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Abstract

First order logic provides a means of integrating the speci�cation and prototyping of
interactive systems. It can describe graphical images in a declarative and order indepen-
dent manner. It supports the de�nition of abstract devices which avoid the complexity
of representing `raw' input from a variety of physical devices. The following pages show
how such techniques must be extended in order to prototype and reason about dynamic
interaction with graphical interfaces. The incorporation of a temporal ordering into log-
ical speci�cations provides a means of describing changes in the structure of graphical
images. It can also identify the sequencing which may be implicit within speci�cations
of interactive dialogues. This paper describes how PRELOG, a tool for Presenting and
REndering LOGic speci�cations of interactive systems, has been extended to include a
temporal logic interpreter.
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1. INTRODUCTION

Declarative approaches to the speci�cation and implementation of graphical images
o�er a number of bene�ts for the design of interactive systems. For example, constraint
based programming languages provide a means of expressing consistency requirements
between the image and behaviour of an interface [22]. Previous work, by the authors,
has argued that the declarative powers of �rst order logic makes it ideally suited for both
the speci�cation and prototyping of interfaces [10]. Executable subsets of the formalism,
such as that supported by PROLOG, provide a means of rapidly deriving prototypes
from abstract speci�cations. There is a close correspondence between speci�cations writ-
ten in �rst order logic and programs which satisfy those speci�cations implemented in
PROLOG [12, 5]. It can be used to avoid the introduction of unstructured bitmaps into
a formal speci�cation. It supports the incremental modi�cation of images and avoids the
order dependence of procedural languages [17]. First order logic supports the descrip-
tion of device abstractions which avoid the complexity of representing `raw' input from



a variety of physical devices [8]. Abstract requirements may be speci�ed for an interface
without necessarily considering low level implementation details. There are, however, a
number of problems which limit the application of this formalism to the design of inter-
active systems. For instance, the absence of state information may lead to a reliance on
implementation strategies and side-e�ects which are not explicit within a speci�cation.

2. FIRST ORDER LOGIC AND DECLARATIVE GRAPHICS

Complex graphical images can be described in terms of a number of component
parts. These may, in turn, be described in terms of their parts. Primitive objects, such
as lines or regions, support the graphical structure [10]. These part-whole hierarchies
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Figure 1: The part-whole hierarchy of menubar.

may be speci�ed using �rst order logic [8]. For example, a label might be part of a pull
down menu which is, in turn, part of a menu bar:

part(menubar; commandmenu):
part(commandmenu; label):
part(commandmenu;menuname):
graphics(label; line(0:0; 0:0; 0:3; 0:3)):
text(menuname;0 Commands0)):



Figure 1 illustrates the resulting graphical structure. Part-whole hierarchies o�er a num-
ber of bene�ts to the interface designer [2]. They are device and order independent. The
image is not determined by an execution sequence. The appearance of the interface may
be described without reference to particular devices.

Graphical structures, like that presented above, are not easily adapted to describe
the dynamics of interaction. For example, a user might select label in order to pull down
the menu. This would reveal a new structure including command options:

part(commandmenu;monitoritem):
part(commandmenu; restartitem):
part(commandmenu;manualitem):
part(commandmenu; offitem):

This is illustrated by �gure 2. In order to describe this change in appearance the designer
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Figure 2: The image of commandmenu before and after a selection event.

must maintain a distinction between the structure of the image before and after selection.
For example, the following clause speci�es the structure of a menu after selection:

offeritems(commandmenu) : �
part(commandmenu;monitoritem); part(commandmenu; restartitem);
part(commandmenu;manualitem); part(commandmenu; offitem);
not(part(commandmenu; label))):



This states that the items of commandmenu are available for selection if monitoritem,
restartitem, manualitem and o�tem are parts of commandmenu and label is not part
of commandmenu. Intuitively, this requirement could not be satis�ed without an in-
consistency because the initial speci�cation of the menu stated that label was a part of
commandmenu. Such problems can be avoided by maintaining a database which records
the current structure and image of an interface. For instance, if a user pulled down com-
mandmenu then the database must be updated to show that label is no longer part of the
structure of the menu. Schappo and Edmonds [20] support the maintenance of graphi-
cal records by providing meta-predicates, assertg and retractg. There are a number of
technical problems which surround the use of such predicates [15].

3. FIRST ORDER LOGIC AND DIALOGUE SPECIFICATION

First order logic provides a means of structuring descriptions of complex graphi-
cal images. Events provide a means of incorporating these structures into speci�cations
of interactive dialogues. Input from a range of physical devices, such as mice or tracker
balls, can be represented by generic events, such as select or move. For example, a
designer might construct a prototype in which a command to turn a system o� was suc-
cessful if it had an appropriate e�ect and this was displayed:

resolveerror1 : �
display(errordisp); subpart(errordisp; offitem); select(offitem);
effect(select(offitem); error; off); display(offdisp):

An error is resolved if errordisp is displayed and o�tem is selected and o�tem is part
of errordisp and the e�ect of the selection is to turn a system from the error to the o�
states and this e�ect is displayed. Such speci�cations leave the designer free to explore
the \design space of input devices" by using a variety of devices to generate the select

event [3].
The lack of sequencing in �rst order logic poses particular problems for event based

speci�cations of interactive dialogues. The previous clause would be satis�ed if select
were received after it had taken e�ect. The speci�cation does not determine the order in
which display(errordisp) or display(o�disp) are to be evaluated. In order to implement
such clauses, logic programming languages must enforce an order of evaluation. For ex-
ample, the left-right strategy of PROLOG would display errordisp before the selection
event was received, the input event would take e�ect before o�disp was presented. This
introduces a distinction between the logic of a speci�cation and the control which imple-
mentations require in order to determine an order of evaluation [13]. An implementation
of the previous clause would only exhibit the `desired' behaviour because control consid-
erations have inuenced the ordering of the logical speci�cation. Changing the order of
select(o�tem) and display(o�disp) would have no e�ect on the speci�cation of a dialogue
but would radically a�ect the behaviour of a prototype. This introduces considerable
complexity into the re�nement necessary to implement high level speci�cations. The



ordering of clauses within a logic speci�cation may have to be substantially revised to
support the control strategy of an implementation. Alternatives must be sought if logic
programming is to provide a convenient bridge between prototyping and speci�cation.

4. TEMPORAL GRAPHICS

Many of the limitations described in previous sections may be avoided by the intro-
duction of temporal information into logic speci�cations of interactive systems. Dialogue
sequences and changes in the structure of a graphical interface may be described with
respect to an interval of time. Such information can be introduced in a number of ways.
For example, Sundgren describes `elementary' records which associate time stamps with
every clause in a speci�cation [21]. Dialogue sequencing can be made explicit within the
logic of the speci�cation. This removes any reliance upon the control strategies implicit
within logic programming languages:

resolveerror2 : �
display(errordisp; 120005); select(offitem; 120010);
effect(select(offitem); error; off; 120015); display(offdisp; 120020):

This states that an error is resolved if errordisp is displayed at �ve seconds past midday
and o�tem is selected �ve seconds later and this has the e�ect of turning an erroneous
system o� a further �ve seconds later and this e�ect is displayed at exactly twenty seconds
past midday. Unfortunately, this approach can be unwieldy for non-trivial speci�cations.
The expression of complex timing properties would require the introduction of a large
number of temporal parameters. Speci�cations which describe persistent properties of
interaction are especially cumbersome to construct using explicit time stamps. For ex-
ample, the following clause requires that errordisp is displayed every second until the
user responds with an appropriate input:

resolveerror3 : �
display(errordisp; 120005); display(errordisp; 120006);
display(errordisp; 120007); display(errordisp; 120008);
display(errordisp; 120009); select(offitem; 120010);
effect(select(offitem); error; off; 120015); display(offdisp; 120020):

Speci�cations constructed using �xed time stamps impose unrealistic demands upon sys-
tem operators. In order to ful�ll the previous requirement a user must provide input at
exactly ten seconds after midday! This is likely to be an extremely optimistic assump-
tion given �nite cognitive resources and divided attention in noisy environments. Such
determinism can be avoided by substituting temporal variables for explicit parameters:

resolveerror4 : �
display(errordisp; T ); select(offitem; T1); effect(select(offitem); error; off; T2);



display(offdisp; T3); after(T; T1); after(T1; T2); after(T2; T3):

This states that an error is resolved if errordisp is displayed at moment T and of-
�tem is selected at T1 and this has the e�ect of turning an erroneous system o� at T2
and this e�ect is displayed at T3 and T1 occurs after T and T2 after T1 and T3 after
T2. The temporal ordering within the clause is made explicit by the predicate after.
Unfortunately, the use of temporal variables still involves the designer in considerable
complexity [6]. In particular, the designer is responsible for maintaining the semantics
of predicates, such as after, which de�ne an orderings over variables. These semantics
can radically e�ect the properties of any speci�cation [19].

Temporal logic provides the interface designer with a means of avoiding the complex-
ity associated with time stamps. This formalism extends �rst order logic to include the
following operators: 3 (read as `eventually');  (read as `next'); 2 (read as `always')
and U (read as `until'). It provides the designer with well developed proof techniques
through Kripke semantics [14]. The use of temporal logic relieves the designer from the
burdens of maintaining an explicit ordering in terms of predicates such as after. The
ordering is captured within the de�nition of temporal operators. For example, 3 may be
de�ned using a set of time stamps T , jwjt denotes the truth value of the formula w at
time t:

j3(w)jt � 9t1 2 T [after(t; t1) ^ jwjt1]

Informally this states that w is eventually true at time t if it is true at a time after
t. The other temporal operators can be de�ned in a similar fashion. A more complete in-
troduction is omitted for the sake of brevity and the interested reader is directed to Prior
[18]. The encapsulation of sequencing within de�nitions of temporal operators provides
a tractable means of including dynamic information within declarative speci�cations of
graphical interfaces.

5. TEMPORAL LOGIC AND DECLARATIVE GRAPHICS

Higher order, temporal logic, provides a precise and concise means of describing
structural changes in part-whole hierarchies. It can be used to avoid the axiomatic ap-
proach which led to a contradiction in �rst order logic. For example, a designer can
specify that eventually a pull down menu is represented by a label or command options:

3(part(commandmenu; label)):
3(part(commandmenu; offitem); part(commandmenu; onitem)):

This clause does not require that the structure of commandmenu must always include
label. It is, therefore, possible that at some time the structure of commandmenu may
not include label:



changestructure(commandmenu) : �part(commandmenu; label);
select(label);(part(commandmenu; offitem);
part(commandmenu;monitoritem); part(commandmenu; restartitem);
part(commandmenu;manualitem); not(part(commandmenu; label))):

This states that there is a change in the structure of commandmenu if in the present inter-
val label is part of commandmenu and there is a selection event for label and in the next
interval o�tem, monitoritem, restartitem and manualitem are parts of commandmenu

but label is not.
Temporal operators provide a means of describing structural changes which are often

used to indicate command completion in graphical interfaces [7]. For example, many
systems con�rm the successful completion of a command by hiding the options of a pull
down menu. In order for the user to predict the success of a command in such an inter-
face it should always be the case that the initial structure of the menu should eventually
return once it has been pulled down. Such requirements are not easily expressed using
static, declarative, de�nitions of part-whole hierarchies. The 2,  and 3 operators pro-
vide a tractable means of expressing such dynamic requirements:

2(dialoguecycle : �changestructure(commandmenu);
(select(offitem); part(commandmenu; offitem);
3(effect(select(offitem); error; off); part(commandmenu; label)))):

Expressing this requirement in terms of �xed time stamps or temporal variables is a
non-trivial task.

6. TEMPORAL LOGIC AND DIALOGUE SPECIFICATION

Sequencing information can be incorporated into a logical speci�cation using the
 operator. For example, a designer might specify that the presentation of errordisp
should immediately be followed by input to turn the system o�, that the e�ect of this
input should be followed by the presentation of offdisp:

resolveerror5 : �display(errordisp);
(select(offitem); effect(select(offitem); error; off));(display(offdisp))):

This states that an error is resolved if in the present interval errordisp is displayed
and in the next interval o�tem is selected and the e�ect of this is to turn the system
o� and this is displayed in the next again interval. The inclusion of temporal opera-
tors makes the sequence of a dialogue explicit within the logic of a speci�cation. This
provides a means of expressing the dialogue requirements which a user must be able to
satisfy in order to guarantee the success and safety of an application. They must be able
to recognise the errordisp and then respond appropriately by turning the system off .
The use of temporal operators also avoids any reliance upon the evaluation strategies



implicit within the control of an implementation. The behaviour of an interface would
not be a�ected if the ordering of a clause were changed. Unfortunately, this technique
su�ers from some of the problems associated with time stamps. Both approaches are
strongly deterministic, each predicate is evaluated during a speci�c interval in time. The
3 operator provides a means of avoiding such determinism:

resolveerror6 : �display(errordisp);
3(select(offitem); effect(select(offitem); error; off);(display(offdisp))):

This states that an error is resolved if in the present interval errordisp is displayed and
eventually o�tem is selected and the e�ect of this is to turn the system o� and in the next
interval this is displayed. The designer may not be able to predicting the exact moment
at which an operator will react to the presentation of errordisp. The introduction of the
3 operator captures this uncertainty by specifying that a user should eventually respond.
The designer can use such operators to describe the inuence of �nite cognitive resources
and noisy working environments which prevent users from immediately ful�lling dialogue
requirements.

The  and 3 operators provide a means of integrating dynamic requirements into
a speci�cation that supports proof. They do not, however, address the issue of per-
sistence which was a signi�cant drawback to the use of �xed time stamps, illustrated
by resolveerror3. The previous section has described how the 2 operator provides a
solution to this problem. The designer is not required to explicitly restate axioms of
a speci�cation for each interval. Temporal logic also provides a means of describing
bounded persistence. Transient displays are easily forgotten or overlooked. Previous
clauses might be re�ned so that errordisp is presented until input is received. The U
operator (read as `until') provides a means of specifying such requirements:

resolveerror7 : �display(errordisp)U
(select(offitem); effect(select(offitem); error; off);(display(offdisp))):

This states that an error is resolved if errordisp is displayed until o�tem is selected
and the e�ect of this is to turn the system o� and in the next interval this is displayed.
Temporal logic provides an expressive means of specifying changes in graphical structures
and dialogue sequences for dynamic systems. In order to bene�t from the integrated ap-
proach advocated in the introduction there must be some means of deriving prototype
implementations from such speci�cations.

7. IMPLEMENTATION

A central tenet of our previous work has been that speci�cations and prototyp-
ing must be integrated to support interface design. PRELOG, a tool for Presenting
and REndering LOGic speci�cations of interactive systems, has been implemented. This
links the tractability and executability of PROLOG with a screen presentation system,



Presenter [23]. PROLOG provides a means of prototyping high level speci�cations using

SECTION 2-67c

SECTION 4-37c

SECTION 1-75c

SECTION 3-92c

TANK BTANK A

COOLANT PUMP PRESS.-15psi

ALTER  
-PARAM-

RESET  
-PARAM-

PREVIEW 
-FUTURE-

REVIEW 
-HISTORY

MAILING 
-IN/OUT-

FAULT  
-REPORT-

EXPAND 
-VIEW-

REFINE 
-VIEW-

ERROR 
-ABORT-

SYSTEM  
-HELP-

Figure 3: Part of an early PRELOG prototype.

an executable subset of �rst order logic. Presenter handles low level device primitives
and supports the implementation of device abstractions in the form of input events.
PRELOG has been implemented on a network of Sun 3/50s and 3/60s. The develop-
ment of this tool has revealed many of the limitations of using �rst order logic to design
dynamic graphical interfaces for complex systems. A reliance upon extra-logical control
facilities in dialogue speci�cations and the use of internal databases to maintain records
of graphical structures has increased the di�culty of the transformation between speci�-
cation and prototype. It is possible to overcome many of these limitations by extending
PRELOG to provide access to a temporal logic interpreter.

Several research groups have attempted to provide an executable semantics for tem-
poral logic speci�cations. Hale and Moszkowski have produced interpreters for the Tem-
pura temporal logic programming language [16]. Current implementations are written
in C and Lisp and could not easily be incorporated into the declarative graphics system
supported by PRELOG. The meta-interpreter Tokio [1] did not su�er from this disad-
vantage. Written in PROLOG it proved a trivial task to extend PRELOG to include
the temporal operators provided by Tokio. Figure 4 illustrates the resulting system ar-
chitecture. If there are no temporal operators in a clause then Tokio will pass it directly
on to PROLOG for evaluation. Clauses which contain temporal operators are rewritten
in �rst order logic and asserted over an appropriate interval. The interpreter maintains
the �xed time stamps which otherwise might impose heavy burdens upon the designer.
Execution progresses when all the clauses for a particular interval are satis�ed.
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8. CONCLUSION AND FURTHER WORK

Brevity has forced the omission of an extended example of the application of tem-
poral logic to support interface design. Similarly, it has not been possible to include
a detailed exposition of the proof system which supports the temporal extensions to
PRELOG. These have been addressed elsewhere and the interested reader is directed to
[9, 11]. Instead, this paper has focussed upon the problems of temporal reasoning using
�rst order logic. It has been argued that these must be resolved if this formalism is to
support the design of dynamic graphical interfaces. Previous systems have exploited con-
trol strategies and extra-logical facilities available within logic programming languages,
such as PROLOG. This forces the introduction of implementation issues into the logic of
a speci�cation and incurs an additional complexity for the re�nement necessary in order
to render a speci�cation executable. Higher order, temporal, logic has been proposed
as an elegant alternative to these ad hoc solutions. The sequence of a dialogue can be
made explicit within a speci�cation. The structure and appearance of an image can be
quanti�ed with respect to time; static, declarative, speci�cations can be animated.

Future work will continue to explore the use of temporal logic and structural de-



composition to support the design of complex graphical interfaces. In particular, it is
hoped that these techniques will provide valuable tools for the design of interfaces to pro-
cess control systems. Temporal logic is appropriate for this investigation because timing
properties are often critical to the safe operation of such dynamic applications. It is also
hoped to extend PRELOG to include some of the facilities o�ered by constraint based
graphics languages [22]. Future work will explore the relationship between the speci�ca-
tion of weak constraints, involving the 3 operator, and the hard commitments necessary
for execution, described using the  or 2 operators. Initial investigations have also
revealed that this approach has some potential as a means of supporting model-based
image recognition [4]. It is hypothesised that the introduction of temporal dependencies
will signi�cantly increase the power of current modelling techniques for image analysis.
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