussels, Belgium, 1981.

S.J. Cook, S. Gikas, W. Roberts, J.R. Rowson, and S.T. Sommerville. Formal
aspects of interactive dialogues. Technical Report Alvey Project HI059, Final
Report, Queen Mary and Westfield College, London, United Kingdom, March
1989.

R.R. Covey, G.J. Mascetti, W.U. Roessler, and R. Bowles. Operational energy
conservation strategies. Technical report, The Institute Of Electrical And
Electronic Engineers, Fort Lauderdale, United States of America, 1979.

A P. Cox, editor. Risk Analysis In The Process Industries: The Report Of The
International Study Group On Risk Analysis. EFCE No. 45. The Institution
Of Chemical Engineers, Rugby, United Kingdom, 1985.

194

[80]

[81]

[82]

[91]

[92]

BIBLIOGRAPHY

D. Craigen. Strengths and weaknesses of program verification systems. In
H.K. Nichols and D. Simpson, editors, Proceedings Of The First Furopean
Software Engineering Conference - ESEC’87, LNCS 289, pages 396 — 404.
Springer-Verlag, Berlin, FDR, 1987.

Cullen. Proceedings Of The Public Enquiry Into The Piper Alpha Disaster.
The Department of Energy, London, United Kingdom, 1990.

A. Van Daele. Dynamic decision making of control room operators in continu-
ous processes: Some field study results. In E.D. Megaw, editor, Contemporary
Ergonomics. Taylor and Francis, London, United Kingdom, 1989.

R. Davis. Meta-rules: Reasoning about control. Artificial Intelligence,
15(3):179-222, 1980.

J. Davison, J. Cassidy, and M. Hosenball. The right stuff. The Sunday Times,
page A 17, 23 July 19809.

F. Decortis, V. de Keyser, P.C. Cacciabue, and G. Volta. The temporal di-
mension of man-machine interaction. In G.R.S. Weir and J.L. Alty, editors,
Human Computer Interaction And Complex Systems, pages 51-72. Academic
Press, London, United Kingdom, 1991.

D. Diaper. Analysing focussed interview data with task analysis for knowledge
descriptions (TAKD). In D. Diaper, D. Gilmore, G. Cockton, and B. Shackel,
editors, Human-Computer Interaction—INTERACT 90, pages 277-282. Else-
vier Science Publications, North Holland, Netherlands, 1990.

A.J. Dix. Formal Methods For Interactive Systems. Academic Press, London,
United Kingdom, 1991.

A.J. Dix and C. Runciman. Abstract models of interactive systems. In P. John-
son and S. Cook, editors, People and Computers : Designing The Interface,
pages 13 — 22. Cambridge University Press, Cambridge, United Kingdom,
1985.

M. Donner and F. Jahanian. RTL meets ORE. Technical report, IBM T.J.
Watson Research Centre, Yorktown Heights, United States Of America, 1988.

P.A. Doyle, C.D. Gaddy, D.C. Burgy, and D.A. Topmiller. An investigation of
communication problems in nuclear power plants. In R.C. Sugarman, editor,
Proceedings Of The 25th Annual Meeting Of The Human Factors Society,
pages 18-22. Human Factors Society, Santa Monica, United States of America,
1981.

K.D. Duncan. Fault diagnosis training for advanced continuous process instal-
lations. In J. Rasmussen, K. Duncan, and J. Leplat, editors, New Technology
And Human Error, pages 209 — 221. J. Wiley and Sons, New York, United
States of America, 1987.

K.D. Duncan and N. Praetorius. Flow displays representing complex plant for
diagnosis and process control. In Proceedings Of the Second Furopean Meeting

BIBLIOGRAPHY 195

[97]

[101]

[102]

103]

[104]

On Cognitive Approaches To Process Control, pages 259-267, Sienna, Italy,
1989. CEC-JRC Ispra and the University of Sienna.

E.A. Edmonds. The man-computer interface: A note on concepts and design.
International Journal of Man-Machine Studies, 16(3):231-236, 1982.

C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. ACM
SIGMOD Record, 18(2):399-407, 1989.

C.A. Ellis, S.J. Gibbs, and G. Rein. Design and use of a group editor. Technical
Report STP-263-88, M.C.C. Software Technology Programme, Austin, United
States of America, 1988.

S.H. Ellis and M.W. McGreevy. Influence of a perspective cockpit traffic dis-
play format on pilot avoidance maneuvers. In A.T. Pope and L.D. Haugh,
editors, Proceedings Of The 27th Annual Meeting Of The Human Factors So-
ciety, pages 762-766. Human Factors Society, Santa Monica, United States of
America, 1983.

J. Fabry, T. Harding, and K. Mallory. Control-display integration on large
multi-system control panels. In R.C. Sugarman, editor, Proceedings Of The
25th Annual Meeting Of The Human Factors Society, pages 159-162. Human
Factors Society, Santa Monica, United States of America, 1981.

D. Fennell. Investigation Into The Kings Cross Underground Fire. Department
of Transport, London, United Kingdom, 1988.

A.C.W. Finkelstein. Re-use of formatted requirements specifications. Software
Engineering Journal, 3(5):186-197, 1988.

J. Finlay and M.D. Harrison. Pattern recognition and interaction models. In
D. Diaper, D. Gilmore, G. Cockton, and B. Shackel, editors, Human-Computer
Interaction—INTERACT’ 90, pages 149-154. Elsevier Science Publications,
North Holland, Netherlands, 1990.

E. Fischer, R. Haines, and T. Proce. Cognitive issues in head-up dis-
plays. Technical Report 1711, National Aeronautic and Space Administration
(NASA), Washington DC, United States Of America, 1980.

F.B. Fitch. Symbolic Logic. The Ronald Press, New York, United States of
America, 1952.

J.M. Flach and K.J. Vicente. Complexity, difficulty, direct manipulation and
direct perception. Technical Report EPRL-89-03, Engineering Research Lab-
oratory, University of Illinois, Urbana-Champaign, United States of America,
1989.

H.C. Foushee and R.L. Heimrich. Group interaction and flight crew perfor-
mance. In E.L. Wiener and D.C. Nagel, editors, Human Factors In Aviation,
pages 189-227. Academic Press, London, United Kingdom, 1988.

196

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

BIBLIOGRAPHY

J. Fox. Automated assistance for safety critical decisions. In D.E. Broadbent,
J. Reason, and A. Baddeley, editors, Human Factors In Hazardous Situations,
pages 107-120. Clarendon Press, Oxford, United Kingdom, 1990.

K. Freburger. RAPID: Prototyping control panel interfaces. ACM SIGPLAN
Notices, 22(12):416-422, 1987.

D. M. Frohlich and P. Luff. Conversational resources for situated action. In
K. Bice and C. Lewis, editors, Proceedings Of The CHI’89 Conference On
Human Factors In Computing Systems, pages 253 — 2568. ACM, New York,
United States of America, 1989.

M. Fujita, M. Ishisone, H. Nakamura, H. Tanaka, and T. Moto-Aka. Using
the temporal logic programming language Tokio for algorithm description and
automatic CMOS gate array synthesis. In E. Wada, editor, Proceedings of The
4th Annual Conference - Logic Programming '85, LNCS 221, pages 246-255.
Springer-Verlag, Berlin, FDR, 1986.

M. Fujita, S. Kono, H. Tanaka, and T. Moto-Aka. Tokio: Logic programming
based on temporal logic and its compilation to PROLOG. In E. Shapiro,
editor, Third International Conference On Logic Programming, LNCS 225,
pages 695-708. Springer-Verlag, Berlin, FDR, 1986.

K. Fukunaga and S. Hirose. An experience with a PROLOG based object
oriented language. In N. Meyrowitz, editor, Proceedings Of OOPSLA ’86,
pages 224-231. ACM, New York, United States of America, 1986.

D.M. Gabbay. Executing temporal logic for interactive systems. Technical re-
port, Department of Computing, Imperial College Of Science And Technology,
London, United Kingdom, 1987.

D.M. Gabbay. Modal and temporal logic programming. In A. Galton, edi-
tor, Temporal Logics And Their Applications, pages 197-223. Academic Press,
London, United Kingdom, 1987.

I.A.R. Galer and B.L. Yap. Ergonomics in intensive care: Applying human fac-
tors to the design and evaluation of a patient monitoring system. Ergonomics,
23(8):763 — 779, 1980.

D. Gallie. In Search Of The Working Class: Automation And Social Inte-
gration Within The Capitalist Enterprise. Cambridge University Press, Cam-
bridge, United Kingdom, 1978.

A. Galton. A critical examination of J.F. Allen’s theory of action and time.
Artificial Intelligence, 42(2):159-88, 1990.

W.W. Gaver, R.B. Smith, and T. O’Shea. Effective sounds in complex systems:
The Arkola simulation. In S.P. Robertson, G.M. Olson, and J.S. Olson, editors,
Proceedings Of The CHI’91 Conference On Human Factors In Computing
Systems, pages 85-90. ACM, New York, United States of America, 1991.

J.J. Gibson. The information available in pictures. Leonardo, 4:27-35, 1971.

BIBLIOGRAPHY 197

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

J.J. Gibson. The Ecological Approach To Visual Perception. Houghton-MifHin,
Boston, United States of America, 1979.

K. Gill. Oil company’s safety system ‘left men helpless’. The Times, page 5,
13 November 1990.

T. Gillie and D. Berry. Direct perception and control of dynamic systems.
Technical report, Department of Experimental Psychology, University of Ox-
ford, Oxford, United Kingdom, 1991.

P. Gillman. The railway report. The Sunday Times, pages S.54-S.60, 8 De-
cember 1991.

S.J. Goldsack and A.C.W. Finkelstein. Requirements engineering for real-time
systems. Software Engineering Journal, 6(3):101-115, 1991.

D. Good. Mechanical proofs about computer programs. Technical Report
TR 41, Institute For Computer Science, University of Texas, Austin, United
States of America, 1984.

D. Gopher, M. Olin, Y. Donchin, and M. Bieski. The nature and causes of
human errors in a medical intensive care unit. In D.L. Pettigrew, editor, Pro-
ceedings Of The 33rd Annual Meeting Of The Human Factors Society, pages
956-960. Human Factors Society, Santa Monica, United States of America,
1989.

J. Grudin. The case against user interface consistency. Communications Of
The ACM, 10(32):1164-1173, 1989.

E. Gullischen. Biggertalk: Object oriented PROLOG. Technical Report STP-
125-85, M.C.C., Austin, United States of America, 1985.

S.B. Haber, D.S. Metlay, and D.A. Crouch. Influence of organisational factors
on safety. In N.C. Goodwin, editor, Proceedings Of The 34th Annual Meeting
Of The Human Factors Society, pages 871-875. Human Factors Society, Santa
Monica, United States of America, 1990.

R. Hale. Temporal logic programming. In A. Galton, editor, Temporal Log-
ics And Their Applications, pages 91-119. Academic Press, London, United
Kingdom, 1987.

P. Hammond and M. Sergot. Logic for representing data and expertise. Tech-
nical report, Department of Computing, Imperial College of Science And Tech-
nology, London, United Kingdom, 1984.

J.P. Hansen. The use of eye mark recordings to support verbal retrospection
in software testing. Technical report, The Institute of Psychology, University
of Aarhus, Aarhus, Denmark, 1990.

J.P. Hansen and C.V. Skou. Time tunnels: An ecological interface for dynamic
data. Technical report, Department of Information Technology, The Risg
National Laboratory, Roskilde, Denmark, 1989.

198

[132]

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

BIBLIOGRAPHY

D. Harel. On visual formalisms. Communications Of The ACM, 31(5):514—
530, 1988.

S. Harker. The use of prototyping and simulation in the development of large-
scale applications. Computer Journal, 31(5), 1988.

M. D. Harrison, C. R. Roast, and P. C. Wright. Complimentary methods for
the iterative design of interactive systems. In G. Salvendy and M.J. Smith,
editors, Designing And Using Human-Computer Interfaces And Knowledge
Based Systems, pages 651 — 658. Elsevier Scientific Publications, North Hol-
land, Netherlands, 1989.

S.G. Hart and T.E. Wempe. Cockpit display of traffic information: Airline
pilot’s opinion about content symbology and format. Technical Report 78601,
National Aeronautic and Space Administration (NASA) Ames Research Cen-
ter, Moffett Field, United States of America, 1979.

P.F.V. Hasle. Building a temporal logic for natural language understanding
with the HOL system. Technical Report 137, Department of Communication,
University of Alborg, Alborg, Denmark, September 1990.

J.K. Hawley, R.J. dePontbriand, and E.W. Frederickson. Making MANPRINT
work: The lessons of the FAADS experience. In D.L. Pettigrew, editor, Pro-
ceedings Of The 33rd Annual Meeting Of The Human Factors Society, pages
1049-1053. Human Factors Society, Santa Monica, United States Of America,
1989.

Health And Safety Executive. Some Aspects Of The Safety Of Nuclear In-
stallations In Great Britain: Replies From The Secretary of State For Energy,
London, United Kingdom, 1976.

Health And Safety Executive. The Health And Safety Review Of United King-
dom Nuclear Establishments, London, United Kingdom, 1979.

Health And Safety Executive. The Notification Of Installations Handling Haz-
ardous Substances Regulations, 1S1982/1357, London, United Kingdom, 1982.

Health And Safety Executive. The Control Of Magjor Accident Hazard Regu-
lations, 1S1984/1902, London, United Kingdom, 1984.

C. Heath and P. Luff. Collaborative activity and technological design: Task
coordination in London Underground control rooms. Technical report, Rank
Xerox EuroParc, Cambridge, United Kingdom, 1991.

P. Henderson. Functional programming, formal specification and rapid pro-
totyping. IEEE Transactions In Software Engineering, SE - 12(2):241 — 250,
1986.

R.L. Henneman and W.B. Rouse. Human performance in monitoring and
controlling hierarchical large-scale systems. IEEE Transactions On Systems,
Man And Cybernetics, SMC-14(2):184-191, 1984.

BIBLIOGRAPHY 199

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

R.L. Henneman and W.B. Rouse. On measuring the complexity of monitoring
and controlling large-scale systems. IEEE Transactions On Systems, Man And
Cybernetics, SMC-16(2):193-207, March/April 1986.

R.A. Hess. A qualitative model of human interaction with complex dy-
namic systems. IEEFE Transactions On Systems, Man And Cybernetics, SMC-
17(1):33-51, 1987.

P. Hetherington. Occidental denies undue haste as Piper rebuilding goes
ahead. The Guardian, page 2, 13 November 1990.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London,
United Kingdom, 1985.

J.-M. Hoc. Analysis of cognitive activities in process control for the de-
sign of computer aids - an example the control of a blast furnace. In
H.-J. Bullinger and B. Shackel, editors, Human-Computer Interaction—
INTERACT’87, pages 257 — 262. Elsevier Science Publications, North Hol-
land, Netherlands, 1987.

E. Hofer and F. Ruggiero. Hypermedia as communication and prototyp-
ing tools in the concurrent design of commercial aircraft products. In
G. Cockton D. Diaper, D. Gilmore and B. Shackel, editors, Human-Computer
Interaction—INTERACT’ 90, pages 303-308. Elsevier Science Publications,
North Holland, Netherlands, 1990.

E. Hollnagel. The GRADIENT project: Technical overview. Technical Re-
port ESPRIT P857, Commission Of The European Communities, Information
Technology And Telecommunications Task Force, Brussels, Belgium, 1991.

E. Hollnagel and D.D. Woods. Cognitive systems engineering: New wine in
new bottles. International Journal of Man-Machine Studies, 18(6):583-600,
1983.

G.E. Hughes and M.J. Cresswell. An Introduction To Modal Logic. Methuen,
London, United Kingdom, 1968.

D.L.M. Hunt and P.K. Ramskill. The behaviour of tanks engulfed in fire -
the development of a computer program. In J. Burgoyne, editor, The Assess-
ment And Control Of Major Hazards, pages 71-86. Pergamon Press and The
Institution Of Chemical Engineers, Oxford, United Kingdom, 1985.

G.S. Hura and J.W. Attwood. The use of Petri nets to analyse coherent fault
trees. IEEE Transactions On Reliability, 37(5):469-473, 1988.

Institute Of Chemical Engineers. Nomenclature For Hazard And Risk Assess-
ment In The Process Industries, Rugby, United Kingdom, 1985.

International Atomic Energy Agency. Report Of The Safety Advisory Group
On Reactor Design, Operation And Safety Training, number 75 INSAG-1 in
Safety Series, Vienna, Austria, 1986.

200

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

167]

[168]

169

BIBLIOGRAPHY

International Atomic Energy Agency and The Commission of the European
Community. Critical Survey of Research On Human Factors And The Man-
Machine Interaction, IAEA-SM-26B/29, Vienna, Austria, 1984.

Inveco And The Alberta Community And Occupational Health Office. Fea-
sibility Of Reducing Injuries To Drilling Rig Employees Through The Use Of
Mechanical Pump Handling Systems, Edmonton, Canada, 1983.

J. Jacky. Formal specification for a clinical cyclotron control system. In
M. Moriconi, editor, Proceedings Of The ACM SIGSOFT International Work-
shop On Formal Methods In Software Development, pages 45-54. ACM, New
York, United States of America, 1990.

D. John. Vandals cause chaos for 150,000 commuters. The Guardian, page 4,
10 December 1991.

C.W. Johnson. Applying temporal logic to support the specification and pro-
totyping of concurrent multi-user interfaces. In D. Diaper and N. Hammond,
editors, People And Computers VI: Usability Now, pages 145-156. Cambridge
University Press, Cambridge, United Kingdom, 1991.

C.W. Johnson and M.D. Harrison. PRELOG - a system for presenting and
rendering logic specifications of interactive systems. In C.E. Vandoni and
D.A. Duce, editors, EUROGRAPHICS ’90, pages 469—-480. Elsevier Science
Publications, North Holland, Netherlands, 1990.

C.W. Johnson and M.D. Harrison. Declarative graphics and dynamic inter-
action. In F.H. Post and W. Barth, editors, EUROGRAPHICS ’91, pages
195-207. Elsevier Science Publications, North Holland, Netherlands, 1991.

C.W. Johnson and M.D. Harrison. Using temporal logic to support the speci-
fication and prototyping of interactive control systems. International Journal
Of Man-Machine Studies, 36:357-385, 1992.

P. Johnson. Human Computer Interaction: Psychology, Task Analysis and
Software Engineering. McGraw-Hill, London, United Kingdom, 1992.

E.J. Joyce. Malfunction 54: Unravelling a deadly medical mystery of a com-
puterised accelerator gone awry. American Medical News, page 1, 3 October
1986.

S.M.P. Julien. Graphics in MicroPROLOG. Technical Report 82/17, Depart-
ment of Computing, Imperial College Of Science and Technology, London,
United Kingdom, 1982.

M.K. Junge and M.J. Giacomi. Human factors in equipment development
for the Space Shuttle: A study of the general purpose work station. In R.C.
Sugarman, editor, Proceedings Of The 25th Annual Meeting Of The Human
Factors Society, pages 218-222. Human Factors Society, Santa Monica, United
States of America, 1981.

BIBLIOGRAPHY 201

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

W.A. Kellogg. Conceptual consistency in the user interface: Effects on user
performance. In H.-J. Bullinger and B. Shackel, editors, Human-Computer
Interaction—INTERACT’87, pages 389-394. Elsevier Science Publications,
North Holland, Netherlands, 1987.

R.L. Kershner, J.W. Gebhard, and E.B. Silverman. An evaluation of nuclear
power plant operator performance using a safety parameter display system. In
R.E. Edwards, editor, Proceedings Of The 26th Annual Meeting Of The Human
Factors Society, pages 789-793. Human Factors Society, Santa Monica, United
States of America, 1982.

V. De Keyser. The structuring of knowledge of operators in continuous pro-
cesses : A case study of a continuous casting-plant start up. In J. Rasmussen,
K. Duncan, and J. Leplat, editors, New Technology And Human Error, pages
247 — 259. J. Wiley And Sons, New York, United States Of America, 1987.

V. De Keyser. Temporal decision making in complex environments. In D.E.
Broadbent, J. Reason, and A. Baddeley, editors, Human Factors In Hazardous
Situations, pages 121-128. Clarendon Press, Oxford, United Kingdom, 1990.

S. Khosla. System Specification: A Deontic Approach. PhD thesis, Department
of Computing, Imperial College Of Science And Technology, London, United
Kingdom, 1988.

D.E. Kieras and P.G. Polson. An approach to the formal analysis of user
complexity. International Journal Of Man-Machine Studies, 22(4):365-394,
1985.

M. Kirkpatrick and K. Mallory. Substitution error potential in nuclear power
plant control rooms. In R.C. Sugarman, editor, Proceedings Of The 25th An-
nual Meeting Of The Human Factors Society, pages 163—167. Human Factors
Society, Santa Monica, United States of America, 1981.

B. Kirwan. A human factors review and human reliability programme for
the design of a large U.K. nuclear chemical plant. In D.L. Pettigrew, editor,
Proceedings Of The 33rd Annual Meeting Of The Human Factors Society,
pages 1009-1013. Human Factors Society, Santa Monica, United States of
America, 1989.

O. Kivinen. Finns live in fear of ill wind from across the border. The Times,
page 11, 25 March 1992.

T.A. Kletz. What Went Wrong? Case Histories Of Process Plant Disasters.
Gulf, Houston, United States Of America, 1985.

M. Kooij. Interface specification with temporal logic. In S.J. Greenspan,
editor, The 5th International Workshop On Software Specification And Design,
pages 104-110. IEEE Computer Society Press, Washington, United States of
America, 1989.

R. Kowalski. Algorithm = logic + control. Communications Of The ACM,
22(7):424 — 436, 1979.

202

[182]

[183)

[184]

[185]

[186]

187

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

BIBLIOGRAPHY

R. Kowalski. Logic For Problem Solving. Elsevier Science Publications, North
Holland, Netherlands, 1979.

R. Kowlaski. The relation between logic programming and logic specification.
Philosophical Transactions Of The Royal Society of London, 312(A):345-361,
1984.

D. Kozen, editor. Logic of Programs 1981 - Proceedings. LNCS 131. Springer-
Verlag, Berlin, FDR, 1982.

B. Kramer. Introducing the GRASPIN specification language SEGRAS. Jour-
nal of Systems and Software, 15(1):17-31, 1991.

W. Kuhmann. Stress inducing properties of system response times. FEr-
gonomics, 32(3):271 — 280, 1989.

W. Kuhmann, W. Boucsein, F. Schaefer, and J. Alexander. Experimental in-
vestigation of psychophysiological stress-reactions induced by different system
response times in human-computer interactions. Ergonomics, 30(6):933 — 943,
1987.

P. Ladkin. Primitives and units for time specifications. In T. Kehler,
S.Rosenschein, R. Filman, and P.F. Patel-Schneider, editors, Proceedings Of
The Fifth Annual Conference On Artificial Intelligence, pages 354-359. Mor-
gan Kaufman, Los Altos, United States of America, 1986.

L. Lamport. TIMESETS - a new method for temporal reasoning about pro-
grams. In D. Kozen, editor, Logic Of Programs 1981 - Proceedings, LNCS 131,
pages 177-196. Springer-Verlag, Berlin, FDR, 1982.

G.L. Lazarev. Reusability in Smalltalk: A case study. Journal of Object
Oriented Programming, 4(2):11-18, 1991.

D. Learmont. United Kingdom Air Accidents Investigation Branch slams 737-
400 displays. Flight International, 6 March 1991.

J. Lee and N. Moray. Trust and the allocation of function in the control of
automatic systems. Technical report, Department of Mechanical And Indus-
trial Engineering, University of Illinois, Urbana-Champaign, United States of
America, 1990.

S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman. The De-
sign And Implementation Of The 4.8BSD UNIX Operating System. Addison
Wesley, Reading, United States of America, 1990.

H.W. Leibowitz. Human senses in flight. In E.L. Wiener and D.C. Nagel,
editors, Human Factors In Aviation, pages 83—-110. Academic Press, London,
United Kingdom, 1988.

C.H. Lewis. A research agenda for the Nineties in human computer interaction.
Human Computer Interaction, 5(2-3):125-143, 1990.

BIBLIOGRAPHY 203

[196]

[197]

[198]

[199]

200]

[201]

[202]

[203]

[204]

205]

206]

F. Lin and F.E. Hunt. LCD-Reification: A formal method for developing
PROLOG programs. In S.J. Greenspan, editor, The 5th International Work-
shop On Software Specification And Design, pages 249-256. IEEE Computer
Society Press, Washington DC, United States of America, 1989.

Y. Liu and C.D. Wickens. Visual scanning with or without spatial uncertainty
and time sharing performance. In N.C. Goodwin, editor, Proceedings Of The
34th Annual Meeting Of The Human Factors Society, pages 76-81. Human
Factors Society, Santa Monica, United States of America, 1990.

A.M. Madni. The role of human factors in system design and acceptance.
Human Factors, 30(4):395-414, 1988.

O.L. Madsen and B. Mgller-Pedersen. What object-oriented programming
may be - and what it does not have to be. In S. Gjessing and K. Nygard,
editors, ECOOP ’88: European Conference On Object Oriented Programming,
LNCS 322. Springer-Verlag, Berlin, FRG, 1988.

K. Maguire. Signals staff pay deal will raise safety level, says BR. The Daily
Telegraph, page 2, 6 March 1991.

T.B. Malone. MPTS methodology in the Navy: Enhanced HARDMAN. In
D.L. Pettigrew, editor, Proceedings Of The 33rd Annual Meeting Of The Hu-
man Factors Society, pages 1044-1048. Human Factors Society, Santa Monica,
United States of America, 1989.

T.B. Malone, C.C. Heasly, and D.R. Eike. The army MANPRINT idea: In-
tegrated decision engineering aid. In N.C. Goodwin, editor, Proceedings Of
The 34th Annual Meeting Of The Human Factors Society, pages 1113-1116.
Human Factors Society, Santa Monica, United States of America, 1990.

T.B. Malone, M. Kirkpatrick, K. Mallory, D. Eike, J.H. Johnson, and R.W.
Walker. Human factors evaluation of control room design and operator per-
formance at Three Mile Island-2. Technical Report NUREG/CR-1270, United
States’ Regulatory Commission, Washington DC, Unites States of America,
January 1980.

G. Mancini. Modelling humans and machines. In L.P. Goodstein, H.B. An-
derson, and S.E. Olsen, editors, Task, Errors and Mental Models, pages 278 —
292. Taylor and Francis, London, United Kingdom, 1988.

7. Manna and A. Pnueli. Verification of concurrent programs: The tempo-
ral framework. In R.S. Boyer and J. Strother Moore, editors, The Correct-
ness Problem In Computer Science, pages 215-273. Academic Press, London,
United Kingdom, 1981.

D. McCrobie. Human factors design considerations for military trains. In D.L.
Pettigrew, editor, Proceedings Of The 33rd Annual Meeting Of The Human
Factors Society, pages 536-540. Human Factors Society, Santa Monica, United
States of America, 1989.

204

[207]

208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

BIBLIOGRAPHY

J.A. McDermid. Skills and technologies for the development and evaluation of
safety critical systems. Technical Report YCS 138, Department of Computer
Science, University of York, York, United Kingdom, 1990.

B. McGibbon. Case study: A flexible energy management system for Europe.
Usability Now, 1:2-3, 1990.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, London,
United Kingdom, 1988.

V.C. Miles, C.W. Johnson, J.C. McCarthy, and M.D. Harrison. Supporting
prediction in complex dynamic systems. In D. Diaper and N. Hammond,
editors, People And Computers VI: Usability Now, pages 133—-144. Cambridge
University Press, Cambridge, United Kingdom, 1991.

M. De Montmollin and V. De Keyser. Expert logic versus operator logic. In
G. Mancini, G. Johannsen, and L. Martensson, editors, Analysis, Design And
Evaluation Of Man-Machine Systems, pages 43-49. Pergamon Press, Oxford,
United Kingdom, 1986.

N. Moray. Human factors research and nuclear safety. In D.L. Pettigrew,
editor, Proceedings Of The 33rd Annual Meeting Of The Human Factors So-
ciety, pages 576-578. Human Factors Society, Santa Monica, United States of
America, 1989.

N. Moray. Objective and subjective estimates of human error. IEEE Trans-
actions On Reliability, 38(3):301-304, 1989.

N. Moray, P. Lootstein, and J. Pajak. The acquisition of process control skills.
IEEE Transactions On Systems, Man and Cybernetics, SMC-16(4):497-504,
1986.

W. Morehouse and M.A. Subamaniam. The Bhopal tragedy. Technical report,
Council For International And Public Affairs, New York, United States of
America, 1986.

J.N. Mosier and S.L.. Smith. Application of guidelines for designing user in-
terface software. Behaviour and Information Technology, 5(1):39-46, 1985.

C. Moss. Cut and paste : Defining the impure primitives of PROLOG. In
E. Shapiro, editor, Third International Conference On Logic Programming,
LNCS 225, pages 686 — 694. Springer-Verlag, Berlin, FDR, 1986.

B. Moszkowski. FEzxecuting Temporal Logic Programs. Cambridge University
Press, Cambridge, United Kingdom, 1986.

J. Moxon. Airbus offers autothrottle option. Flight International, 1 May 1991.

B.M. Muir. Trust between humans and machines and the design of decision
aids. In E. Hollnagel, G. Mancini, and D.D. Woods, editors, Cognitive Engi-
neering In Complex Dynamic Worlds, pages 71-83. Academic Press, London,
United Kingdom, 1988.

BIBLIOGRAPHY 205

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

J. Mullin. ‘Too many aboard’ helicopter crash rig. The Guardian, page 2, 17
March 1992.

B.A. Myers. Demonstrational interfaces: A step beyond direct manipulation.
In D. Diaper and N. Hammond, editors, People And Computers VI: Proceed-
ings Of HCI’91, pages 11-30. Cambridge University Press, Cambridge, United
Kingdom, 1991.

C. Neesham. Common codes of behaviour for sympathetic interaction. Com-
puting, pages 28-30, 21 March 1991.

L. Ness. L.0 - A parallel executable temporal logic. In M. Moriconi, edi-
tor, Proceedings Of The ACM SIGSOFT International Workshop On Formal
Methods In Software Development, pages 80-89. ACM, New York, United
States of America, 1990.

New Zealand Royal Commission. Report Of The Royal Commission To In-
quire Into The Crash On Mt. Erebus, Antartica Of A DC-10 Aircraft Operated
By Air New Zealand, Limited., Wellington, New Zealand, 1981. Government
Printer.

J. Nielsen. Coordinating User Interfaces for Consistency. Academic Press,
London, United Kingdom, 1989.

D.A. Norman. Cognitive engineering. In D.A. Norman and S.W. Draper,
editors, User Centered System Design, pages 31-62. Lawrence Erlbaum Asso-
ciates, Hillsdale, United States of America, 1986.

D.A. Norman. The ‘problem’ with automation : Inappropriate feedback
and interaction not ‘over-automation’. In D.E. Broadbent, J. Reason, and
A. Baddeley, editors, Human Factors In Hazardous Situations, pages 137-145.
Clarendon Press, Oxford, United Kingdom, 1990.

G.A. Osga. Human factors issues in future Navy workstation development:
Symposium abstract. In D.L. Pettigrew, editor, Proceedings Of The 33rd
Annual Meeting Of The Human Factors Society, pages 1077-1078. Human
Factors Society, Santa Monica, United States of America, 1989.

G.A. Osga. User interface issues for future ship combat consoles. In D.L. Pet-
tigrew, editor, Proceedings Of The 33rd Annual Meeting Of The Human Fac-
tors Society, pages 1079-1083. Human Factors Society, Santa Monica, United
States of America, 1989.

T.W. Page. An Object-Oriented Logic Programming Environment For Mod-
elling. PhD thesis, University of California, 1989.

E. Palmer. Conflict resolution maneuvers during near miss encounters with
cockpit traffic displays. In A.T. Pope and L.D. Haugh, editors, Proceedings
Of The 27th Annual Meeting Of The Human Factors Society, pages 757-761.
Human Factors Society, Santa Monica, United States of America, 1981.

206

[233]

[234]

[235]

[236]

237]

238

239

[240]

[241]

[242]

[243]

[244]

[245]

BIBLIOGRAPHY

S.J. Payne and T.R.G. Green. Task-Action Grammars: A model of the mental
representation of task languages. Human Computer Interaction, 2(2):93-133,
1986.

S.J. Payne and T.R.G. Green. The structure of command languages: An
experiment on Task-Action Grammar. The International Journal of Man-
Machine Studies, 30(2):213-234, 1989.

F. C. N. Pereira. Can drawing be liberated from the Von Neumann style ?
In M. Van Caneghan and D. H. D. Warren, editors, Logic Programming And
Its Application, pages 175 — 187. Ablex Publishing, Norwood, United States
of America, 1986.

R.M. Pew, D.C. Miller, and C.E. Feehrer. Evaluating nuclear control room
improvements through analysis of critical operator decisions. In R.C. Sugar-
man, editor, Proceedings Of The 25th Annual Meeting Of The Human Factors
Society, pages 100-104. Human Factors Society, Santa Monica, United States
of America, 1981.

D.W. Plath and P.E. Kolesnik. Readability and operability of three types of
digital switches. Journal of Engineering Psychology, 5:47-53, 1966.

G. Pélya. Mathematical Discovery. J. Wiley, New York, United States of
America, 1988.

H. Popitz, H.P. Bahrdt, E.A. Jures, and H. Kesting. Technik und indus-
triearbeit. In J.C.B. Mohr, editor, Soziologische Untersuchungen In Der
Huttenindustrie. Tubingen, Berlin, D.D.R., 1957.

E.L. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65:197-268, 1943.

D.C. Poteralski and R.C. Vogel. Status of severe accident research. IEFEE
Transactions On Nuclear Science, 35(1):914-918, 1988.

P. Potter. The design of the Chernobyl Unit 4 reactor. In N. Worley and
J. Lewins, editors, The Chernobyl Accident And Its Implications For The
United Kingdom - Report Number 19 Of The Watt Committee On Energy,
pages 9-18. Elsevier Applied Science, London, United Kingdom, 1988.

President’s Task Force On Aircraft Crew Compliment, United States’ Govern-
ment. Report On Aircraft Crew Compliment, Washington DC, United States
of America, 1981.

J. Race. Computer-encouraged pilot error. Computer Bulletin, 2(6):13-15,
1990.

J. Rasmussen. On the structure of knowledge - a morphology of mental models
in a man-machine system context. Technical Report Risg-M-2192, The Risg
National Laboratory, Roskilde, Denmark, 1979.

BIBLIOGRAPHY 207

[246]

[247]

[248]

[249]

250]

[251]

[252]

[253]

[254]

[255]

[256]

257]

[258]

[259]

260]

J. Rasmussen. Skills, rules and knowledge; signals, signs and symbols and other
distinctions in human performance models. IEEE Transactions On Systems,
Man And Cybernetics, SMC-13(3):257-266, 1983.

J. Rasmussen. Cognitive engineering, a new profession? In L.P. Goodstein,
H.B. Anderson, and S.E. Olsen, editors, Task, Errors and Mental Models,
pages 325 — 334. Taylor and Francis, London, United Kingdom, 1988.

J. Rasmussen. Coping safely with complex systems. Technical Report Risg-
M-2769, The Risg National Laboratory, Roskilde, Denmark, 1989.

J. Rasmussen and M. Lind. Coping with complexity. Technical Report Risg-
M-2293, The Risg National Laboratory, Roskilde, Denmark, 1981.

J. Rasmussen and O.M. Pedersen. Human factors in probabilistic risk analysis
and in risk management. Technical Report Risg-N-18-83, The Risg National
Laboratory, Roskilde, Denmark, 1983.

J. Reason. The psychology of mistakes: a brief review of planning failures. In
K. Duncan J. Rasmussen and J. Leplat, editors, New Technology And Human
Error, pages 45-53. John Wiley And Sons, Chichester, United Kingdom, 1987.

J. Reason. Human Error. Cambridge University Press, Cambridge, United
Kingdom, 1990.

E.S. Reed. James Gibson’s ecological approach to cognition. In A. Costall and
A. Still, editors, Cognitive Psychology In Question, pages 142—176. Harvester
Press, Brighton, United Kingdom, 1987.

J. Reid. A knowledge based approach to aid the construction and interpreta-
tion of computer generated graphics for blind users. Technical report, Depart-
ment of Computer Science, University of York, York, United Kingdom, 1991.
M.Sc. Thesis.

P. Reisner. Formal grammar and human factors design of an interactive graph-
ics system. IEEE Transactions On Software Engineering, SE - 7(2):229 — 240,
1981.

P. Reisner. What is inconsistency? In G. Cockton D. Diaper, D. Gilmore and
B. Shackel, editors, Human-Computer Interaction—INTERACT 90, pages
175-181. Elsevier Science Publications, North Holland, Netherlands, 1990.

E. Rich. Users are individuals: Individualising user models. International
Journal Of Man-Machine Studies, 18(3):199-214, 1983.

E. Rich and K. Knight. Artificial Intelligence. Mc Graw-Hill, London, United
Kingdom, 1991.

S.N. Roscoe. Airborne displays for navigation and flight. Human Factors,
10:617-629, 1968.

C. Rose. Inside The Apple Macintosh, volume I. Addison Wesley, Wokingham,
United Kingdom, 1986.

208

[261]

[262]

[263]

[264]

265

[266]

267]

268]

269]

[270]

[271]

[272]

[273]

BIBLIOGRAPHY

W.B. Rouse. Human-computer interaction in the control of dynamic systems.
ACM Computing Surveys, 13(1), 1981.

K.S. Rubin, P.M. Jones, C.M. Mitchell, and T.C. Goldstein. A Smalltalk
implementation of an intelligent operators assistant. In N. Meyrowitz, editor,
Proceedings of OOPSLA 88, pages 234-247. ACM, New York, United States
of America, 1988.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling And Design. Prentice Hall, London, United Kingdom,
1991.

C. Runciman. From abstract models to functional prototypes. In M.D. Har-
rison and H.W. Thimbleby, editors, Formal Methods In Human Computer
Interaction, pages 201-232. Cambridge University Press, Cambridge, United
Kingdom, 1990.

C. Runciman and M.A. Firth. Formalised development of software by machine-
assisted transformation. Software Engineering Notes, 15(4):115-117, 1990.

G. Saake. On first order temporal logics with changing domains for informa-
tion systems specification. Technical report, IBM Wissenschaftliches Zentrum,
Heidelberg, Germany, 1988.

G. Saake and U.W. Lipeck. Using finite-linear temporal logic for specifying
database dynamics. In E. Borger and H. Kleine Biining and M.M. Richter,
editors, Workshop On Computer Science Logic - 1988 Proceedings, LNCS 385,
pages 288-300, Berlin, FDR, 1988. Springer-Verlag.

M. Sainsbury. Logical Forms: An Introduction To Philosophical Logics. Black-
well, Oxford, United Kingdom, 1991.

T. Sakuragawa. Temporal PROLOG - a programming language based on
temporal logic. Computer Software (in Japanese), 4(3):15-27, 1987.

T. Sakuragawa. RACCO: A modal-logic programming language for writing
models of real-time process-control systems. Computer Software (in Japanese),
5(3):22-33, 1988.

P.M. Sanderson, J.M. James, and K.S. Seidler. SHARPA: An interactive
software environment for protocol analysis. Ergonomics, 32(11):1271 — 1302,
1989.

T.F. Sanquist and Y. Fujita. Protocol analysis and action classification in
the evaluation of an advanced annunciator system design. In D.L. Pettigrew,
editor, Proceedings Of The 33rd Annual Meeting Of The Human Factors So-
ciety, pages 1064-1067. Human Factors Society, Santa Monica, United States
of America, 1989.

A. Schaafstal. Knowledge and skills of operators in paper mills a comparison
between experts and novices. In Proceedings Of the Second Furopean Meeting
On Cognitive Approaches To Process Control, pages 149-166, Sienna, Italy,
1989. CEC-JRC Ispra and the University of Sienna.

BIBLIOGRAPHY 209

[274]

[275]

[276]

[277]

278

279

[280]

[281]

[282]

[283]

[284]

[285]

L.M. Schleifer and B.C. Amick. System response times and methods of pay:
Stress effects in computer-based tasks. International Journal Of Human -
Computer Interaction, 1:23 — 39, 1989.

L.M. Schleifer and O.G. Okogbaa. System response times and method of
pay: Cardiovascular stress effects in computer-based tasks. Ergonomics,
33(12):1459 — 1509, 1990.

K. Schmidt. Modelling cooperative work in complex environments. In Pro-
ceedings Of the Second Furopean Meeting On Cognitive Approaches To Process
Control, pages 173-182, Sienna, Italy, 1989. CEC-JRC Ispra and the Univer-
sity of Sienna.

J.M.C. Schraagen. Requirements for a damage control decision-support sys-
tem: Implications from expert-novice differences. In Proceedings Of the Sec-
ond Furopean Meeting On Cognitive Approaches To Process Control, pages
315-322, Sienna, Italy, October 1989. CEC-JRC Ispra and the University of

Sienna.

T. Seamster, C. Baker, and P.J. Andrews. Tactical symbology for visual
displays: The standardisation process. In D.L. Pettigrew, editor, Proceedings
Of The 33rd Annual Meeting Of The Human Factors Society, pages 1094—-1098.
Human Factors Society, Santa Monica, United States of America, 1989.

B.A. Semenov. Nuclear safety in the Soviet Union. International Atomic
Agency Bulletin, 25(2), 1983.

J.L. Seminara, W.R. Gonzalez, and S.O. Parsons. Human factors review of
nuclear power plant control room design. Technical Report RI-NP-1977-309,
Electronic Power Research Institute and Lockheed Missiles And Space Com-
pany, Palo Alto, United States of America, 1977.

D. Serrig. Human factors and the medical use of nuclear byproduct mate-
rial. In D.L. Pettigrew, editor, Proceedings Of The 33rd Annual Meeting Of
The Human Factors Society, pages 1014-1018. Human Factors Society, Santa
Monica, United States of America, 1989.

G.A. Sexton. Cockpit-crew systems design and integration. In E.L. Wiener and
D.C. Nagel, editors, Human Factors In Aviation, pages 495-526. Academic
Press, London, United Kingdom, 1988.

Sheen. MV Herald Of Free Enterprise. Court no. 8074. Department of Trans-
port, London, United Kingdom, 1987.

T.B. Sheridan. The system perspective. In E.L. Wiener and D.C. Nagel,
editors, Human Factors In Aviation, pages 27-51. Academic Press, London,
United Kingdom, 1988.

B. Shneiderman. Multiparty grammars and related features for defining in-
teractive systems. IEFEE Transactions On Systems, Man and Cybernetics,
SMC-12:148-154, 1982.

210

[286]

[287]

[288]

[289]

290]

[291]

[292]

293

[294]

295]

296]

297]

298]

299

BIBLIOGRAPHY

H.G. Simpson. Propylene leakage. Power And Works Engineering, page 8,
May 1974.

W.T. Singleton. Theoretical approaches to human error. Ergonomics,
16(6):727-737, 1973.

M. Sloman and J. Kramer. Distributed Systems And Computer Networks.
Prentice Hall, Englewood Cliffs, United States Of America, 1987.

A. Sorge, G. Hartmann, M. Warner, and I. Nicholas. Microelectronics And
Manpower In Manufacturing. Gower Press, Alershot, United Kingdom, 1983.

M. Stefik, D.G. Foster, K. Kahn, and D.G. Tatar. WYSIWIS revised: Early
experiences with multiuser interfaces. ACM Transactions on Office Informa-
tion Systems, 5:2:147-167, April 1987.

B.A. Steiner and M.J. Camacho. Situation awareness: Icons vs alphanumerics.
In D.L. Pettigrew, editor, Proceedings Of The 33rd Annual Meeting Of The
Human Factors Society, pages 28-32. Human Factors Society, Santa Monica,
United States of America, 1989.

M. Stephens. Three Mile Island. Junction Books, London, England, 1980.

A F. Stokes and C.D. Wickens. Aviation displays. In E.L. Wiener and D.C.
Nagel, editors, Human Factors In Aviation, pages 433-461. Academic Press,
London, United Kingdom, 1988.

M.N. Stollings. Information processing load of graphics versus alphanumeric
weapon format displays for advanced cockpit displays. Technical Report
AFWAL-TR-84-3037, United States’ Air Force Flight Dynamics Laboratory,
Wright Patterson Air Force Base, United States of America, 1984.

R.B. Stone and G.L. Babcock. Airline pilot’s perspective. In E.L. Wiener and
D.C. Nagel, editors, Human Factors In Aviation, pages 529-560. Academic
Press, London, United Kingdom, 1988.

B. Sufrin. Formal methods and the design of effective user interfaces. In
M.D. Harrison and A.F. Monk, editors, People And Computers : Designing
For Usability, pages 24-43. Cambridge University Press, Cambridge, United
Kingdom, 1986.

B. Sufrin and J. He. Specification, refinement and analysis of interactive
processes. In M. D. Harrison and H. W. Thimbleby, editors, Formal methods
in Human Computer Interaction, pages 153—200. Cambridge University Press,
Cambridge, United Kingdom, 1990.

P. Szekely and B. Myers. A user interface toolkit based on graphical objects
and constraints. ACM SIGPLAN Notices, 23(11):36-45, 1988.

D.G. Tatar, G. Foster, and D.G. Bobrow. Design for conversation: lessons
from Cognoter. International Journal of Man-Machine Studies, 34(2):185—
209, 1991.

BIBLIOGRAPHY 211

300]

301]

302]

303]

304]

305]

306]

307]

[308]

309]

[310]

[311]

[312]

R.M. Taylor and S.J. Selcon. Cognitive quality and situational awareness with
advanced aircraft attitude displays. In N.C. Goodwin, editor, Proceedings Of
The 34th Annual Meeting Of The Human Factors Society, pages 26-30. Human
Factors Society, Santa Monica, United States of America, 1990.

H.W. Thimbleby. Generative user-engineering principles for user interface
design. In B. Shackel, editor, Human-Computer Interaction—INTERACT’ 84,
pages 102 — 107. Elsevier Science Publications, North Holland, Netherlands,
1984.

H.W. Thimbleby. User interface design. In A.F. Monk, editor, The Fun-
damentals Of Human-Computer Interaction, pages 165—-180. Academic Press,
London, United Kingdom, 1985.

H.W. Thimbleby. Delaying commitment. IEEE Software, 5(3):78-86, May
1988.

H.W. Thimbleby. User Interface Design. Addison Wesley, Wokingham, United
Kingdom, 1990.

K.C. Thompson. A C-141 roll axis electromechanical primary flight control
actuation system. In Conference On Aircraft Design, Systems And Technology
Meeting, ATAA-83-2488, Fort Worth, United States of America, October 1983.

S. Thompson. Functional programming: Executable specifications and pro-
gram transformation. In S.J. Greenspan, editor, The 5th International Work-
shop On Software Specification And Design, pages 287-290. IEEE Computer
Society Press, Washington DC, United States of America, 1989.

R. Took. Surface interaction a paradigm and model for the presentation level of
applications and documents. In J.C. Chew and J. Whiteside, editors, Proceed-
ings Of The CHI’90 Conference On Human Factors In Computing Systems,
pages 35—42. ACM, New York, United States of America, 1990.

R. Took. Integrating inheritance and composition in an objective presenta-
tion model for multiple media. In F.H. Post and W. Barth, editors, EURO-
GRAPHICS 91, pages 291-303. Elsevier Science Publications, North Holland,
Netherlands, 1991.

I. Traynor and M. Tran. Pressure grows on Boeing over Thai crash. The
Guardian, page 22, 3 June 1991.

1.G. Umbers. Models of the process operator. The International Journal of
Man-Machine Studies, 11(2):263-284, 1979.

Union Carbide Incident Investigation Team, Union Carbide Corporation.
Bhopal Methyl Isocyanate Incident Investigation Team Report, Danbury,
United States of America, 1985.

United States’ Nuclear Regulatory Commission, National Technical Informa-
tion Service. Guidelines For Control Room Design Review, NUREG-0700,
Springfield, United States Of America, 1981.

212

313]

[314]

[315]

[316]

317]

318]

319]

[320]

[321]

322]

323]

[324]

325]

326]

BIBLIOGRAPHY

W.E. Vesely. The fault tree handbook. Technical Report USNRC NUREG
0492, United States’ Nuclear Regulatory Commission, Washington DC, United
States of America, January 1981.

W.A. Wagenaar and J. Groeneweg. Accidents at sea : Multiple causes and
impossible consequences. In E. Hollnagel, G. Mancini, and D.D. Woods, ed-
itors, Cognitive Engineering In Compler Dynamic Worlds, pages 133 — 144.
Academic Press, London, United Kingdom, 1988.

R.W. Wardell. An ergonomics perspective on safety in the oilfield. In D.L. Pet-
tigrew, editor, Proceedings Of The 33rd Annual Meeting Of The Human Fac-
tors Society, pages 999-1003. Human Factors Society, Santa Monica, United
States of America, 1989.

ILA. Watson. Review of human factors in reliability and risk assessment. In
J. Burgoyne, editor, The Assessment And Control Of Major Hazards, pages
323-337. Pergamon Press, Oxford, United Kingdom, 1985.

D. Whitfield. HCI in nuclear safety. Usability Now!, 1(2):7-8, 1990.

C.D. Wickens. Engineering Psychology And Human Performance. C.E. Merrill
Publishing Company, London, United Kingdom, 1984.

E.L. Wiener. Cockpit automation. In E.L. Wiener and D.C. Nagel, editors,
Human Factors In Aviation, pages 433—461. Academic Press, London, United
Kingdom, 1988.

E.L. Wiener and R.E. Curry. Flight deck automation : Promises and problems.
Ergonomics, 23(10):995 — 1011, 1980.

E.L. Wiener and D.C. Nagel, editors. Human Factors In Aviation. Academic
Press, London, United Kingdom, 1988.

T. Wilkie and S. Watts. Sellafield safety computer fails. The Independent,
page 1, 24th November 1991.

R.C. Williges, B.H. Williges, and J. Elkerton. Software interface design. In
G. Salvendy, editor, The Handbook Of Human Factors, pages 1416-1449. Wi-
ley, New York, United States of America, 1987.

S.E. Wilson. The design and implementation of an interactive graphics system
with natural language interface, for visually handicapped users. Technical
report, Department of Computer Science, University of York, York, United
Kingdom, 1991. M.Sc. Thesis.

R. Winner, J. Pennel, H. Bertrand, and M. Slusarczuk. The role of concurrent
engineering in weapons system acquisition. Technical Report R-338, United
States’ Institute Of Defense, Washington DC, United States of America, 1990.

T. Winograd and F. Flores. Understanding Computers And Cognition.
Addison-Wesley, Reading, United States of America, 1987.

BIBLIOGRAPHY 213

327]

[328]

329]

330]

331]

332]

333]

M.S. Wolgater, S.S. Godfrey, G.A. Fontenells, D.R. Desaulniers, P.R. Roth-
stein, and K.R. Laughery. Effectiveness of warnings. Human Factors,
29(5):599-612, 1987.

J. Woodcock and M. Loomes. Software Engineering Mathematics. Pitman,
London, United Kingdom, 1989.

D.D. Woods. Coping with complexity: The psychology of human behaviour in
complex systems. In L.P. Goodstein, H.B. Anderson, and S.E. Olsen, editors,
Task, Errors and Mental Models, pages 128 — 148. Taylor and Francis, London,
United Kingdom, 1988.

D.D. Woods, J.A. Wise, and L.F. Hanes. An evaluation of nuclear power plant
safety parameter display systems. In R.C. Sugarman, editor, Proceedings Of
The 25th Annual Meeting Of The Human Factors Society, pages 110-114.
Human Factors Society, Santa Monica, United States of America, 1981.

N. Worley and J. Lewins, editors. The Chernobyl Accident And Its Implica-
tions For The United Kingdom - Report Number 19 Of The Watt Committee
on Energy. Elsevier Applied Science, London, United Kingdom, 1988.

Y.Y. Yeh and C.D. Wickens. The dissociation of subjective measures of men-
tal workload and performance. Technical Report EPL-84-2/NASA-84-2, The
Engineering-Psychology Laboratory, Department of Psychology, University of
Illinois, Urbana-Champaign, United States of America, 1984.

W. Zachary. A context-based model of attention in computer-human inter-
action domains. In D.L. Pettigrew, editor, Proceedings Of The 33rd Annual
Meeting Of The Human Factors Society, pages 286—290. Human Factors So-
ciety, Santa Monica, United States of America, 1989.

